Multiscale modeling approaches for composites 1st edition george chatzigeorgiou - Download the ebook

Page 1


https://ebookmass.com/product/multiscale-modelingapproaches-for-composites-1st-edition-george-chatzigeorgiou/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Uncertainty Quantification in Multiscale Materials Modeling Mcdowell

https://ebookmass.com/product/uncertainty-quantification-inmultiscale-materials-modeling-mcdowell/

ebookmass.com

Fundamentals of Multiscale Modeling of Structural Materials Wenjie Xia

https://ebookmass.com/product/fundamentals-of-multiscale-modeling-ofstructural-materials-wenjie-xia/

ebookmass.com

Multiscale Biomechanical Modeling of the Brain Raj Prabhu & Mark Horstemeyer

https://ebookmass.com/product/multiscale-biomechanical-modeling-ofthe-brain-raj-prabhu-mark-horstemeyer/

ebookmass.com

CompTIA

Security+ Certification Bundle (Exam SY0-601) Glen E. Clarke

https://ebookmass.com/product/comptia-security-certification-bundleexam-sy0-601-glen-e-clarke/

ebookmass.com

A Cowboy Never Quits Cindi Madsen

https://ebookmass.com/product/a-cowboy-never-quits-cindi-madsen/

ebookmass.com

Hostage Clare Mackintosh

https://ebookmass.com/product/hostage-clare-mackintosh/

ebookmass.com

Queen of the Blazing Throne Claire Legrand

https://ebookmass.com/product/queen-of-the-blazing-throne-clairelegrand/

ebookmass.com

PASS CCRNu00ae! 5th Edition – Ebook PDF Version

https://ebookmass.com/product/pass-ccrn-5th-edition-ebook-pdf-version/

ebookmass.com

Turkey and the EU in an Energy Security Society: The Case of Natural Gas 1st ed. Edition Dicle Korkmaz

https://ebookmass.com/product/turkey-and-the-eu-in-an-energy-securitysociety-the-case-of-natural-gas-1st-ed-edition-dicle-korkmaz/

ebookmass.com

John Miles Foley's World of Oralities: Text, Tradition, and Contemporary Oral Theory Mark C. Amodio (Editor)

https://ebookmass.com/product/john-miles-foleys-world-of-oralitiestext-tradition-and-contemporary-oral-theory-mark-c-amodio-editor/

ebookmass.com

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission. TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook. Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstitute endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachorparticular useoftheMATLAB® software.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,can befoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-823143-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: DennisMcGonagle

EditorialProjectManager: RachelPomery

ProductionProjectManager: ManjuThirumalaivasan

Designer: MarkRogers

TypesetbyVTeX

Abouttheauthors

G.Chatzigeorgiou isResearchScientistofCNRS(CR–HDR).Heis hostedintheArtsetMétiersInstituteofTechnologyinMetzandisa memberoftheLEM3–UMRCNRS7239laboratory.Hisresearchisdevotedtoconstitutivemodelingofmultifunctionalmaterialsandhomogenizationtheoriesofcomposites.Hecoauthoredmorethan50papersin peer–reviewedjournals,onebook,andmorethan30papersinproceedingsofinternationalconferences.

F.Meraghni isDistinguishedProfessoratArtsetMétiersInstituteof Technology(CampusofMetz).HeistheheadofCompositesandSmart MaterialsResearchGroupatLEM3–UMRCNRS7239workingonmultiscalemodelingusingmicromechanicalapproachesforhomogenizationof polymercompositesandshapememoryalloys.Astheprincipalinvestigator(PI),Prof.Meraghniandhisgroupareinvolvedinseveralresearch programsincollaborationwithFrenchindustryorfundedbytheFrench AgencyofResearch(ANR)andotherfundinginstitutions.Heisacoauthorofmorethan100peer–reviewedpaperspublishedinjournalsand onebook,andheadvised/coadvised30PhDstudents.Currently,heisthe DirectoroftheDoctoralSchoolofArtsetMétiers.

N.Charalambakis isProfessorEmeritusattheCivilEngineeringDepartmentofAristotleUniversityofThessaloniki(AUTH)andamemberof theCenterforResearchandDevelopmentonAdvancedMaterialsAUTH andTexasA&M(CERDAM).Heauthoredorcoauthoredmorethan70 papersinpeer–reviewedjournals,onebook,andmorethan40papersin proceedingsofinternationalconferences.

Foreword

Itisaparticularpleasuretowritetheforewordofthisextraordinary bookwrittenbythreeesteemedcolleagues.Multiscaleapproachesallow buildingaconnectionbetweenthecontinuumpropertiesofamaterialand itsmicrostructure.Thisphysicalwayfordescribingoverallmaterialbehaviorisparticularlywelladaptedformodernmaterialslikecomposites. Thepresentbookfillsawidegapbetweenfundamentaltreatisesabout micromechanics,likeToshioMura’sbookortheSiaNemat–Nasserand MuneoHorioneandtheabundantliteraturepublishedinscientificjournals.Afirstattempttoprovideatextbookwrittenpedagogicallyandprovidinganintegratedapproachtothevarioustopicsofhomogenization wasduetoJianminQuandMohammedCherkaouififteenyearsago.It isworthnotingthatMohammedCherkaoui,FodilMeraghni,andGeorge Chatzigeorgiouarelinkedtothemicromechanicalschoolestablishedat theUniversityofMetzinthebeginningofthe1980sbythelateProfessor MarcelBerveiller.Underhisguidance,thisschoolhasdevelopedavision focusedonengineeringapplicationsofmultiscalemodeling.Thereforeit isnotsurprisingthattextbooksorientedtowardeducationofengineers abouthomogenizationtechniquesfindsomecommonrootsatMetz.

Anotablefeatureofthepresentbookisitsfulldedicationtocompositematerials.ThisclearlydistinguishesitfromtheoneauthoredbyQu andCherkaoui,mainlyorientedtowardpolycrystallinematerials.Thetext providesacomprehensivedevelopmentofbothmean–fieldandfull–field scale–transitionapproaches;maincharacteristicsandadvantagesofeach oftheseapproachesarepresentedinaverypedagogicway.Restrictions andfieldofapplicationforeachmethodaremadeclear.Havingthesetwo homogenizationschemespresentedinthesamebookisaverypositive point.

Everychapteriswrittenusingbothrigorousanddetailedmathematicaltreatmentandanengineeringapproach,whichwillhelpmanypeople tobecomefamiliarwiththepowerfultoolsofferedbymicromechanics. Linearelasticityandinfinitesimalstrainframeworkareconsidered.Voigt notationisnicelyintroducedandusedofferingamoreengineeringdescriptionofrankfourtensors.

Thereaderwillbehappytofindnumerousexamplesineachchapter. Detailedsolutionsaregivenwitheveryexample,includingcorrespondingpythonscriptsfornumericalapplications.Thatmakesthebookvery usefulforprofessionalswillingtoimprovetheirknowledgeaboutscale transitionandalsoforgraduatestudentstakingamicromechanicalclass. Majortakeawaysineachchapterarealsoclearlydefinedandhighlighted

usingcolorboxes.Theobjectiveofthebookistoclearlyprovideenough elementtothereaderallowinghimformakingsounddecisionaboutthe choiceoftheself–consistentMori–Tanakamethodorperiodichomogenizationforagivenpracticalapplication.

Thefinalchaptersaredevotedtoadvancedtopicsinmultiscalemodeling,includingadetailedexpositionoftheHashin–Shtrikmanboundsand averyinterestinganddensechapteraboutmathematicalhomogenization theoryforcomposites.Thebookendswithashortchapterconsideringhomogenizationinnonlinearmaterials.Theseadvancedtopicswillclearlybe ofgreatinterestforPhDstudentsandresearchers.

Toconclude,Ibelievethebookwillbeofsignificantusetoprofessionalresearchersandgraduatestudentsinengineeringscienceinterested inmodelingcompositesandheterogeneousmaterials.

GeorgiaTechLorraine,Metz,France June2021

Preface

Multiscalemethodsforcompositematerialshavereceivedgrowingattentionbetweenthemechanicscommunityintherecentyears.Thereason forthisinterestliesonthesignificantincreaseofcompositematerialsusage inmanyengineeringapplications.Themodernneedsofcivil,mechanical, aerospace,andbioengineeringindustrieshaveledtothedevelopmentof novelmaterialsystemswithcomplexmicrostructuralcharacteristics.To identifythemechanicalbehaviorofthesesystemsrequiresadvancedtheoreticalandnumericaltoolsprovidedbymultiscalemethods.

Thescopeofthepresentbookisproviding,inapedagogicmanner,the mainconceptsofthecommonlyutilizedmultiscalemethodsinthestudy ofcompositematerials.Themanuscriptaimsatservingasaguideforidentifyingandutilizingtheappropriatehomogenizationapproachaccording totheneedsofeachspecificapplication.Thebookisorientedtoalarge spectrumofreaders,includingengineersfromtheindustrialsectorand MasterandPh.D.students.Varioushomogenizationmethodologiesare discussedinasimpleanddidacticway,whereasthelatestchaptersofthe bookcontainmoreadvancedtopics,suitableforstudentsorresearchers withspecialinterests.Theadoptedmethodologyinwritingthechapters isacombinationofasolidtheoreticalbackground,practicaltoolsforeach approach,andanassessmentofthemethods.Examplesareincludedineverychaptertoillustratetheuseofthediscussedapproaches.Inaddition, PythonscriptssimilartoMatlabcodesareprovidedforseveralnumerical examples.

Thebookisorganizedinthreecomplementaryparts.Itscontentisdividedinto12chapters,supplementedbyanAppendix.

Thefirstpartofthebookrecallsimportantconceptsanddefinitions fromtensorcalculusandcontinuummechanics,beforepassingtothemain topic,themultiscaleapproaches.Thispartcontainstwochapters.InChapter 1,thetensorsandtheirpropertiesareintroduced.Moreover,theVoigt notationthatallowsustotreatsecond–andfourth–ordertensorswiththe helpofmatricesispresented.Chapter 2 dealswithconceptsfromcontinuummechanicstheorysuchasthestrainsandstresses,aswellasthe relationbetweentheminthecaseofelasticmedia.Areductionoftheelasticityproblemfrom3to2dimensionsisrequiredforthestudyoflaminate composites,andthusitisalsodiscussedthere.

Thesecondpartisconsideredthe“heart”ofthebook,sinceitintroducesvariousmicromechanicsconceptsandpresentsthemostfrequently usedmean–fieldandfull–fieldhomogenizationtheories.Chapter 3 discussesthegeneralprinciplesofallmultiscaleapproaches,includingim-

portantaveragetheorems,theHill–Mandelprincipleandthenotionof theconcentrationtensors.Theoldestmicromechanicsmethods(theVoigt andReussboundestimates)andtheirapplicationinseveralengineering structuresarethetopicofChapter 4.Chapter 5 presentscertainwidely usedEshelby–based,mean–fieldhomogenizationtechniques,suchasthe Eshelbydilute,theMori–Tanakamethod,andtheself–consistentmethod. Chapter 6 introducesthekeyelementsofthemostcommonfull–fieldmultiscaleapproach,theperiodichomogenizationtheory.Finally,thelaminate compositeplatesandtheircorrespondingmodelingtheoryarethesubject ofChapter 7.Thelatterincludesacomprehensiveexamplewithstep–by–stepdetailedsolution.

Thethirdpartofthebookservesforintroducingindepthseveralconceptsofmultiscalemodelingthatwerenotdiscussedinthepreviouspart. Mostoftheseconceptsrequireadvancedknowledgeofmathematicsand mechanics,whichtheinterestedreaderneedstohaveforthebetterunderstandingofthefollowingchapters.Inaddition,thepartpresentscertain additionalspecializedmicromechanicstechniques.

ThetopicofChapter 8 istheso–calledcompositesphereandcompositecylinderassemblagemethods,whichweredevelopedforthestudyof particulateandlongfibercomposites,respectively.TheGreen’stensor,a powerfultoolusedintheEshelbytheory,anditsapplicationsinmicromechanicsproblemsarethesubjectofChapter 9.TheHashin–Shtrikman bounds,whichwerepresentedrapidlyinChapter 5,arereintroducedand discussedindepthinChapter 10.Themathematicalfoundationoffull–fieldmultiscaleapproachessuchastheperiodichomogenizationtheoryis thetopicofChapter 11.Finally,Chapter 12 containsabriefdiscussionof theapplicationofmultiscaleapproachestononlinearcomposites;details forcertainsimplemean–fieldmethodsdedicatedtostudyinginelasticand damageableheterogeneousmediaareincluded.

Thebookcloseswithanappendix,whichexplainsthegeneralmethodologyforintegratingthereinforcementorientationintomean–fieldhomogenizationschemes(specifically,theMori–Tanakaapproach).

Chatzigeorgiou,Meraghni,andCharalambakis May2021

Acknowledgments

WewanttoexpressoursinceregratitudetoProfessorEtiennePatoorfor extensivediscussionsduringthelast15yearsandProfessorAndréEberhardtforassistance,encouragement,andforprovidingusanimagefor thecoverofthebook.

WealsothankProfessorDimitrisLagoudasforourfruitfuldiscussions aboutmicromechanicsandProfessorFrançoisMuratforourlongdiscussionsabouttheperiodichomogenization.Additionally,wehighlyappreciatethescientificexchangesandideaswehadovertheyearswithour nationalandinternationalpartnersProfessorYvesChemisky(University ofBordeaux),ProfessorAndréChrysochoos(UniversityofMontpellier), ProfessorFransisco(Paco)Chinesta(ENSAMParis),AssistantProfessor JosephFitoussi(ENSAMParis),Dr.GillesRobert(DomoChemicals),Dr. RenanLéon(Valeo),AssistantProfessorTheocharisBaxevanis(University ofHouston),AssistantProfessorDarrenHartl(TexasA&MUniversity), AssociateProfessorGaryDonSeidel(VirginiaTech),ProfessorPaulSteinmann(FAUErlangen–Nürnberg),AssistantProfessorAliJavili(Bilkent University),ProfessorBjörnKiefer(TUBergakademieFreiberg),ProfessorMarek–JerzyPindera(UniversityofVirginia)andProfessorAndreas Menzel(TUDortmund).

Itisofcourseimportantforustowarmlythankallthemembersofthe SMARTteamofLEM3laboratoryfortheirsupport.Specialthanksbelong toourcolleagues,AssistantProfessorsAdilBenaarbia,FrancisPraudand BorisPiotrowski,aswellasourPostdocQiangChenandourPh.D.student SoheilSatouri,fortheirvaluablecommentsandremarks.

Chatzigeorgiou,Meraghni,andCharalambakis May2021

Abouttheauthorsxi

Forewordxiii

Prefacexv Acknowledgmentsxvii

Tensorsandcontinuummechanicsconcepts

1.Tensors

1.1TensorsinCartesiancoordinates3

1.2Cartesiansystemsandtensorrotation5

1.3Tensorcalculus7

1.4Examplesintensoroperations8

1.5Voigtnotation:generalaspects13

1.6OperationsusingtheVoigtnotation16

1.7TensorrotationinVoigtnotation19

1.8ExamplesinVoigtnotationoperations24 References27

2.Continuummechanics

2.1Strain29

2.2Stress32

2.3Elasticity34

2.3.1.Generalaspects34

2.3.2.Specialsymmetries36

2.4Reductionto2–Dproblems46

2.4.1.Planestrain47

2.4.2.Planestress49

2.5Examples50 References53

3.Generalconceptsofmicromechanics

3.1Heterogeneousmedia57

3.2Homogenization59

3.3Homogenizationprinciples62

3.3.1.Averagetheorems63

3.3.2.Hill–Mandelprinciple66

3.3.3.Concentrationtensors69

3.4Boundsintheoverallresponse71

3.4.1.VoigtandReussbounds72

3.4.2.Hashin–Shtrikmanbounds73

3.5Examples74 References82

4.VoigtandReussbounds

4.1Theory83

4.1.1.Voigtupperbound84

4.1.2.Reusslowerbound84

4.2Simplemethodsforfibercomposites86

4.3Compositebeams90

4.3.1.Essentialelementsofbeambendingtheory90

4.3.2.Beammadeoftwomaterials92

4.4Examples96 References99

5.Eshelbysolution–basedmean–fieldmethods

5.1Inclusionproblems101

5.1.1.Eshelby’sinclusionproblem102

5.1.2.Inhomogeneityproblem105

5.2Eshelby–basedhomogenizationapproaches109

5.2.1.Eshelbydilute111

5.2.2.Mori–Tanaka112

5.2.3.Self–consistent114

5.3Examples116 References126

6.Periodichomogenization

6.1Preliminaries127

6.2Theoreticalbackground128

6.3Computationoftheoverallelasticitytensor130

6.4Particularcase:multilayeredcomposite132

6.5Examples135 References143

7.Classicallaminatetheory

7.1Introduction148

7.2Stress–strainrelationforanorthotropicmaterial149

7.2.1.Fromtensortocontracted(Voigt)notation149

7.2.2.Hooke’slawfororthotropicmaterialinVoigtnotation152

7.3Hooke’slawforanorthotropiclaminaundertheassumptionofplanestress156

7.4Stress–strainrelationsforalaminaofarbitraryorientation:off–axisloading158

7.4.1.Stressandstraininglobalaxes (x y) 159

7.4.2.Off–axisstress–strainrelations160

7.4.3.Off–axisstrain–stressrelations162

7.4.4.Engineeringconstantsandinducedcoefficientsofshear–axialstrainmutual influenceinananglelamina163

7.4.5.Example168

7.5Macromechanicalresponseofalaminatecompositethinplate170

7.5.1.Laminatecodeandconvention171

7.5.2.LaminatedthinplatesandKirchhoff–Lovehypothesis173

7.5.3.Kinematicsofthinlaminatedplatesandstrain–displacementrelation174

7.5.4.Stressvariationinalaminate177

7.5.5.Forceandmomentresultantsrelatedtomidplanestrainsandcurvatures178

7.5.6.Physicalmeaningofsomecouplingcomponentsofthelaminatesstiffness matrices183

7.5.7.Workflowandsummary187

7.5.8.Example189 References195

III

Specialtopicsinhomogenization

8.Compositesphere/cylinderassemblage

8.1Compositesphereassemblage199

8.2Compositecylinderassemblage208

8.3Eshelby’senergyprinciple221

8.4Universalrelationsforfibercomposites226 8.5Examples229 References235

9.Green’stensor

9.1Preliminaries237

9.1.1.Fouriertransform237

9.1.2.Betti’sreciprocaltheorem238

9.2Definitionandproperties239

9.3ApplicationsofGreen’stensor244

9.3.1.Infinitehomogeneousbodywithvaryingeigenstresses244 9.3.2.Eshelby’sinclusionproblem246 9.4Examples247 References248

10.Hashin–Shtrikmanbounds

10.1Preliminaries251

10.1.1.Positiveandnegativedefinitematrices251

10.1.2.Calculusofvariations255

10.2Hashin–Shtrikmanvariationalprinciple256

10.3Boundsinabi–phasecomposite262

10.4Examples267 References269

11.Mathematicalhomogenizationtheory

11.1Preliminaries271

11.2Variationalformulation273

11.2.1.Functionalspaces273

11.2.2.Homogeneousbody275

11.2.3.Heterogeneousbodywithasurfaceofdiscontinuity277

11.2.4.Approximatingfunctions278

11.2.5.Finiteelementmethod279

11.3Convergenceoftheheterogeneousproblem280

11.3.1.Weakconvergence282

11.3.2.Mathematicalhomogenization283

11.4Asymptoticexpansionapproach286 11.5Examples288 References296

12.Nonlinearcomposites

12.1Introduction299

12.2Inelasticmechanismsinperiodichomogenization300

12.3Inelasticmechanismsinmean–fieldtheories302

12.3.1.Inhomogeneityproblemwithtwoeigenstrains303

12.3.2.Mori–Tanaka/TFAmethodforcompositeswithinelasticstrains307

12.4Examples308

References322

A.Fiberorientationincomposites

A.1Introduction325

A.2Reinforcementorientationinaplane325

A.3Reinforcementorientationin3–Dspace327

Foradditionalinformationonthetopicscoveredinthebook,visitthe companionsite: https://www.elsevier.com/books-and-journals/ book-companion/9780128231432

1.1TensorsinCartesiancoordinates

Atensorisdefinedasageometricobjectthatdescribeslinearrelations betweenscalars,vectors,orothertensors,andthusitcanbeseenasamultilinearmap.Inmathematicsandphysicsatensorisaverygeneralobject, intrinsicallydefinedfromavectorspacethatisindependentofcoordinate systems.Indepthanalysisabouttensors,tensoroperations,anddifferentialgeometryforcontinuummechanicsapplicationshasbeenpresented elsewhere[1,2].Inthischapter,wefocusonthosekeyaspectsthathelpthe readertofollowthediscussionthroughoutthebook.

Boldlettersareusedtodenotetensorstodistinguishthemfromscalars. Thischapterfrequentlyadoptstheindexnotation.Whenthetensorsappearintheirindicialnotation,theyhavenormalform(noboldfont).A

tensor A oforder n isexpressedas

Ai1 i2 i3 ...in .

In3–Dspace,theindices i1 , i2 ,etc.takethevalues1,2,or3.Themost commontensorsare:

•Atensoroforder0,whichdenotesascalar(noboldletterisusedinthis case).

•Atensoroforder1,whichrepresentsa 3 ˆ 1 vector.

•Atensoroforder2,whichisrepresentedbya 3 ˆ 3 matrix.1

Intheindexnotation,theEinsteinsummationconventionforrepeated indicesisused.Forexample:

•Theproduct ai bi oftwovectors a and b implies ai bi “ a1 b1 ` a2 b2 ` a3 b3 .

•Theproduct Aij Bjk oftwosecond–ordertensors A and B implies Aij Bjk “ Ai 1

•Theproduct Aijkl Bkl ofafourth–ordertensor A andasecond–ordertensor B implies Aijkl Bkl “ Aij 11 B11 ` Aij 22 B22 ` Aij 33 B33 ` Aij 12 B12 ` Aij 21 B

Therepeatedindicesare“dummy”inthesensethatwecanchangethe letterusedforthemwithanotherletter.Thus ai bi and aj bj representthe samesummation.

Thesymbol I denotesthesecond–orderidentitytensorwithcomponentsgivenbytheKroneckerdelta δij : Iij “ δij ,δij “ δji “ " 1 ,i “ j, 0 ,i ‰ j. (1.1)

Clearly, δii “ δ11 ` δ22 ` δ33 “ 3. Thethird–orderCartesianpermutationtensor isdefinedas ijk “ $ & % 1 if pi,j,k q is

,

, 1 if pi,j,k q is p1, 3, 2q, p2, 1, 3q, or p3, 2, 1q, 0 if i “ j,j “ k, or k “ i, (1.2)

1 Forsymmetricsecond–ordertensors,wecanutilizetheVoigtnotationandwritethemas 6 ˆ 1 vectors;seelaterinthischapter.

andhastheproperty ijk pqk “ δip δjq δiq δjp . Thesymmetricfourth–orderidentitytensor I isdefinedas

Fromitsstructureitisclearthat I exhibitstheminorsymmetries Iijkl “ Ijikl “ Iijlk andthemajorsymmetry Iijkl “ Iklij . Usingtheindexnotationleadsveryoftentolargeexpressions.Toreducethesizeoftheexpressions,thefollowingsymbolsarefrequently adopted(especially,inthemicromechanicspartofthisbook):

1. Atensor A oforder n,atensor B oforder n,andascalar c producethe nth–ordertensors

C “ A ` B with Ci1 i2 ...in “ Ai1 i2 ...in ` Bi1 i2 ...in , C “ c A with Ci1 i2 ...in “ cAi1 i2 ...in

2. Atensor A oforder n ` 1 andatensor B oforder m ` 1 producethe pn ` mqth–ordertensor

C “ A · B with Ci1 i2 ...in`m “ Ai1 i2 ...in q Bqin`1 in`2 ...in`m .

Thisoperationiscalledthesinglecontractionproduct.

3. Atensor A oforder n ` 2 andatensor B oforder m ` 2 producethe pn ` mqth–ordertensor

C “ A : B with Ci1 i2 ...in`m “ Ai1 i2 ...in pq Bpqin`1 in`2 ...in`m .

Thisoperationiscalledthedoublecontractionproduct.

4. Atensor A oforder n andatensor B oforder m producethe pn ` mqth–ordertensor

C “ A b B with Ci1 i2 ...in`m “ Ai1 i2 ...in Bin`1 in`2 ...in`m .

Thisoperationiscalledthedyadicproduct.

5. Atensor A oforder n andatensor B oforder 1 producethe nth–order tensors

C “ A ˆ B with A ˆ B “rA b B s : ,

C “ B ˆ A with B ˆ A “ : rB b As.

Thesetwooperationsarecalledthecrossproducts.

1.2Cartesiansystemsandtensorrotation

ACartesiancoordinatesystemisdescribedbythreebasisvectors e 1 , e 2 , and e 3 .Eachoneofthesevectorshasunitlength.ACartesiansystemis

FIGURE1.1 TransformationofaCartesiancoordinatesystemthrougharotation. orthogonal,whichmeansthat

LetusconsidertwoCartesiancoordinatesystemswithbasisvectors(e 1 , e 2 , e 3 )and(e 1 1 , e 1 2 , e 1 3 )havingthesamepointoforigin(Fig. 1.1).Therelation betweenthemcanbeexpressedwiththehelpofasecond–ordertensor R as

Thistensor R iscalledarotatorandhasthefollowingproperties: Rij Rik “ Rji Rki “ δjk anddet

wheredetdenotesthedeterminantof R ,

Duetoproperty(1.5)oftherotators,thevectors e i canbeexpressedin termsof e 1 i as

Thecomponentsof R arethecosinesoftheanglesbetweenthevectorsof thetwobases,

Rij “ cos ´e i , e 1 j ¯ “ e i e 1 j

Fortheelementarybasisvectors

weobtainthatthe i thcolumnofthetensor R representsthebasisvector e 1 i

Therotatortensorrepresentsatransformationfromonecoordinatesystemtoanotherthroughrotation.Theintroductionof R allowsustoprovideaproperdefinitionforthetensors:

BOX1.1Tensor

Atensor A oforder n isaquantitythatcanbetransformed,withthehelp ofarotator R ,fromonecoordinatesystemwithbasis e i toanothercoordinate systemwithbasis e 1 i accordingtotheformulas

1.3Tensorcalculus

ConsideringCartesiancoordinatesandthepositionvector x ,differentialgeometryprovidesthefollowingdefinitionsforan nth–ordertensor A [3,4]:

1. Thegradientof A isatensoroforder n ` 1 definedas

B Ai1 i2 ...in B xin`1

2. Thedivergenceof A isatensoroforder n 1 definedas

B Ai1 i2 ...in 1 in B xin .

3. Thecurlof A isatensoroforder n definedas

B Ai1 i2 ...in 1 j B xk jkin .

Moreover,foratensor A oforder n ą 0 andatensor B oforder m ą 0,the derivativeof A withrespectto B isthetensoroforder n ` m definedas

B Ai1 i2 ...in

B Bin`1 in`2 ...in`m

Clearly,thetypicalchainruleforderivativesholdsalsointhecaseoftensors.Forexample,fortwotensors A and B oforder2,thegradientoftheir product Aij Bjk iswrittenas

1.4Examplesintensoroperations

Example1

Provethefollowingtensorialidentities:

1. Forasecond–ordertensor A, Aij δjk “ Aij δkj “ Aik .

2. Forasecond–ordertensor A, Aij δij “ Aii .

3. If A issymmetricsecond–ordertensor(Aij “ Aji ),then Akl Iklij “ Iijkl Akl “ Aij

4. Ifthefourth–ordertensor Aijkl exhibitstheminorsymmetries Aijkl “ Ajikl “ Aijlk ,then Aijmn Imnkl “ Iijmn Amnkl “ Aijkl .

5. Foranarbitraryvector a , B ai B aj “ δij

6. If A isasymmetricsecond–ordertensor(Aij “ Aji ),then B Aij B Akl “ Iijkl .

Solution:

1. Forthefirstidentity,wehave

Therearethreecases:

k “ 1.Then

k “ 2.Then

• k “ 3.Then

Clearly,thisresultcanbeextendedfor nth–ordertensors.Wecaneasily showthatatanyindex ik ofan nth–ordertensor,multiplicationwiththe Kroneckerdeltayields

2. Usingthesymmetryof δij andthepreviousidentity,weobtain

3. Usingthesymmetryof A yields

Since Iijkl “ Iklij ,itbecomesevidentthatthesecondrelation

ijkl Akl “ Aij

alsoholds.

4. Usingtheextensionofthefirstidentitytofourth–ordertensorsyields

Notethat I itselfalsopossessestheminorsymmetries,andthusthe sameidentityholdsforittoo.

5. Thepartialderivative B ai B aj takesthevalue1when i “ j andiszerowhen i ‰ j .ThisissimilartothedefinitionofKroneckerdelta.

6. Thepartialderivative B Aij B Akl foranarbitrarytensor A isequalto1when i “ k and j “ l andzerootherwise.So,

Aij B Akl “ δik δjl

Thelatterresultthoughdoesnotaccountforsymmetries.Toinclude thesymmetryof A,wecanwrite

Thetensor I issymmetricandthusrepresentsthepartialderivativeof symmetricsecond–ordertensorwithitself.

Example2:Hillnotation

Thefourth–ordertensors A and B ,expressedintermsofthescalars Ab , As , B b ,and B s intheform

Aijkl “ 3Ab Ihyd ijkl ` 2As Idev ijkl , Bijkl “ 3B b Ihyd ijkl ` 2B s Idev ijkl , where Ihyd ijkl “ 1 3 δij δkl , Idev ijkl “ Iijkl Ihyd ijkl , arecalledisotropictensors.Provethefollowingidentities:

1. Aijmn Bmnkl “ Bijmn Amnkl “ 9Ab B b Ihyd ijkl ` 4As B s Idev ijkl . 2. If Aijmn Bmnkl “ Bijmn Amnkl “ Iijkl ,then Bijkl “ 1 3Ab Ihyd ijkl ` 1 2As Idev ijkl .

Remark:

Duetotheseinterestingidentities,aspecialnotationforisotropic fourth–ordertensorsisproposedin[5].Accordingtothisnotation,an isotropictensor A canberepresentedintheform A “p3Ab , 2As q.This allowscomputationsofscalartypewhendealingwithisotropictensoralgebra.

Solution:

Beforepassingtothemainproofs,weneedthefollowingidentities:

Ihyd ijmn Ihyd mnkl “ Ihyd ijkl ,

Ihyd ijmn Idev mnkl “ Idev ijmn Ihyd mnkl “ 0ijkl , Idev ijmn Idev mnkl “ Idev ijkl ,

where 0ijkl isthefourth–ordernulltensorwithallzeroterms.Forthefirst expression, I

ijmn I

δkl “ Ihyd ijkl

Forthesecondandthirdexpressions,notethat I hyd exhibitstheminor symmetries Ihyd ijkl “ Ihyd jikl “ Ihyd ijlk ,andthusthefourthidentityofExample1 holds.So Ihyd ijmn Idev mnkl “ Ihyd ijmn rImnkl Ihyd mnkl s“ Ihyd ijkl Ihyd ijkl “ 0ijkl ,

Idev ijmn Ihyd mnkl “rIijmn Ihyd ijmn sIhyd mnkl “ Ihyd ijkl Ihyd ijkl “ 0ijkl ,

Idev ijmn Idev mnkl “rIijmn Ihyd ijmn srImnkl Ihyd mnkl s “ Iijkl Ihyd ijkl Ihyd ijkl ` Ihyd ijkl “ Idev ijkl .

Withtheseexpressionswecannowpasstothemainproofs.

1. Forthefirstidentity,

Aijmn Bmnkl “r3Ab Ihyd ijmn ` 2As Idev ijmn sr3B b Ihyd mnkl ` 2B s Idev mnkl s

“ 9Ab B b Ihyd ijmn Ihyd mnkl ` 4As B s Idev ijmn Idev mnkl

` 6Ab B s Ihyd ijmn Idev mnkl ` 6As B b Idev ijmn Ihyd mnkl

“ 9Ab B b Ihyd ijkl ` 4As B s Idev ijkl .

Bysimilarcomputationswealsogettheidentity

Bijmn Amnkl “ 9Ab B b Ihyd ijkl ` 4As B s Idev ijkl .

2. Forthesecondidentity,usingthefirstyields

9Ab B b Ihyd ijkl ` 4As B s Idev ijkl “ Ihyd ijkl ` Idev ijkl

Fromthelastexpressionitbecomesevidentthat 9Ab B b “ 1 and 4As B s “ 1, or 3B b “ 1 3

Example3

Asymmetricsecond–ordertensor aij “ aji canbesplitintodeviatoric andvolumetric/hydrostaticparts,whicharealsosymmetric:

Fortwosymmetricsecond–ordertensors a and b ,provethefollowing identities:

1. a hyd ij b dev ij “ 0.

2. aij b dev ij “ a dev ij b dev ij .

3. Ihyd ijkl akl “ akl Ihyd klij “ a hyd ij and Idev ijkl akl “ akl Idev klij “ a dev ij ,where Ihyd ijkl and Idev ijkl aredefinedinExample2.

4. B a ndv B aij “ a dev ij a ndv ,where a ndv “ ba dev kl a dev kl .

Solution:

1. Forthefirstidentity,

2. Usingthefirstidentity,weeasilyprovethesecond: a dev ij b dev ij “ ”aij a hyd ij ı b dev ij “ aij b dev ij

3. Wehave

“ ”Iijkl Ihyd ijkl ı akl “ aij a hyd ij “ a dev ij .

Since Ihyd ijkl “ Ihyd klij and Idev ijkl “ Idev klij ,wealsogettherelations

4. Wesplittheproofofthefourthidentityintotwoparts:

Since a dev ij issymmetric,thesecondidentityofidentities3holds,thatis,

1.5Voigtnotation:generalaspects

Untilnow,thenotionoftensorshasbeenpresented.Numericalcomputationsusingtensorialorindicialnotationcanbequitecumbersome,especiallywhendealingwithoperationsrelatedtofourth–ordertensors.Inthe presentchapter,wediscussthewell–knownVoigtnotation,whichallows ustotransformtensorialoperationstomatrixoperations.Thereaderisrequiredtohavesomebasicknowledgeaboutvectorandmatrixoperations.

TheVoigtnotationisapracticalwaytorepresentsecond–andfourth–ordersymmetrictensorsinvectorandmatrixform,respectively.TheVoigt representationsubstitutestwoindices i , j withoneindex I accordingto

I “ " i,i “ j, 1 `ri ` j s,i ‰ j.

LetuswritetheVoigtrepresentationindetail:

firstsecondresultant tensorialtensorialVoigt indexindexindex

Withthisinterchangerulewehavethefollowing:

•Asymmetricsecond–ordertensor a ischaracterizedbytheproperty aij “ aji .Itisusuallyrepresentedasthe 3 ˆ 3 matrix

Since a hasonlysixindependentcomponents,wecanalsoexpressitas a 6 ˆ 1 vector.TherearetwotypesofvectorsconsideredintheVoigt notation,the“s”typeandthe“e”type,

respectively.Thefactor2appearingonthe“e”typeisveryusefulwhen performingvarioustensoroperations,asitwillbecomeclearfurther.

2 Intheclassicalcontinuummechanicsstudiestheindices i “ 2,j “ 3 or i “ 3,j “ 2 correspondto I “ 4,andtheindices i “ 1,j “ 2 or i “ 2,j “ 1 correspondto I “ 6.Hereweadopt aslightmodificationintheVoigtconvention.

•Afourth–ordertensorthathasminorsymmetries(i.e., Aijkl “ Ajikl “ Aijlk )representsalinearrelationbetweensymmetricsecond–ordertensors;ithasonly36independentcomponentsandcanberepresentedasa 6 ˆ 6 matrix.ThetwoVoigtrepresentationsofsecond–ordertensorsnecessitatetheidentificationoffourVoigtrepresentationsoffourth–order tensors.Thestandard 6 ˆ 6 matrixformis

writtenforsimplicityas

wherethefourindices i,j,k,l aresubstitutedwithtwoindices I,J followingthenotation:

Thethreeadditionalmatrixformsthatcanbeidentifiedare[6]

1.6OperationsusingtheVoigtnotation

Usingtherepresentationsdescribedaboveforsecond–andfourth–ordertensors,wecansimplifyvarioustensorialoperations. Consideringthetwotypesofsecond–ordertensors,wecanwritethe scalartensorialproduct

wherethesymbol p · q intheVoigtnotationdenotestheclassicalmatrix multiplication,andthesuperscript T istheusualtransposeoperator.With regardtofourth–ordertensors,weeasilyshowthatthetensorialproducts

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.