Nanomaterials for electrocatalysis thandavarayan maiyalagan - Download the ebook now for an unlimite

Page 1


https://ebookmass.com/product/nanomaterials-for-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Improved methanol electrooxidation catalyzed by ordered mesoporous Pt-Ru-Ir alloy nanostructures with trace Ir content Sabarinathan Ravichandran & Narayanamoorthy Bhuvanendran & Qian Xu & Thandavarayan Maiyalagan & Huaneng Su

https://ebookmass.com/product/improved-methanol-electrooxidationcatalyzed-by-ordered-mesoporous-pt-ru-ir-alloy-nanostructures-withtrace-ir-content-sabarinathan-ravichandran-narayanamoorthybhuvanendran-qian-xu-thandavaraya/ ebookmass.com

Electrocatalysis for Membrane Fuel Cells: Methods, Modeling, and Applications Nicolas Alonso-Vante

https://ebookmass.com/product/electrocatalysis-for-membrane-fuelcells-methods-modeling-and-applications-nicolas-alonso-vante/

ebookmass.com

Nanomaterials for food applications Amparo

https://ebookmass.com/product/nanomaterials-for-food-applicationsamparo/

ebookmass.com

Livable Streets 2.0 1st Edition Bruce Appleyard

https://ebookmass.com/product/livable-streets-2-0-1st-edition-bruceappleyard/

ebookmass.com

A History of East African Theatre, Volume 2 Palgrave

https://ebookmass.com/product/a-history-of-east-african-theatrevolume-2-palgrave/

ebookmass.com

The Rhetoric of Widening Participation in Higher Education and its Impact 1st ed. Edition Navin Kikabhai

https://ebookmass.com/product/the-rhetoric-of-widening-participationin-higher-education-and-its-impact-1st-ed-edition-navin-kikabhai/

ebookmass.com

Toward a Phenomenology of Terrorism: Beyond Who is Killing Whom 1st ed. 2021 Edition Polizzi

https://ebookmass.com/product/toward-a-phenomenology-of-terrorismbeyond-who-is-killing-whom-1st-ed-2021-edition-polizzi/

ebookmass.com

Romantic Autopsy: Literary Form and Medical Reading Arden Hegele

https://ebookmass.com/product/romantic-autopsy-literary-form-andmedical-reading-arden-hegele/

ebookmass.com

Interpersonal Communication 3rd Edition – Ebook PDF Version

https://ebookmass.com/product/interpersonal-communication-3rd-editionebook-pdf-version/

ebookmass.com

The

https://ebookmass.com/product/the-christmas-clash-park/

ebookmass.com

Nanomaterialsfor Electrocatalysis

Nanomaterialsfor Electrocatalysis

ThandavarayanMaiyalagan

DepartmentofChemistry,SRMInstituteofScience andTechnology,Kattankulathur,India

MahimaKhandelwal

DepartmentofMaterialsScienceandEngineering, KoreaUniversity,Seoul,SouthKorea

AshokKumarNadda

DepartmentofBiotechnologyandBionformatics, JaypeeUniversityofInformationTechnology, Waknaghat,India

TuanAnhNguyen

MicroanalysisDepartment,InstituteforTropical Technology,VietnamAcademyofScienceand Technology,Hanoi,Vietnam

GhulamYasin

InstituteforAdvancedStudy,CollegeofPhysicsand OptoelectronicEngineering,ShenzhenUniversity, Shenzhen,Guangdong,China

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-323-85710-9

ForInformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: SimonHolt

EditorialProjectManager: GabrielaCapille

ProductionProjectManager: PrasannaKalyanaraman

CoverDesigner: GregHarris

TypesetbyAptara,NewDelhi,India

PART1Introduction

CHAPTER1Nanoelectrocatalysis:Anintroduction 3

GhulamYasin,ShumailaIbraheem,RashidIqbal, AnujKumarandTuanAnhNguyen

1.1 Introduction............................................................3

1.2 Constructionandcharacterizationofnanostructures...............4

1.3 Efficientelectrocatalysisenabledbynanostructures................4

1.3.1Low-dimensionalnanostructures..............................4

1.3.22Dnanostructures..............................................5

1.3.33Dnanostructures..............................................6

1.4 Conclusion.............................................................6 References..............................................................6

CHAPTER22Dhybridelectrocatalysts ................................... 11

RashidIqbal,ShumailaIbraheem,MohammadTabish, AdilSaleem,AnujKumar,TuanAnhNguyenand GhulamYasin

2.1 Introduction...........................................................11

2.2 Graphene-basedelectrocatalysts....................................12

2.3 Graphenenonmetalliccomposites..................................13

2.4 Graphene-metalliccomposites......................................15

2.5 Conclusion............................................................16 References............................................................17

CHAPTER3MXene-basednanomaterialsforelectrocatalysis 23

AnujKumar,CharuGoyal,SonaliGautam, ShumailaIbraheem,TuanAnhNguyenandGhulamYasin

3.1 Introduction...........................................................23

3.2 Structuralandelectronicproperties.................................24

3.2.1Structuralproperties..........................................24 3.2.2Electronicproperties..........................................25

3.3 EngineeringofMXene-basednanomaterial........................27

3.3.1HFetching.....................................................27

3.3.2Lewisacidicetching..........................................28

3.3.3Water-freeetching.............................................30

3.3.4Treatmentwithalkali.........................................30

3.3.5Electrochemicaletching......................................31

3.3.6Chemicalvapordepositionmethod..........................31

3.4.1Oxygenreductionreaction...................................35

3.4.2Oxygenevolutionreaction....................................35

3.4.3Hydrogenevolutionreaction.................................39 3.4.4CO2

4.1

DinhChuongNguyen,ThiLuuLuyenDoan, DuyThanhTran,NamHoonKimandJoongHeeLee

4.2 SynthesismethodsoftheTMnanoparticle-basedcatalysts.......50

4.2.1Hydrothermalmethod.........................................50

4.2.2Solvothermalmethod.........................................52

4.2.3Chemicalreductionmethod..................................53

4.2.4Electrochemicaldepositionmethod.........................55

4.2.5Othersyntheticmethods......................................56

4.3 StructureandpropertiesofTMnanoparticle-basedcatalysts.....57

4.3.1Substrate-freeTMnanoparticle-basedcatalysts............57

4.3.2Carbonsubstrate-assistedTMnanoparticle-based catalysts........................................................61

4.3.3Metallicsubstrate-assistedTMnanoparticle-based catalysts........................................................64

4.4 ApplicationsofTMnanoparticle-basedcatalyststoward theORR,HER,andOER............................................66

4.4.1ORRapplications.............................................66

4.4.2HERapplications..............................................68

4.4.3OERapplications..............................................69

4.5 Summary..............................................................70

CHAPTER5Transitionmetalchalcogenides-based electrocatalystsforORR,OER,andHER ................. 83 TenzinIngselandRamK.Gupta

5.1 Introduction...........................................................83

5.1.1Overpotential(η )..............................................86

5.1.2Tafelplot.......................................................86

5.1.3Faradaicefficiency............................................86

5.1.4Stability........................................................86

5.2 Synthesisofmetalchalcogenides...................................87

5.2.1Solvothermal...................................................87

5.2.2Chemicalvapordeposition...................................88

5.2.3Othermethods.................................................88

5.3 Transitionmetalchalcogenides-basedelectrocatalysts forOER...............................................................89

5.4 Transitionmetalchalcogenides-basedelectrocatalysts forORR...............................................................92

5.5 Transitionmetalchalcogenides-basedelectrocatalysts forHER...............................................................98

5.6 Transitionmetalchalcogenides-basedmultifunctional electrocatalysts......................................................103

5.7 Conclusionandoutlook............................................105 Acknowledgment...................................................106 References...........................................................106

CHAPTER6Metal-organicframework-basedelectrocatalysts forORR,OER,andHER 111 MuhammadRizwanSulaimanandRamK.Gupta

6.1 Introduction.........................................................111

6.2 MOF-basedelectrocatalystsforORR.............................116

6.2.1MOF-derivednitrogen-dopedcarbon-based electrocatalystsforORR....................................117

6.2.2MOF-derivednonpreciousmetal-based electrocatalystsforORR....................................120

6.3 MOF-basedelectrocatalystsforOER.............................124

6.3.1MOF-derivedmetal-freematerialsforOER electrocatalyst................................................124

6.3.2MOF-derivednonpreciousmetal-basedOER electrocatalyst................................................126

6.4 MOF-basedelectrocatalystsforHER.............................130

6.4.1MOF-derivedmetal-freecarbon-basedmaterial forHER.......................................................131

6.4.2MOF-derivedNPM-basedelectrocatalystforHER.......132

6.4.3Metalcarbide,phosphides,andchalcogenides............133

6.5 MOF-basedmultifunctionalelectrocatalysts.....................136

6.5.1MOF-derivedOER/ORRbifunctionalelectrocatalysts...136

6.5.2MOF-derivedHER/OERbifunctionalelectrocatalysts...137

6.5.3MOF-derivedHER/ORRbifunctionalelectrocatalysts...137

6.5.4MOF-derivedHER/OER/ORRtrifunctional electrocatalysts...............................................138

CHAPTER7Heteroatom-dopedgraphene-based

7.1

7.2 Overviewofgrapheneandheteroatom-doped graphene-basedmaterials..........................................147

7.2.1Graphene.....................................................147

7.2.2Heteroatom-dopedgraphene-basedmaterials.............149

7.2.3Synthesisofheteroatom-dopedgraphene-based materials......................................................151

7.3 Heteroatom-dopedgraphene-basedmaterials aselectrocatalystsforORR,OER,andHER.....................152

7.3.1Heteroatom-dopedgraphene-basedmaterials forORR.......................................................152

7.3.2Heteroatom-dopedgraphene-basedmaterials forOER.......................................................156

7.3.3Heteroatom-dopedgraphene-basedmaterials forHER.......................................................158

7.4 Summaryandperspective..........................................160 Acknowledgments..................................................161 References...........................................................161

8.1 Introduction.........................................................169

8.2 M/N/CcatalystsfortheORR......................................170

8.3 SynthesisofhighlyactiveM/N/CcatalystfortheORR.........177

8.3.1Fe/N/Mcatalystsderivedfrommetal-organic frameworks...................................................177

8.3.2Fe/M/Ncatalystsfromsacrificialtemplates...............178

8.3.3Fe/N/CcatalystsderivedfromPANI.......................180

8.3.4Fe/N/Ccatalystfromporousorganicpolymersas precursors.....................................................181

8.3.5OtherstrategiesforobtaininghighlyactiveM/N/C catalysts.......................................................181

8.4 AssessmentofORRperformanceofM/N/Ccatalysts...........181

8.5 PhysicochemicalcharacterizationofpyrolyzedM/N/C catalysts..............................................................185

8.5.1Mössbauerspectroscopy....................................186

8.5.2X-rayphotoelectronspectroscopy..........................189

8.5.3X-rayabsorptionspectroscopy.............................191

8.5.4Transmissionelectronmicroscopy.........................194

8.6 Metal-containingheteroatom-dopedcarbon nanomaterialsforOERandHERreactions.......................195 References...........................................................200

CHAPTER9Metal-organicframeworksfortheelectrocatalytic ORRandHER 211

AnujKumar,ShashankSundriyal,CharuGoyal, TribaniBoruah,DipakKumarDas,GhulamYasin, TuanAnhNguyenandSonaliGautam

9.1 Introduction.........................................................211

9.2 EngineeringandeffectivestrategiesformodificationofMOFs212

9.2.1ModificationofMOFsbydoping..........................212

9.2.2MOF-derivedmaterials......................................214

9.2.3MOF-basedcomposites.....................................217

9.3 ApplicationsofMOFs-basedmaterialsinfuelcells.............220

9.3.1MOFsforelectrocatalyticORR............................221

9.3.2MOFsforhydrogenproduction............................223

9.4 Conclusionandfutureprospects...................................229 References...........................................................229

CHAPTER10LDH-basednanostructuredelectrocatalysts forhydrogenproduction 237

MohammadTabish,ShumailaIbraheem, MuhammadAsimMushtaq,RashidIqbal, TuanAnhNguyenandGhulamYasin

10.1 Introduction.........................................................237

10.2 ConstructionofTM-LDHnanostructures.........................238 10.2.1Bottom-upapproaches.....................................238 10.2.2Top-downapproaches......................................240

10.3 Carbonnanomaterial-basedTM-LDHnanohybrids.............240

10.4 Electrocatalyticapplicationforhydrogenproduction............241

10.5 Conclusion...........................................................245

CHAPTER11MOFs-derivedhollowstructureasaversatile platformforhighly-efficientmultifunctional electrocatalysttowardoverallwater-splitting

LeiZhang,Yuan-XinZhuandGuang-ZhiHu

11.1 Introduction.........................................................251

11.2 Briefclassificationofhollowstructuresbasedon theirgeometricalconfiguration....................................252

11.2.1Single-shelledhollowstructures..........................252

11.2.2Multishelledhollowstructures............................253

11.2.3Othercomplexhollowstructures..........................254

11.3 Activeregulationstrategy..........................................257

Conclusionsandperspectives......................................265

PART3NanomaterialsforElectrochemicalNitrogen reductionreaction(NRR)

CHAPTER12Noble-metals-freecatalystsfor electrochemicalNRR

XueZhaoandGuangzhiHu

12.1 Introduction.........................................................273

12.2 Non-noblemetal-basedmetalcatalysts...........................274

12.2.1Mo-basedcatalysts.........................................274 12.2.2Fe-basedcatalysts..........................................277

12.2.3Ti-basedcatalysts...........................................279

12.2.4Bi-basedcatalysts..........................................282

12.2.5Co,Ni-basedcatalysts.....................................283

12.2.6Othernon-noblemetalmetal-basedcatalysts............284

12.3 Non-metal-basedcatalysts.........................................285

12.3.1B-basedNRRcatalysts....................................286

12.3.2N-basedcatalysts...........................................288

12.3.3O-andS-basedcatalysts...................................290

12.3.4P-basedcatalysts...........................................291 Competinginterests.................................................291 Acknowledgments..................................................291 References...........................................................291

CHAPTER13Noblemetals-basednanocatalystsfor

13.1 Introduction.........................................................299

13.2 Ru-basedNRRcatalysts............................................300

13.2.1Single-atomRu-basedNRRcatalysts....................300

13.2.2SupportedRu-basedNRRcatalysts.......................301

13.2.3Ru-basedalloycatalysts...................................303

13.3 Au-basedNRRcatalysts...........................................304

13.3.1Aucatalystnanostructureadjusting.......................306

13.3.2SupportedAu-basedNRRcatalysts......................307

13.3.3Au-basedalloyNRRcatalyst..............................308

13.4 Othernoblemetal-basedNRRcatalysts..........................310

13.4.1Pd-basedNRRcatalysts...................................310

13.4.2Pt-basedNRRcatalysts....................................311

13.5 Conclusionsandprospects.........................................312 References...........................................................313

CHAPTER14ElectrochemicalNRRwithnoblemetals-based nanocatalysts ................................................... 317

MohdKhalid,MohammadRafeHatshan, AnaMariaBorgesHonorato,BijandraKumar andHamiltonVarela

14.1 Introduction.........................................................317

14.2 NRRmechanism....................................................318

14.3 TypesoftheelectrochemicalcellforNRR.......................320

14.4 ElectrolytesforNRR...............................................322

14.5 NRRbasedonnoblemetals........................................323

CHAPTER15ElectrochemicalNRRwithnoblemetals-free

15.2.7Othertransitionmetaloxides..............................342

15.3 Transitionmetalsulfides-basedelectrocatalysts..................346

15.4 Transitionmetalnitride-basedelectrocatalysts...................351

15.5 Transitionmetalphosphides-basedelectrocatalysts..............353 15.5.1Cobaltphosphides..........................................353

15.5.2Nickelphosphides..........................................355

15.5.3Ironphosphides.............................................355

15.6 Transitionmetalcarbides-basedelectrocatalysts.................357

15.6.1Mxene-basedelectrocatalysts.............................357

15.6.2Molybdenumcarbides-basedelectrocatalysts............357

15.7 Metal-freeelectrocatalysts.........................................358 15.7.1Boron-dopedcarbon.......................................358 15.7.2Nitrogen-dopedcarbon....................................360

15.7.3Fluorine-dopedcarbon.....................................360

15.7.4Sulfur-dopedcarbon.......................................362

15.7.5Blackphosphorus..........................................363

15.8 Conclusion...........................................................363

PART4NanomaterialsforElectrochemicalCO2 reductionreaction

CHAPTER16Nanomaterialsforelectrochemicalreduction ofCO2 :Anintroduction

AnujKumar,GhulamYasinandTuanAnhNguyen

References...........................................................375 Index....................................................................................377

Contributors

TribaniBoruah

NortheastHillUniversity(NEHU),UmshingMawkynroh,Shillong,Meghalaya, India

WeiweiCai

SustainableEnergyLaboratory,FacultyofMaterialsScienceandChemistry, ChinaUniversityofGeosciences,Wuhan,China

XunCui

SchoolofMaterialsScienceandEngineering,GeorgiaInstituteofTechnology, Atlanta,GA,UnitedStates;KeyLaboratoryofCatalysisandEnergyMaterials ChemistryofMinistryofEducationandHubeiKeyLaboratoryofCatalysis andMaterialsScience,South-CentralUniversityforNationalities,Wuhan, China

DipakKumarDas

DepartmentofChemistry,GLAUniversity,Mathura,UttarPradesh,India

ThiLuuLuyenDoan

DepartmentofNanoConvergenceEngineering,JeonbukNationalUniversity, Jeonju,Jeonbuk,RepublicofKorea

LikunGao

SchoolofMaterialsScienceandEngineering,GeorgiaInstituteofTechnology, Atlanta,GA,UnitedStates;KeyLaboratoryofBio-basedMaterialScienceand TechnologyofMinistryofEducation,NortheastForestryUniversity,Harbin, China

ÁlvaroGarcía

GrupodeEnergíayQuímicaSosteniblesInstitutodeCatálisisyPetroleoquímica, CSIC,Madrid,Spain

SonaliGautam

DepartmentofChemistry,GLAUniversity,Mathura,UttarPradesh,India

CharuGoyal

DepartmentofChemistry,GLAUniversity,Mathura,UttarPradesh,India

RamK.Gupta

DepartmentofChemistry,KansasPolymerResearchCenter,PittsburgState University,Pittsburg,KS,UnitedStates

MohammadRafeHatshan

DepartmentofChemistry,CollegeofScience,KingSaudUniversity,Riyadh, SaudiArabia

AnaMariaBorgesHonorato

DepartmentofMaterialsEngineering,FederalUniversityofSãoCarlos,São Carlos,SP,Brazil

GuangzhiHu

InstituteforEcologicalResearchandPollutionControlofPlateauLakes,School ofEcologyandEnvironmentalScience,SchoolofChemicalScienceand Technology,YunnanUniversity,Kunming,China

ShumailaIbraheem

InstituteforAdvancedStudy,CollegeofPhysicsandOptoelectronicEngineering, ShenzhenUniversity,Shenzhen,Guangdong,China

TenzinIngsel

DepartmentofChemistry,KansasPolymerResearchCenter,PittsburgState University,Pittsburg,KS,UnitedStates

RashidIqbal

InstituteforAdvancedStudy,CollegeofPhysicsandOptoelectronicEngineering, ShenzhenUniversity,Shenzhen,Guangdong,China

MohdKhalid InstituteofChemistryofSãoCarlos,UniversityofSãoPaulo,SãoCarlos,SP, Brazil

NamHoonKim

DepartmentofNanoConvergenceEngineering,JeonbukNationalUniversity, Jeonju,Jeonbuk,RepublicofKorea

AnujKumar

Nano-TechnologyResearchLaboratory,DepartmentofChemistry,GLA University,Mathura,UttarPradeshIndia;CollegeofMaterialsScienceand Engineering,BeijingUniversityofChemicalTechnology,Beijing,China

BijandraKumar

DepartmentofMath.,Comp.Sci.andEng.Technology,ElizabethCityState University,ElizabethCity,NC,UnitedStates

JoongHeeLee

DepartmentofNanoConvergenceEngineering,JeonbukNationalUniversity, Jeonju,Jeonbuk,RepublicofKorea;CarbonCompositeResearchCenter, DepartmentofPolymer-NanoScienceandTechnology,JeonbukNational University,Jeonju,Jeonbuk,RepublicofKorea

JingLi

SustainableEnergyLaboratory,FacultyofMaterialsScienceandChemistry, ChinaUniversityofGeosciences,Wuhan,China

ZhiqunLin

SchoolofMaterialsScienceandEngineering,GeorgiaInstituteofTechnology, Atlanta,GA,UnitedStates

MuhammadAsimMushtaq

StateKeyLaboratoryofChemicalResourceEngineering,BeijingUniversityof ChemicalTechnology,Beijing,China

DinhChuongNguyen

DepartmentofNanoConvergenceEngineering,JeonbukNationalUniversity, Jeonju,Jeonbuk,RepublicofKorea

TuanAnhNguyen

InstituteforTropicalTechnology,VietnamAcademyofScienceandTechnology, Hanoi,VietNam

MaríaRetuerto

GrupodeEnergíayQuímicaSosteniblesInstitutodeCatálisisyPetroleoquímica, CSIC,Madrid,Spain

SergioRojas

GrupodeEnergíayQuímicaSosteniblesInstitutodeCatálisisyPetroleoquímica, CSIC,Madrid,Spain

AdilSaleem

InstituteforAdvancedStudy,ShenzhenUniversity,Shenzhen,Guangdong, China;CollegeofPhysicsandOptoelectronicEngineering,ShenzhenUniversity, Shenzhen,Guangdong,China

MuhammadRizwanSulaiman

DepartmentofChemistry,KansasPolymerResearchCenter,PittsburgState University,Pittsburg,KS,UnitedStates

ShashankSundriyal

AdvancedCarbonProductsDepartment,CSIR-NationalPhysicalLaboratory, NewDelhi,India

MohammadTabish

StateKeyLaboratoryofElectrochemicalProcessandTechnologyforMaterials, CollegeofMaterialsScienceandEngineering,BeijingUniversityofChemical Technology,Beijing,China

JorgeTorrero

GrupodeEnergíayQuímicaSosteniblesInstitutodeCatálisisyPetroleoquímica, CSIC,Madrid,Spain

DuyThanhTran

DepartmentofNanoConvergenceEngineering,JeonbukNationalUniversity, Jeonju,Jeonbuk,RepublicofKorea

HamiltonVarela

InstituteofChemistryofSãoCarlos,UniversityofSãoPaulo,SãoCarlos,SP, Brazil

ShenglinXiao

SustainableEnergyLaboratory,FacultyofMaterialsScienceandChemistry, ChinaUniversityofGeosciencesWuhan,Wuhan,PRChina

YingkuiYang

KeyLaboratoryofCatalysisandEnergyMaterialsChemistryofMinistryof EducationandHubeiKeyLaboratoryofCatalysisandMaterialsScience, South-CentralUniversityforNationalities,Wuhan,China

Contributors

ZehuiYang

SustainableEnergyLaboratory,FacultyofMaterialsScienceandChemistry, ChinaUniversityofGeosciencesWuhan,Wuhan,PRChina

GhulamYasin

InstituteforAdvancedStudy,CollegeofPhysicsandOptoelectronicEngineering, ShenzhenUniversity,Shenzhen,Guangdong,China

ZihaoYe

SustainableEnergyLaboratory,FacultyofMaterialsScienceandChemistry, ChinaUniversityofGeosciences,Wuhan,China

LeiZhang

SchoolofMaterialsScienceandEngineering,AnhuiUniversityofScienceand Technology,Huainan,Anhui,PRChina

QuanZhang

SustainableEnergyLaboratory,FacultyofMaterialsScienceandChemistry, ChinaUniversityofGeosciencesWuhan,Wuhan,PRChina

XueZhao

InstituteforEcologicalResearchandPollutionControlofPlateauLakes,School ofEcologyandEnvironmentalScience,SchoolofChemicalScienceand Technology,YunnanUniversity,Kunming,China

Yuan-XinZhu

SchoolofMaterialsScienceandEngineering,AnhuiUniversityofScienceand Technology,Huainan,Anhui,PRChina

Preface

Thedistinctdepletionoffossilfuelsandever-growinghumandependenceonthe energy-basedusageshastriggeredasterndeclineinordinaryenergyreservoirsand alsoworsenedourenvironment.Itisexpectedthattheworldwillrequisitetodupleits energysourcestoenduretheuniversaleconomyprogressionby2050.Subsequently, thereisanimperativeneedthanevertodiscovertheuseofrenewable,clean,and bounteousenergysources.Inthistrend,anencouragingprogressistheusageof sustainableenergyfontstotransformmolecules(i.e., nitrogen,carbondioxide,and water)intheatmosphereintovaluedproducts(i.e., ammonia,hydrocarbons,and hydrogen)throughelectrocatalysistechnologies.Indeed,anumberofinnovative energyconversionandstoragesystems,forinstance,rechargeablemetal-airbatteries,waterelectrolysis,andfuelcellshavebroadlybeenconsidered.Remarkably, thesetechniquesvastlyreliantonthechainofelectrochemicalreactions,comprising theoxygenreductionreaction(ORR),oxygenevolutionreaction(OER),hydrogen evolutionreaction(HER),CO2 reductionreaction(CO2 RR),andnitrogenreduction reaction(NRR),etc.Nonetheless,theefficacyofthesereactionsintenselydependson thesyntheticstructureandpropertiesofthecatalystsused.Themodernadvancement innanomaterialshasopeneduptheinnovativeavenuebybuildingnanostructuresfor proficientenergystorageandconversion.Thisbookcrediblyfocusesontheenduring andadvancesinthenanotechnologyanddevelopmentofnanomaterialsforadvanced electrocatalysis.

Ofparticularattention,metal-basedandmetal-freenanomaterialshavebeen cost-efficientlydesignedintovariouselectrocatalystswithefficientenergystorage/conversioncapabilities.Theconsequentinnovationsinbuildingthecompetentnanostructuresunlockedanovelerainelectrochemistryandmaterialscience. Eversincethen,transition-metal-,andcarbon-basednanomaterialswithdistinctive surface/size-reliantelectrochemicalpossessionshavebeenrevealedtobebeneficial inelectrocatalysis,andmarvelousdevelopmenthasbeenaccomplishedinemerging nanomaterialsforproficientenergystorageandconversiontechnologies.Thisisa blisteringfieldwhereinasubstantialextentofliteraturehasbeenpromptlyengendered withseveralpublicationsongoingtoupturnannually.So,itisverysignificanttocover theutmostlatestadvancesinthisfieldinawell-timedmode.

Thisbookcompactswiththefundamentals,synthesismethods,andwiderange applicationsofthesemetal-basedandmetal-freenanostructures.Soastocoverthe multistructuredmeadowofsuchvariety,transition-metal,noble-metalandcarbonbasednanomaterialsforenergytechnologiesdeliverapoolofchapterstranscribed bytopscholarswhohavebeenkeenlyemployedinassociatedfields,andthescript hasbeendistributedintodifferentparts.Thisbookisanticipatedtocoverallthe differenttypesoftransition-metalbased(e.g., transitionmetaloxides,hydroxides, andchalcogenides),noble-metalbased,metal-free(e.g., carbon-andgraphenebased,heteroatom-dopedcarbon),andhybridnanomaterialsforelectrocatalysis.The

novelsyntheticmodes,characterization,differentstructures,andtheirapplicationsof above-mentionednanomaterialsandtheirmultifunctionalproductsarecomprehensivelydiscussed.Theoverheadtacticwillletthebookloverstofirstunderstandthe scientificfundamentalinformationofelectrocatalysisandthenencompassthebasic awarenesstothesynthesis,development,andapplicationofnanomaterialsinpractical technologies.

Thereaderswhoarefreshinthisfieldwillbemotivatedtolearnfundamental illustrationsthatmaywelldeliveravividdevotionearliertosternreading.Meanwhile, theupdatedcitationsinallchaptersoughttofacilitatereaderstorapidlyanalyzethe stimulatingfieldwithevidenceonthehottestadvances.So,thisbook“Nanomaterials forElectrocatalysis”isanindispensablereferenceonnanomaterialsforenergystorage andconversionsystemstoresearchers,engineers,teachers,scientistsandstudents inthefieldofmaterialsscience,nanotechnology,andelectrochemistry.Academic specialistscanusethisbooktoswiftlyreviewtheup-to-dateadvancestowidentheir understandingofnanomaterialsforelectrocatalysisemerginginnovativetechnologies forenergystorageandconversionsystems.

Atlast,wewanttoexpressourearnestgratitudetoGabrielaCapilleandtheir coworkersatElsevierfortheirgenerousandtolerantsupportthroughtheaccomplishmentofthisbook.Wewouldalsoliketoacknowledgetheentirechapterauthors, collaborators,andourassociateswhocontributedtothebook.Last,butnotthe least,wearebethegratefultoourfamiliesfortheirperpetualtolerance,love,and unremittingsupport.

ShumailaIbraheem,GhulamYasin InstituteforAdvancedStudy CollegeofPhysicsandOptoelectronicEngineering ShenzhenUniversity,Shenzhen,Guangdong,China shumaila.ibraheem@yahoo.com,yasin@szu.edu.cn

PART 1 Introduction

Nanoelectrocatalysis:

Anintroduction

GhulamYasin a,SehrishIbrahim b,ShumailaIbraheem a,RashidIqbal a , AnujKumar c andTuanAnhNguyen d a InstituteforAdvancedStudy,CollegeofPhysicsandOptoelectronicEngineering,Shenzhen University,Shenzhen,Guangdong,China, b CollegeofLifeScienceandTechnology,Beijing UniversityofChemicalTechnology,Beijing,China, c Nano-TechnologyResearchLaboratory, DepartmentofChemistry,GLAUniversity,Mathura,UttarPradeshIndia, d InstituteforTropical Technology,VietnamAcademyofScienceandTechnology,Hanoi,VietNam

1.1 Introduction

Withthedepletionoffossilfuels,themandateforenergyresourcesandrising ecologicalissues,theadvancementofsustainableandrenewableenergyconversion andstoragetechnologieswithlowcostandremarkableefficiencyhasregarded moredecisivethanever [1–7].However,integratingtheseenergydevicesinour everydaynecessitatesremainsagreatchallengesincethecompetentcatalystmaterials areneededforallelectrocatalysissystems.Asaresult,athoroughandsystematic understandingofthemechanismofelectrochemicalprocessesisinextricablylinkedto thedevelopmentofenergyconversionandstoragetechnologies,suchaselectrolyzers (watersplitting) [8],fuelcells[9, 10],andbatteries[6, 11].Intheseapplications, materialsusedaselectrodesenablethedualpurpose:theyactaspotentialcatalysts throughreducingenergybarrierfortheoverallelectrochemicalreactions,whilealso boostingtheelectronchargetransferrateontheelectrodesurfaces [12].Forthat reason,theinclusivestudyfocusedonthedevelopmentofdefinitesurfacesinthe stronglyregulatedenvironmentsisregardedasanesteemedtechniquefortheessentialunderstandingofelectrochemicalreactions,suchas,oxygenreductionreaction (ORR),hydrogenoxidationreaction(HOR),hydrogenevolutionreaction(HER),oxygenevolutionreaction(OER),nitrogenreductionreaction(NRR),andCO2 reduction reaction(CO2 RR) [13–17].Therefore,thecharacteristicsofelectrodematerials,for example,composition,surfacestructure,andmorphologyareimperativetocontrol withcorrespondingtoelectrochemicalconditionsforefficientandhigh-performance electrocatalysis.

Electrocatalystsinthepracticalapplicationsaretypicallymadeofexpensive preciousmetalsthatareemployedintheformofnanoparticles,allowingforsubstantialmaterialutilization [12].Forinstance,spherical-shapednanoparticlescanhave morethan1000timeslargertotalsurfaceareaascomparedtotheirmicroparticles

NanomaterialsforElectrocatalysis.DOI: https://doi.org/10.1016/B978-0-323-85710-9.00017-4 Copyright©2022ElsevierInc.Allrightsreserved.

counterpartswiththesamemassandmaterial.However,thenanodimensionsadd complicationandraiseaslewofnewquestionstobeansweredwiththepurpose toevaluate,utilize,andcomprehendtheimpactofspecificphysicalparameters suchasdefects,latticemismatch,low-coordinatedatoms,andsurfacestrain,etc. [18].Accordingly,rationaltechniqueinthedevelopmentofnanocatalystmaterial needsprojectionofaimedcharacteristicsforthenanoscalesystem.Forexample,in researchassociatedtotheeffectofparticlesize,themorphologyandcompositionof nanocatalystmaterialwouldbeuniform [19],because,thesehavedirectrelationship betweenthefunctionalpropertiesandphysicalcharacteristicsofnanoparticles.Inthis chapter,webrieflysummarizethelatestadvancesintheconstruction,characterization ofadvancednanostructures,andtheirapplicationsintheelectrocatalysisfornextgenerationenergyconversionandelectricitystoragetechnologies.

1.2 Constructionandcharacterizationofnanostructures

Thefundamentalofnanoscienceresearchisthewell-organizedfabricationofnanomaterialsandcharacterizationatnanoscaleempowersustoexplicitlyassociatethe structuralpossessionswiththechemical,physical,andbioticpropertiesofnanomaterials.Theendproductmustbeconsistentinshape,scale,andchemicalcomposition, whichisabasicprerequisitefornanomaterialsynthesis.Manynewsyntheticmethodologiesforproducinghigh-gradenanoparticles,nanowires,nanorods,nanocubes, andmanyothernanostructuresusingmetals,metaloxides,andsemiconductorshave recentlybeencreated [20–25].

Likewise,toclassifynanomaterials,avastcombinationofmethodsiscommonly usedduetothehighchemicalandspatialresolutionnecessities. Table1.1 liststhe mostgenerallyusednanomaterialcharacterizationprocedures.Severalofthem,from Table1.1,havebeenestablishedandpracticallyusetocharacterizethepossessionsof nanomaterialsunderemployedsituationsanddeliverthemolecular-levelinformation foradditionalactivityoptimizations.

1.3 Efficientelectrocatalysisenabledbynanostructures

1.3.1

Low-dimensionalnanostructures

Thelow-dimensional(L-D)nanomaterialscouldapproximatelybeclassifiedinto twosystems:mainly,zero-D(0-D)andlinear-D(1-D).Nanomaterialsthathold sphere-shapedorapproximatelyroundformsareusuallyconsideredasparticulate nanomaterials,andtherectilineararrangementsignifiesnanomaterialswith1-D,such asnanoribbons(NRs),nanofibers,nanowires(NWs),nanocables,andnanotubes (NTs).Furthermore,nanomaterialswithirregularmorphologythatdonotemanated intherectilinearandparticulatesystemsalsocanbeclassifiedintoL-Dnanomaterials,suchasnanoboxes,nanonails,nanocages,nanoframes,nanostars,nanobridges,

Table1.1 Generallyemployedcharacterizationtechniquesfornanostructures.

Techniquename

X-raydiffraction(XRD)

UV-vis-nIRspectroscopy

X-rayphotoelectronspectroscopy(XPS)

Properties/Characteristics

Crystalstructure

Lightabsorptionandscattering

Chemicalcomposition

Photoluminescencespectroscopy(PL) Lightemission

Chemisorption,physisorption

Atomicforcemicroscopy(AFM)

Scanningelectronmicroscopy(SEM)

Transmissionelectronmicroscopy(TEM)

Scanningtunnelingmicroscopy(STM)

SmallangleX-rayscattering(SAXS)

Near-edgeX-rayabsorptionfinestructure (NEXAFS)

energydispersiveX-rayanalysis(EDX)

ExtendedX-rayabsorptionfinestructure (EXAFS)

Surfacearea

Shape,size,andworkfunction

Shape,andassemblystructure

Size,shape,andcrystallinity

Shape,size,andsurfacestructure

Distinctivedistancesofpartiallyordered nanostructures

Chemicalcomposition

Chemicalcomposition

Chemicalcompositionandbonding environment

X-rayemissionspectroscopy(XES) Electronbandgap

Ultravioletphotoelectronspectroscopy(UPS)

Electronvalenceband

dendritic,andnanomultipodicnanostructuresthatarepromisingelectrodematerials forelectrocatalysis.

1.3.2 2Dnanostructures

2Dnanomaterialshaveacknowledgedsignificantresearchexertionduetotheirunique chemicalandphysicalpropertiesinventingfromtheirfascinatingmorphologicaland electronicproperties [26–32].The2Dnanomaterialscouldbeengagedinadiversity ofresearchextentsduetotheirinimitabledimensionalconstructions.Unambiguously, 2Dultra-thinnanostructureswithsingle-/few-layeredwidenessaresupposedtobea sortofsuperlativeelectrocatalystinnumeroussubstantialelectrocatalyticmethods, meanwhiletheirabridgedthicknesseffectsinamomentousimprovementofcatalytic activitiesequatedwiththeiranalogousmultilayeredandbulkcomplements.Thebenefitsofultrathin2Dnanostructuresaselectroactivecatalystscomprisethefollowing: (1)Acumulativeavailablesurfaceareabydroppingtheirwidthcluestoconvenient interactionbetweenimportedmoleculesandactivecenters;(2)practicallyallinternal surfaceatomsarevisibletotheexterior,expeditingthedevelopmentofextradefectsto producefurtheractiveedgesandcoordinationunsaturatedmetalactivesites,which mightaidasactivesitesinelectrocatalysisthatcandecreasethecombativeenergy barrier;and(3)thedroppingofthewidenessofthe2Dnanostructurescanenhance theconductivityofcatalystmaterials.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.