Nanomaterials for clinical applications: case studies in nanomedicines (micro and nano technologies)

Page 1


NanomaterialsforClinicalApplications:Case StudiesinNanomedicines(MicroandNano Technologies)1stEditionCostasDemetzos(Editor)

https://ebookmass.com/product/nanomaterials-for-clinicalapplications-case-studies-in-nanomedicines-micro-and-nanotechnologies-1st-edition-costas-demetzos-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanomaterials for Sensing and Optoelectronic Applications (Micro and Nano Technologies) 1st Edition M. K. Jayaraj (Editor)

https://ebookmass.com/product/nanomaterials-for-sensing-andoptoelectronic-applications-micro-and-nano-technologies-1st-edition-mk-jayaraj-editor/

ebookmass.com

Nanotoxicity: Prevention and Antibacterial Applications of Nanomaterials (Micro and Nano Technologies) 1st Edition Susai Rajendran (Editor)

https://ebookmass.com/product/nanotoxicity-prevention-andantibacterial-applications-of-nanomaterials-micro-and-nanotechnologies-1st-edition-susai-rajendran-editor/

ebookmass.com

Nanomaterials Recycling (Micro and Nano Technologies) 1st Edition Mahendra Rai (Editor)

https://ebookmass.com/product/nanomaterials-recycling-micro-and-nanotechnologies-1st-edition-mahendra-rai-editor/

ebookmass.com

One Hundred Merry Memories (An Aspen Cove Romance Book 24) Kelly Collins

https://ebookmass.com/product/one-hundred-merry-memories-an-aspencove-romance-book-24-kelly-collins/

ebookmass.com

Kingdom of Exiles Maxym M. Martineau

https://ebookmass.com/product/kingdom-of-exiles-maxym-m-martineau-2/

ebookmass.com

Writing Friendship: A Reciprocal Ethnography 1st ed. 2020 Edition Paloma Gay Y Blasco

https://ebookmass.com/product/writing-friendship-a-reciprocalethnography-1st-ed-2020-edition-paloma-gay-y-blasco/

ebookmass.com

The Stigma Matrix: Gender, Globalization, and the Agency of Pakistan's Frontline Women 1st Edition Husain

https://ebookmass.com/product/the-stigma-matrix-gender-globalizationand-the-agency-of-pakistans-frontline-women-1st-edition-husain/

ebookmass.com

Policy Design in the European Union: An Empire of Shopkeepers in the Making? 1st Edition Risto Heiskala

https://ebookmass.com/product/policy-design-in-the-european-union-anempire-of-shopkeepers-in-the-making-1st-edition-risto-heiskala/

ebookmass.com

Affogato (BrewBiz 1) 1st Edition E.M. Lindsey

https://ebookmass.com/product/affogato-brewbiz-1-1st-edition-e-mlindsey/

ebookmass.com

Fundamentals of Wind Farm Aerodynamic Layout Design

Farschad Torabi

https://ebookmass.com/product/fundamentals-of-wind-farm-aerodynamiclayout-design-farschad-torabi/

ebookmass.com

NANOMATERIALSFOR CLINICALAPPLICATIONS

NANOMATERIALSFOR CLINICALAPPLICATIONS

CaseStudiesinNanomedicines

NATASSAPIPPA

SectionofPharmaceuticalTechnology,DepartmentofPharmacy, SchoolofHealthSciences,NationalandKapodistrianUniversityofAthens, Athens,Greece

TheoreticalandPhysicalChemistryInstitute,NationalHellenicResearchFoundation, Athens,Greece

COSTASDEMETZOS

SectionofPharmaceuticalTechnology,DepartmentofPharmacy, SchoolofHealthSciences,NationalandKapodistrianUniversityofAthens, Athens,Greece

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-816705-2

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: SimonHolt

EditorialProjectManager: EmmaHayes

ProductionProjectManager: JoyChristelNeumarinHonestThangiah

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

Listofcontributors ix

1.Solidlipidnanoparticlesindermaceuticals1

InduPalKaur,GarimaSharma,MandeepSingh,MohhammadRamzan,JogaSingh, SimarjotKaurSandhuandJaspreetSinghGulati

1.1Generalintroduction1

1.2Whysolidlipidnanoparticles?2

1.3Evolutionoflipidicnanoparticlesfromsolidlipidnanoparticlestonanostructured lipidcarriers3

1.4Cosmeticandtopicalapplicationsofsolidlipidnanoparticles5

1.5Skinpenetrationwithsolidlipidnanoparticles11

1.6Mechanismofdrugpenetrationwithsolidlipidnanoparticles12

1.7Incorporationintosemisolidvehicle13

1.8Casestudiesofsuccessfultopicaldeliverywithlipidicnanoparticles13

1.9Deliveryofagentsforotherskindiseases15

1.10Conclusions22

References 22

2.Cyclodextrin-baseddrugdeliverysystems29

MarioJug

2.1Cyclodextrins structure,physiochemicalproperties,andtoxicologicalprofile29

2.2Cyclodextrininclusioncomplexes formation,stability,andapplicationindrugdelivery31

2.3Cyclodextrin-basedproductsinclinicalpractice33

References 60

3.Lipidvesiclesfor(trans)dermaladministration71

SilviaFranzè,UmbertoM.MusazziandFrancescoCilurzo

3.1(Trans)dermaldrug-deliverysystems71

3.2Lipidvesiclesforbreachingtheskinbarrier74

3.3Liposomalformulationinclinics88

3.4Finalremarks92

References 92

4.Stimuli-responsivenanocarriersfordrugdelivery99

MariaChountoulesi,NikolaosNaziris,NatassaPippa,StergiosPispasandCostasDemetzos

4.1Introduction99

4.2Typesofstimuli100

4.3Developmentofchimericstimuli-responsiveliposomeswithincorporated stimuli-responsivepolymers103

4.4Thermotropicbehaviorofstimuli-responsiveliposomes106

4.5Physicochemicalpropertiesofstimuli-responsiveliposomes110

4.6Developmentofstimuli-responsivelyotropicliquidcrystallinenanosystems112

4.7Conclusionandfuturedirections116 References 117

5.Biodegradablenanomaterials123 KaterinaAnagnostou,MinasStylianakis,SotirisMichaleasandAthanasiosSkouras 5.1Introduction123

5.2Naturalpolymers125

5.3Syntheticpolymers130

5.4Polymericnanoparticles136

5.5Clinicalapplicationsofbiodegradablenanoparticles145

5.6Futureperspectives151 Acknowledgments152 References 153 Furtherreading 157

6.Modulatingtheimmuneresponsewithliposomaldelivery159 DavidNardo,DavidHenson,JoeE.SpringerandVincentJ.Venditto

6.1Introduction159

6.2Liposomalimmunemodulationwithsmall-moleculetherapeutics164

6.3Liposomalimmunemodulationwithliposomalgenevectors174

6.4Immunestimulationwithliposomalvaccines184

6.5Conclusionsandfuturedirections193 Listofabbreviations194 Acknowledgments195 References 195

7.Recentadvancesinsolidlipidnanoparticlesformulationandclinical applications213

HelenaRouco,PatriciaDiaz-Rodriguez,CarmenRemuñán-LópezandMarianaLandin

7.1Lipidnanoparticles213

7.2Formulationcomponents214

7.3Preformulationstudies220

7.4Formulationprocedures221

7.5Characterizationtechniques225

7.6Drugincorporationmodels231

7.7Administrationroutes233

7.8Solidlipidnanoparticlesandnanostructuredlipidcarrierscasestudiesinhumans formedicalapplications239 Self-assessmentquestions241 References 242

8.Biopolymers,liposomes,andnanofibersasmodifiedperoraldrugrelease formulants249

MarilenaVlachouandAngelikiSiamidi

8.1Introduction249

8.2Mathematicalmodelsfordrugrelease252

8.3Releaseprofilescomparison260

8.4Biopolymersinmodifiedperoraldrugdelivery261

8.5Nanofibersinmodifiedperoraldrugdelivery263

8.6Examplesofliposomal-modifiedreleaseformulationsinclinicaluse264

8.7Conclusion265

Self-assessmentquestions266 References 267

9.Graftedpolymethacrylatenanocarriersindrugdelivery271

DorotaNeugebauer

9.1Graftpoly(meth)acrylates,includingmolecularbrushes271

9.2Carriersbasedonpoly(ethyleneglycol)poly(meth)acrylatebrushes273

9.3Carriersbasedonpoly(ethyleneglycol)graftedpoly(meth)acrylates275

9.4Poly(ethyleneglycol)andbiodegradablepolyesternonlinearamphiphilics281

9.5Otherthermoresponsivegraftpolymethacrylatenanocarriers283

9.6HeterograftedJanus-typecarriers284

9.7Core shellgraftcopolymers287

9.8Graftpolymerscontainingdisulfidelinkers289 9.9Summary

LISTOFCONTRIBUTORS

KaterinaAnagnostou

DepartmentofElectrical&ComputerEngineering,HellenicMediterraneanUniversityHeraklion,Crete, Greece

MariaChountoulesi

SectionofPharmaceuticalTechnology,DepartmentofPharmacy,SchoolofHealthSciences,National andKapodistrianUniversityofAthens,Athens,Greece

FrancescoCilurzo

DepartmentofPharmaceuticalSciences,UniversityofMilan,Milan,Italy

CostasDemetzos

SectionofPharmaceuticalTechnology,DepartmentofPharmacy,SchoolofHealthSciences,National andKapodistrianUniversityofAthens,Athens,Greece

PatriciaDiaz-Rodriguez

R+DPharmaGroup(GI-1645),DepartmentofPharmacology,PharmacyandPharmaceutical Technology,FacultyofPharmacy,UniversityofSantiagodeCompostela,SantiagodeCompostela,Spain

SilviaFranzè

DepartmentofPharmaceuticalSciences,UniversityofMilan,Milan,Italy

JaspreetSinghGulati

HitechFormulationsPvtLtd,IndustrialArea1,Chandigarh,India

DavidHenson

DepartmentofPharmaceuticalSciences,UniversityofKentucky,Lexington,KY,UnitedStates

MarioJug

FacultyofPharmacyandBiochemistry,UniversityofZagreb,Zagreb,Croatia

InduPalKaur

UniversityInstituteofPharmaceuticalSciences,PanjabUniversity,Chandigarh,India

MarianaLandin

R+DPharmaGroup(GI-1645),DepartmentofPharmacology,PharmacyandPharmaceutical Technology,FacultyofPharmacy,UniversityofSantiagodeCompostela,SantiagodeCompostela,Spain

SotirisMichaleas

DepartmentofLifeSciences,SchoolofSciences,EuropeanUniversityCyprus,Nicosia,Cyprus

UmbertoM.Musazzi

DepartmentofPharmaceuticalSciences,UniversityofMilan,Milan,Italy

DavidNardo

DepartmentofPharmaceuticalSciences,UniversityofKentucky,Lexington,KY,UnitedStates

NikolaosNaziris

SectionofPharmaceuticalTechnology,DepartmentofPharmacy,SchoolofHealthSciences,National andKapodistrianUniversityofAthens,Athens,Greece

DorotaNeugebauer

SilesianUniversityofTechnology,FacultyofChemistry,DepartmentofPhysicalChemistryand TechnologyofPolymers,Gliwice,Poland

NatassaPippa

SectionofPharmaceuticalTechnology,DepartmentofPharmacy,SchoolofHealthSciences,National andKapodistrianUniversityofAthens,Athens,Greece;TheoreticalandPhysicalChemistryInstitute, NationalHellenicResearchFoundation,Athens,Greece

StergiosPispas

TheoreticalandPhysicalChemistryInstitute,NationalHellenicResearchFoundation,Athens,Greece

MohhammadRamzan

UniversityInstituteofPharmaceuticalSciences,PanjabUniversity,Chandigarh,India

CarmenRemuñán-López

NanoBiofarGroup(GI-1643),DepartmentofPharmacology,PharmacyandPharmaceuticalTechnology, FacultyofPharmacy,UniversityofSantiagodeCompostela,SantiagodeCompostela,Spain

HelenaRouco

R+DPharmaGroup(GI-1645),DepartmentofPharmacology,PharmacyandPharmaceutical Technology,FacultyofPharmacy,UniversityofSantiagodeCompostela,SantiagodeCompostela,Spain

SimarjotKaurSandhu

UniversityInstituteofPharmaceuticalSciences,PanjabUniversity,Chandigarh,India

GarimaSharma

UniversityInstituteofPharmaceuticalSciences,PanjabUniversity,Chandigarh,India

AngelikiSiamidi

SectionofPharmaceuticalTechnology,DepartmentofPharmacy,SchoolofHealthSciences,National andKapodistrianUniversityofAthens,Athens,Greece

JogaSingh

UniversityInstituteofPharmaceuticalSciences,PanjabUniversity,Chandigarh,India

MandeepSingh

UniversityInstituteofPharmaceuticalSciences,PanjabUniversity,Chandigarh,India

AthanasiosSkouras

DepartmentofElectrical&ComputerEngineering,HellenicMediterraneanUniversityHeraklion,Crete, Greece;DepartmentofLifeSciences,SchoolofSciences,EuropeanUniversityCyprus,Nicosia,Cyprus

JoeE.Springer

SpinalCordandBrainInjuryResearchCenter,UniversityofKentucky,Lexington,KY,UnitedStates

MinasStylianakis

DepartmentofElectrical&ComputerEngineering,HellenicMediterraneanUniversityHeraklion,Crete, Greece

VincentJ.Venditto

DepartmentofPharmaceuticalSciences,UniversityofKentucky,Lexington,KY,UnitedStates

MarilenaVlachou

SectionofPharmaceuticalTechnology,DepartmentofPharmacy,SchoolofHealthSciences,National andKapodistrianUniversityofAthens,Athens,Greece

Solidlipidnanoparticlesin dermaceuticals

InduPalKaur1,GarimaSharma1,MandeepSingh1,MohhammadRamzan1, JogaSingh1,SimarjotKaurSandhu1 andJaspreetSinghGulati2

1UniversityInstituteofPharmaceuticalSciences,PanjabUniversity,Chandigarh,India

2HitechFormulationsPvtLtd,IndustrialArea1,Chandigarh,India

1.1Generalintroduction

WorldHealthOrganizationhasincludedskindiseasesasthemostcommon noncommunicablediseasesinhotandhumidcountries,includingIndia;prevalenceof thesediseasesisontherise,worldover.Skinbeingthelargestorganthatinterfaces withtheenvironmentisexposedtoavarietyofphysical[ultraviolet(UV)radiations], chemical,andmicrobialinsultsthataffectitsstructureandfunction.Sincesignificant partofskinisvisibletoothers,anydisfigurementofskinisoftenassociatedwithsocial andpsychologicalimplicationsmuchbeyondtheactualdiseasesymptoms.Global BurdenofDiseasesurveyreportedskinandsubcutaneousdiseasesas18thleadingcause ofglobaldisability-adjustedlifeyearsand4thleadingcauseofnonfatalburden (Karimkhanietal.,2017).Yearslivedwithdisabilityfromthesediseases(36.4million) aremorethanthosecausedbydiabetesmellitus(29.5million)andmigraines(28.9 million)(Karimkhanietal.,2017).Theglobaldermaceuticalmarket(overthecounter andprescription)ishugeandevolvingquicklyindicatingaglobalmarketofUSD 91.40billionin2028fromUSD49.22billionin2018.

Thetreatmentsavailableatpresentareunabletocompletelycurevariousdiseases oftheskinandmeettheexpectationsofpatients.Thisisattributedtoeitheralackof suitabletreatment/agentsorpoordeliveryofdrugagenttotheappropriatelayerof theskin.Theoutermostpart(15 20 μm)oftheepidermis,namelystratumcorneum (SC),isthemajorbarriertodrugabsorptionintotheskin.Theresistantenvelopesof SCcorneocytesandkeratinmicrofibrilsareconsideredasbricks,andthelipidiclayers foundbetweenthesecellsarecalledasmortar.Thisuniquearrangementisresponsible forbasicskinpermeationresistanceandreducesthepassageofmolecules(largerthan 500Da)throughskin(Erdogan,2009).Althoughdrugsmaydiffuseintotheskinvia hairfollicles,sebaceousglands,orsweatglands,permeationthroughthemultiplelipid

bilayersofSCremainsthemainpathway(Tingetal.,2004)becausetheformer compriseonlyasmallareaoftheskin.Theinabilityofdrugmoleculestopenetrate theSCandreachthedeeperdermislayeroftheskininsufficientconcentrationcan usuallyresultinrecurrenceofseveralskindiseasesincludinginfectionsthatareoften notlimitedtotheSC.

Small-sizedcarriersincludingliposomes,niosomes,aquasomes,transfersomes,elastosomes,microemulsions,nanoemulsions,selfmicroemulsifyingdrugdeliverysystem,self nanoemulsifyingdrugdeliverysystem,andsolidlipidnanoparticles(SLNs)arecurrently beingexploredextensivelyfortheirabilitytopermeatetheSCandreachthelowerskin layersincludingdermisandattimesthesubcutaneoustissuetoo.Bothmicrometer-and nanometer-rangecarrierswerefoundeffectiveinimprovingthedeliverytoskin.Since thedrugisreleasedgraduallyandoveraprolongedperiodoftime,irritancyorother sideeffectsassociatedwiththeactiveingredients,whenappliedinconventionalformulations,aresignificantlyreducedwhenincorporatedintothesesystems,without compromisingtheefficacy(CastroandFerreira,2008).Thesesystemsnotonlymaskthe irritationandsideeffectsoftheselectedagenttobedeliveredbutalsoinvariably improveitssolubilityandpermeability.

1.2Whysolidlipidnanoparticles?

In1990thelipidicnanoparticleswereinventedasanalternativetotraditional drugcarrierssuchaspolymericnanoparticlesandliposomes.Manyquestionsofability toproduceatindustriallevel,regulatorystatusofexcipients,andnanotoxicityrose regardingtheuseoftheseconventionalnanocarriers.Suchquestionswereaddressed withthedevelopmentofSLNsasanalternative.VariousadvantagesofSLNsover polymericnanoparticlesandliposomesareelaboratedlater.

1.2.1Formulationaspects

• SLNscanbepreparedwithoutemployingorganicsolvents.Residuesofthesesolventshavetoxiceffects(Kauretal.,2014).

• Highdrugloading(B10%ormore)canbeachievedwithSLNsversusalowdrug loadingof , 5%incaseofpolymericnanoparticles(Singhetal.,2010).

• SLNsarereportedtobestableforupto3years(Kakkaretal.,2011).Thisisan importantadvantageoverothercolloidalcarriersystems.

• Remarkablescalabilityandreproducibilityofimportantpropertiesnamely,particle sizeandencapsulationefficiencyinlarge(Liuetal.,2007)batchesusinga

cost-effectivehigh-pressurehomogenizationtechniqueasthepreparationprocedureisagainanexclusiveadvantagewithSLNs(Albaneseetal.,2012).

• SLNscanbesterilizedbyautoclaving.Othernanocolloidalsystemsaresterilized bygammairradiation,whichisnotonlycostlyandaspecializedtechniquebutmay possiblyleadtotheformationoffreeradicalsandsubsequentlytoxicreactionproducts(Kauretal.,2014).

• QuantificationofSLNincreamsissimplifiedascomparedtootherparticles.Many creambasesdonotexhibitameltingpeakbelow100 C,whichmeansthecontent ofSLNinacreamcanbequantifiedbytheirmeltingpeakdeterminedbydifferentialscanningcalorimetry.

1.2.2Physiologicalaspects

• SLNsactasdrugreservoirsinvariousskinlayers(Vyasetal.,2014)byvarietyof uptakemechanismslikeenteringintoashuntsuchashairfollicle,accumulating betweencorneocytes,andinterminglingwithskinlipids,orbydisintegratingand mergingwithlipidiclayers(Tolletal.,2004;Bseisoetal.,2015).

• DependingontheproducedSLNtype,controlledreleaseoftheactiveingredients ispossible.SLNswithadrug-enrichedshellshowburstreleasecharacteristics whereasSLNswithadrug-enrichedcoreleadtosustainedrelease(Wissingand Müller,2003b).

• SLNsactasocclusives,thatis,theycanincreasethewatercontentoftheskinmakingitmorehydratedandthusmorepermeable(Wissingetal.,2001).

• SLNsshowaUV-blockingpotential,thatis,theyactasphysicalsunscreenson theirownandcanbecombinedwithmolecularsunscreenstoachieveimproved photoprotection(WissingandMüller,2003b).

• ThecomponentsusedtoformulateSLNsaresafeascomparedtopolymericnanoandmicroparticleswhichmaycausesystemictoxicitybyimpairmentofthereticuloendothelialsystemduetoslowdegradationofitscomponentsupto4weeks (Cavallietal.,2000).

1.3Evolutionoflipidicnanoparticlesfromsolidlipid nanoparticlestonanostructuredlipidcarriers

Themostimportantparametersforevaluationoflipidnanoparticlesareparticle sizeandsizedistribution,zetapotential,polymorphism,degreeofcrystallinity,drug loading,entrapmentefficiency,anddrugrelease.

Thefirstgenerationoflipidicnanoparticles,thatis,SLNs,necessarilycomprise high-meltingpointlipid(s)whichareheatedatleastoncetomeltandconsecutively cooled.Latterresultsintherecrystallizationofthelipidmatrixleadingtohighpossibilityofpolymorphismoccurrence.Lipidparticlescrystallizeinahigherenergymodification(α or β0 )whichduringstoragetransformtothelow-energy,more-ordered modification(β).

DrugmoleculesinSLNs,orientedbetweenthefattyacidchainsorglycerides,can bepotentiallyexpelledduringtransformationofthelipidfrom α to β formonstorage. Thishappensduetotheformationofmore-orderedstructureorreducednumberof imperfectionsinthecrystallattice(GuimarãesandRé,2011).Moreoverbecauseof theirperfectcrystallinestructure,SLNsexhibitalowdrug loadingefficiency (GhasemiyehandMohammadi,2018).

ToovercomethesepotentialchallengesfacedbySLNs,thesecond-generation lipidicnanoparticlescallednanostructuredlipidcarriers(NLCs)wereintroducedin 1999.EvolutionoflipidicnanoparticlesfromemulsiontoNLCsisshownin Fig.1.1 (GuimarãesandRé,2011).

NLCsarecomposedofblendsofsolidandliquidlipidsresultinginimperfections inthelatticewhichcanaccommodateagreateramountoftheactiveingredient.The less-orderedstructureisduetoinhibitionofcrystallizationbyliquidlipids.This enablesasignificantincreaseinloadingcapacityandalsominimizesprematureactive ingredientexpulsion.ThestructuralcomparisonofSLNandNLCisdepictedin Fig.1.2

Figure1.1 Evolutionoflipidnanoparticleconceptincomparisonwiththeconventionaltechnologiestillthebeginningofthe1990s. NLC,Nanostructuredlipidcarrier; SLN,solidlipidnanoparticle. ObtainedwithpermissionfromGuimarães,K.L.,Ré,M.I.,2011.Lipidnanoparticlesascarriersforcosmetic ingredients:thefirst(SLN)andthesecondgeneration(NLC).In:Beck,R.,Guterres,S.,Pohlmann,A.(Eds.), NanocosmeticsandNanomedicines,Springer,Berlin,Heidelberg,pp.101 122.

“Brick wall” structureUnstructure matrix

Low drug load

Long-term drug stability Drug expulsion during storage

High drug load

Figure1.2 “Symmetricbrickwall” and “Welshnaturalstonewall” modeldepictingdifference betweenparticlematrixstructureofSLNsandNLCs,respectively. NLCs,Nanostructuredlipidcarriers; SLNs,solidlipidnanoparticles. ObtainedwithpermissionfromBeloqui,A.,Solinís,M.A.,RodríguezGascón,A.,Almeida,A.J.,Préat,V.,2016.Nanostructuredlipidcarriers:promisingdrugdeliverysystems forfutureclinics.Nanomed.Nanotechnol.Biol.Med.,12,143 161.

(Beloquietal.,2016).DifferentpatentedandmarketedproductsusingSLN/NLCtechnologyaregivenin Tables1.1and1.2,respectively(Mülleretal.,2007;Kauletal., 2018),respectively.

1.4Cosmeticandtopicalapplicationsofsolid lipidnanoparticles

Occlusion :Epidermallayerofskinhas20%watercontentandplayprincipal roleasthebarrieroftopicalabsorptionofforeignparticles.Occlusionprocesscan enhancehydrationofSClayerwhichinfluencetopicalabsorption.SLNshavethe abilitytoformahydrophobicmonolayeredfilm,whichhasattractionfortheepidermallayerofskin.Theocclusivenatureofthisfilmretardsthewaterlossdueto

Table1.1 Importantpatentsconcerningtheuseoflipidicnanoparticlesfortopicaldermaladministration.

PatentnumberTitleMedicalconditionReference

US8715736B2Nanoparticleformulationsforskin delivery

Skininflammation SinghandPatlolla(2009)

ES2384060B1CapsuleslipidnanoparticlesHormonereplacement therapy ViladotPetitetal.(2010)

RU2602171C2Compositioncontaininglipid nanoparticlesandcorticosteroid orvitaminDderivative

EP2919756B1Solidlipidnanoparticlesof roxithromycinforhairlossor acne

CN102670484BMannose-modifiedsolidlipid nanoparticlepluralgeland preparationmethodthereof

KR101860555B1Solidlipidnanoparticles compositionforskin-whitening effectcomprisingMHY498and preparationmethodthereof

CN102342914ACalcipotriolsolidlipidnanoparticle andpreparationmethodofsame

RU2491911C1Moisturizingcreamwithsolidlipid nanoparticles

KR101810695B1Peptidesusedinthetreatmentand/ orcareofskin,mucous membranes,and/orscalpand theiruseincosmeticor pharmaceuticalcompositions

WO2010112749A1Solidlipidnanoparticles encapsulatingminoxidiland aqueoussuspensioncontaining same

Atopicdermatitis

BastholmandPeterson (2012)

Hairlossoracne CalandFrackowiak (2012)

Immunoboosterand antiinflammatory

JianqingChenandPing (2012)

Skinwhitening Jinetal.(2016)

Psoriasisand ichthyosis

MinminandHaijun (2011)

Moisturizingcream Omelyanchukand Vilinskaya(2012)

Skincare Sanzetal.(2009)

Hairloss Padoisetal.(2009)

WO2017143421A1Nanoscalesystemforthesustained releaseofactivecosmeticand/or repellentsubstances

WO2008041116A2Formulationsofactiveprinciples incorporatedinSLNssuitablefor transdermaladministration

US6875438B2Preparationsfortopical administrationofsubstances havingantiandrogenicactivity

US20180296493A1Lipidnanoparticlecompositionsand methodsascarriersof cannabinoidsinstandardized precision-metereddosageforms

JP2018521052ALipidandlipidnanoparticles formulationsfordeliveryof nucleicacids

Insectrepellent DePaulaetal.(2017)

Transdermaldelivery ofdrugswithshort halflife Gasco(2006)

Androgenicalopecia Kraemeretal.(2003)

Antiinflammatory Kaufman(2015)

Diseasesrelatedto adeficiencyof aproteinand enzymes DuandAnsell(2016)

Table1.2 Marketedproductscontaininglipidicnanoparticles(Mülleretal.,2007;Kauletal.,2018).

MarketedproductActiveingredientsIntendeduse

CutanovaCreamNanoRepair Q10

IntensiveSerumNanoRepair Q10

CutanovaCreamNanoVital Q10

SURMERCrèmeLegère

Nano-Protection

SURMERCrèmeRiche

Nano-Restructurante

SURMERElixirduBeauté

Nano-Vitalisant

SURMERMasqueCrème

Nano-Hydratant

Q10,polypeptide,hibiscus extract,gingerextract, ketosugar

Q10,polypeptide,mafane extract

Q10,TiO2,polypeptide, ursolicacid,oleanolicacid, sunflowerseedextract

Kukuinutoil,MonoiTiare Tahiti,pseudopeptide,milk, extractfromcoconut,wild indigo,noniextract

Kukuinutoil,MonoiTiare Tahiti,pseudopeptide,milk extractfromcoconut,wild indigo,noniextract

Kukuinutoil,MonoiTiare Tahiti,pseudopeptide,milk extractfromcoconut,wild indigo,noniextract

Kukuinutoil,MonoiTiare Tahiti,pseudopeptide,milk extractfromcoconut,wild indigo,noniextract

NanoLipidRestoreCLRBlackcurrantseedoil containingomega3and6 unsaturatedfattyacids

NanolipidQ10CLRCoenzymeQ10andblack currantseedoil

IOPESuperVitalcream, serum,eyecream,extra moistsoftener,extramoist emulsion

CoenzymeQ10,omega3and unsaturatedfattyacids

NLCDeepEffectEyeSerumCoenzymeQ10,highlyactive oligosaccharides

NLCDeepEffectRepair Cream Q10,TiO2,highlyactive oligosaccharides

NLCDeepEffect ReconstructionCream Q10,acetylhexapeptide-3, micronizedplantcollagen, high,activeoligosaccharides inpolysaccharidematrix

NanoLipidRepairCLRBlackcurrantseedoiland manukaoil

Antiaging,smoothesfine lines,promotes restructuring

Antiaging,antiwrinkle

Antiaging

Skin-protectingserum

Intenselyhydrating

Antiagingandmoisturizing

Skinhydration

Skinhydration

Antiaging

Antiaging,moisturizerunder eyewrinkles, facelift

Undereyewrinkles

Antiaging

Antiaging

Skindamagerepair (continued )

Table1.2 (Continued)

MarketedproductActiveingredientsIntendeduse

NLCDeepEffect Reconstruction

SerumRegenerationscreme Intensiv

SwissCellularWhite IlluminatingEyeEssence

SwissCellularWhiteIntensive Ampoules

Macadamiaternifolia seedoil, avocadooil,urea,black currantseedoil

Glycoproteins, Panaxginseng rootextract, Equisetum arvense extract, Camellia sinensis leafextract, Viola tricolor extract

Glycoproteins, Panaxginseng rootextract, Equisetum arvense extract, Camellia sinensis leafextract, Viola tricolor extract

Skinrejuvenation

SURMERCremeContour

DesYeuxNanoRemodelante

OlivenölAntiFalten Pflegekonzentrat

OlivenölAugenpflegebalsam

Kukuinutoil,MonoiTiare Tahiti,pseudopeptide, protein

Oleaeuropaea oil,panthenol, Acaciasenegal,tocopheryl acetate

Oleaeuropaea oil, Prunus amygdalusdulcis oil, hydrolizedmilkprotein, tocopherylacetate, Rhodiola rosea rootextract,caffeine

Undereyedarkcircle lightening

CelazomeMAXSun ProtectionFactor(SPF)29

Aloebarbadensis leafjuice, artemiaextract,tocopheryl acetate,benzophenone-3, butyl methoxydibenzoylmethane (Parsol,1789),ethylhexyl methoxycinnamate, ethylhexylsalicylate, homosalate

AllureBodyCreamEthylhexylglycerin,benzyl salicylate,citronellol, tocopherol,geraniol,alphaisomethylionone,coumarin, citral,ascorbylpalmitate, benzylbenzoate,ascorbic acid,citricacid,farnesol

AllureParfumBottleSparklingnotesofmandarin, rose,andvanilla

AllureEauParfumSpraySparklingmandarin,mayrose, sensualvanilla,and intoxicatingpassionfruit notesmixedwithpeony

Skinlightening

Antiwrinkle

Antiaging

Antiaging

Protectfromsun,remove finelines

Bodymoisturizer

Perfume

Perfume

evaporation.Experimentalverificati onofmoisturebarrierpropertieshas demonstratedthedifferentdegreeofo cclusion,dependingonthesizeofthe appliedparticles.Itwasfurtherobservedthatmaximumocclusivitywasreached withSLNshavinglow-meltinglipids,highcrystallinity,andlow-particlesize ( Mülleretal.,2002 ).Inastudy,nanosizedSLNandNLCsystemsweredeveloped andshowedasimilarocclusionfactorof36% 39%withareductionintransepidermalwaterlossof34.3% 6 14.8%and26.2% 6 6.5%,respectively.Themarker (nilered)howevershowedthatNLCspenetratedeeperintotheSCascompared toSLNs( López-GarcíaandGanem-Rondero,2015 ).

UV-blockingeffect:ThecapabilityofSLNstoscatterandreflecttheUVradiations makesthemsuccessfulUVblockers.ThematrixofSLNsmeasuredhigherUVabsorptionascomparedtosunscreenofoilinwater(o/w)nanoemulsion.Titaniumdioxide isacommonlyusedUVblockeratmolecularlevel.However,itexhibitssignificant sideeffectslikephotoallergiesandphototoxicity(WissingandMüller,2003b).AsynergisticeffectwasobtainedwhenSLNwerecombinedwithsunscreenformulations. TheamountofsunscreenActivePharmaceuticalIngredients(API)couldbedecreased ifcombinedwithSLNs,thusminimizingtheadversereactionsassociatedwiththese sunscreenmolecules.Followingaresomeexamplesofsuchcombinations:

1. SLNswerefoundtoactasexcellentdrugtransportsystemsforoxybenzone,and theadverseeffectslikeskinrashes,redness,andirritationwerereducedsignificantly (Maneaetal.,2014).

2. StabilityofUVblockeragentswasincreasedbyincorporationintoSLNsascarriers.Photodegradationofbis-ethylhexylphenolmethoxy-phenyltriazinewas decreasedconsiderablybyincorporationintoSLNs(Leeetal.,2007).SLNsencapsulatingUVprotectormoleculesalsoshowedabetterSPFfactorandphotostability (Lacatusuetal.,2011).

3. TheSLNformulationwithgreenteapreparedbyhigh-pressurehomogenization techniqueexhibitedahigherphotoprotectiveeffect(Boseetal.,2013),goodantioxidantactivity,andbetterstabilityatroomtemperature.

Adhesiveness:Theapplicationofformulationcontainingsubmicron-sizedSLN (B200nm)ondryhornylayershowsgoodadhesiveness.SLNsformafilmoftightly packedroundparticles,whichundertheappliedforceduringapplicationformedan intelligiblefilm(Fig.1.3).Suchtypeoflipidfilmcanhelprestoredamagedskinora brokenlipidfilmontheskinsurface.Inadditiontothis,itcanalsohaveanocclusive effect(WissingandMuller,2003a).

pHcontrolandosmoticeffect:SkinsurfaceusuallyexhibitsslightlyacidicpH(pH 5.0 7.0).ItisobservedthatasignificantchangeinpHbyapplicationofanyformulationcanleadtoirritationandrednessoftheskin.Stronglyacidicandalkalineapplication willprimarilyactasdeterioratingagents.SLNdispersionscanbeformulatedorbuffered attheskinoptimumpHthusmakingthemoptimalfordermalapplication.Some

Figure1.3 Modeloffilmformationontheskinforlipid2-mmparticlesandlipid200-nmparticles shownassection(upper)andfromthetop(middle),andanewmodeloffusionofthenanoparticlestoaporelessfilm(lower). ObtainedwithpermissionfromMüller,R.H.,Radtke,M.,Wissing,S.A., 2002.Solidlipidnanoparticles(SLN)andnanostructuredlipidcarriers(NLC)incosmeticanddermatologicalpreparations.Adv.Drug.DeliveryRev.54,S131 S155.

considerationsarealsogiventoosmoticeffectofthetopicalformulation.Changeinisotonicitycanleadtoirritation.NLCsandSLNsshowremarkableisotonicityandgood osmoticeffectfollowingtheirapplicationonskin(SoutoandMüller,2008)

Improvedchemicalstability:SolidmatrixofSLNsisstableatroomtemperatureas wellasunderphysiologicalconditions.ThesolidcoreofSLNsbetteraccommodates APIswhicharepronetohydrolysisandoxidation,protectingthemagainstchemical degradationfromwaterandoxygen,forexample,SLNdispersionsoftocopherol,retinol,andcoenzymeQ10arechemicallymorestableascomparedtothecorresponding aqueousdispersionsoffreeorunencapsulatedagents(Dingleretal.,1999).Itmaybe notedthattretinoinincorporatedintoliposomeswasfoundpronetophotodegradation (Brisaertetal.,2001),whileretinolencapsulatedwithinSLNswaschemically stable(VolkhardandGohla,2001).SLNspersealsoexhibitedhighphysicalstability duringlong-termstorage(Mülleretal.,2007).

1.5Skinpenetrationwithsolidlipidnanoparticles

Forlocalaswellassystemiceffects,skinisconsideredtobetheimportantsite fordrugapplicationwhereSCisthemainpenetrationbarrier.Moderntechniques

Fusion:
Large pores
Skin
Small Application and capillary forces ''capillary pores''
evaporation
Top view: Section:

usuallyaimatdisruptingorbypassingthecomplexskinstructurefordrugdelivery. Intercellularrouteisthemostcommonroutefollowedbythemoleculestopenetrate throughtheskin.

SCiscomposedofmorphologicallydifferentcellswhichcarrydiversefunctionsofthis secondlargestorganofthebody.Itis6 10 μminthicknesswithcellandlipidlayeralternatingwitheachother.Itismadeupof B14 18cellularlayersandthebarriernatureis attributedtothepresenceof75% 80%proteins.Inaddition,lipids(5% 20%)and unidentifiedelements(5% 8%)alsocontributetowardhindranceforthedrugmolecules topassthroughtheskin(Wertz,2018).Corneocytesaretheuppermostcellsoftheepidermisandareobservedtobestackedintheformofpillarswhenseen microscopically.

1.6Mechanismofdrugpenetrationwithsolidlipid nanoparticles

Ashighlightedearlierintercellularpathway,thatis,movementofdrugmolecules betweenthecorneocytesoftheSCisthemostpreferredroute.Anotherimportant pathwayfortransportistheintrafollicularpathwayalsocalledshuntorappendageal pathwaywherepenetrationintotheskinoccursthroughthesweatglandsorthehair follicularrouteasseenin Fig.1.4 (PalmerandDeLouise,2016).

Lipidicnanoparticlesgettingattachedtotheskinsurfacehavetheabilitytoconduct theexchangeoflipidbetweenSC(composedofhighconcentrationoflipids)and

Figure1.4 Diagrammaticrepresentationofskinpenetrationwithsolidlipidnanoparticles.

nanocarriers.RichnessofSCinepidermallipidsandthenanosizeofSLNstriggera preciseinteractionbetweenthetwo,thusprovidinganincreasedpenetratingpower, occlusivity,andconcentrationofencapsulateddruginthedermalregionoftheskin. SkinocclusivityprovidedbytheSLNsalsoincreasesskinhydrationandthustheskin penetration(Kortingetal.,2007).Nanoparticlesofsizegreaterthan100nmdonot perfusetheSC,majorlyduetotherigidityanddimensionsofthebarrierlayer. However,particlesof B200nmsizeprovideanocclusiveprotectivelayerthatinturn enhancespenetrationoftheskin.

Sebaceousglands,designatedtosecretesebum,areassociatedwiththehairfollicles insidetheskin.Sebaceoussecretionsarerichinlipidswhichprovideaperfectenvironmentforlipidnanoparticlestodissolveandreleasetheencapsulatedactive.Sebumisa mixtureofwaxesandtriglycerideswhicharealsousedinpreparingSLNs/NLCs(ones preparedwithbiocompatiblelipids).Formeracceleratetheabsorptionofthedrug throughtheseglands.Thusthisrouteisparticularlyfavorableforlipidnanoparticles andisexploitedinantiacnetherapy(Ranpiseetal.,2014).

1.7Incorporationintosemisolidvehicle

SLNdispersionsareusuallyfreeflowingandcanbeeasilyincorporatedintodermal carriersystemslikegelsandcreamstoformulateadosageformofdesiredconsistencyto beappliedtopically.Controlrelease,targetingtheviableepidermis,andtissuecompatibilityarethecharacteristicsparticularlyachievablewiththegelsystems.Gelsarealsopreferredduetoeaseinmanipulationforswellinglevelrequiredinthefinalformulation (Housinyetal.,2018).Carbopolismainlyusedasgellingagent,polymersofwhichcrosslinktogethertoformamicrogelstructurethatmakeitidealfordermatologicalpurposes. Thesestructuresgetadheredtotheskin,increasingthecontacttime(Deshkaretal.,2018)

1.8Casestudiesofsuccessfultopicaldeliverywithlipidic nanoparticles

1.8.1Deliveryofantimicrobials

1. Gideetal.preparedSLNswithacyclovir(ACV-SLNs)intheirmatrixandfurther incorporatedACV-SLNsintosemisolidgel.StudyshowedthatamountofacyclovirfromACV-SLNsinthelowerepidermallayerwastwotimesofthatachieved withcommercialacyclovirgel(Gideetal.,2013).

2. Aqueousdispersionsofketoconazole-loadedSLNsandNLCswithCompritol888 ATOasthelipidweredeveloped(SoutoandMüller,2005).Stabilitystudy revealedthatSLNdispersionwasphysicallystableandnosignificantchangeinparticlesizewasobserved;howeverNLCsalsoprotectedthedrugfromdegradation butincreaseinsizewasobserveduponstorage.

3. Sannaetal.preparedSLNsloadedwitheconazolenitrate(ECN)foradministration acrosstheskin.Theyconcludedfromskinpermeationstudythatcontrolledrelease ofdrugacrossSCwasgovernedbylipidportioninSLNs.Invivoresultsshowed thatSLNsenhancedthepenetrationofECNtodeeperskinlayersafter3hoursof administration(Sannaetal.,2007).

4. Miconazole(MN)-loadedSLNs(MN-SLN)whenincorporatedintoahydrogel showedacontrolledreleaseofMNovera24-hourtimeperiod.About10-foldincrease inretentionwasnotedwithMN-SLNascomparedtofreeMNdrugsuspensionand MNgel.InvivostudiesindicatedthatthehydrogelofMN-SLNprovidedsustained topicaleffectandtreatedthefungalinfectionsatafasterrate( Jainetal.,2010).

5. Topicalgeloffluconazole(FLZ)-loadedSLNsweredevelopedandevaluatedclinicallyforpityriasisvesicolor.Resultsshowedasignificantimprovement(P , .05)in therapeuticresponsewithFLZ-loadedSLNs,as90%patientsshowedcomplete eradicationand10%showedsignificantimprovementincomparisontomarketed cream(Housinyetal.,2018).

6. Stabilitystudywithclotrimazole-loadedSLNandNLCshowedthatthesesystems retainedtheircolloidalphaseafter3monthsofstorageattemperatureof4 C, 20 C,and40 C.Releasestudyshowedcontrolledreleaseofclotrimazolefrom bothSLNsandNLCsoveraperiodof10hours(Soutoetal.,2004).

7. Voriconazole(VCZ)lipid-basednanoparticles(LNP)developedforthetreatment ofaspergillosiscouldimprovethesolubilityofVCZ.Theantifungalstudyrevealed thatoptimizedformulationofVCZ-LNPstoppedfungusreproduction(Füredi etal.,2017).

8. Griseofulvin-loadedSLNs(GF-SLNs) enhancedtherateofdissolutionofGF duetothedecreaseinmeanparticlesize(165nm).ReleaserateofGFshowed sustainedrelease(cumulative63 .53%)overaperiodof12hours( Anuraketal., 2011 ).

9. AmphotericinB loadedSLNsfortopicalapplicationwithsmallsize (111.1 6 2.2nm)andhigherentrapmentefficiency(93.8% 6 1.8%)are reported.Freeze-driedSLNsshowedtw otimeshigherpermeationandhigher zoneofinhibitionagainst Trichophytonrubrum ascomparedtofreedrugdispersion.Theformulationwasstableatrefrigeratorandroomtemperatureoverthe periodof3months( Butanietal.,2016 ).

1.9Deliveryofagentsforotherskindiseases

10. Recombinanthumanepidermalgrowthfactor loadedSLNandNLCpreparations showedthereductionofhealingtimeofchronicwounds(Gainzaetal.,2014,2015).

11. AhydrogelformulationwithastragalosideIV(aherbwidelyusedinChinese medicines)-loadedSLNforimprovedwoundhealingandinhibitingscarformationweredevelopedusingCarbopol934asthegellingagent.Theformulation showedasustainedreleaseandenhancedskinresidencetime.Theinvitrostudies ofastragalosideIV loadedSLNshowedanincreaseindruguptakebyfibroblasts andenhancedmigrationandproliferationofkeratinocytestothewound(Chen etal.,2013).

12. Ano/wcreamcontainingtretinoin-loadedSLNforthetreatmentofdermatologicaffections,suchasacne,psoriasis,andichthyosisisreported.TheSLNswere incorporated,witha50:50ratio,inapreviouslypreparedo/wcream.Theformulationshowednoaggregationorphaseseparationevenafterstoragefor24 months.Theexvivostudies,performedinratskin,showedthatthedrugrelease waslowerforthesemisolidformulationcomparedtothedrug-loadedSLNdispersionsando/wcream(Nasrollahietal.,2013).

13. ThepotentialofusingSLNstoimprovethedermaldeliveryofspironolactonefor treatmentofacnewasexplored.Exvivopermeationstudiesinratskinshoweda 1.6-foldhigherdrugpenetrationfromSLNsincomparisontothefreedrug (Kelidarietal.,2015).

14. Carbopol934hydrogelswithadapalene-loadedSLNsrevealedthepresenceof highdrugamountinepidermisoverdermis,meaningareducedsystemicabsorptionwithdecreasingsideeffects,inexvivostudiesusingratskin( Jainetal., 2014).

15. Hydroquinone-loadedSLNsweredevelopedwithanaimtoovercomethedrawbacksassociatedwiththetopicaluseofthiscompound(forhyperpigmentation), suchasfastoxidation,insufficientpenetrationduetohydrophilicnature,and adverseeffectsrelatedtosystemicabsorption.TheSLNdispersionwastransformedintoananoemulgelbyadditionofCarbopol934totheaqueousphase (Ghanbarzadehetal.,2015).

16. Exvivostudiesonresveratrol(RSV)-loadedSLN,carriedoutonpigskin, showedadrugcumulativeamountofupto45%after24hours.Thedeveloped SLNalsoshowedgoodtyrosinaseinhibitionactivityincomparisontocontrol solution.Developedformulationalsoshowednocytotoxiceffectsinkeratinocytes atconcentrationsupto250 μg/mL(Rigonetal.,2016).

17. Nanoemulgel-basedSLNforskintargetingofRSVweresuggestedasaninnovativetopicaltreatmentforirritantcontactdermatitiswithminorsideeffects (Rigonetal.,2016).

18. Humanclinicalevaluationofprogesterone-loadedSLNandNLC-basedxanthan gumhydrogelusingtapestrippingexperimentstoobservedrugpenetrationacross SCshowedpenetrationwithin6hoursaftertopicaluseoftheformulations (Espositoetal.,2017).

19. Idebenone,asyntheticderivativeofubiquinone,showsapotentantioxidant activitythatcouldbebeneficialinthetreatmentofskinoxidativedamages.The feasibilityoftargetingidebenoneintotheupperlayersoftheskinbytopical applicationofSLNswasevaluated.SLNofidebenonewerepreparedbythe phaseinversiontemperaturemethodusingcetylpalmitateassolidlipidandthree differentnonionicsurfactants:ceteth-20,isoceteth-20,andoleth-20.All idebenone-loadedSLNshowedameanparticlesizeintherangeof30 49nm andasinglepeakinsizedistribution(Montenegroetal.,2012).

20. Naproxen-loadedSLNswerepreparedbytheultrasonicationmethodtoimprove itsskinpermeationandalsotoinvestigatetheinfluenceofhydrophilic lipophilic balance(HLB)changesonnanoparticleproperties.Theaverageparticlesizeand polydispersityindex(PDI)ofSLNsincreasedfrom94.257 6 4.852to 143.90 6 2.685nmandfrom0.293 6 0.037to0.525 6 0.038,respectively,when therewasanincreaseinlipidconcentrationfrom0.3%to1.2%.Theresultsalso showedthatareductionintheHLBresultedinanincreaseinthePDI,particle size,zetapotential,andentrapmentefficiency.Theamountofnaproxendetected inthereceptorchamberatallthesamplingtimesforthereferenceformulation (naproxensolutioncontainingallsurfactantsatpH7.4)washigherthanthatof theSLNformulationindicatingthathigherconcentrationofnaproxenisretained intheskinlayerwithlesssystemicabsorption(Akbarietal.,2016).

21. Aurapteneisabioactiveantioxidantcoumarinwithvaluablepharmacological properties;however,poorwatersolubilityisasubstantialissueforthetopical applicationofauraptene.ThereforeauraptenewasincorporatedintoSLNsfor enhancingitsantiinflammatoryeffect.Auraptene-SLNswerecomparedtoconventionalcreamcontainingaurapteneforevaluatingboththepermeationrate andtheantiinflammatoryeffectofthenanoparticlesthroughinvitroandinvivo studies.TheinvitropermeationstudiesexhibitedthatAuraptene-SLNssignificantlyenhancedcutaneousuptakeofaurapteneandskintargeting.Theantiinflammatoryandhistopathologicalstudiesexhibitednosignificantdifferences betweenAuraptene-SLNsandindomethacin(Daneshmandetal.,2018).

22. Systemicallyadministeredmethotrexateisindicatedinpsoriasistherapy.Itstopical administrationmaybeanoptiontoovercomevarioussideeffectsassociatedwith itssystemicdelivery.Lipidnanoparticlesweredevelopedforcodeliveryofmethotrexatewithetanerceptusinglipidnanoparticles,afterincorporatingintoacarbopolhydrogel.SLNswereevaluatedfortheirpotentialofdeliveringthedruginto theskinwithreducedtransdermalpermeation.Permeationstudiesusingpigearas

modelrevealedenhancedskindepositionoftheappliedmethotrexatewhen incorporatedwithinSLNsinrelationtofreedrug(Ferreiraetal.,2017).

23. SLNsbasedontrehalosemonooleate,loadedwithcyclosporin-Aforpotential treatmentofpsoriasis,wereprepared.Trehalosewasesterifiedwitholeicacidto obtainamorelipophiliccompoundsuitableasalipidmatrixfortheformulation ofanewtypeofSLNs.WiththeaimtoverifythelocalizationofSLNsinthe skinlayers,investigationsusingconfocalmicroscopeandstrippingtapetestwere carriedout.Thedermatologicalformulation,basedonSLNsloadedwith cyclosporin-A,waspreparedandtestedthroughFranzdiffusioncells.The obtainedresultsindicatedthepossibilityofusingthesenanoparticlesasvehicleof cyclosporin-Afortopicaltreatmentofpsoriasiswithreducedsideeffects (Trombinoetal.,2019).

24. Arapidone-stepmethodwasusedtoformulatethecorticosteroidaldrug,diflucortolonevalerateintotopicalsemisolidSLNformulationsusingahigh-shear homogenizationcombinedwithsonication,usingdifferenttypesofsolidlipids (e.g.,Geleol,PrecirolATO5,Tristearin,andCompritol888ATO)and Poloxamer407asasurfactant.DiflucortolonevalerateSLNformulationspossessedaverageparticlesizerangingfrom203.71 6 5.61to1421.00 6 16.32nm withanarrowsizedistributionandpossessedshearthinningbehavior.Useof lipid-basedsurfactants(LabrasolorLabrafil)wasfoundtosignificantlyincrease diflucortolonevalerateencapsulationefficiency(upto45.79% 6 4.40%)(AbdelSalamaFatmaetal.,2016).

25. NeemoilasanaturalagentwasincorporatedintoSLNspreparedbydouble emulsificationmethodusingdifferentcombinationsoflecithinandTween80. Theaverageparticlesizeofneemoil-loadedSLNsdecreasedwithincreasingconcentrationofsurfactant.SLNsof221.6 6 2.0nmwithaPDIof0.948 6 0.04 wereobtainedathigherconcentrationoflipidandsurfactant.Highentrapment of82.10%revealedtheabilityofSLNstoincorporateahighquantityofneemoil actives(Vijayanetal.,2013).

26. Dacarbazine-ladennanoparticle(DZNP)anddacarbazine-ladennanocream (DZNC)topicaldeliverysystemwerepreparedforthetreatmentofmelanoma. DZNPwasusedtoprepareacreamformulationfortopicaldrugdeliveryfor melanoma.DZNPandDZNCwereevaluatedformorphology,drugloadcapacity,efficiencyofnanoencapsulationandsizeofparticle,andzetapotential. Nanoencapsulationefficiencyanddrug-loadingcapacitywere67.4% 6 3.5%and 6.73mg/10mg,respectively.IC50ofDZNPwas0.19mg/mLwhileitwas 0.63mg/mLforDZNC.ItcanbeconcludedthatDZNPanditscreamcanbe effectivelyusedasatopicalformulationforthetreatmentofmelanoma(Hafeez andKazmi,2017).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Nanomaterials for clinical applications: case studies in nanomedicines (micro and nano technologies) by Education Libraries - Issuu