Nanomaterialsfor Biocatalysis
Editedby
GUILLERMORAULCASTRO
DepartmentofChemistry,BiotechnologyAreaattheUniversityof LaPlata,LaPlata,Argentina
ASHOKKUMARNADDA
DepartmentofBiotechnologyandBioinformatics,JaypeeUniversity ofInformationTechnology,Waknaghat,India
TUANANHNGUYEN
MicroanalysisDepartment,InstituteforTropicalTechnology, VietnamAcademyofScienceandTechnology,Hanoi,Vietnam
XIANGHUIQI
SchoolofFood&BiologicalEngineering,JiangsuUniversity, InstituteofLifeScience,Zhenjiang,P.R.China
GHULAMYASIN
BeijingAdvancedInnovationCenterforSoftMatterScienceand Engineering,CollegeofEnergy,BeijingUniversityofChemical Technology,Beijing,China
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions .
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
ISBN:978-0-12-824436-4
ForInformationonallElsevierpublications
visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: MatthewDeans
AcquisitionsEditor: SimonHolt
EditorialProjectManager: GabrielaD.Capille
ProductionProjectManager: PrasannaKalyanaraman
CoverDesigner: GregHarris
TypesetbyMPSLimited,Chennai,India
Listofcontributors xix
Section1Basicprinciples
1.Nanobiocatalysis:anintroduction3
TanviSharma,AshokKumarNadda,GuillermoRaulCastro,TuanAnhNguyen andXianghuiQi
1.1 Introduction 3
1.2 Metallicnanomaterials7
1.2.1 Metalnanomaterials7
1.2.2 Metal-oxidebasednanomaterials8
1.3 Carbonaceousnanomaterial9
1.3.1 Grapheneandgrapheneoxide9
1.3.2 Carbonnanotube10
1.4 Othernanomaterials10
1.5 Conclusion 11 Acknowledgment11 References 11
2.Enzymeimmobilizednanomaterials17 TriptiRaghavendraandSaritaG.Bhat
2.1 Introduction17
2.2 Componentsofthe “nano-enzymeconjugates” 26
2.2.1 Nanomaterial26
2.2.2 Synthesisofnanoparticles32
2.2.3 FunctionalizationofNPs33
2.3 Enzymesimmobilizedonnanomaterials34
2.3.1 Lipases39
2.3.2 α-amylases40
2.3.3 Glucoseoxidase40
2.3.4 Laccases41
2.3.5 Multienzymesystems42
2.4 Characterizationofenzyme-nanoconjugates42
2.4.1 TransmissionElectronMicroscopyandScanningElectronMicroscopy43
2.4.2 Fouriertransformationinfraredspectroscopy43
2.4.3 EnergydispersiveX-ray43
2.4.4 X-rayDiffraction43
2.4.5 Thermogravimetricanalysis43
2.5 Applicationsofnano-enzymebioconjugates44
2.6 Conclusionsandfutureperspectives45 Acknowledgments46 References 46
3.Electrochemicalfunctionalizationofcarbonnanomaterialsandtheir applicationinimmobilizationofenzymes67
AndrésFelipeQuintero-Jaime,DiegoCazorla-AmorósandEmiliaMorallón
3.1 Introduction67
3.2 Methodsofenzymeimmobilization68
3.2.1 Physicalmethods69
3.2.2 Chemicalmethods72
3.3 Nanostructuredcarbonmaterials74
3.4 Functionalizationofnanostructuredcarbonmaterialsforbioelectrocatalysisapplications76
3.4.1 Noncovalentfunctionalization78
3.4.2 Covalentfunctionalization80
3.5 Someselectedexamplesofelectrochemicalfunctionalizationandenzymeimmobilization85
3.6 Conclusions 90 Acknowledgment91 References 91
4.Mechanismsofinteractionamongenzymesandsupports105
EnricoCamelin,OscarRomero,MarcoPiumetti,CarminnaOttone,AndrésIllanes andDeboraFino
4.1 Introduction105
4.2 Fundamentalaspectsofproteinstructureforenzyme-supportinteraction107
4.2.1 Therelationshipbetweenenzymestructureandfunction107
4.2.2 Featuresandpropertiesoftheenzymesrelevantforinteractionwithmaterials108
4.2.3 Aminoacidsinvolvedinenzymeimmobilization110
4.3 Porousmaterialsaseffectiveenzymesupports115
4.3.1 Selectionofthematerial116
4.3.2 Addressingenzymerequirementstuningmaterialspeculiarities120
4.3.3 Supportcharacterizations123
4.4 Characterizationofimmobilizedenzymes125
4.4.1 Basiccharacterization:quantification,catalyticperformances,andstability125
4.4.2 Advancedcharacterizations:distribution,orientation,andconformational changesofimmobilizedenzymes133
4.5 Conclusions137
References 138
5.Theimpactofnanoparticles-basedenzymeimmobilizationinbiocatalysis149
AbhishekSharma,TanviSharma,ShwetaSharma,DeepakKumar,VijaySinghGondil, NancyMehra,AasthaKhullarandShamsherSinghKanwar
5.1 Introduction149
5.2 Magneticnanoparticles151
5.3 Characteristicpropertiesofmagneticnanoparticles152
5.3.1 Largesurfaceareas152
5.3.2 Magneticproperties152
5.3.3 Biocompatibilityandnontoxicity152
5.4 Structuralchemistryofmagneticnanoparticles153
5.5 Functionalizationandstabilizationofmagneticnanoparticles153
5.5.1 Inorganiccoating154
5.5.2 Organiccoating155
5.6 Biocatalysisviaenzymeimmobilizationonnanostructures156
5.7 Applicationsofnanoparticlesinenzymetechnologyandtheirindustrialrelevance158
5.8 Conclusionandfuturedirections162 Acknowledgments162 Conflictofinterest162
Section2Nanomaterialsinbiocatalysts
6.Silica-basednanomaterialsinbiocatalysis171 SaadatMajeed,RahatNawaz,TahirRasheedandMuhammadBilal
6.1 Catalyticreactionsandbiocatalysts171
6.1.1 Enzymebiocatalysis172
6.1.2 Nanomaterialsasbiocatalysts172
6.1.3 Silica-basednanomaterials173
6.1.4 Synthesisandmodificationofsilicananomaterials176
6.1.5 Applicationsofsilicananomaterialsasbiocatalyst183
6.2 Conclusion184 Acknowledgments184 Declarationofinterests184 References 184
7.Enzyme-metalnanobiohybridsinchemobiocatalyticcascadeprocesses189 MarziaMarciello,YurenaLuengoMorato,KarinaOvejeroParedes, LauraLozanoChamizoandMarcoFilice
7.1 Introduction189
7.2 Synthesisofenzyme metalhybridcatalysts191
7.2.1 Coimmobilizationofenzymesandmetalnanoparticlesona supportingcarrier192
7.2.2 Biomimeticsynthesisofenzyme-metalnanoparticlescatalytic nanobiohybrids196
7.3 Classificationofenzyme metalhybridcatalysts(E-MNPs)bymetalnanoparticles198
7.3.1 Goldnanoparticle-basedenzymehybrid198
7.3.2 Palladiumandplatinumnanoparticle-basedenzyme-metalhybrids199
7.3.3 Othermetalsusedformetal-enzymehybridcatalysts199
7.4 Applicationofenzyme-metalnanoparticlehybridcatalystsincascadereactions201
7.5 Conclusion204
Acknowledgments204
References 204
8.Nanostructuredorganicsupports211 MailinMissonandHuZhang
8.1 Introduction211
8.2 Polymericnanofibers211
8.2.1 Fabricationofnanofibersusingelectrospinning211
8.2.2 Immobilizationofenzymeonthenanofibersurface213
8.3 Polymericnanoparticles218
8.4 Polymericnanogels221
8.5 Polymericmicelles223
8.6 Inorganic-organichybridnanostructures225
8.6.1 Magneticnanoparticles-polymershybridnanostructures227
8.6.2 Otherinorganicnanoparticles-polymersnanostructures230
8.7 Conclusion231
References 232
9.Recentdevelopmentsofiron-basednanosystemsasenzyme-mimicking surrogatesofinterestintumormicroenvironmenttreatment237 JavierBonet-Aleta,JavierCalzada-FunesandJoseL.Hueso
9.1 Introduction237
9.2 BiocatalyticactivityofFexOy nanomaterials240
9.2.1 Catalasemechanism:naturalenzymesversusFe3O4 nanoparticles242
9.2.2 Peroxidasemechanism:naturalenzymesversusFe3O4 nanoparticles244
9.2.3 Comparisonofcatalaseandperoxidaseactivity involvingFe3O4 nanoparticles245
9.3 RoleofFe-basednanoparticlesintumorcellmicroenvironments:interactionwith hydrogenperoxideandglutathione248
9.3.1 RoleofionicFespeciesinbiologicalprocesses248
9.3.2 CatalasebiomimeticactivityofFe-basednanocatalystsagainsttumorhypoxia251
9.3.3 Peroxidase-likebiocatalyticactivityofFenanosystemforenhancedreacting oxygenspeciesproduction252
9.4 Newtrendsinnanozymematerials:singleatomcatalysts254
9.5 Conclusionsandoutlook257
References 259
10.Metalorganicframeworksforbiocatalysis267
XiaolingWu,ShuliLiu,Wen-YongLou,JunXiong,Min-HuaZong andMuhammadBilal
10.1 Introduction267
10.2 Synthesisofenzyme-metal-organicframeworkscomposites269
10.2.1 Surfaceattachment269
10.2.2 Covalentconjugation275
10.2.3 Pore/channelinfiltration277
10.2.4 Insitu encapsulation282
10.3 Applicationofenzyme-metal-organicframeworkscomposites287
10.3.1 Biologicalmanufacturing287
10.3.2 Environmentalprotection288
10.3.3 Diseasediagnosisandtherapy289
10.4 Summaryandoutlook290
References 291
11.Enzymeimmobilizationonmagneticnanoparticlesupportsforenhanced separationandrecyclingofcatalysts301
ElizabethC.H.T.LauandHumphreyH.P.Yiu
11.1 Introduction301
11.1.1 Covalentbinding303
11.1.2 Physicaladsorption303
11.1.3 Encapsulation303
11.1.4 Crosslinking304
11.2 Magneticsupportmaterialsforenzymeimmobilization304
11.2.1 Magnetismandmagneticmaterials304
11.2.2 Ironoxidenanoparticlesasmagneticsupports306
11.3 Immobilizationmethodsonmagneticsupports309
11.4 Singleenzymesystems310
11.5 Multi-enzymecascadesystems312
11.6 Cofactor-dependentsystems315
11.7 Conclusionandfutureoutlooks316
References 316
12.Polymersandmetal organicframeworksassupportsinbiocatalysis: applicationsandfuturetrend323
OlgaSaccoandWandaNavarra
12.1 Introductiontobiocatalysis323
12.2 Enzymeimmobilizationonpolymers,biopolymers,andmetal organicframeworks323
12.2.1 Enzymeimmobilizationtechniques325
12.3 Applicationsofimmobilizedbiocatalyst331
12.3.1 Biodieselproduction331
12.3.2 Synthesisofflavorester332
12.3.3 Pharmaceuticalapplications333
12.3.4 Biosensors334
12.3.5 Proteindigestionandchemicaldegradation335
12.4 Limitationsandchallengesintheapplicationoforganicmaterialsasenzymesupports335
References 336
13.Carbonnanotubes/nanorodsinbiocatalysis339
AnnaChrobokandAnnaSzelwicka
13.1 Introduction339
13.2 Carbonnanotubesinbiocatalysis341
13.3 Multi-walledcarbonnanotubesinbiocatalysis344
13.4 Non-covalentimmobilizationofenzymesonmulti-walledcarbonnanotubes349
13.5 Covalentimmobilizationofenzymesonmulti-walledcarbonnanotubes356
13.6 Single-walledcarbonnanotubesinbiocatalysis358
13.7 Hybridmaterialsbasedoncarbonnanotubesinbiocatalysis360
13.8 Othercarbonnanoshapesinbiocatalysis365
13.9 Conclusions367 Acknowledgment368
References 368
14.Goldnanoparticlesforbiocatalysis377
GermánPlascencia-VillaandRubénMendoza-Cruz
14.1 Introduction377
14.2 Goldascatalystforchemicalandbiochemicalreactions379
14.2.1 Goldnanoclustersasacatalyst379
14.2.2 Goldnanoparticlesincatalysis382
14.2.3 Anisotropicgoldparticlesincatalysis384
14.3 Goldassupportofbiocatalyticcompounds(enzymes)391
14.3.1 Propertiesofgoldnanoparticles392
14.3.2 Enzymeimmobilizationontogoldnanoparticles393
14.3.3 Enzyme-goldnanoparticlesasbiosensors396
14.3.4 Enzymesinbiofuelcells398
14.4 Synthesisapproachesofgoldnanoparticles400
14.4.1 Colloidalsynthesisofgoldnanoparticles402
14.4.2 Synthesismethodsandcappingagents404
14.5 Advancedtechniquesforthecharacterizationofgoldnanoparticlesusedas enzymessupport409
14.5.1 Transmissionelectronmicroscopyandscanningtransmission electronmicroscopy409
14.5.2 X-rayenergydispersivespectroscopy412
14.5.3 Ramanspectroscopy413
14.5.4 Dynamiclightscattering415 Acknowledgments419
References 419
Section3Emergingapplications
15.Nanobiocatalystfordrugdelivery437
IgnacioRiveroBertiandGuillermoRaulCastro
15.1 Introduction437
15.2 Therapeuticenzymes441
15.3 Strategiesfortherapeuticenzymedelivery446
15.3.1 Stabilizationofcarrier-freeenzymes446
15.3.2 Enzymestabilizationwithcarriers451
15.4 Nanocarriersforbiocatalysis453
15.4.1 Metalnanoparticles454
15.4.2 Polymericnanoparticles455
15.4.3 Solidlipidcarriers457
15.4.4 Proteincages457
15.4.5 Single-enzymenanoparticles458
15.5 Conclusionsandfutureprospects458 Acknowledgments459
References 459
16.Enzymaticbiosensorsforthedetectionofwaterpollutants463
EduardoC.Reynoso,CynthiaRomero-Guido,GeorgetteRebollar-Pérez andEduardoTorres
16.1 Introduction463
16.2 Aacetylcholinesterase-basedbiosensors465
16.3 Electrochemicalbiosensors471
16.4 Opticalbiosensors474
16.5 Polyphenoloxidases-basedbiosensors477
16.6 Biosensorsbasedonzinc-oxidenanoparticles481
16.7 Biosensorsbasedongoldnanoparticles483
16.8 Biosensorbasedon α-Fe2O3 nanocrystals485
16.9 Biosensorsbasedonpolypyrrolenanotubes485
16.10 Biosensorsbasedoncarbonnanomaterials487
16.11 Biosensorbasedonpoly(3,4-ethylenedioxythiophene)-iridiumoxide491
16.12 Peroxidase-basedbiosensors492
16.13 Generalcharacteristicsofperoxidases493
16.14 Nanomaterial-peroxidase-basedbiosensors494
16.15 BiosensorsforH2O2 detection494
16.16 Biosensorsforphenolicandaminecompoundsdetection497
16.17 Biosensorsforpesticidesdetection499
16.18 Conclusion505
References 505
17.Biocatalyticnanomaterialsasanalternativetoperoxidaseenzymes513 JaisonJeevanandam,PujaPatel,KumarPonnuchamy,SaikumarManchala, CalebAcquahandMichaelK.Danquah
17.1 Introduction513
17.2 Overviewofperoxidaseenzyme514
17.3 Peroxidase-likeactivityofnanoparticles516
17.3.1 Nanosizedmetalparticles516
17.3.2 Nanosizedmetaloxideparticles517
17.3.3 Nanosizedcarbon-basedparticles519
17.3.4 Nanosizedpolymericparticles522
17.3.5 Nanosizedcomposites522
17.4 Applicationsofbiocatalyticnanomaterialswithperoxidase-likeactivity523
17.4.1 Biosensorapplication523
17.4.2 Wastewatertreatment527
17.4.3 Antibacterialagents528
17.4.4 Othernovelapplications529
17.5 Futureperspective531
17.6 Conclusion531
References 532
18.Ligninperoxidase arobusttoolforbiocatalysis543 SofiaPerveen,SadiaNoreenandMuhammadBilal
18.1 Introduction543
18.2 Ligninolyticsystemofwhite-rotfungi547
18.3 Lignocellulosicwastes547
18.4 Production,purification,andcharacterizationofligninperoxidase549
18.5 Enzymeimmobilization advantagesanddisadvantages550
18.6 Selectionofbestimmobilizationcarrier550
18.7 Methodsforenzymeimmobilization551
18.7.1 Physicaladsorption552
18.7.2 Covalentbinding552
18.7.3 Cross-linking553
18.7.4 Entrapment553
18.7.5 Microencapsulation554
18.8 Selectionofappropriateimmobilizationmethod554
18.9 Naturalpolymersforenzymeimmobilization554
18.9.1 Alginate555
18.9.2 Chitosan555
18.9.3 Gelatin556
18.10 Syntheticpolymersassupportsforenzymeimmobilization556
18.10.1 Nylonmembrane556
18.10.2 Polyvinylalcohol557
18.11 Industrialapplicationsofligninperoxidase557
18.11.1 Dyedecolorization557
18.11.2 Delignificationofplantbiomass558
18.12 Conclusionandfutureperspectives559
18.13 Competinginterests560
19.Laccases:catalyticandfunctionalattributesforrobustbiocatalysis567
SadiaNoreen,SofiaPerveen,MuhammadBilalandHafizM.N.Iqbal
19.1 Introduction567
19.2 Laccaseandtheirgeneralproperties569
19.3 Laccasestructureandactivesite570
19.4 Catalyticmechanismoflaccase571
19.5 Differenceoflaccasewithotheroxidases573
19.6 Laccasesubstratesandinhibitors573
19.7 Occurrenceoflaccase574
19.7.1 Plantlaccase574
19.7.2 Bacteriallaccase574
19.7.3 Fungallaccases575
19.8 Productionoflaccase576
19.9 Purificationandcharacterizationoflaccase577
19.10 Immobilizationoflaccase579
19.10.1 Adsorption580
19.10.2 Entrapment582
19.10.3 Covalentbinding583
19.10.4 Cross-linkingofenzymeaggregates585
19.11 Environmentalbioremediationbylaccase586
19.12 Conclusionanddirections587 References 588 Furtherreading 594
20.Microbial exo-polygalacturonase aversatileenzymewith multiindustrialapplications595 FaizaAmin,SyedaAnamAsadandMuhammadBilal
20.1 Pectinases595
20.2 Substrateforpectinaseenzymes595
20.2.1 Homogalacturonan596
20.2.2 RhamnogalacturonanI596
20.2.3 RhamnogalacturonanII596
20.3 Historyofpectinases597
20.4 Sourcesofpectinases597
20.5 Structuraltopologyofpectinase598
20.6 Modernclassificationofpectinases598
20.6.1 Glucosidases599
20.6.2 Esterases599
20.6.3 Pectinlyases599
20.7 Productionof exo-polygalacturonase600
20.7.1 Solid-statefermentationandsubmergedstatefermentation600
20.7.2 Factorsaffectingsolid-statefermentation(SSF)for polygalaturonaseproduction605
20.7.3 Solid-statefermentationversussubmergedstatefermentation607
20.8 Biochemicalcharacterization608
20.8.1 Purification608
20.8.2 EffectofpH609
20.8.3 Metalioneffect609
20.8.4 Carbonandnitrogensources609
20.8.5 Phenoliccontents610
20.8.6 pHandthermalstabilityprofilesofpectinases610
20.8.7 Viscosity,turbidityandjuiceyield610
20.9 Industrialapplicationsofpectinases611
20.9.1 Juiceandwineindustry611
20.9.2 Pulpandpaperindustry612
20.9.3 Pecticwastewaterpretreatment612
20.9.4 Plantbastfibersdegumming612
20.9.5 Rettingofplantfibers613
20.9.6 Bioscouringofcottonfibersandtextileprocessing613
20.9.7 Coffeeandteafermentations613
20.9.8 Plantdiseasecontrol614
20.9.9 Oilextraction614
20.9.10 Pectinaseanddietaryfibers614
20.9.11 Clarificationandviscosityreductionoffruitjuices615
20.9.12 Phenoliccontents616
21.Therapeuticapplications623 FacundoRodriguezAyala,MartinG.Bellino,PaoloN.CatalanoandMartinF.Desimone
21.1 Introduction623
21.2 Enzyme-immobilizednanomaterials625
21.2.1 Enzyme-immobilizednanomaterialsforantithrombotictherapy626
21.2.2 Enzyme-immobilizednanomaterialsforGaucher’sdiseasetreatment628
21.2.3 Enzyme-immobilizednanomaterialsforthetreatmentof Pseudomonas aeruginosa infectionsinpatientswithcysticfibrosis628
21.2.4 Enzyme-immobilizednanomaterialsforphenylketonuriatreatment629
21.2.5 Enzyme-immobilizednanomaterialsforneonataljaundicetreatment629
21.2.6 Enzyme-immobilizednanomaterialsforthetreatmentofboneregeneration andhypophosphatasia630
21.3 Nanomaterialsdisplayingenzyme-likeactivities630
21.3.1 Iron-basednanozymesfortherapy632
21.3.2 Carbon-basednanozymes633
21.3.3 Carbon-basednanozymesfortherapy634
21.4 Multifunctionalnanozymes635
21.4.1 Multifunctionalnanozymeswithantioxidantactivity635
21.4.2 Multifunctionalnanozymesforneurodegenerativediseasestreatment638
21.4.3 Multifunctionalnanozymesforantibacterialapplications639
21.4.4 Multifunctionalnanozymesforhyperuricemiatreatment642
21.5 Single-atomcatalysts642
21.5.1 Carbon-supportedsingle-atomcatalysts643
21.5.2 Single-atomcatalystsforcancertreatment643
21.5.3 Single-atomcatalystsforantibacterialapplicationsandwoundhealing644
21.5.4 Single-atomcatalystsasscavengersforoxidativestresscytoprotection645
21.5.5 Single-atomcatalystsforphotodynamictherapy646
21.6 Newnanodevicesfortherapy:nanomotorsbasedongatedenzyme-poweredJanus nanoparticles647
21.7 Concludingremarks649 Acknowledgments649 References 649
22.Nanosupportimmobilized β-galactosidases,theirstabilization, andapplications661
AzraShafi,MaryamKhanandQayyumHusain
22.1 Introduction661
22.2 Sourcesof β-galactosidase662
22.3 Immobilizationofenzymes663
22.3.1 Factorsconsideredpriortoenzymeimmobilization664
22.3.2 Factorsinfluencingthebiochemicalactivityoftheimmobilizedenzyme665
22.3.3 Nanoimmobilization666
22.3.4 Methodsofenzymeimmobilizationonnanomaterial669
22.4 Applicationsofnanoimmobilized β-galactosidase677
22.4.1 Productionoflactosefreedairyproducts677
22.4.2 Applicationinwheyutilization679
22.4.3 Biosensorapplications680
22.4.4 Foodtechnology680
22.4.5 Environmentalremediation680
22.4.6 Medicalapplications681
22.4.7 Productionofgalctooligosaccharide681
22.5 Conclusionandfutureoutlook681 Acknowledgments682 References 682
23.Nanocarbonforbioelectronicsandbiosensing689
MalihaMarzana,Md.ManirulAlamKhan,AbbasAhmed,MohammadAbdulJalil andMd.MilonHossain
23.1 Introduction689
23.2 Propertiesandbiocompatibilityofnanocarbon690
23.2.1 Nanocarbon690
23.2.2 Biocompatibilityofnanocarbon691
23.3 Nanocarbonforbioelectronicapplications693
23.3.1 Genetherapyandnanocarrier693
23.4 Softnanocarbonbioelectronicsforprecisiontherapy695
23.5 Nanocarbonbioelectronicsfortissueengineering695
23.5.1 Graphene-basednanoelectronicsfortissueengineering696
23.6 Carbonnanotubes-basednanoelectronicsfortissueengineering697
23.7 Applicationsofnanocarbon-basedbiosensors697
23.7.1 Biophysicalbiosensorandmonitoring697
23.8 Skintemperaturemonitoring699
23.9 Broadrangehumanbodymovementmonitoring700
23.10 Electrochemicalbiosensor702
23.10.1 Enzymaticbiosensor703
23.10.2 DNAbiosensor704
23.10.3 Proteinbiosensor705
23.10.4 Immunobiosensors705
23.11 Conclusion705
Thispageintentionallyleftblank
Listofcontributors
CalebAcquah
SchoolofNutritionSciences,FacultyofHealthSciences,UniversityofOttawa,Ottawa,ON, Canada
AbbasAhmed
NationalInstituteofTextileEngineeringandResearch,UniversityofDhaka,Dhaka, Bangladesh
FaizaAmin
DepartmentofChemistry,GovernmentCollegeWomenUniversity,Faisalabad,Pakistan
SyedaAnamAsad
DepartmentofChemistry,GovernmentCollegeWomenUniversity,Faisalabad,Pakistan
FacundoRodriguezAyala
DepartmentofMicroyNanotechnology,InstituteofNanoscienceandNanotechnology (CNEA-CONICET),SanMartín,Argentina
MartinG.Bellino
DepartmentofMicroyNanotechnology,InstituteofNanoscienceandNanotechnology (CNEA-CONICET),SanMartín,Argentina
IgnacioRiveroBerti
NanobiomaterialsLaboratory,CINDEFI,DepartmentofChemistry,FacultyofExactSciences, NationalUniversityofLaPlata,(UNLP)-CONICET(CCTLaPlata),LaPlata,Argentina
SaritaG.Bhat
DepartmentofBiotechnology,CochinUniversityofScienceandTechnology,Kalamassery, Kochi,India
MuhammadBilal
SchoolofLifeScienceandFoodEngineering,HuaiyinInstituteofTechnology,Huaian,P.R. China
JavierBonet-Aleta
DepartmentofChemicalandEnvironmentalEngineering,InstituteofNanoscienceand MaterialsofAragon,Zaragoza,Spain;NetworkingResearchCenteronBioengineering, BiomaterialsandNanomedicine,Madrid,Spain
JavierCalzada-Funes
DepartmentofChemicalandEnvironmentalEngineering,InstituteofNanoscienceand MaterialsofAragon,Zaragoza,Spain;NetworkingResearchCenteronBioengineering, BiomaterialsandNanomedicine,Madrid,Spain
EnricoCamelin
DepartmentofAppliedScienceandTechnology,PolitecnicodiTorino,Torino,Italy
GuillermoRaulCastro
NanobiomaterialsLaboratory,CINDEFI,DepartmentofChemistry,FacultyofExactSciences, NationalUniversityofLaPlata,(UNLP)-CONICET(CCTLaPlata),LaPlata,Argentina; MaxPlanckLaboratoryforStructuralBiology,ChemistryandMolecularBiophysicsof Rosario(MPLbioR,UNR-MPIbpC),PartnerLaboratoryoftheMaxPlanckInstitutefor BiophysicalChemistry(MPIbpC,MPG),CentrodeEstudiosInterdisciplinarios(CEI), UniversidadNacionaldeRosario,SantaFe,Argentina
PaoloN.Catalano
DepartmentofMicroyNanotechnology,InstituteofNanoscienceandNanotechnology (CNEA-CONICET),SanMartín,Argentina;SchoolofPharmacyandBiochemistry, UniversityofBuenosAires,BuenosAires,Argentina
DiegoCazorla-Amorós
DepartmentofInorganicChemistryandInstituteofMaterials(IUMA),UniversityofAlicante, Alicante,Spain
LauraLozanoChamizo
NanobiotechnologyforLifeSciencesLab,DepartmentofChemistryinPharmaceutical Sciences,FacultyofPharmacy,UniversidadComplutensedeMadrid(UCM),Madrid,Spain
AnnaChrobok
DepartmentofChemicalOrganicTechnologyandPetrochemistry,FacultyofChemistry, SIlesianUniversityofTechnology,Gliwice,Poland
MichaelK.Danquah
ChemicalEngineeringDepartment,UniversityofTennessee,Chattanooga,TN,UnitedStates
MartinF.Desimone
SchoolofPharmacyandBiochemistry,UniversityofBuenosAires,BuenosAires,Argentina; UniversityofBuenosAires,CONICET,InstituteofDrugChemistryandMetabolism (IQUIMEFA),SchoolofPharmacyandBiochemistry,BuenosAires,Argentina
MarcoFilice
NanobiotechnologyforLifeSciencesLab,DepartmentofChemistryinPharmaceutical Sciences,FacultyofPharmacy,UniversidadComplutensedeMadrid(UCM),Madrid,Spain
DeboraFino
DepartmentofAppliedScienceandTechnology,PolitecnicodiTorino,Torino,Italy
VijaySinghGondil
PostGraduateInstituteofMedicalEducationandResearch,Chandigarh,India
Md.MilonHossain
DepartmentofTextileEngineering,KhulnaUniversityofEngineeringandTechnology, Khulna,Bangladesh;DepartmentofTextileEngineering,ChemistryandScience,North CarolinaStateUniversity,Raleigh,NC,UnitedStates
JoseL.Hueso
DepartmentofChemicalandEnvironmentalEngineering,InstituteofNanoscienceand MaterialsofAragon,Zaragoza,Spain;NetworkingResearchCenteronBioengineering, BiomaterialsandNanomedicine,Madrid,Spain
QayyumHusain
DepartmentofBiochemistry,FacultyofLifeSciences,AligarhMuslimUniversity,Aligarh, India
AndrésIllanes
SchoolofBiochemicalEngineering,PontificaUniversidadCatólicadeValparaíso,Valparaíso, Chile
HafizM.N.Iqbal
TecnologicodeMonterrey,SchoolofEngineeringandSciences,Monterrey,Mexico
MohammadAbdulJalil
DepartmentofTextileEngineering,KhulnaUniversityofEngineeringandTechnology, Khulna,Bangladesh
JaisonJeevanandam
DepartmentofChemicalEngineering,FacultyofEngineeringandScience,CurtinUniversity, Miri,Malaysia
ShamsherSinghKanwar DepartmentofBiotechnology,HimachalPradeshUniversity,Shimla,India
MaryamKhan
DepartmentofBiochemistry,FacultyofLifeSciences,AligarhMuslimUniversity,Aligarh, India
Md.ManirulAlamKhan
DepartmentofElectricalandComputerEngineering,TheUniversityofMemphis,Memphis, TN,UnitedStates
AasthaKhullar
PostGraduateInstituteofMedicalEducationandResearch,Chandigarh,India
DeepakKumar DepartmentofMicrobiology,DAVUniversity,Jalandhar,India
ElizabethC.H.T.Lau
ChemicalEngineering,SchoolofEngineeringandPhysicalSciences,Heriot-WattUniversity, Edinburgh,UnitedKingdom
ShuliLiu
SchoolofFoodScienceandEngineering,SouthChinaUniversityofTechnology, Guangzhou,P.R.China
Wen-YongLou
SchoolofFoodScienceandEngineering,SouthChinaUniversityofTechnology, Guangdong,P.R.China
SaadatMajeed
InstituteofChemicalSciences,BahauddinZakariyaUniversity,Multan,Pakistan
SaikumarManchala
DepartmentofChemistry,IndianInstituteofTechnology,NewDelhi,India
MarziaMarciello
NanobiotechnologyforLifeSciencesLab,DepartmentofChemistryinPharmaceutical Sciences,FacultyofPharmacy,UniversidadComplutensedeMadrid(UCM),Madrid,Spain
MalihaMarzana
DepartmentofTextileEngineering,KhulnaUniversityofEngineeringandTechnology, Khulna,Bangladesh
NancyMehra
PostGraduateInstituteofMedicalEducationandResearch,Chandigarh,India
RubénMendoza-Cruz
InstitutodeInvestigacionesenMateriales,UniversidadNacionalAutónomadeMéxico, CircuitoExterior,CiudadUniversitaria,CiudaddeMéxico,México
MailinMisson
BiotechnologyResearchInstitute,UniversitiMalaysiaSabah,KotaKinabalu,Malaysia
EmiliaMorallón
DepartmentofPhysicalChemistryandInstituteofMaterials(IUMA),UniversityofAlicante, Alicante,Spain
YurenaLuengoMorato
NanobiotechnologyforLifeSciencesLab,DepartmentofChemistryinPharmaceutical Sciences,FacultyofPharmacy,UniversidadComplutensedeMadrid(UCM),Madrid,Spain
AshokKumarNadda
DepartmentofBiotechnologyandBioinformatics,JaypeeUniversityofInformation Technology,Waknaghat,India
WandaNavarra
DepartmentofChemistryandBiology “A.Zambelli,” UniversityofSalerno,Fisciano,Italy
RahatNawaz
InstituteofChemicalSciences,BahauddinZakariyaUniversity,Multan,Pakistan
TuanAnhNguyen
InstituteforTropicalTechnology,VietnamAcademyofScienceandTechnology,Hanoi, Vietnam
SadiaNoreen
DepartmentofBiochemistry,GovernmentCollegeWomenUniversity,Faisalabad,Pakistan
CarminnaOttone
SchoolofBiochemicalEngineering,PontificaUniversidadCatólicadeValparaíso,Valparaíso, Chile
KarinaOvejeroParedes
NanobiotechnologyforLifeSciencesLab,DepartmentofChemistryinPharmaceutical Sciences,FacultyofPharmacy,UniversidadComplutensedeMadrid(UCM),Madrid,Spain; MicroscopyandDynamicImagingUnit,FundaciónCentroNacionaldeInvestigaciones CardiovascularesCarlosIII(CNIC-FSP),Madrid,Spain
PujaPatel
DepartmentofAnimalHealthandManagement,AlagappaUniversity,Karaikudi,India
SofiaPerveen
DepartmentofBiochemistry,GovernmentCollegeWomenUniversity,Faisalabad,Pakistan
MarcoPiumetti
DepartmentofAppliedScienceandTechnology,PolitecnicodiTorino,Torino,Italy
GermánPlascencia-Villa
DepartmentofBiology,UniversityofTexasatSanAntonio,SanAntonio,TX,UnitedStates
KumarPonnuchamy
DepartmentofAnimalHealthandManagement,AlagappaUniversity,Karaikudi,India
XianghuiQi
SchoolofFoodandBiologicalEngineering,JiangsuUniversity,InstituteofLifeScience, Zhenjiang,P.R.China
AndrésFelipeQuintero-Jaime
DepartmentofPhysicalChemistryandInstituteofMaterials(IUMA),UniversityofAlicante, Alicante,Spain
TriptiRaghavendra
DepartmentofBiotechnology,CochinUniversityofScienceandTechnology,Kalamassery, Kochi,India
TahirRasheed
InterdisciplinaryResearchCenterforAdvancedMaterials,KingFahdUniversityofPetroleum andMinerals,Dhahran,SaudiArabia
GeorgetteRebollar-Pérez
FacultyofChemicalEngineering,MeritoriousAutonomousUniversityofPuebla,Puebla, Mexico
EduardoC.Reynoso
InstituteofSciences,MeritoriousAutonomousUniversityofPuebla,Puebla,Mexico
OscarRomero
SchoolofBiochemicalEngineering,PontificaUniversidadCatólicadeValparaíso,Valparaíso, Chile;DepartmentofChemicalBiologicalandEnvironmentalEngineering,Universitat AutònomadeBarcelona,Bellaterra,Spain
CynthiaRomero-Guido
InstituteofSciences,MeritoriousAutonomousUniversityofPuebla,Puebla,Mexico
OlgaSacco
DepartmentofChemistryandBiology “A.Zambelli,” UniversityofSalerno,Fisciano,Italy
AzraShafi
DepartmentofBiochemistry,FacultyofLifeSciences,AligarhMuslimUniversity,Aligarh, India
AbhishekSharma
DepartmentofBiotechnology,HimachalPradeshUniversity,Shimla,India
ShwetaSharma
DirectorateofMushroomResearch,Chambaghat,India
TanviSharma
DepartmentofBiotechnologyandBioinformatics,JaypeeUniversityofInformation Technology,Waknaghat,India
AnnaSzelwicka
DepartmentofChemicalOrganicTechnologyandPetrochemistry,FacultyofChemistry, SIlesianUniversityofTechnology,Gliwice,Poland
EduardoTorres
InstituteofSciences,MeritoriousAutonomousUniversityofPuebla,Puebla,Mexico
XiaolingWu
SchoolofFoodScienceandEngineering,SouthChinaUniversityofTechnology, Guangdong,P.R.China
JunXiong
SchoolofFoodScienceandEngineering,SouthChinaUniversityofTechnology, Guangdong,P.R.China
HumphreyH.P.Yiu
ChemicalEngineering,SchoolofEngineeringandPhysicalSciences,Heriot-WattUniversity, Edinburgh,UnitedKingdom
HuZhang
AmgenBioprocessCentre,KeckGraduateCentre,Claremont,CA,UnitedStates
Min-HuaZong
SchoolofFoodScienceandEngineering,SouthChinaUniversityofTechnology, Guangdong,P.R.China