Nanofluids and mass transfer mohammad reza rahimpour - Download the full ebook now to never miss any

Page 1


https://ebookmass.com/product/nanofluids-and-mass-transfer-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Advances in Bioenergy and Microfluidic Applications

Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-bioenergy-and-microfluidicapplications-mohammad-reza-rahimpour/

ebookmass.com

Nanofluids for Heat and Mass Transfer Fundamentals, Sustainable Manufacturing and Applications Bharat Bhanvase

https://ebookmass.com/product/nanofluids-for-heat-and-mass-transferfundamentals-sustainable-manufacturing-and-applications-bharatbhanvase/

ebookmass.com

Advances in Synthesis Gas: Methods, Technologies and Applications, Volume 3: Syngas Products and Usages

Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-synthesis-gas-methodstechnologies-and-applications-volume-3-syngas-products-and-usagesmohammad-reza-rahimpour/ ebookmass.com

Wild Success: 7 Key Lessons Business Leaders Can Learn from Extreme

Adventurers Amy Posey

https://ebookmass.com/product/wild-success-7-key-lessons-businessleaders-can-learn-from-extreme-adventurers-amy-posey/

ebookmass.com

Research Design in Counseling 4th Edition, (Ebook PDF)

https://ebookmass.com/product/research-design-in-counseling-4thedition-ebook-pdf/

ebookmass.com

Citizen Hill: Autonomous Zone Simon Sayz [Sayz

https://ebookmass.com/product/citizen-hill-autonomous-zone-simon-sayzsayz/

ebookmass.com

Contemporary Orthodontics E Book 5th Edition, (Ebook PDF)

https://ebookmass.com/product/contemporary-orthodontics-e-book-5thedition-ebook-pdf/

ebookmass.com

Introduction to Environmental Assessment: A Guide to Principles and Practice 4th Edition Bram F. Noble

https://ebookmass.com/product/introduction-to-environmentalassessment-a-guide-to-principles-and-practice-4th-edition-bram-fnoble/

ebookmass.com

Basic Math & Pre-Algebra All-in-One For Dummies 1st Edition Mark Zegarelli

https://ebookmass.com/product/basic-math-pre-algebra-all-in-one-fordummies-1st-edition-mark-zegarelli/

ebookmass.com

https://ebookmass.com/product/the-micro-economy-today-16th-editionbradley-schiller/

ebookmass.com

NanofluidsandMass Transfer

Thispageintentionallyleftblank

NanofluidsandMass Transfer

MohammadRezaRahimpour DepartmentofChemicalEngineering, ShirazUniversity,Shiraz,Iran

MohammadAminMakarem DepartmentofChemicalEngineering, ShirazUniversity,Shiraz,Iran

MohammadRezaKiani

FoumanFacultyofEngineering,CollegeofEngineering, UniversityofTehran,Fouman,Iran

MohammadAminSedghamiz DepartmentofChemicalEngineering, ShirazUniversity,Shiraz,Iran

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermission inwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’ s permissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthan asmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-823996-4

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: KostasKIMarinakis

EditorialProjectManager: LindsayLawrence

ProductionProjectManager: DebasishGhosh

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

1.1 Masstransferinnanofluids........................................................................................3

1.1.1Massdiffusionofnanofluids...........................................................................6

1.1.2Convectivemasstransferofnanofluids..........................................................7

1.2

1.2.4Erosionandcorrosionoftheequipment.......................................................12

1.2.5Thermalperformanceinturbulentflowcondition........................................12

1.2.6Necessityofdefiningnewmechanisms........................................................13

1.2.7Challengesintwo-phaseheattransportapplications....................................13 1.3

1.3.2CO2

1.3.3Increasingthelifeofelectronicdevices........................................................14

1.3.4PerformanceimprovementofPV/Tsystems.................................................15

1.3.5Moreefficientcoolingofautomobileengines..............................................15

1.3.6Moreefficientheatingofbuildings...............................................................15

1.3.7Moreefficientgrinding..................................................................................15

2.1

2.2.1Single-stepmethod.........................................................................................22

2.2.2Two-stepmethod............................................................................................23

2.3

2.4

2.4.8Thermogravimetryanalysis.........................................................................33 2.4.9Inductivelycoupledplasma.........................................................................33

4.2.5Footprintofnanofluidsinthegas-liquidinteraction..................................106

4.2.6Hydrodynamicsofnanofluidsfrommass-transferviewpoint.....................107

4.3 Conclusion..............................................................................................................108

CHAPTER5Effectofnanofluidsinsolubilityenhancement 115

MaryamMeshksar,MohammadAminMakarem,Zohreh-SadatHosseini andMohammadRezaRahimpour

5.1 Introduction............................................................................................................115

5.2 Thegassolubilityenhancementmechanisms........................................................117

5.2.1Thegrazingorshuttleeffect........................................................................117

5.2.2Thehydrodynamicorboundarymixingeffect............................................118

5.2.3Theinhibitioneffectofbubblecoalescence...............................................119

5.3 Gasabsorptionenhancementbynanofluids..........................................................120

5.3.1Thenanofluidstypeeffect...........................................................................120

5.3.2Thenanoparticlesizeeffect.........................................................................122

5.3.3Thenanoparticleconcentrationeffect.........................................................123

5.3.4Thesurfactantadditioneffect......................................................................124

5.3.5ThepHeffect...............................................................................................125

5.3.6Thetemperatureeffect.................................................................................125

5.3.7Thepressureeffect.......................................................................................126

5.4 Applicationofnanofluidsforliquidsolventsolubility.........................................127

5.5 Limitationsanddrawbacksofnanofluidsusages..................................................127

5.6 Conclusionsandfuturetrends................................................................................128

CHAPTER6Heatandmasstransfercharacteristicsofmagneticnanofluids ....

GabrielaHuminic,AngelHuminicandAlinaAdrianaMinea

6.1 Introduction............................................................................................................133

6.2 Heattransfercharacteristics...................................................................................134

6.2.1Theory..........................................................................................................134

6.2.2Naturalconvectionsubjecttononuniformmagneticfield..........................134

6.2.3Naturalconvectionsubjecttouniformmagneticfield................................150

6.3 Masstransfercharacteristics..................................................................................173

6.4 Conclusionsandfutureprospectsandtrends........................................................181

CHAPTER7Conjugateheatandmasstransferinnanofluids .............................

AlinaAdrianaMinea,AngelHuminicandGabrielaHuminic

7.1 Introduction............................................................................................................189

7.2 Mechanismsofheattransferinnanofluids............................................................191

7.3 Mechanismsofmasstransferinnanofluids..........................................................191

7.4 Boilingheatandmasstransfer...............................................................................198 7.4.1Poolboiling..................................................................................................200 7.4.2Flowboiling.................................................................................................203

7.5 Techniquesforenhancementofthenanofluidscriticalheatflux.........................206

7.6 Conclusionandfutureworkandtrends.................................................................207 Nomenclature..........................................................................................................208

CHAPTER8Bionanofluidsandmasstransfercharacteristics ............................ 217 BaishaliKanjilal,NourouddinSharifi,AramehMasoumiand ImanNoshadi

8.1 Introduction............................................................................................................217

8.2 Presentstatusofresearchinnanofluids.................................................................218

8.3 Preparationandstabilizationofnanofluids...........................................................218

8.3.1Preparationofnanofluidsandbionanofluids...............................................218

8.3.2Stabilizationofnanofluids...........................................................................221

8.4 Applicationsofnanofluidsandbionanofluids.......................................................221

8.5 Typesofmasstransferprocessesinnanofluids....................................................224

8.5.1Bubbletypeabsorption................................................................................224

8.5.2Fallingfilmabsorption.................................................................................225

8.5.3Membraneabsorption..................................................................................225

8.5.4Masstransferwithphasechange.................................................................225

8.5.5Three-phaseairliftreactor............................................................................225

8.5.6Agitatedabsorptionreactor..........................................................................225

8.6 Mechanismofmasstransferenhancementinnanofluidsandbionanofluids.......225

8.6.1Shuttleorgrazingeffect..............................................................................225

8.6.2HydrodynamicsintheGLlayer..................................................................225

8.6.3ChangesinGLinterface..............................................................................226

8.7 Analogyandequivalencebetweenheatandmasstransferinnanofluids: anexperimentalandmodelingapproach...............................................................227

8.8 Bioconvection.........................................................................................................228

8.9 Ageneralmodelofbioconvection.........................................................................229

8.9.1Casestudy1—three-dimensionalstagnationpointflowof bionanofluidwithvariabletransportproperties..........................................231

8.9.2Casestudy2—bioconvectionnanofluidslipflowpastawavy surfacewithapplicationsinnanobiofuelcells............................................233

8.9.3Casestudy3—stagnationpointflowwithtime-dependent bionanofluidpastasheet:richardsonextrapolationtechnique...................234

8.9.4Casestudy4—unsteadymagnetoconvectiveflowofbionanofluid withzeromassfluxboundarycondition.....................................................237

8.9.5Casestudy5—secondgradebioconvectivenanofluidflowwith buoyancyeffectandchemicalreaction.......................................................239

8.10 Conclusionandfutureoutlook...............................................................................240

PART2:Masstransfermodellingandsimulationofnanofluids

9.10

10.2.1Finiteelementmethodapplicationonnanofluidheatandmass transfer........................................................................................................276

10.2.2Finiteelementmethodsimulation.............................................................278

10.3 Controlvolumefiniteelementmethod..................................................................282

10.3.1Fundamentalequations..............................................................................282

10.3.2Modelingofnumericalmethod.................................................................284

10.3.3Discretizationequationofgeneraltransport.............................................285

10.4 LatticeBoltzmannmethod.....................................................................................287

10.4.1ThetransportmodelofLatticeBoltzmann...............................................289

10.4.2DynamicnanoparticleaggregationbylatticeBoltzmannmethod............291

10.5 Conclusion..............................................................................................................293

CHAPTER11CFDsimulationofnanofluidsflowdynamicsincluding masstransfer .................................................................................... 297 MohammadHatami,JiandongZhouandDengweiJing

11.1 Heatandmasstransferinnanofluids.....................................................................297

11.1.1Thermalconductivity.................................................................................297

11.1.2Nanoparticlesconcentration.......................................................................297

11.1.3Nanoparticlesize........................................................................................300

11.1.4Nanoparticleshape.....................................................................................300

11.1.5Nanoparticlethermalconductivityandbasefluid....................................301

11.2 CFDmodeling........................................................................................................303

11.2.1Single-phaseapproach...............................................................................303

11.2.2Two-phaseapproach..................................................................................306

11.2.3OtherCFDapproaches...............................................................................313

11.3 Conclusion..............................................................................................................317 References...............................................................................................................317

CHAPTER12Masstransferenhancementinliquid liquidextraction processbynanofluids 327 MortezeEsfandyariandAliHafizi

12.1 Introduction............................................................................................................327

12.2 Masstransferinnanofluids....................................................................................329

12.2.1Molecularpenetrationinnanofluids..........................................................329

12.2.2Calculationofmasstransfercoefficient....................................................330

12.3 Masstransferofliquid liquidextraction.............................................................331

12.4 Nanoparticlesinliquid

12.4.1SiO2

12.4.2ZnO,ZrO2,andTiO2

12.4.3Al2O3

12.4.4MgOnanoparticles.....................................................................................338

12.4.5Fe3O4

12.5

PART3:Applicationsofnanofluidsasmasstransferenhancers

CHAPTER13Increasingmasstransferinabsorptionandregeneration processesviananofluids ..................................................................

13.1

13.2

MeisamAnsarpourandMasoudMofarahi

CHAPTER14Masstransferbasicsandmodelsofmembranes containingnanofluids

ColinA.Scholes 14.1

CHAPTER15Applicationsofmembraneswithnanofluidsandchallengeson industrialization ................................................................................ 385 ColinA.Scholes

15.1 Introductiontonanofluidsandmembranes...........................................................385

15.2 Nanofluidcharacteristics........................................................................................386

15.3 Membranecontactors.............................................................................................387

15.4 Membraneapplicationswithnanofluids................................................................389

15.4.1Liquid liquidextraction...........................................................................389

15.4.2Gas solventabsorption.............................................................................390

15.4.3Ultrafiltration/nanofiltration.......................................................................392

15.5 Membraneprocessindustrialdemonstrations........................................................393

15.6 Challengesformembranesprocesses....................................................................394

15.7 Conclusions............................................................................................................395 References...............................................................................................................395

CHAPTER16Enhancedcarbondioxidecapturebymembranecontactorsin presenceofnanofluids ..................................................................... 399 AdolfoIulianelliandKamranGhasemzadeh

16.1 Introduction............................................................................................................399

16.2 Membranecontactorstechnology..........................................................................400

16.3 Carbondioxideseparationbymembranecontactors............................................402

16.3.1Carbondioxideabsorptioninpresenceofsolidnanoparticles.................403

16.3.2Nanofluidshollowfibermembranes:modelingstudies............................403

16.3.3Modelingofcarbondioxideremovalinahollowfibermembrane contactor.....................................................................................................404

16.4 Conclusionandfutureoutlooks.............................................................................408 References...............................................................................................................409

CHAPTER17Masstransferimprovementinhydrateformationprocessesby nanofluids .......................................................................................... 413

FatemeEtebari,YasamanEnjavi,MohammadAminSedghamizand MohammadRezaRahimpour

17.1 Introduction............................................................................................................413

17.1.1Gashydratesformation..............................................................................414

17.1.2Thegashydrateformationprocess............................................................415

17.1.3Applicationofgashydrates.......................................................................416

17.2 Hydrateinhibitionversusthehydratepromotion..................................................417

17.3 Nanofluidinhydrateformation/inhibitionprocess...............................................418

17.3.1Improvementofmassexchangeduringhydrateformationby nanofluids...................................................................................................418

17.4 Conclusionsandfuturetrends................................................................................423

CHAPTER18Masstransferenhancementinsolarstillsbynanofluids

...............

18.1

AliBehradVakylabad

18.5 Onthemasstransferofsolarstills........................................................................437

18.5.1Inferredmasstransferfromheattransfermechanism...............................437

18.5.2Perspectivesofmasstransfer.....................................................................439

18.6

18.7

CHAPTER19Applicationofnanofluidsindrugdeliveryand diseasetreatment .............................................................................

YasamanEnjavi,MohammadAminSedghamizand MohammadRezaRahimpour

19.1 Introduction............................................................................................................449

19.2 Nanofluids..............................................................................................................449

19.2.1Differentvarietiesofnanofluids................................................................449

19.2.2Preparationofnanofluids...........................................................................450

19.2.3Nanofluidstabilityassessmentmethods....................................................451

19.2.4Nanofluidstabilizationprocedure..............................................................452

19.3 Nanofluid-baseddeliverysystem...........................................................................452

19.4 Targeteddrugdelivery...........................................................................................453

19.4.1Passive(physiology-based)targeting........................................................454

19.4.2Activetargeting..........................................................................................455

19.4.3Physicaltargeting.......................................................................................455

19.5 Applicationsofthenanofluid-baseddeliverysystem...........................................456

19.5.1Antibacterialactivityofnanofluids...........................................................457

19.5.2Applicationsincancertherapy..................................................................458

CHAPTER20Environmentalandindustrializationchallengesofnanofluids

20.1

NazaninAbrishamiShiraziandMohammadRezaRahimpour

20.2 Thedevastatingconsequencesofnanotechnology................................................468

20.2.1Thenanoparticleseffectonhumanhealth................................................469

20.2.2Thenanoparticleseffectontheenvironment............................................470

20.3 Nanofluidsutilizationchallenges...........................................................................470

20.3.1Long-termstabilityofnanoparticlesscattering.........................................471

20.3.2Increasedpressurelossandpumpingpower.............................................473

20.3.3Thermalperformanceofnanofluidsinturbulentflowandfully developedregion........................................................................................474

20.3.4Lessspecificheat.......................................................................................474

20.3.5Nanofluidsproductionandusageprice.....................................................474

20.4

Listofcontributors

MeisamAnsarpour

DepartmentofChemicalEngineering,FacultyofPetroleum,GasandPetrochemical Engineering,PersianGulfUniversity,Bushehr,Iran

AliBakhtyari

ChemicalEngineeringDepartment,ShirazUniversity,Shiraz,Iran

AsmaaF.Elelamy

DepartmentofMathematics,FacultyofEducation,AinShamsUniversity,Cairo,Egypt

YasamanEnjavi

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

MortezeEsfandyari

DepartmentofChemicalEngineering,UniversityofBojnord,Bojnord,Iran

FatemeEtebari

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

NayefGhasem

DepartmentofChemicalandPetroleumEngineering,UAEUniversity,Alain,UAE

KamranGhasemzadeh

UrmiaUniversityofTechnology,Urmia,Iran

AliHafizi

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

MohammadHatami

DepartmentofMechanicalEngineering,EsfarayenUniversityofTechnology,Esfarayen,Iran; InternationalResearchCenterforRenewableEnergy,Xi’anJiaotongUniversity,Xi’an,P.R.China

Zohreh-SadatHosseini

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

AngelHuminic

TransilvaniaUniversityofBrasov,Brasov,Romania

GabrielaHuminic

TransilvaniaUniversityofBrasov,Brasov,Romania

AdolfoIulianelli

InstituteonMembraneTechnologyoftheItalianNationalresearchCouncil(CNR-ITM),Rende, Italy

DengweiJing

InternationalResearchCenterforRenewableEnergy,Xi’anJiaotongUniversity,Xi’an,P.R.China

BaishaliKanjilal

DepartmentofBioengineering,UniversityofCalifornia,Riverside,Riverside,CA,UnitedStates

MohammadRezaKiani

FoumanFacultyofEngineering,CollegeofEngineering,UniversityofTehran,Fouman,Iran

MohammadAminMakarem

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

AramehMasoumi

DepartmentofChemicalEngineering,RowanUniversity,Glassboro,NJ,UnitedStates

HaticeMercan

DepartmentofMechatronicsEngineering,FacultyofMechanicalEngineering,YildizTechnical University(YTU),Yildiz,Besiktas,Istanbul,Turkey

MaryamMeshksar

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

AlinaAdrianaMinea

GheorgheAsachiTechnicalUniversityIasi,Iasi,Romania

MasoudMofarahi

DepartmentofChemicalEngineering,FacultyofPetroleum,GasandPetrochemical Engineering,PersianGulfUniversity,Bushehr,Iran;DepartmentofChemicalandBiomolecular Engineering,YonseiUniversity,Seoul,RepublicofKorea

ImanNoshadi

DepartmentofBioengineering,UniversityofCalifornia,Riverside,Riverside,CA,UnitedStates; DepartmentofChemicalEngineering,RowanUniversity,Glassboro,NJ,UnitedStates

MohammadRezaRahimpour

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

ColinA.Scholes

DepartmentofChemicalEngineering,TheUniversityofMelbourne,Melbourne,VIC,Australia

MohammadAminSedghamiz

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

NourouddinSharifi

DepartmentofEngineeringTechnology,TarletonStateUniversity,Stephenville,TX,UnitedStates

NazaninAbrishamiShirazi

SchoolofEnvironment,CollegeofEngineering,UniversityofTehran,Tehran,Iran

AliBehradVakylabad

DepartmentofMaterials,InstituteofScienceandHighTechnologyandEnvironmentalSciences, GraduateUniversityofAdvancedTechnology,Kerman,Iran

JiandongZhou

InternationalResearchCenterforRenewableEnergy,Xi’anJiaotongUniversity,Xi’an,P.R.China

Abouttheeditors

MohammadRezaRahimpour

Prof.MohammadRezaRahimpourisaprofessorinChemicalEngineering atShirazUniversity,Iran.HereceivedhisPhDinChemicalEngineering fromShirazUniversityjointwithUniversityofSydney,Australia1988.He startedhisindependentcareerasAssistantProfessorinSeptember1998at ShirazUniversity.Prof.M.R.RahimpourwasaResearchAssociateatthe UniversityofNewcastle,Australiain2003 2004andattheUniversityof California,Davisfrom2012until2017.DuringhisstayattheUniversity ofCalifornia,hedevelopeddifferentreactionnetworksandcatalyticprocessessuchasthermalandplasmareactorsforupgradingligninbio-oilto biofuelwiththecollaborationofUCDAVIS.HewasChairofthe DepartmentofChemicalEngineeringatShirazUniversityfrom2005to2009andfrom2015to 2020.Prof.M.R.Rahimpourleadsaresearchgroupinfuelprocessingtechnologyfocusedonthe catalyticconversionoffossilfuelssuchasnaturalgas,andrenewablefuelssuchasbio-oilsderived fromlignintovaluableenergysources.Heprovidesyoungdistinguishedscholarswithperfecteducationalopportunitiesinbothexperimentalmethodsandtheoreticaltoolsindevelopingcountriesto investigatein-depthresearchinthevariousfieldsofchemicalengineeringincludingcarboncapture, chemicallooping,membraneseparation,storageandutilizationtechnologies,noveltechnologies fornaturalgasconversion,andimprovingtheenergyefficiencyintheproductionanduseofnatural gasindustries.Prof.M.R.Rahimpourhascollaboratedwithresearchersaroundtheworldonsyngas andhydrogenproductionusingcatalyticmembranereactors.

MohammadAminMakarem

Dr.MohammadAminMakaremisaresearchassociateatShiraz University.Hisresearchinterestsaregasseparationandpurification,nanofluids,microfluidics,andgreenenergy.Ingasseparation,hisfocusison experimentalandtheoreticalinvestigationandoptimizationofpressure swingadsorptionprocess,andinthegaspurificationfield,heisworking onnoveltechnologiessuchasmicrochannels.Inrecentyears,hehasinvestigatedheatandmasstransferperformancesofnanofluidsindifferentsystemssuchasrotatingdisks,stretchingsheets,andmicrochannels.Besides, hehascollaboratedinwritingandeditingvariousbookchaptersforprestigiouspublisherssuchasElsevier,Springer,andWiley.Recently,hehas startededitingscientificbookprojectsinvarioussubjectsofchemical engineering.

MohammadRezaKiani

MohammadRezaKianiisaresearchassociateattheUniversityofTehran. Hestartedhisresearchbywritingabookchapteraboutaquaticwaterand watertreatment.HeisworkingonCO2 absorptioninmicrochannelsand thespecificationsofmicrofluidicandnanofluidicsystems.Hisresearch interestsaremodelingandexperimentalinvestigationsaboutnovelmethodsofCO2 capture.Besides,hehascollaboratedwithotherresearchersat ShirazUniversityinwritingnewbookchaptersandbooksfromElsevier.

MohammadAminSedghamiz

Dr.MohammadAminSedghamizisaresearchassociateatShiraz Universitysince2018.HestartedhisPhDatShirazUniversityin2012, withafocusonenvironmentalaspectsofenergyproductionfromwaste materials.DuringhisPhD,heemphasizednovelsolventsinchemicalengineeringapplications,forexample,heinvestigatedtheapplicationandefficiencyofionicliquidstoabsorbacidgasesatdifferentconditions.During thisproject,thefirstideaforutilizingthenextgenerationofionicliquids, thatis,deepeutecticsolvents,eruptedinhismindandhehascontinued thisideawiththethermodynamicresearchgroup.Besidestheresearchmentionedbefore,Dr.Sedghamizwasalsoaresearchassociateinfourdifferent industrialandacademicresearchprojectscollaboratingwithindustrialprofessionsandacademicteams,forexample,SouthParsGascompanyand thenationalIranianoilcompany.

PART 1 Masstransferbasicsof nanofluids

Thispageintentionallyleftblank

Introductiontonanofluids, challenges,andopportunities

DepartmentofMechatronicsEngineering,FacultyofMechanicalEngineering,YildizTechnicalUniversity(YTU), Yildiz,Besiktas,Istanbul,Turkey

1.1 Masstransferinnanofluids

Introducingnanoparticlestoworkingfluidsinenergyandchemicalsystemshasspawnedalarge numberofstudiesandhasbeeninvestigatedbymanyresearchersinthelasttwodecades.Itis observedthatthemassandthermaltransferofthebasefluidvarysignificantlywithasmallamount ofnanoparticleaddition.Physicalpropertieslikediffusivity,separation,thermalconductivity,density,viscosity,andheatcapacityoftheblendareaffectedbytheconcentration,size,andshapeof thenanoparticles.Intheirpioneeringstudy,Masudaetal. [1] reportedanimportantimprovement inthethermalconductivitywithincreasingconcentrationofultrafinenanoparticles[Al2O3/water (1.3% 4.3%vol.),TiO2/water(1.1% 2.3%vol.),andSiO2/water(1.0% 4.3%vol.)]comparedto waterasabasefluid.In Fig.1.1[2] thefundamentalmechanismsandtheirthermophysicalimpacts onthenanofluidsaresummarizedschematically.

Thereisastronganalogybetweenheatandmasstransfer.Therateofmasstransferisknownto changeasaresultofthepresenceofnanoparticlescomparedtoasingleliquidphase.Otherthan thenanoparticleaddition,thetypeofthenanoparticle,thenanoparticleconcentration,theparticle size,andtemperatureinfluencetherateofthemasstransfer,thusthesefundamentalmechanisms maychangethemasstransfercoefficient.Unlikeforthethermophysicalproperties,intheliterature theobservationsfromtheexperimentalstudiesarenotingoodagreementwitheachotherabout howthemasstransferchangeswiththesefundamentalmechanisms.Thereforethereisaneedto investigatethemasstransferinnanofluidsnotonlyforeverycolloidalblendbutalsoforeach process.

Thenanoparticlescanbecategorizedasmagneticnanoparticles,metalandmetaloxidesnanoparticles,carbon-basednanoparticlesandpolymer-basednanoparticles(see Fig.1.2) [2].Preparing nanofluidswithanimprovedstabilityisacomplicatedandexpensiveprocedure.Thenanofluids canbepreparedwithasingle-stepchemicalmethod.Alternatively,atwo-stepmethodcanbe employedwhichcanbechemicalorphysical.Mostlysurfactants,ultrasoundvibration,orultrasonicationtechniquesareusedinthetwo-stepmethodstoimprovelong-termstabilityofthedispersion. Nonhomogeneousdispersionandsedimentationaretwoimportantchallengesthatneedtobe addressedinnanofluidapplications.

NanofluidsandMassTransfer.DOI: https://doi.org/10.1016/B978-0-12-823996-4.00001-X Copyright © 2022ElsevierInc.Allrightsreserved.

FIGURE1.1

Thefundamentalmechanismsthataffectsthethermalconductivityofnanofluids

AdaptedfromQ.Lin,Z.Ning,F.Yanhui,M.E.Efstathios,Z.Gaweł,J.Dengwei,etal.,Areviewofrecentadvancesinthermophysical propertiesatthenanoscale:fromsolidstatetocolloids,Phys.Rep.843(2020)1 81

Thenanoparticlecanbeintheshapeofasphere,brick,cylinder,platelet,orblade.Theexperimentalobservationshaveshownthattheshapeofthenanoparticleaffectsthephysicalpropertyof thenanofluidconsiderably.Forinstance,inanexperimentalstudy,Timofeevaetal.andBijoyetal. [3,61] investigatedtheeffectsoftheshapeofthenanoparticlesandrevealedthatnanofluidswith platelet-shapednanoparticlesexhibithigherthermalconductivitycomparedtocylindricaland brick-shapednanoparticles.Additionally,TaslimahandDaniel [4] observedthattheblade-shaped nanoparticlesimprovedthethermalconductivitymorethanplatelet,cylindrical,brick,andspherical nanoparticles.Eliasetal. [5,6] conductedaseriesofapplication-basedexperimentalstudies,where theyinvestigatedtheeffectofparticleshapeontheoverallheattransfercoefficientfortheheat exchangers.Theyreportedthatthecylindricalnanoparticlesperformedsignificantlybettercomparedtootheroptions.Atthispointitisnotpossibletoderiveaconcreteconclusionaboutthe effectsofthenanoparticleshapeonthermalconductivityofthenanofluids;itneedsfurther consideration.

Inclusionofmorethanonenanoparticletothebasefluidimprovesthephysicalpropertiesof theblend.Generally,thehybridnanofluidsdemonstratesuperiormaterialpropertiescomparedtoa

FIGURE1.2

Theclassificationofthenanoparticlesgenerallyusedincolloidaldispersionsandschematicrepresentationof single-andtwo-stepnanofluidspreparation.

AdaptedfromQ.Lin,Z.Ning,F.Yanhui,M.E.Efstathios,Z.Gaweł,J.Dengwei,etal.,Areviewofrecentadvancesinthermophysical propertiesatthenanoscale:fromsolidstatetocolloids,Phys.Rep.843(2020)1 81

basefluidandasubsetofunitarynanofluidblend.Itisimportanttonotethattheselectionofthe nanoparticlesplayanimportantrole [7 10].Forinstance,thethermalconductivitygapbetween thenanoparticlesplaysakeyroleforthermalconductivityoftheresultinghybridnanofluid [10]. Nabiletal. [9] reportedthecomparisonofthreedifferenthybridnanofluids:TiO2-SiO2/water-EG, Al2O3-G/water,andMWCBT-Fe3O4/water.Thehighestthermalconductivityratioenhancement wasobservedfortheTiO2-SiO2/waterhybridnanofluid.Thiswasbecauseasahybridnanoparticle coupleTiO2 andSiO2 areclosertoeachotherintheirthermalconductivitycomparedtotheother couples.

Themathematicalmodelsforsuspensionsdonotaccuratelyestimatethephysicalpropertiesof nanofluidblends.Forthatreason,intheliterature,therearealargenumberofmodelsforthephysicalpropertiesofnanofluidsthatprocurewidevariationintheirestimates.Someofthesemodels employpolynomialfits,neuralnetworkalgorithms,ortheBuckinghamPitheoremtorelatethe propertiestonondimensionalgroups.Forinstance,themathematicalmodelstopredictthenanofluidviscosityhaveevolvedovertheyears,resultinginawiderangeofdifferentmodelswithdifferentcapabilitiesandlimitations.InitiallytheEinsteinmodelwasmodifiedfornanofluids,where theNewtoniancolloidviscosityisafunctionofconcentrationonly [11,12].Saitoetal. [13],

Brinkmanetal. [14],andFrankelandAcrivos [15] proposedmodifiedmodelswithimprovements inconcentrationrangeandparticlesizerangewithdistributionconstraints,wheretheexpression fortheviscosityisstillafunctionoftheconcentration [13 15].JangandChoi [16] reportedthat forsmallerparticlesize,thenanoparticleBrownianmotionbecomesmoreprominent,thusconvectionbecomesdominantatnanosize [16].ThenanoparticlesizeanddensitywithBrownianmotion featuresareincludedsimultaneouslybythemodelofMasouminetal. [12].Clustersizeeffectis takenintoaccountbythemodelofHosseini [17] andthenanolayerthicknesseswithaverageparticleradiusarealsoapartofthisformulation [17].Onecommonobservationforthesemorerecent modelsisthatthemathematicalexpressionscontainempiricalcoefficientsthatneedtobedeterminedexperimentally.Theproposedmodelscannotbedirectlyappliedineverysituation;theyare uniquemodelswithstrictconstraints.Foreachnanoblendwithaspecificconcentration,temperature,andpHintervalthereisaspecificexpressioninthemathematicalmodelforadesiredmaterial property.Thishighlightstheurgentneedforthedevelopmentofageneralizedmodeltoobtainthe materialpropertiesofthenanofluids.Thiscouldonlybepossiblewithaclearunderstandingofthe masstransfermechanismsofnanofluids.Thesemechanismsincludethediffusionandconvection phenomena,wheretheformerisduetogradientoftheconcentrationandthelatterisduetothe fluidmotion.

1.1.1 Massdiffusionofnanofluids

Theresultsfordiffusivecharacteristicsofnanofluidsreportedintheliteraturecanshowdissimilar trendsforthesamenanoparticle/basefluidblend.Forexample,animprovementinmassdiffusivity isreportedforincreasingconcentrationoftheAl3O2/waternanofluid [18,19].Forthesamecolloidalmixture,areductionindiffusivitywasreported [20,21].Additionally,Ozturketal. [22] reportednosignificantchangeindiffusivitywithconcentration.Fangetal. [23],reported26times morediffusiveCu/waternanofluidcomparedtothebasefluid,especiallyatlowerconcentrations [23].Theseconflictingobservationsrevealtheneedforfurtherinvestigations.

Intheliteraturethemassdiffusionenhancementinnanofluidsismostlylinkedtotherandom dynamicmotionofthenanoparticles,whichisalsoknownasBrownianmotion.ThelocalconvectionduetoBrownianmotionofthenanoparticlesenhancesthethermalconductivityinnanofluids morethantheclassicalconductiontheoriescanforesee.Asignificantmassdiffusionenhancement innanofluidscomparedtobasefluidsisreportedbyseveralresearchers [18,23 27].Themass transferandtheheattransferaretwoanalogousprocesses.Themassdiffusivityaugmentationin nanofluidsisthereasonfortheenhancedthermalconductivityofthenanofluid [18].Terhaniand Kelishami [27,28] investigatedthemasstransferofdifferentnanoparticlemassfractionsthrougha supportednanoliquidmembrane [27].Theyconstructedtheirmodelbyassumingincompressible flowwithoutchemicalreactionsandviscousdissipationforananoparticlemassfractionmuchless than1,whichmakestheblendadilutecolloidalmixture.Usingthetemperatureandconcentration analogytheyformedthefollowingnondimensionalgroups:thePrandtlnumberandtheNusselt numberfortheheattransfer;andtheSchmidtnumberandSherwoodnumberforthemasstransfer ofananofluid(see Table1.1).Theconstantsintheeffectivediffusivityexpression, Dnf,provided in Table1.1 are c 5 146, m1 5 0.523, m2 5 0.011,and m3 5 1.83 [28].Theyalsoconcludedthat Brownianmotionenhancedthemasstransferandnanoparticlesimprovedtheconvectionmass transfer;however,furtherconcentrationaugmentationreversedtheimprovementeffects [27].Ina

Table1.1Thenondimensionalgroupsforheatandmasstransfer.

HeattransferMasstransfer

Prandtlnumber

recentstudy,Machrafi [29] introducedanewmechanismofnanoparticledispersionbyapplying theporousflowprinciplesandthechemicalpotentialformulawhichprovidedagoodagreement withtheexperimentaldata.Thisstudyshowedthattheclassicalfreeenergymixingformulationis notappropriatetoexplainthemoleculardynamicsofnanoparticledispersions.Bydefiningachemicalpotentialbaseforboththedensityandtheporousmediumdescription,wherethebasefluiddiffusesacrosstheparticles,abetteragreementwiththeexperimentaldataisobtained [29]

Inadditiontothemicromotionofthefluid,theconcentrationplaysanimportantroleinthe massdiffusion,wherethegradientoftheconcentrationdifferenceisthedrivingforceforthemass transfer.Gerardietal. [20] experimentallyinvestigatedaluminawaternanofluids.Theirresultsare inconflictwiththemicroconvectiontheorypresentedinthepreviousstudies,whereanincreasein bothmassandheattransferisexpectedwithanincreasingconcentration.Theyreportedasignificantdecayinself-diffusioncoefficientofthenanoparticlesforincreasingaluminaconcentration [20].TuranovandTolmachev [30] experimentallyinvestigatedthesilica waternanofluidsforvolumetricconcentration ϕ # 0.3%andcomparedfourdifferentsilicananoparticleswithincreasing particlediameters [30].Theyreportedforallconcentrationsandnanosilicadiametersthesolvent self-diffusioncoefficientshowedareductionandtheenhancementinthethermalconductionwas modest,whichissimilartothefindingsofGerardietal.’sstudy [20].TuranovandTolmachev [30] suggestedthatthediffusiondecreaseoccurredduetowatercoatingthenanoparticles;whereasthey explainedthemoderateconductivityenhancementwiththeheattransferresistanceattheinterface ofthenanoparticleandwatermolecules [30].

1.1.2 Convectivemasstransferofnanofluids

Convectivemassandheattransferisobservedinnatureandengineeringapplicationsrangingfrom atmosphericandoceaniccirculations,heatingofbuildingstocoolingofelectronicdevices.Itis dominantinabsorptionprocesses,membranesystems,andextractionsystems.Duringmultiphase reactions,suchasfermentation,hydrogenationreactions,andwatertreatment,themasstransfer fromgasphasetoliquidovertheinterfacehasamajorrole.Theinterfacesizeaswellastheconcentration,theparticlesize,andthetemperatureaffectthismasstransfer.Nosignificanteffecton heatandmasstransferratesisobservedwithincreasingbuoyancyratio.

Olleetal.reportedanenhancementintheoxygenabsorptionofwaterwithmagneticnanoparticles. Theyreportedanimprovementinmasstransfercoefficientuptosixtimescomparedtothebasefluidand forbothdynamicandquiescentconditions.Theincreaseingas liquidinterfacebynanoparticleadditionis responsibleforthisincreasewithastrongdependencyontemperature.Kimetal. [31] investigatedthe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Nanofluids and mass transfer mohammad reza rahimpour - Download the full ebook now to never miss any by Education Libraries - Issuu