Nanomaterials for sensing and optoelectronic applications (micro and nano technologies) 1st edition

Page 1


NanomaterialsforSensingandOptoelectronic Applications(MicroandNanoTechnologies)1st EditionM.K.Jayaraj(Editor)

https://ebookmass.com/product/nanomaterials-for-sensing-andoptoelectronic-applications-micro-and-nano-technologies-1stedition-m-k-jayaraj-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanomaterials for Clinical Applications: Case Studies in Nanomedicines (Micro and Nano Technologies) 1st Edition

Costas Demetzos (Editor)

https://ebookmass.com/product/nanomaterials-for-clinical-applicationscase-studies-in-nanomedicines-micro-and-nano-technologies-1st-editioncostas-demetzos-editor/ ebookmass.com

Nanotoxicity: Prevention and Antibacterial Applications of Nanomaterials (Micro and Nano Technologies) 1st Edition

Susai Rajendran (Editor)

https://ebookmass.com/product/nanotoxicity-prevention-andantibacterial-applications-of-nanomaterials-micro-and-nanotechnologies-1st-edition-susai-rajendran-editor/

ebookmass.com

Nanomaterials Recycling (Micro and Nano Technologies) 1st Edition Mahendra Rai (Editor)

https://ebookmass.com/product/nanomaterials-recycling-micro-and-nanotechnologies-1st-edition-mahendra-rai-editor/

ebookmass.com

CompTIA Security+ All-in-One Exam Guide, Sixth Edition (Exam SY0-601)) Wm. Arthur Conklin

https://ebookmass.com/product/comptia-security-all-in-one-exam-guidesixth-edition-exam-sy0-601-wm-arthur-conklin/ ebookmass.com

https://ebookmass.com/product/architecture-urban-space-and-war-ristic/

ebookmass.com

Forgetful Remembrance: Social Forgetting and Vernacular Historiography of a Rebellion in Ulster Guy Beiner

https://ebookmass.com/product/forgetful-remembrance-social-forgettingand-vernacular-historiography-of-a-rebellion-in-ulster-guy-beiner/

ebookmass.com

Selenium WebDriver Recipes in C#, Third Edition Courtney Zhan

https://ebookmass.com/product/selenium-webdriver-recipes-in-c-thirdedition-courtney-zhan/

ebookmass.com

Borrowed from Your Grandchildren : The Evolution of 100-Year Family Enterprises 1st Edition Dennis T. Jaffe

https://ebookmass.com/product/borrowed-from-your-grandchildren-theevolution-of-100-year-family-enterprises-1st-edition-dennis-t-jaffe/

ebookmass.com

The Johns Hopkins Manual of Gynecology and Obstetrics South Asian Edition Betty Chou

https://ebookmass.com/product/the-johns-hopkins-manual-of-gynecologyand-obstetrics-south-asian-edition-betty-chou/

ebookmass.com

STOP PLAYING SAFE 2nd Edition

https://ebookmass.com/product/stop-playing-safe-2nd-edition-margiewarrell/

ebookmass.com

NANOMATERIALSFOR SENSINGAND OPTOELECTRONIC APPLICATIONS

NANOMATERIALSFOR SENSINGAND OPTOELECTRONIC APPLICATIONS

CochinUniversityofScienceandTechnology,Kochi,India; UniversityofCalicut,Malappuram,India

SUBHAP.P.

CochinUniversityofScienceandTechnology,Kochi, Kerala,India

SHIBITHOMAS

DepartmentofPhysics,BharataMataCollege, Thrikkakara,Kochi,India

Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’s permissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-824008-3

ForInformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: EdwardPayne

EditorialProjectManager: IsabellaC.Silva

ProductionProjectManager: KameshRamajogi CoverDesigner: MilesHitchen

TypesetbyAptara,NewDelhi,India

Chapter1Facet-dependentgassensingpropertiesofmetaloxide nanostructures1

M.J.Priya,SubhaP.P.andM.K.Jayaraj

1.1Introduction1

1.2Metaloxide–basedgassensors2

1.3Strategiesforimprovingtheperformanceofmetal oxide–basedgassensors8

1.4Generalsynthesisroutesofhigh-energycrystal facet–exposedmetaloxides14

1.5Facet-dependentgassensingpropertiesofzincoxidegas sensors15

1.6Challengesandapproaches17

1.7Application19

1.8Summary19 References20

Chapter2Metaloxidesemiconductorthin-filmtransistorsforgas sensingapplications25 ManuShaji,K.J.SajiandM.K.Jayaraj

2.1Introduction25

2.2Varioustypesofgassensors26

2.3MetaloxideTFT–basedgassensors27

2.4HybridTFTsensors39

2.5Summary41 References41

Chapter3Recentdevelopmentsin2DMoS2

3.1Introduction45

3.2Sensingmechanismin2D-basedgassensors46

3.32D-basedgassensingdevices47

3.4MoS2 -basedgassensors51

3.5Summary58 References59

4.1Introduction63

4.2Templatednanostructures:synthesistechniquesand applications64

4.3Prospectsofbiocagesastemplatesinnanotechnology72

4.4Summary78 References79 Chapter5Anintroductiontobiosensors91

5.1Introduction91

5.2Fundamentalsofbiosensors92

5.3Classificationofbiosensors93

5.4Coupling/Immobilizationmethods97

5.5Field-effecttransistorbiosensors98

5.6Applicationsofbiosensor103

5.7Summary104 References104

Chapter6Luminescentnanoparticlesforbio-imagingapplication107

T.K.Krishnapriya,M.K.JayarajandA.S.Asha

6.1Introduction107

6.2Luminescence108

6.3Bioimaging113

6.4Luminescentnanoparticlesusedforbioimaging115

6.5Summary123 References124

Chapter7Nanophotonicbiosensorsfordiseasediagnosis129

R.AnjanaandM.K.Jayaraj

7.1Introduction129

7.2Plasmonicbiosensors130

7.3Evanescentfieldwaveguidebiosensors137

7.4Försterresonanceenergytransfersensors140

7.5Multimodalsensors143

7.6Summary144 References145

Chapter8Precisionnanoclusters:promisingmaterialsforsensing, optoelectronics,andbiology149

J.V.Rival,P.MymoonaandE.S.Shibu

8.1Introduction149

8.2LEDfabrication171

8.3Solarenergyharvesting173

8.4Photocatalysis177

8.5Bioimaging179

8.6Photodynamicandphotothermaltherapies184

8.7Summary187 References187

Chapter9Recenttrendsincore–shellnanostructures–based SERSsubstrates199

K.S.Anju,K.K.RajeevandM.K.Jayaraj

9.1Introduction199

9.2Surface-enhancedRamanspectroscopy199

9.3SERSsubstrates:anoverview203

9.4Core–shellnanostructures204

9.5Core–shellnanostructuresforbiologicalapplications213 Summary216 References216

Chapter10Noninvasivebiomarkersensorsusing surface-enhancedRamanspectroscopy221

10.1Introduction221

10.2Non-invasivebiologicalfluids225

10.3Challengesandfutureperspectives237 10.4Summary238 Acknowledgment238 References239

Chapter11Nanomaterials-basedflexibleelectrochemical sensorsforhealthcaremonitoring245

A.M.V.MohanandA.M.Starvin

11.1Introduction245

11.2Wearableelectrochemicalsensorsforsweatmonitoring246

11.3Flexiblemicrofluidicsensorsforsweatanalysis256

11.4Flexiblesensorsforsalivamonitoring258

11.5Flexiblesensorsforinterstitialfluidanalysis261

11.6Flexiblesensorsfortearfluidanalysis263

11.7Challengesandfutureperspectives265

P.S.Subin,K.J.SajiandM.K.Jayaraj

V.Sampath,S.vonGratowskiA.Irzhak,P.Lega,Z.Song, M.AlonsoCottaandV.Koledov

Contributors

M.AlonsoCotta

InstitutodeFísicaGlebWataghin,UniversidadeEstadualdeCampinas, 13083-859Campinas,SãoPaulo,Brazil.

R.Anjana

CochinUniversityofScienceandTechnology,Kochi,India;Departmentof Physics,St.Albert’sCollege(Autonomous),Ernakulam,India

K.S.Anju

CochinUniversityofScienceandTechnology,Kochi,India

A.S.Asha

CochinUniversityofScienceandTechnology,Kochi,India;Centreof ExcellenceinAdvancedMaterials,CochinUniversityofScienceand Technology,Kochi,India

P.A.Aswathy

CochinUniversityofScienceandTechnology,Kochi,India;Departmentof Physics,St.Stephen’sCollege,Kollam,India

ManeeshChandran

DepartmentofPhysics,NationalInstituteofTechnologyCalicut,Calicut, India

A.Irzhak

InstituteofMicroelectronicsTechnology,RussianAcademyofSciences, Chernogolovka,142432,Russia

M.K.Jayaraj

CochinUniversityofScienceandTechnology,Kochi,India;Universityof Calicut,Malappuram,India

V.Koledov

KotelnikovInstituteofRadioEngineeringandElectronicsoftheRussian AcademyofSciences,Moscow,Russia

T.K.Krishnapriya

CochinUniversityofScienceandTechnology,Kochi,India

P.Lega

MagneticPhenomenaLaboratory,KotelnikovInstituteofRadio EngineeringandElectronics,RussianAcademyofSciences,Mokhovaya 11-7,125009,Moscow,Russia

P.S.Midhun

CochinUniversityofScienceandTechnology,Kochi,India

A.M.V.Mohan

Electrodics&ElectrocatalysisDivision,CSIR-CentralElectrochemical ResearchInstitute(CECRI),Karaikudi,India

P.Mymoona

ElectroplatingandMetalFinishingDivision(EMFD),CouncilofScientific andIndustrialResearch(CSIR)-CentralElectrochemicalResearchInstitute (CECRI),Karaikudi,India;AcademyofScientificandInnovativeResearch (AcSIR)-CSIR,Ghaziabad,India

SubhaP.P.

DepartmentofPhysics,CochinUniversityofScienceandTechnology, Kochi,Kerala,India

M.J.Priya

CentreofExcellenceinAdvancedMaterials,CochinUniversityofScience andTechnology,Kochi,Kerala,India

BijiPullithadathil

NanosensorLaboratory,PSGInstituteofAdvancedStudies,Coimbatore, India

K.K.Rajeev

DepartmentofInstrumentation,CochinUniversityofScienceand Technology,Kochi,India;CentreofExcellenceinAdvancedMaterials, CochinUniversityofScienceandTechnology,Kochi,India

J.V.Rival

SmartMaterialsLab,DepartmentofNanoscienceandTechnology, UniversityofCalicut,Kerala,India

K.J.Saji

InternationalSchoolofPhotonics,CochinUniversityofScienceand Technology,Kochi,India;CentreofExcellenceinAdvancedMaterials, CochinUniversityofScienceandTechnology,Kochi,India

V.Sampath

IndianInstituteofTechnologyMadras,Chennai-600036,India

ManuShaji

CochinUniversityofScienceandTechnology,Kochi,India

E.S.Shibu

SmartMaterialsLab,DepartmentofNanoscienceandTechnology, UniversityofCalicut,Kerala,India

Z.Song

InternationalResearchCentreforNanoHandling&Manufacturingof China,ChangchunUniversityofScienceandTechnology,Changchun 130022,China

A.M.Starvin

DepartmentofChemistry,ChristianCollege,Kattakada, Thiruvananthapuram,India

P.S.Subin

CentreofExcellenceinAdvancedMaterials,CochinUniversityofScience andTechnology,Kochi,Kerala,India

NavamiSunil

NanosensorLaboratory,PSGInstituteofAdvancedStudies,Coimbatore, India

ShibiThomas DepartmentofPhysics,BharataMataCollege,Thrikkakara,Kochi,India

S.vonGratowski

LaboratoryofSpectroscopyandMillimeterandSubmillimeterWave Measurements,KotelnikovInstituteofRadioEngineeringandElectronics, RussianAcademyofSciences,FryazinoBranch,FIRERAS,Vvedenski Sq.1,Fryazino,MoscowRegion,141190,Russia

Preface

Thisbookon“Nanomaterialsforsensingandoptoelectronicapplications”isdesignedforpostgraduateandresearchstudents.Nanomaterialsaredefinedbytheirnanoscaledimensions,wheresurfaceor interfacequalitiestakeprecedenceoverbulkfeatures.Thelargesurface areaofnanomaterialsgivesrisetonovelphysicalandchemicalproperties,whichmakethemsuitablefordevelopingdevicesandinstruments foravarietyofapplicationsinfieldsoflifesciences,chemicalindustry, pharmaceuticals,energyconversionandstorage,electronics,photonics,aviationandspace,foodsafety,andinformationtechnology.This bookleansmoretowardexperimentalmethodsandpracticalapplicationsratherthandetailingthefundamentalprinciples.Webelieve thattheframeworkofthisbookwillbetterbenefitanoviceresearcher. Thisbookbringstogetherreviews,recentstudies,andknowledgeon nanomaterialsforsensingandoptoelectronicapplications.

Developingsensorswithahighresponse,improvedselectivity, andafasterrecoverytimearetheprimegoalsforresearchersworkingonsensors.Ananostructureddesignhelpstheminiaturization ofthesensingdevicewithimprovedperformance,pavingtheway forportablesensors.Suchsensorscanbeabreakthroughinvariousfields,includingbiomedicalresearchandenvironmentalmonitoring.Intriguingresultsusingmetaloxidesemiconductor–basedand thin-filmtransistor–basedgassensorshavebeenreportedinrecent years.Metaloxidesemiconductorswithexposedhigh-energyfacets havebeenreportedtohaveimprovedgassensingperformance.The firstthreechaptersprovideanoverviewofnanostructuredgassensorsusingmetaloxidesemiconductorsandtwo-dimensionaltransitionmetaldichalcogenides.Chapter4detailsthesignificanceof developingnanostructureswithinterestingfeaturesusingtemplateassistedsynthesis.Chapter5givesanintroductiontobiosensorsand thephenomenonofluminescence,aswellasvarioustypesofluminescentnanoparticlesemployedinbioimaging,whicharethoroughly explainedinChapter6.Themajorchallengesinbioimagingandthe useofluminescentnanoparticlesasabioimagingprobearealsodiscussed.Early,fast,accuratediseasediagnosisisthemostdemanding needfrombiomedicine,thefirststeptowardfightingagainstdiseases. Chapter7detailsthedifferentnanophotonictechniquesthatcanbe usedfordiseasediagnosis.Precisionnanoclustershavebeenused forabroadspectrumofapplications,suchasmolecular/metalion sensing,devicefabrication,greenenergyharvesting,photocatalysis,

andinthebiomedicalfield.TheuseofatomicallyprecisenanoclustersintheseapplicationsisdiscussedinChapter8.Surface-enhanced Ramanspectroscopy(SERS)hasevolvedasauniquesensingtechniquesinceitcombinesmolecularfingerprintspecificitywithsinglemoleculesensitivity.Recentadvancementsindevelopingcore–shell nanostructuresforthedevelopmentofSERSsubstratesarealsodiscussedinChapter9.SERSisalsoalabel-freetechniqueformonitoring biomarkersinbiologicalmatricesattrace-levelconcentrations.The recentadvancesinthefieldofSERS-basedsensorsforbiomarkerdetectioninbodyfluidssuchassweat,saliva,andtearwithanemphasis ontheanalysisofbiomarkers,fabricationtechniques,andpotential real-timeapplicationsforbiochemicalsensingareincludedinChapter 10.Thereisalwaysgrowingdemandforflexibleandskin-interfaced sensorscapableofthereal-timemonitoringofrelevantbiomarkers fromhumanbodyfluids,likesweat,saliva,tear,andinterstitialfluid. Thedesignofnanomaterials-basedelectrochemicalsensorsenhances thesensitivityofdetection,andChapter11discussesnanomaterialsbasedflexibleelectrochemicalsensorsforhealthcaremonitoring.Artificialsynapticdevicesareoneofthemostfar-fetchedapplicationsof nanostructuredmaterials.Artificialneuralnetworksbasedonresistive switching(RS)devicesareconsideredoneofthemoststraightforward andcost-effectivewaysofrealizingthistechnology.Apartfromthat,RS hasfoundimmenseapplicationsinsemiconductorelectronicsaswell. ThemechanismofRSinnanostructuresanditsnumerousapplications arediscussedinChapter12.Shapememoryalloys(SMAs)aresmart materialsthatexhibittheuniquepropertyofashapechangeupon exposuretoachangeintemperature.ThecombinationofnanomaterialsandSMAshelpstotailorthepropertiesandtofabricateseveral nanodevicesbasedonindividualnanoobjects.Oneoftheemerging technologiesofnanotweezersbasedonshapememorycompositematerialsandtheirapplicationformanipulatingrealnanoobjectslike nanotubesandnanowiresisdiscussedinChapter13.Thefinalchapterofthisbookelaboratesontheoutstandingphysicalandchemical propertiesofdiamond.Varioustechniquesforthegrowthofdiamond intheformofthinfilmsondifferentsubstratesandtheircharacteristics areexplained.

Itisveryexcitingtofinallypublishthisbookon“Nanomaterials forsensingandoptoelectronicapplications.”Therearemanypeople towhomwearegratefulfortheirvaluablecontributions.Weextend oursincerethankstoMs.Priya,M.J.,Mr.Manu,S.,Mr.Midhun,P.S., Ms.Krishnapriya,T.K.,Ms.Anju,K.S.,Mr.Subin,P.S.,Ms.Navami, S.,Mr.Jose,V.R.,Dr.Anjana,R.,Dr.Pillai,A.M.,Dr.Saji,K.J., Dr.Asha,A.S.,andpresentandformerresearchersatNanophotonicandOptoelectronicDevicesLaboratory(NPOED),Department ofPhysics,CochinUniversityofScienceandTechnology.Theyhave

contributedtheirresearchresultsmeticulouslyforeachchapterof thisbook.Wealsotakethisopportunitytothankwithdueregards, Prof.Kumar,K.R.,DepartmentofInstrumentation,CochinUniversityofScienceandTechnology;Dr.Shibu,E.S.,Departmentof NanoscienceandTechnology,UniversityofCalicut;Dr.Biji,P.,DepartmentofChemistryandNanoscienceandTechnology,PSGInstitute ofAdvancedStudies;Dr.Vinu,M.V.M.,CSIR-CentralElectrochemicalResearchInstitute(CECRI),Karaikudi;Prof.Sampath,V.,Indian InstituteofTechnologyMadras,India;VonGratowski,S.andKoledov, V.,KotelnikovInstituteofRadioEngineeringandElectronicsofthe RussianAcademyofSciences,Moscow,Russia;andDr.Chandran, M.,DepartmentofPhysics,NationalInstituteofTechnology,India,for theircontribution.

ItwasapleasantexperiencetoworkwiththeElsevierEditorial team,whohaveenabledthetimelypublicationofthisbook.

Dr.M.K.Jayaraj Dr.P.P.Subha Dr.T.Shibi

Facet-dependentgassensing propertiesofmetaloxide nanostructures

M.J.Priya a,SubhaP.P. b andM.K.Jayaraj b,c

a CentreofExcellenceinAdvancedMaterials,CochinUniversityofScience andTechnology,Kochi,Kerala,India. b CochinUniversityofScienceand Technology,Kochi,India. c UniversityofCalicut,Malappuram,India

1.1Introduction

Recently,nanostructuredmetaloxideshaveattractedmuchattentioninmanyindustrialanddomesticapplicationsforthedetection oftoxic,flammable,andexplosivegasesduetotheirhighsensitivity, flexibilityinproduction,smallsize,lowcost,andabilitytodetectboth reducingandoxidizinggases(Milleretal.,2014; Wangetal.,2010).The sensingpropertiesofthesenanomaterialsstronglydependontheir size,structure,shape,surface-to-volumeratio,andphysicalandchemicalproperties.Withtheincreasingdemandforselectiveandsensitive gassensors,researchersarefollowingdifferentstrategiestoimprove thegassensingpropertiesofthemetaloxidesemiconductor(MOS)–basedgassensors,suchaschangingthemorphologyofnanostructures (Gurlo,2011; Shoulietal.,2010; Sunetal.,2012),noblemetaldoping(Luoetal.,2017; Sarkaretal.,2015),theformationofhierarchical nanostructures(Milleretal.,2014; Walkeretal.,2019),core–shell(CS) structures(Yanetal.,2018),hollowheteronanostructures(Guoetal., 2019),andexposinghighenergycrystalfacets(Jiaetal.,2014; Liang etal.2019a; Liu,etal.,2012).Amongthesestrategies,scientistsare moreinterestedinthedevelopmentofnanostructureswithselectively exposedhigh-energyfacets.

Thenumbersofdanglingbonds(unsaturatedbonds),numberof activesiteforgasadsorption,andthearrangementofsurfaceatoms areimportantfactorsthatplayacrucialroleingassensingpropertiessincegassensingprocessesoccuronthesurface.Differentcrystal facetswithdistinctivesurfaceatomicarrangementspossessdifferent gassensingproperties.High-energyfacetspossessalargenumberof

1

Facet-dependentgassensingpropertiesofmetaloxidenanostructures danglingbonds,atomicsteps,andedges,whichleadstomoreactive sitesforgasadsorption;hencesensingmaterialsexposedwithhighenergyfacetsshowgreaterreactivitythanthoseexposedwiththelowenergyfacets(Gao&Zhang,2018; Kuangetal.,2014; Pal&Pal,2015; Shang&Guo,2015).

ThischaptergivesabasicidearegardingMOS-basedsensors,includingtheirgassensingmechanism,thedesignofthegassensor,the designofthegassensingmeasurementunit,differentperformance parameters,anddifferentstrategiesadoptedfortheimprovementof theperformanceofMOSgassensors.TheimportanceofMOSswith exposedhigh-energyfacetsintheimprovementofgassensingperformancehasbeendiscussedindetail.Also,theeffectsofdanglingbond densityongassensingpropertieshavebeendiscussed.Accordingto theresearchandcalculation,surfaceengineeringbyselectivelyexposinghigh-energyfacetsprovidesaneffectivewaytoobtainMOSgassensitivematerialswithsuperiorperformance.Theunderstandingof thefacet-dependentpropertiesofMOSwillleadtothefabricationof moreeffectivegassensorsinthefuture.

1.2Metaloxide–basedgassensors

1.2.1Gassensingmechanism

ThefundamentalprincipleofMOS–basedchemoresistivesensors isthechangeintheconductivityoftheMOSduetotheoxygenadsorptionanddesorptionreactionsonthemetaloxidesurface.Inthe caseofann-typeMOS-basedgassensorthesensingmechanismisas follows:inambientairatmosphere,oxygenadsorbedonthesurfaceof thesensinglayerbyextractingelectronsfromtheconductionbandof theMOS,whichresultsintheformationofaSchottkypotentialbarrier inMOS(Shankaretal.,2016).Theadsorptionofoxygenonthesurface ofMOSdependsontheoperatingtemperatureofthesensor.Atlower temperatures(<150°C),oxygenmoleculesareadsorbedintheformof molecularoxygenions(O2 )viathetrappingofacomparablyfewer numberofelectrons;however,athighertemperatures(>150°C),more electronsaretrappedbytheadsorbedoxygenandformatomicoxygen species(O andO2 )(Kashifetal.,2013).Theprocessesinvolvedin theadsorptionofoxygenonthemetaloxidesurfacecanbedescribed asfollows:

Theextractedelectronsfromthe conductionband(Ec )leavebehindpositivelychargedions,resultinginupward bandbendingandtheformationofan electron-depletionregionoraspacechargelayerintheMOS,asshownin Fig.1.1.Theheightanddepthofthe bandbendingdependontheamount andtypeofadsorbedoxygen.Dueto theformationoftheelectrondepletion region,anincreaseintheresistanceof theMOScanbeobserved.Whenthis surfaceisexposedtoreducinggases suchasacetoneandammonia,theadsorbedoxygenionsinteractwiththetargetgasesandthetrappedelectronsare releasedbackontotheMOSsurface.Theamountofoxygenremoved fromthesurfaceisproportionaltotheconcentrationofthereducing gas.Thustheheightanddepthofbandbendingandtheresistance oftheMOSdecrease(Ananya,2018; Shankaretal.,2016; Wangetal., 2010).TheoxygendesorptionfromtheMOSsurfaceinthepresenceof areducinggas(say,R)canbedescribedasfollows:

Figure1.1. Schematic representationofbandbending aftertheadsorptionofoxygen species(Priyaetal.,2021).

TheseelectronsarereleasedbackontotheMOSsurfaceandthe producedgasandwatermoleculearereleasedintotheatmosphere.On theotherhand,anoxidizinggasdepletesthechargecarriers,leadingto anincreaseinresistance.Similarly,inthecaseofp-typeMOS,where positiveholesarethemajoritychargecarriers,adecreaseintheresistanceisobservedinthepresenceofanoxidizinggasandanincrease intheresistanceinthecaseofareducinggas(Barsanetal.,2012; Neri, 2015; Subha&Jayaraj,2019). Table1.1 clearlysummarizestheresponse ofn-andp-typeMOStowardreducingandoxidizinggases.

1.2.2DesignofMOSgassensors

Thecommonlyavailableconfigurationsforthedesignof semiconductor-basedgassensorsare(1)sinteredpelletgassensors (Kazemietal.,2016),(2)thick-filmgassensors(Arshak&Gaidan, 2005),and(3)thin-filmgassensors(Mirzaeietal.,2019).The disadvantagewiththeuseofsinteredpelletgassensorsistheir relativelylowgasresponseduetothelimitedsurfacearea(Mirzaei etal.,2019).Thereforeresearchersaremoreinterestedintheuse ofthin-orthick-filmgassensorseitherinthetubularorplanar configuration,asshownin Fig.1.2.

Table1.1Changeintheresistanceofn-andp-typeMOSwhenexposed toreducingandoxidizinggases.

TypeofMOS

Whenexposedto reducinggases

Whenexposedto oxidizinggases

n-typeResistancedecreaseResistanceincrease p-typeResistanceincreaseResistancedecrease

Figure1.2. Schematicdiagram ofmetaloxidegassensor configurations:(A)tubularand (B)planar(SEandHErepresent thesensorelectrodeandheater electrode,respectively). Reproducedwithpermission from(Lee,2018),Copyright2018, Elsevier.

Thin-orthick-filmsensorsarepreparedbydepositingasensitive layeronaninsulatingsubstratesuchasalumina(Al2 O3 )andSi/SiO2 wafer.Themetaloxidepowderisgroundtogetherwithsuitablesolventslikeethanolandterpineolusinganagatemortartoformaslurry forthetubularconfiguration.Thentheslurryiscoatedonanalumina tube,onwhichapairofAuelectrodeshadbeenprintedpreviously, followedbydryingandsubsequentannealingathightemperatures. Finally,asmallNi–Cralloycoilisinsertedintothetubeasaheaterso astoadjustandoptimizetheworkingtemperatureofthegassensor.

Thetubularconfigurationisshownin Fig.1.2A.Si/SiO2 oraluminasubstratewithpreprintedinterdigitatedgoldelectrodesiscommonlyused forthefabricationofplanarsensors(Fig.1.2B).Aschematicdiagram oftheinterdigitatedpatternisshownin Fig.1.3.Theuseofplatinum electrodesislimitedduetotheirhighcost.InsuchcasesAuelectrodes aremorepreferred.Theworkingtemperatureisobtainedbyplacing thedeviceontheexternalheaterorwiththehelpofaninternalheater printedatthebackofthesubstrate.Theplanarconfigurationismore

preferredforlarge-scaleproductionduetotheimprovedfabrication productivityandqualityofthesensor(Lee,2018; Mirzaeietal.,2019).

Whenweconsiderthesubstratematerial,aluminaisthebestavailablesubstratematerialduetoitshighthermalconductivityandstability,lowthermalexpansioncoefficients,highmechanicalstrength, andlowelectricalconductivity(Lee,2018).Thehighthermalstabilityof aluminaisanimportantfeaturesincemostMOS-basedsensorswork atrelativelyhighertemperatures.However,forthefabricationofelectrodesinthemicrometerrange(<10μm),microfabricationtechniques suchasUVorelectron-beamlithographyhastobeemployed,which leadstothepreferenceofaSi/SiO2 waferasthesubstratematerial overthealuminasubstrateduetothesurfaceroughnessofalumina substrate.

Plasticfoilscanalsobeusedassupportingmaterialsduetothe increasingdemandforflexiblegassensors.Theadvantagesofplastic foilsaretheirfoldableandwearabledesign,lightweight,transparency, andmassproductivityduetoroll-to-rollprintingprocesses.Polymers suchaspolyimide(PI),withrelativelyhighthermalstability,havebeen widelyusedassupportingmaterialsforflexiblesensorsoperatingata relativelyhighertemperature.However,theoperationofMOSsensors above400°CisdifficultusingPIsubstrates(Wangetal.,2016).

1.2.3Gassensingmeasurementsystem

Generally,twotypesofmeasurementsystemsarecommonlyused forstudyingthegassensingpropertiesofthedevice:staticanddynamic. Fig.1.4 showstheschematicdiagramofastaticmeasurement system.Thesystemconsistsofatransparentgaschamberofadefined volumewithagasinlet.Thesampleisplacedinsidethechamberunder acontrolledtemperatureandhumidity.Theoperatingtemperatureof thesamplecanbeadjustedbyvaryingtheheatingvoltage.Duringthe measurement,afixedamountofanalytegasisinjectedthroughthegas

Figure1.3. Schematicdiagram oftheinterdigitatedelectrode pattern.

Figure1.4. Schematicdiagram ofthestaticgassensing measurementsystem(Mirzaei etal.,2018, 2019; Patil,2007).

Figure1.5. Schematicdiagram ofthedynamicgassensing measurementsystem.

inletwiththehelpofasyringe.Touniformizethedistributionofthe injectedtestgas,anelectricalfanisinstalledinsidethechamber.The concentrationofanalytegasiscalculatedwiththeratioofthevolumeof theinjectedgastothevolumeofairunderstandardatmosphericpressure.Afterreachingsaturationinthecurrent,thechamberisopened torecovertotheinitialcurrentintheairatmosphere.Theprocedure isrepeatedfordifferentanalytegasesatdifferentconditions(Mirzaei etal.,2018, 2019).

Adynamicsystemconsistsofgascylinderswithaknownconcentration,massflowcontrollers(MFCs),atestchamberwithagasinletandoutlet,heatingarrangement,electricalmeasurementarrangements,anddataacquisitionsystems,asshownin Fig.1.5.Withthe helpofMFCs,theflowrateofanalytegasesandsyntheticaircan becontrolled.Theconcentrationofanalytegasescanbechangedby mixingproperlywithsyntheticairornitrogeninamixingchamber connectedpriortothetestchamber.Thenthemixedvolumeofgas

ispassedintothetestchamberthrough thegasinlet.Thesampleisplacedon anexternalheaterandtheworkingtemperaturecanbecontrolledwithatemperaturecontroller.Thesampleisconnectedtoameasurementunittorecord thecurrentvariationcontinuously.Duringmeasurement,thecurrentthrough thesampleinairandinthepresence ofanalytegasatdifferenttemperatures isrecorded.Finally,afterthemeasurement,thegasfromthetestchamberis removedwiththehelpofarotarypump arrangement.

1.2.4Performanceparameters

Thegas-sensingperformanceofsensorsisevaluatedusingthefollowingimportantparameters(Balaguru2004; Tonezzeretal.,2015; Tshabalalaetal.,2016).

1.2.4.1Gasresponseandsensitivity

Generally,theresponseofasemiconductor-basedgassensoris definedasfollows: Response = Rg Ra Ra (1.6) where Ra and Rg representtheresistancesofthegassensorinthe presenceofairandtargetgas,respectively.Atypicalresponsecurve isshownin Fig.1.6.Sensitivityisthechangeinmeasuredresistance ( R)withachangeinanalyteconcentration( C),i.e.,theslopeofa calibrationgraph:S = S = R/ C .

1.2.4.2Selectivity

Itistheabilityofasensortodifferentiateaspecifictargetgasfrom amixtureofgases.Agoodsensorwilldetectaparticulargaswhile remaininginsensitivetoothergases.Theselectivitycoefficient(K)of agassensorcanbewrittenas K = SI SII (1.7) where SI and SII arethesensingresponsesofthesensortowardtwo differentgases,IandII,respectively.

1.2.4.3Stability

Stabilityisdefinedasthereproducibilityofthedeviceinthesensing measurementafterlonguse.Toavoidtheeffectsofnonrepeatability

Figure1.6. Typicalresponse curveofanMOS-basedgas sensor.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Nanomaterials for sensing and optoelectronic applications (micro and nano technologies) 1st edition by Education Libraries - Issuu