Multilayer networks: structure and function ginestra bianconi - Read the ebook online or download it

Page 1


https://ebookmass.com/product/multilayer-networks-structure-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Joint Structure and Function A Comprehensive Analysis 5th Edition, (Ebook PDF)

https://ebookmass.com/product/joint-structure-and-function-acomprehensive-analysis-5th-edition-ebook-pdf/

ebookmass.com

Ten Cate’s Oral Histology: Development, Structure, and Function 9th Edition – Ebook PDF Version

https://ebookmass.com/product/ten-cates-oral-histology-developmentstructure-and-function-9th-edition-ebook-pdf-version/

ebookmass.com

Hemoglobin: Insights into protein structure, function, and evolution 1st Edition Jay F. Storz

https://ebookmass.com/product/hemoglobin-insights-into-proteinstructure-function-and-evolution-1st-edition-jay-f-storz/

ebookmass.com

THINK

Communication 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/think-communication-3rd-edition-ebookpdf/

ebookmass.com

Bandolero!: A Badland Lords Outlaw MC Tale (The Badland Lords Book 3) Amy Cummings

https://ebookmass.com/product/bandolero-a-badland-lords-outlaw-mctale-the-badland-lords-book-3-amy-cummings/

ebookmass.com

Mike Meyers CompTIA Network+ Guide to Managing and Troubleshooting Networks Lab Manual, Sixth Edition (Exam N10-008), 6th Edition Mike Meyers & Jonathan S. Weissman

https://ebookmass.com/product/mike-meyers-comptia-network-guide-tomanaging-and-troubleshooting-networks-lab-manual-sixth-editionexam-n10-008-6th-edition-mike-meyers-jonathan-s-weissman/ ebookmass.com

Apprendre la radiologie William Herring

https://ebookmass.com/product/apprendre-la-radiologie-william-herring/

ebookmass.com

Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials, and Biomedical Fields Thomas

https://ebookmass.com/product/non-thermal-plasma-technology-forpolymeric-materials-applications-in-composites-nanostructuredmaterials-and-biomedical-fields-thomas/ ebookmass.com

Affected: On Becoming Undone and Potentiation 1st ed. Edition Rick Iedema

https://ebookmass.com/product/affected-on-becoming-undone-andpotentiation-1st-ed-edition-rick-iedema/ ebookmass.com

https://ebookmass.com/product/etextbook-978-0073525259-operationsmanagement-operations-and-decision-sciences/

ebookmass.com

MULTILAYERNETWORKS

MultilayerNetworks

StructureandFunction

GinestraBianconi

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©GinestraBianconi2018

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2018

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2018933079

ISBN978–0–19–875391–9

DOI:10.1093/oso/9780198753919.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

ToChristoph

Preface

Multilayernetworksareformedbyseveralnetworksthatevolveandinteractwitheach other.Thesenetworksareubiquitousandincludesocialnetworks,financialmarkets, multimodaltransportationsystems,infrastructures,climatenetworks,ecologicalnetworks,molecularnetworksandthebrain.Themultilayerstructureofthesenetworks stronglyaffectsthepropertiesofdynamicalandstochasticprocessesdefinedonthem, whichcandisplayunexpectedcharacteristics.Forexample,interdependenciesbetween differentnetworksofamultilayerstructurecancausecascadesoffailureeventsthat candramaticallyincreasethefragilityofthesesystems;spreadingofdiseases,opinions andideasmighttakeadvantageofmultilayernetworktopologyandspreadevenwhen itssinglelayerscannotsustainanepidemicwhentakeninisolation;diffusionon multilayertransportationnetworkscansignificantlyspeedupwithrespecttodiffusionon singlelayers;finally,theinterplaybetweenmultiplexityandcontrollabilityofmultilayer networksisaproblemwithmajorconsequencesinfinancial,transportation,molecular biologyandbrainnetworks.

Inthelasttwentyyears,considerableattentionhasbeendevotedtothestudyofsingle networks.Ithasbeenfoundthatdespitetheirdifferentfunctions,manybiological,social ortechnologicalsystemscansharesimilarpropertieswhentheyarestudiedfromthe networkperspective.Recently,themultiplexityofmanynetworkshasbeenidentifiedas animportantaspectofnetworkedsystemsthatneedstobeaddressedtoimproveour understandingofbiologicalandman-madenetworks.Thesubjectiscurrentlyraising greatscientificattention,andseveralimportantnewresultshavebeenobtained.This bookwillpresentacomprehensiveaccountofthisemergingfield.

Thebookincludesthreeparts:

-PARTI:SINGLEANDMULTILAYERNETWORKS

Thispart(chapter1)outlinesthemainresearchquestionsthathavebeendriving theresearchonmultilayernetworkstructureandfunction.

-PARTII:SINGLENETWORKS

ThispartprovidesanintroductiontothemainresultsobtainedinNetworkScience forthecharacterizationofthestructure(chapter2)andthefunction(chapter3) ofsinglenetworks.Thispartconstitutesthereferencepointforappreciatingthe resultsthatholdformultilayernetworks.

-PARTIII:MULTILAYERNETWORKS

Thispartconstitutesthecoreofthebookanddiscussesthemainpropertiesof multilayernetworkstructureandfunction.

Preface

Threeinitialchapters(chapters4–6)setthestagefortherestofbook.They discusstherelevanceofthemultilayernetworksframeworkforavarietyofapplications(chapter4),providethemathematicaldefinitionsofmultilayernetworks (chapter5)andintroducetheirbasicstructuralproperties(chapter6).

Subsequently,severalchaptersaredevotedtothecharacterizationofthestructureofmultilayernetworksandextractionofrelevantinformationusingtheirbuiltincorrelations(chapter7),theirmesoscalecommunitystructure(chapter8)and structuralpropertiesdeterminingthenodes’andlayers’centralities(chapter9).

Bridgingbetweenthechaptersfocusingonmultilayernetworkstructures(chapters5–9)andthechaptersfocusingonmultilayernetworkdynamics(chapters 11–16),novelmodellingframeworksespeciallytailoredtomultilayernetworksare presentedinchapter10,togetherwithrandomizationalgorithms.

Theactiveresearchactivityonthedynamicsandfunctionofmultilayernetworksiscoveredinchapters11–16.Thesechaptersprovideageneralperspective onthemajordynamicalprocesses,including:percolationandavalanches(chapters11–12),epidemicspreading(chapter13),diffusion(chapter14),dynamical systemsandsynchronization(chapter15)andfinallyopiniondynamicsandgame theorymodels(chapter16).

-APPENDICES

Aseriesofappendicesprovidingmoredetailedmathemeticaldiscussionofsome ofthemajorresultsinmultilayernetworkscomplementsthematerialpresentedin themainbodyofthebook.

Ouraimhasbeentoprovideanoverviewofthefieldwhichcouldguidethereaderin understandingtherecentliteratureonmultilayernetworks.Giventhefastpaceatwhich newresultsarecontinuouslypublishedonthesubject,ithasbecomeimpossibletocover entirelytherapidlygrowingliteratureinthefield.Ouraimistoprovideapedagogical presentationandanin-depthdiscussionofthemainresultsonmultilayernetworks, allowingstudentsandreseacherstobequicklyintroducedtothefield.Wehavetherefore madesomechoicesbasedonourperceptionofwhatismorerelevanttocoverinthebook. Thisdoesnotimplythattheworknotcoveredhereislessvaluableandweapologizein advancetotheAuthorsofthepapersnotcitedhere.

ThisbookwillbeofinterestforgraduatestudentsandresearchersinNetwork Scienceworkingattheinterfacebetweentwoormoredisciplinessuchas:physics, mathematics,statistics,economy,engineering,computerscience,neuroscienceandcell biology.Whilethebookwillprovideatheoreticalintroductiontothemainresultson multilayernetworks,atthesametimeitwillremainwidelyaccessibletothegeneral interdisciplinaryreader.

GinestraBianconi London,31October2017

Acknowledgements

Thisbookistheresultofmultipleinteractionswiththenetworkscientistsworkingin multilayernetworksandwithmanyinterestedstudentstowhomIgavelecturesonthe topic.Iammostgratefultoallofthemfortheirsharedpassionformultilayernetwork structureandfunction.

Specialthanksgotomypreciousmultilayernetworkcollaborators:A.Arenas,A. Barrat,A.Baronchelli,M.Barthelémy,G.J.Baxter,S.Boccaletti,F.Battiston,D.Cellai, R.A.daCosta,L.Dall’Asta,R.Criado,C.I.DelGenio,S.N.Dorogovtsev,J.P. Gleeson,J.Gómez-Gardeñes,A.Halu,M.Karsai,J.Iacovacci,V.Latora,E.López, J.F.F.Mendes,G.Menichetti,R.Mondragón,S.Mukherjee,V.Nicosia,P.Panzarasa, M.A.Porter,F.Radicchi,C.Rahmede,D.Remondini,M.Romance,I.Sendina-Nadal, J.Stéhle,Z.Wang,Z.Wu,M.Zanin,K.Zhao,J.Zhouamongwhicharethecoauthors ofaninfluentialreviewarticleonmultilayernetworksthathasbeenthestartingpointfor thisbook:S.Boccaletti,R.Criado,C.I.DelGenio,J.Gómez-Gardeñes,M.Romance, I.Sendina-Nadal,Z.Wang,M.Zanin.

IthankthePhysicsDepartmentatSeoulNationalUniversity,theLondonMathematicalSociety,the2016NetSciSchool,theMathematicsDepartmentofthePolitecnicoof Torino,theComoSchoolforAdvancedStudies,andtheShortCourseonComplex NetworksatOxfordUniversityforhostingmycoursesandlecturesonmultilayer networksthathavebeenveryusefulinshapingthisbook.Theseeventswouldnothave beenpossiblewithoutthesupportofmygreatfriendsandcolleagues:A.Arenas,J.Coon, B.Kahng,S.Majid,Y.Moreno,M.A.Porter,F.Vaccarino.

InwritingthisbookIbenefitedfromgreatdiscussionswithS.Havlinontherobustness ofinterdependentnetworks,withA.ArenasandY.Morenoonepidemicspreadingand diffusionprocessesonmultilayernetworksandwithS.Boccalettionthesynchronization ofmultilayernetworks.

SönkeAdlugandAniaWronskifromOxfordUniversityPresshavebeeninvaluable too,fortheirexcellenteditorialworkthathasmotivatedmethroughoutthewritingof thebook.IalsothanktheSchoolofMathematicalSciencesatQueenMaryUniversity ofLondonthathasallowedmetomakethisbookareality.

Finally,thisbookwouldnothaveseenthelightwereitnotfortheenthusiasm,support andencouragementofmyhusbandChristoph.Iammostgratefultohimforbeingthe firstreaderofthisbookandgivingmemanyrelevantcommentsandsuggestions.

PartISingleandMultilayerNetworks

3.1Interplaybetweenstructureandfunction47

3.2Phasetransitionsandemergentphenomena48 3.3Robustnessandpercolation49

3.4Epidemicspreading58

4.6Molecularnetworksandtheinteractome92

4.7Brainnetworks95

4.8Ecologicalnetworks98

4.9Climatenetworks99

5TheMathematicalDefinition 100

5.1Generalmultilayernetworksandmorespecifictopologies100

5.2Themostgeneralmultilayernetwork100

5.3Multiplexnetworks102

5.4Multi-slicenetworks106

5.5Othertypesofmultilayernetwork110

5.6Tensorialformalismformultilayernetworks114

6BasicStructuralProperties 117

6.1Theeffectofmultiplexityonnetworkstructure117

6.2Degree117

6.3Clusteringcoefficient122

6.4Distance-dependentmeasures127

7StructuralCorrelationsofMultiplexNetworks 129

7.1Correlationsinmultiplexnetworks129

7.2Interlayerdegreecorrelationsinmultiplexnetworks130

7.3Overlap,multilinksandmultidegrees135

7.4Correlationsinweightedmultiplexnetworks141

7.5Theactivitiesofthenodesandpairwisemultiplexity143

8Communities 146

8.1Therelevanceofcommunitiesinmultilayernetworks146

8.2Multilayercommunitydetection146

8.3Correlationsinthecommunitystructureofmultiplexnetworks159

8.4Toaggregateortodisaggregate?166

9CentralityMeasures 170

9.1Centralitymeasuresandmultiplexity170

9.2MultiplexPageRank170

9.3MultiplexEigenvectorCentralities172

9.4FunctionalMultiplexPageRank173

9.5MultiRank180

9.6Versatility183

9.7MultilayerCommunicability186

9.8Centralityofmulti-slicenetworks188

10MultilayerNetworkModels 190

10.1Differentapproachestomultilayernetworkmodelling190

10.2Growingmultiplexnetworkmodels190

10.3Multiplexnetworkensembles199

10.4Randomizationalgorithms210

10.5Modelsofmulti-slicetemporalnetworks212

10.6Ensemblesofmoregeneralmultilayernetworks220

11InterdependentMultilayerNetworks 226

11.1Interdependenciesinmultilayernetworks226

11.2Percolationofinterdependentnetworks227

11.3Interdependentmultiplexnetworkswithoutlinkoverlap230

11.4Interdependentmultiplexnetworkswithlinkoverlap243

11.5Partialandredundantinterdependencies246

11.6Percolationoninterdependentmultilayernetworks254

12ClassicalPercolation,GeneralizedPercolationandCascades 260

12.1Robustnessofmultilayernetworks260 12.2Classicalpercolation261 12.3Directedpercolation270 12.4Antagonistpercolation274

13.1Epidemicsandmultiplexity282 13.2SISmodel283 13.3SIRmodel293

13.4Interplaybetweenawarenessandepidemicspreading301

13.5Competingepidemicspreadingonmultiplexnetworks305

13.6Epidemicspreadingonmulti-slicetemporalnetworks306 14Diffusion 309

14.1Therelevanceofdiffusiononmultilayernetworks309

14.2Diffusiononmultiplexnetworks310

14.3Randomwalksonmultiplexnetworks314

14.4Randomwalksonmulti-slicetemporalnetworks321

15.1Dynamicalsystemsinmultilayernetworks324 15.2Synchronization324 15.3Patternformation334

15.4Multiplexvisibilitygraphs336

15.5Controlofmultilayernetworks337 16OpinionDynamicsandGameTheory 343

16.1Modellingsocialnetworkdynamics343 16.2Votermodel343

AppendixATheBarabási–Albertmodel:theMasterEquation

PartI

1

ComplexSystemsasMultilayer Networks

1.1Whataremultilayernetworks?

ThefundamentalideabehindNetworkScienceisthatimportantinformationabouta complexsystemcanbegainedbystudyingitsunderlyingnetworkstructure.Thissimple yetpowerfulpointofviewhasprovidedthetoolsforgainingunprecedentedknowledge ontherichinterplaybetweenthestructureandfunctionofcomplexsystems.

ThefieldofNetworkSciencehasbeenflourishinginthelastdecades,wherewehave witnessedaBigDataexplosioninsocialscience,biologyandengineering.Network Scienceisahighlyinterdisciplinaryfieldthatcombinestoolsandtechniquescoming fromphysics,mathematics,statistics,biology,engineeringandcomputerscience.Now almosttwentyyearssincethebeginningofthefield,wehavereachedunderstandingof complexnetworksandtheiruniversaltopologicalpropertiesandwehaverevealedthe richinterplaybetweenstructureanddynamicsincomplexnetworkarchitectures.

Inthelastfewyearsithasbeenpointedoutbyseveralresearchersthatourunderstandingofcomplexnetworkshassofarhadanimportantlimitation.Infact,rarely donetworksworkinisolation.Frominfrastructuresandtransportationsystemstocells andthebrain,mostnetworksaremultilayer,i.e.theyareformedbyseveralinteracting networks.Forexample,inmodernsocietydifferentinfrastructuresarerelatedbya complexwebofinterdependenciesandafailureinthepowergridcantriggerfailuresin theInternet,thefinancialmarketandtransportation.Whencommutingtotheworkplace, theinhabitantsoflargecitiesusuallytakemorethanonemeansoftransportation includingbus,metropolitantrainsandunderground.Inthecell,theprotein–protein interactionnetwork,signallingnetworks,metabolicnetworksandtranscriptionnetworks arenotisolatedbutinteracting,andthecellisnotaliveifanyoneofthesenetworks isnotfunctioning.Inthebrain,understandingtherelationoffunctionalandstructural networksformingamultilayernetworkisoffundamentalimportance.

Multilayernetworkshavebeenfirstintroducedinthecontextofsocialsciencesto describedifferenttypesofsocialties.Uptonow,socialnetworksremainoneofthetypical

examplesofmultilayernetworks.Nevertheless,multilayernetworkshaveattracteda significantinterdisciplinaryinterestonlyinthelastfewyears,becauseithasbecomeclear thatcharacterizingmultilayernetworksisfundamentaltounderstandingmostcomplex networksincludingcellularnetworks,thebrain,complexinfrastructuresandeconomical networksinadditiontosocialnetworks(chapter4).

Interestingly,theframeworkofmultilayernetworks(chapters5–6)canalsobeapplied totemporalnetworks,i.e.networksthatchangeovertime.Temporalnetworkscanbe usedtodescribealargevarietyofdata,rangingfromcontactsnetworksrecordingfaceto-facesocialinteractionstotime-resolvedcorrelationsbetweendifferentregionsofthe brain.Inthiscase,themultilayernetworkisformedbytemporalsliceseachdescribing theinteractionsoccurringinagiventemporalinterval.Itturnsoutthatthemultilayer approachforstudyingtemporalnetworkscanbeextremelyusefulforadvancingour understandingofthedynamicalprocessesoccurringinthem,suchasdiffusionand epidemicspreading.

1.2Informationgaininmultilayernetworks

Amultilayernetworkisnottobeconfusedwithalargernetworkincludingallthe interactions.Asanetworkultimatelyisawaytoencodeinformationabouttheunderlying complexsystem,thereisasignificantdifferencebetweenconsideringalltheinteractions atthesamelevelandincludingtheinformationonthedifferentnaturesofthedifferent interactions.Inamultilayernetwork,eachinteractionhasadifferentconnotation,andthis propertyiscorrelatedwithotherstructuralcharacteristics,allowingnetworkscientists toextractsignificantlymoreinformationfromthecomplexsystemunderinvestigation (chapters7–9).

Amajorthemeofthisbookisthediscussionofthemajortypesofcorrelationthat arepresentinmultilayernetworkdatasets.Wewillshowhowthesecorrelationscanbe quantifiedandwewillpresentseveraltechniquesforextractingrelevantinformationfrom multilayernetworkdatasetsthatcannotbefoundbyconsideringnetworksinisolation. Theseincluderankingalgorithmsaimedatassessingtherelevanceofnodesinmultilayer networksandalgorithmsthataimtoextractthemesoscaleorganizationofmultilayer networksindifferentmultilayernetworkcommunities.

Thisfieldisexpectedtohavesignificantimpactinavarietyofcontexts,including mostnotablynetworkmedicineandbrainresearch.Inbrainresearch,theabilityto makesenseofthemainstructuralcharacteristicsofbraindataisessentialtoadvance ourunderstandingoftheinterplaybetweenthestructureoftheconnectome,describing themacroscopicwiringofthebrain,andfunctionalbrainnetworks,sheddinglighton braindynamics.Networkmedicineandpersonalizedmedicineaimatfindingthebest treatmentforaspecificpatientbyintegratingseveralmedicaldatasetsthatusuallytakethe formofmultilayernetworks.Theadvanceinourabilitytoextractrelevantinformation fromthesedatasetsisthereforeoffundamentalsignificanceforthewell-beingofsociety.

Formakingsenseofthelargesetofmultilayernetworksweneedtocombineinference algorithmsandtechniqueswithnullmodelsofmultilayernetworks(chapter10).Thenull

modelsdefinewell-controllednetworkstructuresthatconstitutethereferencepointto whichtheresultsobtainedbyinvestigatingrealdatasetscanbecompared.Additionally, nullmodelscanbetakenasbenchmarkstructuresoverwhichwecanrunsimulationsof dynamicalprocesses.Thiscanallowustotesttheeffectofmultilayernetworkstructures onthecharacteristicbehaviourofthedynamicstakingplaceonthem.

1.3Overviewofdynamicalprocessesonmultilayer networks

Inmultilayernetworks,linksmightindicatedifferenttypesofinteractions.Thisproperty ofmultilayernetworkshasessentialconsequencesonthedynamicalprocesses(chapters 11–16)definedonsuchstructures.Frompercolationtodiffusionandgametheory, ingeneralthedynamicalinteractionsbetweennodesinamultilayernetworkwilltake adifferentfunctionalformdependingonthenatureofthelink.Forexample,ifwe consideramultilayertransportationnetworkformedbytheairportnetworkofflight connections,thetrainandtheroadtransportationnetworks,wewillobservethatthe rulesdeterminingthediffusionwithineachofthenetworksmightbedifferent,and thatchangingfromonemeansoftransportation(diffusionfromonelayertotheother ofthemultilayernetworks)mightagainfollowotherdynamicalrules.Thisscenario doesnotonlyapplytotransportationnetworksbutalsotothediffusionofideasand behavioursinsocialnetworks.Therefore,thefactthatdiffusiononmultilayernetworks ischaracterizedbydifferentratesdependingonthetypeoflinksignificantlychanges thepropertiesofthisdynamicalprocessandhasavarietyofpracticalconsequences. Similarly,thenodesofamultilayernetworkmightresponddifferentlytothedamageof nodesinthesamelayerorinanotherlayer.Forexample,takeanInternetrouter.This routermightstillbefunctionalevenifoneoftheconnectedInternetroutersisdamaged, butitmightnotbefunctionalanymoreifthepowerplantprovidingenergytotherouter isdamaged.Therefore,inamultilayernetworkwecandistinguishbetweenconnectivity linksprovidingconnectivitytothenodesofeachlayerandinterdependencylinksthat implytheimmediatedamageofonenodeiftheotherlinkednodeisdamaged.This property,commontomanyinterconnectedinfrastructures,makesthemmorefragilethan singlenetworks.Therefore,theimplicationsofinterdependenciesontherobustnessof multilayernetworksisessentialtobuildmorereliableandresilientglobalinfrastructures.

Inrecentyearsithasbeenshownthatconsideringthemultilayernatureofnetworks cansignificantlymodifytheconclusionsreachedbyconsideringsinglenetworks.Anumberofdynamicalprocesses,includingpercolation,diffusion,epidemicspreadingand gametheory,presentaphenomenologythatisunexpectedifoneconsidersthelayersin isolation.Moreover,ithasbeenshownthatthestructuralcorrelationsbuiltinmultilayer networkstructurescansignificantlychangethedynamicalpropertiesofthemultilayer network.Thisspectacularinterplaybetweenstructureanddynamicsisverylikelyto opennewscenariosforapplicationsandcontrolofmultilayernetworks,includingthe designofmoreresilientinfrastructuresandtransportationsystemsandthepossibilityof reprogrammingcancercells.

PartII SingleNetworks

TheStructureofSingleNetworks

2.1Networks

Networksareformedbyasetofnodesdescribingtheelementsofacomplexsystem connectedpairwisebyseverallinksdescribingtheircomplexwebofinteractions.Most networksreflectintheirstructurearichinterplaybetweenrandomnessandorder.For instance,insocialnetworkstheestablishmentofafriendshipmaydependonaseriesof contingentevents,whileinthebraintheconnectionsbetweenneuronsarenotalldeterminedbygenomicinformation.Ifstochasticityisubiquitousincomplexnetworks,these networksarenotmaximallyrandomeither;rather,theyobeyorganizationprinciplesthat makethemfunctional.NetworkSciencecharacterizesnetworkstructurestoincreaseour understandingofcomplexsystems,asitisassumedthattheunderlyingnetworkstructure ofacomplexsystemencodesinformationaboutitsfunction.Inthisrespect,theeffort madeinbiologytogatherreliableandcompleteinformationonbiologicalinteractions isnoticeable.Thisworkrangesfromthehigh-throughputexperimentsthataimto completetheinformationaboutthehumanproteininteractionnetworktothebigprojects thataimtomapthehumanconnectome.NetworkScienceincludesnetworkinference andcharacterizationofnetworkstructure,butalsogoesbeyondtopologyandaimsat identifyingtheeffectsthatnetworkshaveonsocial,technologicalandbiologicalprocesses andatpredictingthebehaviourofcomplexsystems.Inthischapterwewillfocusonthe majorresultsobtainedbystudyingnetworkstructure,whileinthesubsequentchapterwe willfocusonnetworkdynamics.Ourintentionisheretogivesomerelevantbackground onsinglenetworkswhichmightserveasareferencetothecoreofthebookonmultilayer networks.However,giventhespacelimitations,wewillnotbeableinanywaytogivea completeaccountofthelargeliteraturethatexistsonNetworkScience.Wesuggestto thenovicewantingtodeepenhisunderstandingtoreadtherelevantmonographieson singlenetworks[14,107,225,105,184].Conversely,theveryexperiencedreaderfamiliar withmostoftheresultsvalidforsinglenetworkscanusethematerialofchapter2and chapter3onlyasareferenceforthediscussionofmultilayernetworkspresentedinPart III(chapters4–16).

2.2Singlenetworktypes

Agraph G = (V , E ) isformedbythepairofsets V and E where V isthesetofnodes (orvertices)and E isthesetoflinks(oredges).Networksaregraphsthatdescribe realinteractingsystemsasdiverseasthebrainortheInternet.Singlenetworkscome indifferenttypesdependingonseveralaspectscharacterizingtheirinteractions.

Singlenetworkscanbeclassifiedasundirectedordirectednetworks.

Undirectednetworksareformedbyundirectedinteractions,andinthesenetworksif node i islinkedtonode j thenautomaticallynode j islinkedtonode i .Forinstance, Facebookisanundirectednetwork,astheFacebookfriendshipindicatesanundirected interactionthathasbeenagreedtobythetwoinvolvedaccounts.Similarly,inbiology aproteininteractionnetworkisundirected,asanyproteininteractionindicateswhether twoproteinsbindtogethertoformaproteincomplex.

Onthecontrary,directednetworksarenetworksinwhichtheinteractionsaredirected, andifnode i pointstonode j itisnotautomaticallytruethatnode j pointstonode i . TheWorldWideWebisaclearexampleofadirectednetworkwherelinksfromone webpagetoanotherarenottypicallyreciprocated.Withinonlinesocialnetworks,Twitter isaclearexampleofadirectednetworkwhereaccountsdonotalwaysfolloweach other.

Singlenetworkscanalsobeclassifiedas unweighted or weighted

Weightednetworksarenetworkswherea weight isassociatedwitheachinteraction, describingtypicallyameasureofthe‘intensity’oftheinteraction.Forinstance,in theairportnetworkformedbyflightconnectionsbetweenairports,aweightcanbe associatedwiththelinksaccordingtothetraffic(intermsofnumberofpassengers) ofeachconnection.Innetworksgeneratedfromcorrelationsbetweentimeseriessuchas brainfunctionalnetworksorfinancialnetworksbetweenassets,weightscanbeassociated withlinkswherestrongerweightsindicatelargeandpositivecorrelations.

Unweightednetworks,onthecontrary,arenetworksinwhicheachinteractionis eitherpresentorabsent.Unweightednetworksmightcorrespondtonetworksinwhich theweightsaredisregardedornetworksinwhichtheweightsarethesameforevery interaction.

Themostfundamentaltypesofsinglenetworksare simplenetworks thatareundirected andunweighted,inwhichinteractionsexistonlybetweendifferentnodes.

Whiletheaboveclassificationofsinglenetworksdependsonthepropertiesofthe networkinteractions,itisalsopossibletoconsidernetworkshavingnodeswithdifferent properties.

Bipartitenetworks arenetworksformedbytwodistincttypesofnodesinwhich interactionsexistexclusivelybetweendifferenttypesofnodes.Bipartitenetworksinclude thenetworksbetweenactorsandmovieswhereeachactorisconnectedtoamovieif hehasactedinit,orthenetworkbetweenscientistsandpaperswhereeachscientistis connectedtoapaperifhehasauthoredit.

2.3Basicdefinitions

2.3.1Nodesandlinks

Themostbasicpropertiesofsinglenetworks G = (V , E ) arethetotalnumberofnodes N (alsocalledthe networksize)andthetotalnumberoflinks L with

wherethesymbol |X | indicatesthecardinalityoftheset X .Wewillindicatethelabelled nodesofthenetworkwith i = 1,2, ... , N .Therefore,thesetofnodes V isgivenby

Thelinkswillbeindicatedaspairsofnodelabels (i , j ) whereforundirectednetworksthe orderisirrelevant,whilefordirectednetworkstheorderindicatesthatnode i pointsto node j .Notethatforundirectednetworkseachundirectedlinkjoiningtwogivennodes ofthenetworkiscountedonce,whilefordirectednetworksalinkfromnode i tonode j iscountedindependentlyofthelinkwhichmighteventuallyconnectnode j tonode i Bipartitenetworks,wherenodescanbecastintotwodifferentsetsandinteractions onlyexistbetweennodesbelongingtodifferentsets,shouldbetreatedsomewhat differently.Infact,abipartitenetworkcomprisesthreesets: GB = (V , U , E ),wherethe sets V and U indicatetwodifferentgroupsofnodes(forinstance, V and U might indicateactorsandmovies).Thesetwosetsmighthavedifferentcardinality, |V |= NV and |U |= NU ,indicatinginourexamplethetotalnumberofactorsandthetotalnumber ofmoviesrespectively.Theelementsoftheset V willbeindicatedbyLatinletters i , j etc. Theelementsoftheset U willbeindicatedbyGreekletters μ, ν etc.Finally,theset E indicatesthesetoflinksconnectingnodesoftheset V onlytonodesoftheset U

2.3.2Adjacencymatrixandincidencematrix

Anysinglenetwork G = (V , E ) isfullydeterminedbyitsadjacencymatrix.Theadjacency matrixisan N × N matrix a,whoseelements aij indicatewhethernode i islinkedto node j .Thespecificdefinitionoftheadjacencymatrixdependsonwhetherthenetwork isdirectedorundirected,weightedorunweighted.

Forunweightedandundirectednetworkstheadjacencymatrixelements aij are givenby aij = 1ifnode i islinkedtonode j , 0otherwise. (2.3)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Multilayer networks: structure and function ginestra bianconi - Read the ebook online or download it by Education Libraries - Issuu