Nanofabrication for smart nanosensor applications (micro and nano technologies) 1st edition kaushik

Page 1


NanofabricationforSmartNanosensorApplications (MicroandNanoTechnologies)1stEditionKaushik Pal(Editor)

https://ebookmass.com/product/nanofabrication-for-smartnanosensor-applications-micro-and-nano-technologies-1stedition-kaushik-pal-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanovaccinology as Targeted Therapeutics Kaushik Pal

https://ebookmass.com/product/nanovaccinology-as-targetedtherapeutics-kaushik-pal/

ebookmass.com

Nickel-Titanium Smart Hybrid Materials: From Micro- to Nano-structured Alloys for Emerging Applications (Micro and Nano Technologies) 1st Edition Sabu Thomas (Editor)

https://ebookmass.com/product/nickel-titanium-smart-hybrid-materialsfrom-micro-to-nano-structured-alloys-for-emerging-applications-microand-nano-technologies-1st-edition-sabu-thomas-editor/

ebookmass.com

Nano-Optics: Fundamentals, Experimental Methods, and Applications (Micro and Nano Technologies) 1st Edition Sabu Thomas (Editor)

https://ebookmass.com/product/nano-optics-fundamentals-experimentalmethods-and-applications-micro-and-nano-technologies-1st-edition-sabuthomas-editor/

ebookmass.com

The Beautiful Little Things Melissa Hill

https://ebookmass.com/product/the-beautiful-little-things-melissahill/

ebookmass.com

Entrepreneurship in the Creative Industries. How Innovative Agents, Skills and Networks Interact Phillip Mcintyre

https://ebookmass.com/product/entrepreneurship-in-the-creativeindustries-how-innovative-agents-skills-and-networks-interact-phillipmcintyre/

ebookmass.com

Living Better Together: Social Relations and Economic Governance in the Work of Ostrom and Zelizer Stefanie Haeffele

https://ebookmass.com/product/living-better-together-social-relationsand-economic-governance-in-the-work-of-ostrom-and-zelizer-stefaniehaeffele/

ebookmass.com

Aid, Trade and Development : The Future of Globalization (Second Edition) Constantine Michalopoulos

https://ebookmass.com/product/aid-trade-and-development-the-future-ofglobalization-second-edition-constantine-michalopoulos/

ebookmass.com

Developments in the Formulation and Reinforcement of Concrete 2nd ed Edition Mindess

https://ebookmass.com/product/developments-in-the-formulation-andreinforcement-of-concrete-2nd-ed-edition-mindess/

ebookmass.com

A

Christian Approach to Corporate Religious Liberty Edward A. David

https://ebookmass.com/product/a-christian-approach-to-corporatereligious-liberty-edward-a-david/

ebookmass.com

https://ebookmass.com/product/chemical-reactivity-in-confined-systemstheory-modelling-and-applications-pratim-kumar-chattaraj/

ebookmass.com

NanofabricationforSmart NanosensorApplications

NanofabricationforSmart NanosensorApplications

InternationalandInterUniversityCentreforNanoscienceandNanotechnology(IIUCN), SchoolofEnergyMaterials,MahatmaGandhiUniversity,Kottayam,Kerala,India; WuhanUniversity,WuchangDistrict,Wuhan,HubeiProvince,RepublicofChina

FernandoGomes

MacromoleculeInstituteProfessorEloisaMano;CivilEngineeringProgram,COPPE, TechnologyCenter-UniversityCity,FederalUniversityofRiodeJaneiro,RiodeJaneiro,Brazil

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundat ourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-820702-4

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: SimonHolt

EditorialProjectManager: FernandaOliveira

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: GregHarris

TypesetbySPiGlobal,India

Contributors

M.M.Abdullah PromisingCentreforSensorsandElectronicDevices(PCSED),Departmentof Physics,FacultyofScienceandArts,NajranUniversity,Najran,SaudiArabia

MostafaG.Aboelkheir MacromoleculeInstituteProfessorEloisaMano,TechnologyCenterUniversityCity,FederalUniversityofRiodeJaneiro,RiodeJaneiro,Brazil

GulzarAhmad DepartmentofPhysics,UniversityofAgriculture,Faisalabad,Pakistan

MazharS.AlZoubi DepartmentofBasicMedicalStudies,YarmoukUniversity,Irbid,Jordan

KhalidM.Al-Batanyeh DepartmentofBiologicalSciences,YarmoukUniversity,Irbid,Jordan

NormaAlias CenterforSustainableNanomaterials,IbnuSinaInstituteforScientificandIndustrial Research,UniversitiTeknologiMalaysia,Skudai,Malaysia

AlaaA.A.Aljabali DepartmentofPharmaceuticsandPharmaceuticalTechnology,Facultyof Pharmacy,YarmoukUniversity,Irbid,Jordan

LorcaAlzoubi DepartmentofPharmaceuticsandPharmaceuticalTechnology;MedicinalChemistry andPharmacognosyDepartment,FacultyofPharmacy,YarmoukUniversity,Irbid,Jordan

NidhiAsthana NationalCentreofExperimentalMineralogyandPetrology,UniversityofAllahabad, Allahabad,India

MurthyChavali ShreeVelagapudiRamaKrishnaMemorialCollege(PGStudies),Affiliatedto AcharyaNagarjunaUniversity,Nagaram;PGDepartmentofChemistry,DharmaAppaRaoCollege, AffiliatedtoKrishnaUniversity,Nuzvid;NTRC,MCETRC,Tenali,AndhraPradesh,India

RamchanderChepyala FPC@DCU – FraunhoferProjectCentreforEmbeddedBioanalytical SystemsatDublinCityUniversity,DublinCityUniversity,Dublin,Ireland

ShipluRoyChowdhury TissueEngineeringCentre,FacultyofMedicine,UniversitiKebangsaan Malaysia,KualaLumpur,Malaysia

Vı´torCorr^ eadaCosta MacromoleculeInstituteProfessorEloisaMano,TechnologyCenterUniversityCity,FederalUniversityofRiodeJaneiro,RiodeJaneiro,Brazil

MichaelK.Danquah ChemicalEngineeringDepartment,UniversityofTennessee,Chattanooga,TN, UnitedStates

KrishnaChitanyaEtika DepartmentofChemicalEngineering,BirlaInstituteofTechnologyand Science,Pilani,Rajasthan,India

IreneS.Fahim IndustrialEngineeringDepartment,SmartEngineeringSystemsResearchCenter (SESC),NileUniversity,Giza,Egypt

RomildoDiasToledoFilho CivilEngineeringProgram,COPPE,TechnologyCenter-University City,FederalUniversityofRiodeJaneiro,RiodeJaneiro,Brazil

SanjeevGautam NetajiSubhasUniversityofTechnology,Delhi,India

GaneshGollavelli CentreofExcellenceofNanotechnology;DepartmentofIndustrialChemistry, CollegeofAppliedSciences,AddisAbabaScienceandTechnologyUniversity,AddisAbaba,Ethiopia

HazidatulAkmaHamlan CenterforSustainableNanomaterials,IbnuSinaInstituteforScientificand IndustrialResearch,UniversitiTeknologiMalaysia,Skudai,Malaysia

AhmedM.Hassanein NanoelectronicsIntegratedSystemsCenter(NISC),NileUniversity,Giza, Egypt

MdEnamulHoque DepartmentofBiomedicalEngineering,MilitaryInstituteofScienceand Technology(MIST),Dhaka,Bangladesh

SaiqaIkram Bio/PolymerResearchLaboratory,DepartmentofChemistry,JamiaMilliaIslamia,New Delhi,India

PurnimaJain NetajiSubhasUniversityofTechnology,Delhi,India

YasirJaved DepartmentofPhysics,UniversityofAgriculture,Faisalabad,Pakistan

JaisonJeevanandam DepartmentofChemicalEngineering,CurtinUniversity,Miri,Sarawak, Malaysia

RocktotpalKonwarh DepartmentofBiotechnology,CollegeofBiologicalandChemical Engineering;CentreofExcellenceofNanotechnology,AddisAbabaScienceandTechnology University,AddisAbaba,Ethiopia

SamoKralj FacultyofNaturalSciencesandMathematics,UniversityofMaribor,Maribor,Slovenia

AmitKumar DyalSinghCollege,UniversityofDelhi,Delhi,India

EnamalaManojKumar BioserveBiotechnologies(India)PrivateLtd.,Hyderabad,Telangana,India

AhmedH.Madian NanoelectronicsIntegratedSystemsCenter(NISC),NileUniversity,Giza; RadiationEngineeringDepartment,NCRRT,EgyptianAtomicEnergyAuthority,Cairo,Egypt

TariqMahbub DepartmentofMechanicalEngineering,MilitaryInstituteofScienceand Technology,Dhaka,Bangladesh

ZaidBinMahbub DepartmentofMathematicsandPhysics,NorthSouthUniversity,Dhaka, Bangladesh

AhmedNawaz DepartmentofPhysics,UniversityofAgriculture,Faisalabad,Pakistan

SomiaNawaz DepartmentofPhysics,UniversityofAgriculture,Faisalabad,Pakistan

MohammadA.Obeid DepartmentofPharmaceuticsandPharmaceuticalTechnology,Facultyof Pharmacy,YarmoukUniversity,Irbid,Jordan

KaushikPal InternationalandInterUniversityCentreforNanoscienceandNanotechnology(IIUCN), SchoolofEnergyMaterials,MahatmaGandhiUniversity,Kottayam,Kerala,India;WuhanUniversity, WuchangDistrict,Wuhan,HubeiProvince,RepublicofChina

PeriasamyPalanisamy DepartmentofPhysics,GnanamaniCollegeofEngineering,Namakkal, TamilNadu,India

SureshBabuPalanisamy DepartmentofBiotechnology,CollegeofBiologicalandChemical Engineering,AddisAbabaScienceandTechnologyUniversity,AddisAbaba,Ethiopia

MamunRabbani DepartmentofBiomedicalPhysicsandTechnology,UniversityofDhaka,Dhaka, Bangladesh

LobnaA.Said NanoelectronicsIntegratedSystemsCenter(NISC),NileUniversity,Giza,Egypt

M.MunirSajid DepartmentofPhysics,GovernmentCollegeUniversity,Faisalabad,Pakistan

NaveedAkhtarShad DepartmentofPhysics,GovernmentCollegeUniversity,Faisalabad,Pakistan

BhashaSharma NetajiSubhasUniversityofTechnology,Delhi,India

ShreyaSharma NetajiSubhasUniversityofTechnology,Delhi,India

ZayedBinZakirShawon DepartmentofMathematicsandNaturalSciences,BRACUniversity, Dhaka,Bangladesh

ShashankShekhar NetajiSubhasUniversityofTechnology,Delhi,India

AsiyaS.I. BharathInstituteofHigherEducationandResearch(BIHER),BharathUniversity,Chennai, TamilNadu,India

PreetiSingh Bio/PolymerResearchLaboratory,DepartmentofChemistry,JamiaMilliaIslamia,New Delhi,India

FernandoGomes MacromoleculeInstituteProfessorEloisaMano;CivilEngineeringProgram, COPPE,TechnologyCenter-UniversityCity,FederalUniversityofRiodeJaneiro,RiodeJaneiro, Brazil

MurtazaM.Tambwala SAADCentreforPharmacyandDiabetes,SchoolofPharmacyand PharmaceuticalScienceUlsterUniversity,Coleraine,UnitedKingdom

SabuThomas InternationalandInterUniversityCentreforNanoscienceandNanotechnology (IIUCN),SchoolofChemicalSciences,MahatmaGandhiUniversity,Kottayam,Kerala,India

Editors’biography

Professor(Dr.)KaushikPal isanIndiancitizen.Hedidhis PH.D.inPhysics(e.g.Nanotechnology,Multidisciplinary Sciences,AdvancedMaterialsScience,Spectroscopy)from UniversityofKalyani,West-Bengal,India.Mostrecentlyhe awardedwithhonorable DOCTOROFSCIENCE(D.SC.) from HigherNationalYouthSkillInstitute,Sepang, Selangor,Malaysia.Heisthe“DistinguishResearchProfessor” at FederalUniversityofRiodeJaneiro,Brazil andactingas “ChairProfessorandGroupLeader,(Chief-Scientist&Faculty Fellow)”positionin WuhanUniversity,WuchangDist.,Hubei Province,RepublicofChina.Mostrecently,hehasbeena visitingprofessorworkingandcontributingattheInternationalandInterUniversityCentrefor NanoscienceandNanotechnology(IIUCN),SchoolofEnergyMaterials,MahatmaGandhi University,Kottayam,Kerala.Heawardedinternationalprestigiousawardse.g.awardedthe Marie-CurieExperiencedResearcher(PostdoctoralFellow)bytheEuropeanCommission NetworkinGreece,andreceivedtheBrainKorea(BK-21)NationalResearchFoundation VisitingScientistFellowshipinSouthKorea.HewasappointedSeniorPostdoctoralFellowat WuhanUniversity,ChinaandwithinayearachievedtheprestigiouspositionofChief-Scientist andFaculty(CAS)FellowbytheChineseAcademyofScience.Heservedasresearchprofessor (GroupLeaderandIndependentScientist),atBharathUniversity(BIHER),Researchand Development,Chennai.Hiscurrentresearchspansarefocusingone.g.MolecularNanoscience andnanofabrication,functionalmaterials,condensedmatterphysics(expt.),CNTs/graphene, liquidcrystal,polymericnanocomposite,switchabledevice,electronmicroscopyand spectroscopy,bioinspiredmaterials,drugdelivery,integration,switchabledevicemodulation, stretchableelectronics,supercapacitors,optoelectronics,greenchemistry,andbiosensor applications.Hesupervisesasignificantnumberofbachelor’s,master’s,PhD,andpostdoctoral scholar’stheses,andhisresearchhasbeenpublishedinseveralinternationaltop-tierjournals frompublisherse.g.RoyalChemicalSociety,Elsevier,Springer,IEEE,andInTech.Hehas edited25bookchapterswithsignificantpublishers,contributed10reviewarticles,andhas editedseveralbooksforElsevier,AppleAcademicPress,andInTech.Dr.Palisanexpertgroup leaderandtheassociatememberofvariousscientificsocieties,organizations,andprofessional bodies.Inhisacademicandprofessionalresearch,hehasreceivedanumberofsignificant

awardsandprizes.Hehasbeenthechairpersonof30nationalandinternationalevents, symposia,conferences,andworkshops,andhascontributedto10plenary,28keynote,and30 invitedlecturesworldwide.

ProfessorFernandoGomes graduatedinchemistryfromthe FederalUniversityofEspı´ritoSanto(1999),andreceiveda MasterinEngineeringandMaterialsSciencefromtheState UniversityoftheNorthFluminenseDarcyRibeiro(2002),aPhD inScienceandTechnologyofPolymersfromtheFederal UniversityofRiodeJaneiro(2006),andapostdoctorateinthe chemicalengineeringprogramatCOPPE/UFRJ,Brazil.Heis currentlyAssociateProfessorattheMacromoleculesInstituteat UFRJ,CollaboratedProfessorattheCivilEngineeringProgram atCOPPE/UFRJandYoungScientistintheStateofRiode Janeiro(FAPERJ-2015).Hemainlyworkswithpolymeric nanocompositesobtainedfromrenewableresourcesinthree mainlines:(I)inthefieldofenvironmentalrecovery,coordinatingresearchprojectsfocusedon theuseofrenewableresourcesfortheremovalofoilinspills;(II)inthefieldofhumanhealth, coordinatingprojectsthatseekkineticandspatialcontrolofthedrugreleaseprocess;and(III)in thefieldofsensors,wherehecoordinatesprojectsthatseektoobtainplantfibersthatconduct electricityfortheiruseinsensorsforintelligentdevices.Supervisorof 103 undergraduate students; 28 M.Sc.students, 8 Ph.D.studentsand 5 PostDoc.NowadaysIamthesupervisorof 4 undergraduatestudents; 2 M.Sc.students, 14 Ph.D.studentsand 2 PostDoc.Memberofthe editorialboardofCurrentAppliedPolymerScience(ISSN2452-2716),AssociateEditorofthe MedCraveOnlineJournal(MOJ)PolymerScience(ISSN:2574-9773),andEditorofthe AcademicJournalofPolymerScience.HealsoawardedYoungScientistofRiodeJaneiroState (FAPERJ2011and2014),memberofPostGraduatePrograminScienceandTechnologyof PolymersoftheFederalUniversityofRiodeJaneirosince2008.

Introductiontonanomaterialsand nanomanufacturingfornanosensors

aDepartmentofMechanicalEngineering,MilitaryInstituteofScienceandTechnology, Dhaka,Bangladesh

bDepartmentofBiomedicalEngineering,MilitaryInstituteofScienceandTechnology(MIST), Dhaka,Bangladesh

1.1Nanosensors

Sensorsaredevicesusedtodetectthepresenceofaspecificsubstanceortomeasureaphysical propertysuchastemperature,mass,orelectricaloropticalcharacteristicsandproducea signalforrecordingorfurtherpostprocessing.Thehistoryofsensorsisalongone.Thefirst thermostatcameintoexistenceinthe1880s,andthefirstinfraredsensorwasdevelopedin 1940.Nanosensorsaresimilartomacrolevelsensorsbuthaveatleastonedimensionin nanoscaleandcanbeusedtomeasuresignalsavailableatthatscale.Nanotechnology,withits rapiddevelopmentsinrecentyears,hasshowngreatpotentialinalmostallindustries. Variouselectronicsindustrieshavefueledthesedevelopmentstosatisfytheirneedfor miniaturization,andthenanosensorfieldhastakenadvantageoftheseadvancesforitsown development.Alargevolumeofresearchhasbeenconductedoverthelasttwodecadesin theareaofnanomaterialsforwiderapplications,includingnanosensors [1–10].Since nanosensorscandealwithsignalsproducedatthenanoscale,thesamplequantitiesneededare quitesmallanddetectionisveryrapid.Allofthesequalitieshavehelpedtheapplications ofvarioustypesofnanosensorsindifferentfields,especiallyinthemedicalandhomeland securityfields.Gainingaclearerunderstandingofthespecialpropertiesofferedatthe nanoscalebynanomaterials,evolutionofthevarioustechniquesfornanomaterialproduction, andexploitationofthespecialpropertiesofnanomaterialshavealladvancednanosensor development.

1.1.1Typesofnanosensors

Duringtheshorthistoryofnanosensors,thistechnologyhasexperiencedsubstantial developments.Sinceavarietyofnanosensorsareavailabletoday,classificationcanbe somewhatdifficult.However,nanosensorscanbeclassifiedbasedontwogeneral factors:(1)structureand(2)application.

Basedonstructure,nanosensorscanbefurtherclassifiedintotwogroups: Opticalnanosensors: Opticalnanosensorsusethesensitivityoffluorescenceforqualitative andquantitativemeasurement.

Electrochemicalnanosensors: Thisclassofnanosensormainlydetectselectronicorchemical propertiesofarespectivesubstanceandtransducesasignal.Recently,majordevelopments havetakenplaceinthistypeofnanosensortechnology.

Basedonapplication,nanosensorscanbeclassifiedintochemicalnanosensors,nanoscale electrometers,nanobiosensors,deployablesensors,andsoon.

1.1.2Applicationsofnanosensors

Nanosensorsaregraduallyassumingrolesinalmosteveryaspectofhumanlife.Anumberof sensorscandetectthepresenceofhazardousmaterialsormicroorganismsinfood,water,and air.Thesesensorsaresavinglivesindifferentcornersoftheworld.Inthemedicalfield nanosensorsarehavingahugeimpact:forexample,avarietyofnanosensorsarebeingusedin cancerdetection,DNAandproteindetection,andtargeteddrugdelivery.Deployablesensors havefoundapplicationsinhomelandsecurity.Variouschemicalsensorsarenowaddedto unmannedaerialvehiclestodetectthepresenceofpoisonousgasonthebattlefield,tosavethe livesofsoldiers.VarioustaggingsystemsemployRFIDchips,whicharealsoanapplicationof nanosensors.

1.2Nanomaterialsfornanosensors

Forcenturiesthebeautyofthe400CELycurgusCupandthestrengthandbeautyofa Damascussteelbladehaveamazedpeople,butithasbeenonlydecadessincewediscoveredthe secretbehindtheseextraordinaryancientartifacts:nanomaterials [11,12].Nanomaterials aredefinedasthosenanoparticles(NPs)thathaveatleastonedimensioninnanometerscaleand thatexhibitsomespecialpropertythatisnotavailableinthebulkformofthesame material.Thoughunknowinglyusedinseveralancientartifacts,themodern-dayextensive research,informedfabrication,andutilizationofnanomaterialsbeganin1857,whenMichael Faradayreportedthesynthesisofso-called“activatedgold,”whichwasacolloidalsolution

ofAuNPs [13].Sincethattime,theuseofnanomaterialshasslowlybutsurelyspread, duetotheirextraordinarypropertiesassociatedwiththeirsize.Nanomaterialsshow extraordinarypropertiesdifferentthantheirbulksizebecauseoftheirnanoscaledimension. Thesurface-to-volumeratioofnanomaterialsisveryhigh,whichresultsinvariationsin chemical,mechanical,optical,andmagneticnature [14].Toexplorethepropertiesand applicationsofnanomaterialsproperly,itisjudicioustoclassifythem.However,severalfactors canbeconsideredinclassifyingnanomaterials,suchasphysicalandchemicalproperties, manufacturingprocess,dimensionality,uniformity,composition,andsoforth [15].Fromthe pointofviewofthischapter,weclassifynanomaterialsintofourclassesbasedontheir chemicalcomposition:(1)carbon-based,(2)organic-based,(3)inorganic-based,and(4) composite-basednanomaterials.Inthefollowingsections,wediscussdifferentnanomaterials thatfallwithinthesefourcategoriesandtheirapplications,especiallyasnanosensors.

Atthispoint,abriefintroductiontonanosensorsmaybeveryhelpfulforthosenewtothis field.Asensorisadevicethatdetectsandrespondstoanychangeinitsenvironment. Dailylifeisfullofsensors,suchaslightsensors,rainsensors,laneassistinautomobiles, smokeandfirealarmsensors,electricalsensors,andsoforth.Na nosensorsperformthe samefunction,butonamuchsmallerscale(1– 100nm),capableofsensingpathogens, viruses,molecules,orevenasinglechemicalelement.Themainadvantagesofnanosensors aretheminutesamplequantitiesrequired, speed,portability,andlowcostinmass production,amongothers.

Thehistoryofnanosensorsisonlydecadesold.Sincethebeginningofthecurrentcentury,the worldhasexperiencedarapidescalationofproductionanduseofnanosensorsasaconsequence oftwofactors.First,nanosensors,duetotheirexcellentperformance,haveconvincedthe worldthattheycanbesuccessfullyusedindifferentapplicationsvaryingfromthefood industry,fireandhazardousgasdetection,tovariouscriticalfieldslikemilitaryandadvanced medicalapplications.Secondly,thereisatremendousadvancementofdifferent manufacturingprocessesusedformanufacturingnanosensors,increasedavailability,and developmentofnewnanomaterialsandmoreclearunderstandingofnanoscale phenomena [16].

1.2.1Propertiesofnanomaterialsfornanosensors

Nanomaterials,duetohighsurface-to-volumeratioandthemanufacturingprocess,offersome extraordinarypropertiesthatcanbeexploredtoproducevariousapplicationsindrug manufacturing,environmentalsensingandprotection,materialsandmanufacturingindustries, electronics,energyharvesting,etc.Afewpropertiesthatarerelevanttonanosensorsarebriefly describedinthefollowingsections.

1.2.1.1Opticalproperties

Nanomaterialsoffersomeexcellentopticalproperties,suchaslightabsorption,color,light emission,andmagnetoopticalpropertiesduetotheirsizes;thesepropertiesarequitedifferent fromtheirbulkpropertiesandmakenanomaterialsagoodchoiceforopticalnanosensors.One ofthefirstnanosensorsdevisedtomeasureinhomogeneouspHdistributioninthreedimensionalresolutionwasfluorescein-based,usingapolyacrylamidenanoparticle incorporatedwithpH-sensitivefluorescein-acrylamide [17].Fluorescentnanosensorscan respondtosomespecificstimuliprovidedbythesurroundingenvironmentandtransducea fluorescencesignaltothedetectortosenseenvironmentalchanges.Thesenanosensorsareused tomakeoxygensensors [18] andtemperaturesensors.Thelocalizedsurfaceplasmon(LSP) effectofthenoblemetalnanoparticleisacurrentactivefieldofresearchformaking nanosensors(Fig.1.1).Whenananoparticleconfinessurfaceplasmon,duetoitsdimension, comparabletothewavelengthoflight,thefreeelectronofthenanoparticleparticipatesin thecollectiveoscillation.Thisphenomenoniscalledlocalizedsurfaceplasmon(LSP) [19]. TheLSPeffectgreatlyenhancestheelectricfieldnearthenanoparticlesurfaceandatthe plasmonresonantfrequencytheparticleshowsmaximumopticalextinction.Anumberofgas sensors [20,21] andpHsensors [22,23] aremanufacturedusingLSP.

1.2.1.2Electronicproperties

Nanomaterialscanofferquiteexceptionalelectronicpropertiesthatoriginatefromtheshape andstructureofthenanomaterial.Whentalkingaboutexceptionalelectronicproperties,the namethatcomestomindfirstisgraphene.Graphenehasasingle-layer2Dhoneycomb structureinwhichbothsurfacesareavailableformoleculeabsorption.Thestructurecausesthe electronseemlytobemassless [24] andtheelectronmovesatanaveragespeedwhichis 300timeslessthanthespeedoflightatvacuum.Thisallowsmanyrelativisticeventstobe

Schematicdiagramoflocalizedsurfaceplasmoneffect.

observablewithoutaparticleaccelerator [15].Thecarbonnanotube(CNT)inwhichgraphene actsasabuildingblockalsoofferssomeexcellentelectronicproperties.The sp 2 hybridization ofthecarbonorbitalsintheCNTleavesfreeelectronsatthesurfaceofthetubes,which yieldstheseexcellentproperties.CNTcanshowmetallic,semiconducting,orinsulating behavior,whichcanbecontrolledbycontrollingthediameter,chiralityoftheCNT,andany functionalizationordopingdoneonCNT [25].Nanosensorsusingthesepropertiesdetectusing twomethods:(a)currentenhancement,and(b)currentinhibition.Variouselectrochemical sensorshavebeendevelopedfordifferentpurposes,suchasdetectingdopamine [26],histamine [27],bacteria [28],glucose [29],andsoforth,usingtheelectronicpropertiesofnanomaterials.

1.2.1.3Magneticproperties

Duetotheunevenarrangementandorientationofelectronsinnanomaterials,andtheirsize, nanomaterialsexhibitexcellentmagneticpropertiestoo.Magneticpropertiesofnanomaterials arebecomingacenterofinterestindifferentbranchesofengineering,includingbutnotlimited todifferenttypesofcatalysis,biomedicineforcancertreatment,magneticfluids,nuclear magneticresonanceimaging(NMR),magneticresonanceimaging(MRI),andenvironmental remediation [30].Magneticnanosensorsusedifferenttechniquestoperformdetection,likethe effectmagneticparticlesexertonwaterprotonrelaxationrates,bydeterminingtherelaxation ofthemagneticmomentwithinthemagneticparticle,bydetectingthepresenceofamagnetic particleusingmagnetoresistivity,etc.Kohetal.explaindifferentbiosensorsusingthe previouslymentionedmethods.Thefollowingfiguresshowschematicrepresentationsofthe threeprocedures [31]. Fig.1.2Arepresentshowmagneticnanoparticlesdephasetheprotonsof waterforabetterMRIscan.Magneticparticlesgenerallystaydispersedinaliquidsolvent.But whenatargetanalyte(trianglein Fig.1.2A)appears,thedispersednanoparticlesproducean aggregatearounditandeventuallythisaggregatedephasesthespinsofwaterprotonsmore efficientlythanthedispersedstate.Thisreducesthespin-spinrelaxationtimeT2 toproducea betterMRIimage. Fig.1.2Bshowstheapplicationofmagneticmomentrelaxationwithina magneticnanoparticleforbacterialdetection.ThetypeofrelaxationusedhereisNeel relaxation.IntheupperfigureA,amagneticfieldisappliedtothenanoparticlesandtheyorient themselvesalongtheappliedfield.Someofthenanoparticlesarebondedwiththetarget bacteria.Later,infigureB,thefieldisremovedandmanyoftheparticlesexperienceBrownian relaxationandrandomlyorientinadifferentdirection.Butthenanoparticlesbondedtothe bacteriacannotundergoBrownianrelaxationandrathershowNeelrelaxation,whichis comparativelysloweranddetectable.Thesuperconductingquantuminterferencedevices (SQUIDs)detecttheslowerNeelrelaxationandbacterialdetectionisperformed. Fig.1.2C showstheoperationofamagnetoresistivesensor.Thebasicprinciplethatamagnetoresistive sensorappliesisthatthemagneticparticlebondstothesurfaceofthesensorandeventually altersitsmagneticfield.Thiscausesachangeinsensorcurrentandthedetectionisperformed. Therearetwomechanismsthroughwhichmagneticparticlesbindtothesensorsurface:(i)direct labeling,and(ii)indirectlabeling.Inthecaseofdirectlabeling,magneticnanoparticlesdirectly

Sensor functionalization

antibody BSA

Linker incubation

Analyte incubation

Nanotag-based quantification

Capture antibodyBSAAnalyteBiotinylated antibody

Streptavidin-coated magnetic nanotag

Magnetoresistive Sensor

(A)Magneticpropertyofnanomaterialsusedforsensingapplications [31].(B)Magneticpropertyofnanomaterialsusedforsensing applications(workingprincipleofSQUID) [31].(C)Schematicdiagramofgiantmagnetoresistivesensorapplication [31].

Fig.1.2

bindtothesurfacefunctionality,whileforindirectlabelingasandwichassayiscreated. Fig.1.2C schematicallyshowsthedetectionofproteinbycreatingasandwichassay.

Nanoparticlespossessmanymoreextraordinarypropertiesincludingmechanicalandthermal properties,butthesepropertiesarenotveryimportanttothecurrentsubjectpointofview.

1.2.2Differentnanomaterialsfornanosensors

Todiscussandunderstandtheuseofnanomaterialsindevelopingnanosensors,itishelpfulto classifythemintodifferentgroups.Butclassifyingnanomaterialsintodifferentgroupsisa formidablejob.Nanomaterialscanbepreparedusinganumberofbottom-upprocessessuchas cutting,ballmilling,extruding,chipping,pounding,andmanymore [32] andtop-down approaches [33] resultingindifferenttypesofstructures,withdifferentsurfacecoatings,which cancausetheclassificationtobeobscure.Forthatreason,herewedonotputtoomuch concentrationonclassifyingnanomaterials,butratherweshedsomelightonsomecommonly usednanomaterials.Aschematicrepresentationofcarbon-basednanomaterialsisprovidedin Fig.1.3 forabetterunderstandingofthediversenatureofnanomaterials.

Fig.1.3
Differentcarbon-basednanomaterials [34]

1.2.2.1Carbonnanotube

Firstdevelopedin1991byIijima,thecarbonnanotube(CNT)isbyfarthemost-usedcarbonbasednanomaterial.Itisacylinderhavingdiametersfromfractionstotensofnanometersanda lengthuptoseveralmicrometers.Thereexistbothsingle-walled(SWCNTs)andmultiwalled (MWCNTs)nanotubesthatareformedbysingleandmultiplelayersofgraphenelamella, respectively,seamlesslyrolledup [14].TheCNTiscommonlyproducedbyachemicalvapor deposition(CVD)techniqueorvaporizationofgraphiteinafurnaceinaninert(argongas) atmosphere.TheCNTpossessessomeexcellentproperties,suchashighstrengthcausedbyits hexagonalstructure,exceptionalelectronicpropertiescausedbythefreeelectronavailable after sp 2 hybridization,andeaseoffunctionalizationwithdifferentorganicmoleculesthat provideameanstointeractselectivelywithdifferentanalytes.Thiseasy-to-functionalize propertyenablesCNTstobeusedasprobetipsforawiderangeofchemicalandbiological applications.

ThemainapplicationoftheCNTasasensorisinthefield-effecttransistor(FET).Though theCNTisrobustandinertinnature,itishighlysensitivetochemicaldoping.Awidevarietyof FETsaremanufacturedbychemicaldopingofCNTs. Fig.1.4 showsaschematicdiagram ofCNT-FET.

CNT-FETsareusedtodetectdifferenttypesofgaseslikeCO2,NH3,O2 [35],NO2,N2 [36],and soforth.CNT-FETsarealsousedfordetectioninbiologicalscience.Avarietyofsensors havealreadybeendevelopedbyresearchersfordetectingproteins [37],enzymes,and β-D glucose [38],amongothers.

1.2.2.2Nanowires

Nanowiresarealsocommonlyusedinmakingnanosensors,justlikeCNTs.Nanowiresare producedthroughavarietyofprocessessuchaschemicalvapordeposition(CVD),laser ablation,alternatingcurrentelectrodeposition,andthermalevaporation [25].Nanowirescanbe madeupofdifferentmaterialsbutsiliconenanowireshavedrawnrecentinterest.Theelectrical propertiesandsensitivityofsiliconnanowirescanbetunedproperlyandreproduciblyby

Fig.1.4 SchematicdiagramofCNT-FET

Fig.1.5

(A)SchematicofasensordeviceconsistingofaSiNW(yellow)andamicrofluidicchannel(green), wherethe arrows indicatethedirectionofsampleflow.(B)TheSiNWsurfacewithPNAreceptor. (C)PNA-DNAduplexformation [40].

controllingthenanowirediameteranddopantconcentration [39].Hahmetal.produceda SiNW-basedsensortodetectDNAandDNAmismatches [40] inwhichthesiliconnanowire devicesweremodifiedwithpeptidenucleicacidreceptors.Thegoldnanoclustercatalyzed chemicalvapordepositiontechniquewasemployedtopreparethenanowiresusedinthis sensor.Thenanowireswereassembledonthesensoralongwithpeptidenucleicacid. Aschematicdiagramofthedeviceisgivenin Fig.1.5[40].WhenawildtypeormutantDNAis introducedtothesensorviathemicrofluidicchannel,peptidenucleicacidbindswiththeDNA andcreatesatinychangeoftheconductanceofthesiliconnanowire.Thischangeof conductanceenablesthesensortodifferentiatebetweenfullycomplementaryor mismatchedDNA.

NanowiresarealsousedtomakegassensorsthatcanqualitativelydetectNH3.

1.2.2.3Nanoparticles

Nanoparticlesareacommonlyusednanomaterialnotonlyinsensormanufacturingbutalsoin manyotherengineeringapplications.Althoughthenamesuggestsananoparticleisasingle molecule,NPsarenotjustsimplyonemoleculebutratheracombinationofthreelayers.These layersare(a)thesurfacelayer,whichcanbeusedtofunctionalizethenanoparticle;(b)theshell layer;and(c)thecore,whichisessentiallythecentralportionoftheNP [41].Nanoparticlesare

preparedusingvariousapproacheslikebottom-upsynthesis,includingbutnotlimitedto chemicalvapordeposition(CVD),spinning,plasmasprayingsynthesis,andlaserpyrolysis, andtop-downapproaches,includingbutnotlimitedtomechanicalmilling,sputtering,andlaser ablation.Nanoparticlescanbeclassifiedintovariousclasses,forexample(a)carbon-based nanoparticle,(b)metalnanoparticle,(c)ceramicnanoparticle,(d)semiconductornanoparticle, and(e)polymernanoparticle. Fig.1.6 showstheSEMandTEMimagesofdifferent nanoparticles(NPs).Nanoparticlesofferexceptionalelectronic,optical,magnetic,mechanical, andthermalproperties.Amongthese,thefirstthreepropertiesareexploitedtoproducemany sensors.Metallicnanoparticlesareusedtoenhancesurfaceplasmonresonancesensitivity.The surfaceplasmonresonancetechniqueisusedinmanyopticalsensorsdescribedintheprevious section.Palladiumnanoparticlesdepositedonetchedporoussiliconareusedtodetecthydrogen intheenvironment,whilecarbonelectrodeswithdepositedgoldnanoparticlesareusedto detectcopperinwater [16].

Fig.1.6

SEMimageof(A)nonporousMA-SiO2 NPs,(B)mesoporousMA-SiO2 NPs.TEMimagesof (C)nonporousMASiO2 NPsand(D)mesoporousMA-SiO2 NPs [18]

Introductiontonanomaterialsandnanomanufacturingfornanosensors11

1.2.2.4Fullerenes

Duetotheiruniqueproperties,fullerenesarenowreceivingmajorattentionfromthescientific community.Fullereneshaveahexagonalgroundstatewith sp 2 hybridizationandarehighly symmetricwith120symmetryoperations.Fullerenesareverystrongandbouncebacktotheir initialshapeafterdeformation [15].Amongotherproperties,fullereneshavehighsurface-tovolumeratio,highelectronaffinity,andahydrophobicsurface.Agoodnumberofsensorshave beendevelopedusingfullerenesalongwithothernanomaterialstoformnanocomposites. Brahmanetal.developedaC60-MWCNTnanosensorfordetectingpyruvicacid [42].Another electrochemicalsensorwasdevelopedbythesameresearcherthatusesafullerene,copper nanoparticle-fullerene,MWCNTcompositetodetectparacetamol [43].Heretheyuseda pretreatedcarbonpasteelectrode(CPE)onwhichfullerene-C60andmultiwalledcarbon nanotubes(MWCNTs)weredroppedtoproduceamodifiedCPE.Latercoppernanoparticles (CuNPs)weredepositedelectrochemicallyonthemodifiedCPEandananocompositefilmof CuNPs/C60-MWCNTs/CPEwasformed.Thiscompositeshowedexcellentperformancein paracetamolrecognitionanddetermination.

1.3Nanomanufacturing

Nanomanufacturingistheprocessofmanufacturingnanomaterialsorvariousstructuresin nanoscalefordifferentapplications.Thiscanbeconsideredanupdatedversionof micromanufacturing/microfabricationinwhichthedimensionatwhichthemanufacturingisdone isseveralorderssmaller.Theterm nanofabrication issometimesusedasanalogousto nanomanufacturing,butsometimesnanofabricationrefersmoretoananoscalefabricationprocess thatisusedinfundedresearchworkandnanomanufacturingisusedtorefertomanufacturing productsforrevenuegeneration [44].However,inthischapter,wearenotveryconcernedaboutthe lackofaspecificdefinitionforthetermnanomanufacturing;rather,weprovideageneralideaof currentprevailingnanomanufacturingprocessesformanufacturingnanosensors.

Aschematicdiagramofanultrasonicassistednanomanufacturingprocessisshownin Fig.1.7 Inthefigure,variouspossibletypesofvibrationconfigurationsareshownforthemachining process.Theresearchgroupreportedthatthismethodcanbesuccessfullyappliedtoproduce 3Dnanoobjectsofdiscreteheightlevelsandalsoofcontinuouslyvaryingheight [45].

1.3.1Nanomanufacturingprocesses

Themaindrivebehindthenanomanufacturingprocessistheever-increasinghungerofthe electronicsindustrytoobtainsmallersizes.Currently,amicrochipthatwecanholdonour fingertipscanstoregigabytesofdata.Tosatiatethishunger,differenttypesof nanomanufacturingprocesseshavebeendevelopedthatcanbeclassifiedintothreebroad

(A)UltrasonicassistedAFM-basednanomanufacturingprocess.(B)Low-frequencytip-sample interacting.(C)Ultrasonictip-sampleinteractionwhilethetipisstationary.(D)SEMimageofAFM tip [45].

approaches:(1)top-downapproach,(2)bottom-upapproach,and(3)molecularassembly. Thesethreeapproachesarebrieflydescribedinthefollowingsections.

1.3.1.1Top-downapproach

David,thefamousstatuecreatedbyMichelangelo,isoneofthemostnotablesculpturesofall time.However,ifsomeoneaskshowDavidoranyotherstoneorwoodensculptureismade,the answerissimple:alargeblockofstoneorwoodisgraduallytrimmedtothefinalshape.Thisis atop-downapproach.Innanomanufacturing,thisapproachisusedwhenalargeblockof materialistakenand,bymachining,thematerialisremovedlittlebylittletillthefinalshapeis obtained.Thetop-downapproachconsistsoftwosteps:(1)nanolithographyand(2)transferof pattern.

Innanolithography,thedesiredpatterniscreatedonaspecialtypeofsacrificiallayercalleda resist.Thereareanumberofnanolithographytechniques,suchasphotolithography, electronbeamlithography,X-raylithography,softlithography,andsoforth.Thebasicideain everycaseissimilar.First,alayerofresistisappliedtothesubstrate.Thenwiththehelp ofapatternthephotoresistisexposedtoanenergysource:forexample,photolithographyuses ultravioletrayswhileelectronbeamlithographyusesanelectronbeamandX-ray lithographyusesanX-ray.Duetothispatternedexposure,theresistundergoesachemical processandthechemicalandmechanicalpropertiesvarythroughoutthewholecoating. Later,somepartoftheresist(exposedorunexposedpart)isremoved,dependingonthe positiveornegativeresist,andapatterniscreated.Nowthemetallayer(SiO2 in Fig.1.8) isreadyfortheetchingprocess.Afteretchingthepatterncreatedbytheresistisremoved mechanicallyorchemically.Thesimplifiedprocessisgraphicallyrepresentedin Fig.1.8.

Fig.1.7

Photoresist

SiO2 layer

Pattern/Mask

Development before Etching

Etching and stripping of photoresist

ImageofpositiveandnegativeresistinX-raylithography.

Currently,thetop-downapproachprevailsasthemostpopularandwidelyusedapproachinthe nanomanufacturingindustry.Buttheothertwoapproachesarealsobeginningtohavetheirown positionsinnanomanufacturing.

1.3.1.2Bottom-upapproach

Thebottom-upapproachissimilartobuildingupahousebrickbybrick(Fig.1.9).Inthis approach,thefinalstructureisdevelopedbyassemblingorjoiningsmallcomponents,even molecules.Typicallythereareseveralbottom-upapproaches,includingphysicalorchemical vapordeposition,contactprinting,imprinting,assemblyandjoining,andcoating.Thebottomupapproachhashighpotentialinhealthcareandmedicalapplications.Carbonnanomaterials andcarbonnanotubescanbeusedforabottom-upapproachandadevicethatcanworkonan individualcellcanbenanofabricatedusingthisapproach(Fig.1.9).

1.3.1.3Molecularself-assembly

Molecularself-assemblyisthenewestapproach,inwhichthecomponents,especially molecules,assemblethemselvesinthedesiredfashiontoproduceananoobjectwithoutthe directionofanoutsideforce.Thisprocessinvolvesdifferentpropertiessuchasshape,surface

Fig.1.8

Fig.1.9

Bottom-upapproachusedintissueengineering.(A)Complementaryoligonucleotideswerecovalently coupledtothesurfacesofdifferentcellsbyclickchemistry.(B–E)Twononadherentcelltypeswere mixed,anddidnotaggregateiftheirsurfacesweremodifiedwith:(B)nooligonucleotides, (C)noncomplementaryoligonulceotides.However,specificaggregationwasobservedifthecell surfacesweremodifiedwithcomplementaryoligonucleotides(D,E).(F)AggregationofDAPIstained cells(blue),withthecentralcellmodifiedwithfluorescein-conjugatedoligonucleotides(green).(G)3D reconstructionofanaggregateofTexasRed-labeled(red)andfluorescein-labeledcells(green) [46].

properties,charge,polarizability,andmagneticdipoleofthemoleculetodrivethemto assembletogethertoformaparticularstructure.Thisisstillagrowingfieldandvarious developmentsarerequiredbeforethisapproachisusedinindustry.

Introductiontonanomaterialsandnanomanufacturingfornanosensors15

1.4Nanomanufacturingprocessesfornanosensors

Nanomanufacturingcanbedefinedastheabilitytomeasure,predict,andmanufactureon atomicandmolecularscalesandtoexploittheuniquepropertiesshownbynanomaterialsatthat scale.Nanomanufacturingisamultidisciplinaryfieldandresearchersfromvarious backgroundsarecontributingtoit. Fig.1.10 showsgraphicallyhowresearchersfromdifferent, butstronglyrelated,researchdisciplinesapproachthescienceofthenanomanufacturing process.

However,inthischapterweareonlyconcernedwiththenanomanufacturingprocessesusedin manufacturingnanosensors.Intheprevioussection,itwasshownthattherearetwobroad approaches,namelythebottom-upapproachandthetop-downapproach.Adetaileddiscussion ofthesetwoapproachesisnotnecessaryhere,astheyhavealreadybeendescribed.Inthis currentsection,wewilldiscussseveralnanomanufacturingprocessesthatarecommonlyused innanosensorpreparation.

Physics

Surface plasmon reasonance, Molecular electronics etc.

Energy and power

Polycrystalline for solar cell, Thermocell, etc.

Food industry

Antibacterial nanoparticle, Nano food packaging material etc.

Materials

Nanotubes

Nanocomposite, Nanoparticle in different application

Medicine

Biocompatible

Nanoparticle, Nanobots etc. for diagnosis

Optics and engineering

Surface plasmon polaritons, Photodetectors, Optoelectronics

Fig.1.10

Nanomanufacturingapproachedfromdifferentdisciplines.

1.4.1Electronbeamlithography

Lithographyisthetechniqueoftransferringpatternsfromonemediumtoanothermediumwith thehelpofamaterialcalledresist.Previously,differentparticlebeamswereusedin lithography,butwiththeapplicationoftheelectronbeam,nanometer-sizedfeatureshave becomepossible.Duetoitspreciouspattern-makingcapability,electronbeamlithography (EBL)isfrequentlyusedinsensormanufacturing.Amongvariouselectronbeamlithography technologies,herewewilldiscussdirectwritingEBLtechnologyduetoitssimplicityand frequentuse.IndirectwritingEBL,afinelyfocusedGaussianroundbeamisusedthatmoves withthewaferandasinglepixelofthewaferisexposedatatime(Tsengetal.,2003).Thebasic setupfordirectwritingEBLisshownin Fig.1.11.Thebeamcreatesadesiredpatternon thewaferand,supportedwiththeetchinganddepositionprocess,averycomplicated nanostructurecanbeproduced.Thoughthistechniqueisverycheapandpopular,itsmain drawbackisthelargetimerequirement.However,researchersaretryingtoimprovethe technologytomakethisprocessmoreapplicable.

1.4.2Focusedionbeamlithography

Focusedionbeamlithographyisanothernanomanufacturingtechniquesimilartoelectron beamlithography,buthereionsareusedtoperformthelithographyinsteadofanelectron beam( Fig.1.12 ).Sincetheionsaremuchheavierthanelectrons,focusedionbeam lithographycanbemoreefficientthanelect ronbeamlithography.Thefocusedionbeam lithographytechniquealsoh assomedifferentclassifica tions,butdirectwritingisthe simplestandcheapestoneandhencethatistheonediscussedhere.Inthismethod,aresistis notusedandbyvaryingthedistanceofthewafer,thedoseofionscanbecontrolled,resulting

Fig.1.11

(A)ConceptualdiagramofDiVa:1.Planarcathode,2.Shapingapparatus,3.Shapingapparatus secondset,4.deflector,5.Wafer,6.Deflectionplates;(B)ExperimentalDiVaapparatusatStanford University [47]

Fig.1.12

Schematicdiagramoffocusedionbeamlithography.

inatrenchofdifferentdepthonthewafer.Heavy-ionspeciessuchasGa+ andAu+ canalsobe usedinthislithographytoproduceastronger effect.Whenabeamispassedoverthewafer,a trenchhavinginverseGaussianshapeisobta ined.Withincreaseinstrength,thetrench becomesmoresharp,narrow,andV-shaped [48].Multiplepassesarealsopossibletocreate complicatedshapes.

1.4.3X-raylithography

X-raylithography(XRL)isanadvancedversionofopticallithographyinwhichshorter wavelengthsareused.Inthismethod,aspecialtypeofmaskisusedwithdifferentlocalX-ray absorptionareastodefinethepattern.ThispatternisreplicatedonanX-raysensitivematerial calledaresist,whichispreviouslydepositedonasubstrate(usuallyasiliconwafer).Whenthe X-raypassingthroughthepatternfallsontheresist,itmaycausecross-linking(fornegative resists)orbondbreaking(forpositiveresists),dependingonthechemicalnatureoftheresist. Afterexposure,thewholethingisdippedinaspecificsolventand,dependingonitsnature, eithertheexposedarearesistwilldissolveandcreateapatternorviceversa.Theotherpartof theresistwillstayintact [49].ThisishowX-raylithographycreatesnanopatternsonthe substrate.

1.5Conclusionsandfuturedirections

Thebeginningsofnanotechnologyarepopularlydatedbacktothefamouslecturegivenby NobellaureateRichardFeynman,“There’sPlentyofRoomattheBottom,”in1959.Butthe applicationofthistechnologybecameevidentatthebeginningof1980.Sincethen, nanotechnologyhasgainedhugemomentumandcurrentlyisbeingappliedinvariousaspectsof

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.