Molecular characterization of polymers: a fundamental guide 1st edition muhammad imran malik - Exper

Page 1


https://ebookmass.com/product/molecular-characterization-ofpolymers-a-fundamental-guide-1st-edition-muhammad-imranmalik/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Molecular Characterization of Polymers: A Fundamental Guide 1st Edition Muhammad Imran Malik

https://ebookmass.com/product/molecular-characterization-of-polymersa-fundamental-guide-1st-edition-muhammad-imran-malik/

ebookmass.com

Reactive polymers fundamentals and applications : a concise guide to industrial polymers Third Edition. Edition Fink

https://ebookmass.com/product/reactive-polymers-fundamentals-andapplications-a-concise-guide-to-industrial-polymers-third-editionedition-fink/

ebookmass.com

Clathrate Hydrates: Molecular Science and Characterization, 2 Volumes John A. Ripmeester

https://ebookmass.com/product/clathrate-hydrates-molecular-scienceand-characterization-2-volumes-john-a-ripmeester-2/

ebookmass.com

COC Exam Study Guide u2013 2019 Edition: 150 Certified Outpatient Coder Practice Exam Questions, Answers, and Rationale, Tips To Pass The Exam, Medical u2026 To Reducing Exam Stress, and Scoring Sheets

https://ebookmass.com/product/coc-exam-studyguide-2019-edition-150-certified-outpatient-coder-practice-examquestions-answers-and-rationale-tips-to-pass-the-exam-medical-toreducing-exam-stress-and-scori/ ebookmass.com

Handbook of Plasticizers 3rd Edition George Wypych

https://ebookmass.com/product/handbook-of-plasticizers-3rd-editiongeorge-wypych/

ebookmass.com

Handbook of Human Resource Management in Government (Essential Texts for Nonprofit and Public Leadership and Management 41) – Ebook PDF Version

https://ebookmass.com/product/handbook-of-human-resource-managementin-government-essential-texts-for-nonprofit-and-public-leadership-andmanagement-41-ebook-pdf-version/ ebookmass.com

Blockbuster Proposal Lucy Mcconnell

https://ebookmass.com/product/blockbuster-proposal-lucy-mcconnell/

ebookmass.com

No

Neighbors’ Lands in Postwar Europe: Vanishing Others Anna Wylega■a

https://ebookmass.com/product/no-neighbors-lands-in-postwar-europevanishing-others-anna-wylegala/

ebookmass.com

International Management: Culture, Strategy, and Behavior 9th Edition, (Ebook PDF)

https://ebookmass.com/product/international-management-culturestrategy-and-behavior-9th-edition-ebook-pdf/

ebookmass.com

Homegrown by Father & Son: Grow And Cook Your Own Food

John Burton-Race & Pip Burton-Race [Burton-Race

https://ebookmass.com/product/homegrown-by-father-son-grow-and-cookyour-own-food-john-burton-race-pip-burton-race-burton-race/

ebookmass.com

MOLECULAR CHARACTERIZATION OFPOLYMERS

AFundamentalGuide

MOLECULAR CHARACTERIZATION OFPOLYMERS AFundamentalGuide

MUHAMMAD IMRAN MALIK

H.E.J.ResearchInstituteofChemistry, InternationalCenterforChemicalandBiologicalSciences(ICCBS), UniversityofKarachi,Karachi,Pakistan

JIMMY MAYS

DepartmentofChemistry,UniversityofTennessee, Knoxville,TN,UnitedStates

MUHAMMAD RAZA SHAH

H.E.J.ResearchInstituteofChemistry, InternationalCenterforChemicalandBiologicalSciences(ICCBS), UniversityofKarachi,Karachi,Pakistan

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-819768-4

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: EdwardPayne

EditorialProjectManager: CharlotteRowley

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: GregHarris

TypesetbySPiGlobal,India

Contributors

LucaBaiamonte DepartmentofChemistry, ColoradoSchoolofMines,Golden,CO,United States

JosefBrandt DepartmentAnaylsis,LeibnizInstitutf € urPolymerforschungDresdene.V., Dresden,Germany

TaihyunChang DepartmentofChemistryand DivisionofAdvancedMaterialsScience, PohangUniversityofScienceandTechnology, Pohang,SouthKorea

MarkD.Dadmun DepartmentofChemistry, UniversityofTennessee,Knoxville;Chemical SciencesDivision,OakRidgeNational Laboratory,OakRidge,TN,UnitedStates

NadiaEdwin DepartmentofHealthand BiomedicalSciences,AdventHealthUniversity, Orlando,FL,UnitedStates

AnthonyP.Gies TheDowChemicalCompany, LakeJackson,TX,UnitedStates

DavidGillespie TosohBioscienceLLC,Kingof Prussia,PA,UnitedStates

AndrewGorman SchoolofMaterialsScience& Engineering,GeorgiaInstituteofTechnology, Atlanta,GA,UnitedStates

AlexanderS.Gubarev Departmentof MolecularBiophysicsandPhysicsofPolymers, Saint-PetersburgStateUniversity,SaintPetersburg,Russia

ShawLingHsu PolymerScienceand EngineeringDepartment,Universityof Massachusetts(Amherst),Amherst,MA, UnitedStates

WayneHuberty AdvancedComposites Institute,MississippiStateUniversity, Starkville,MS,UnitedStates

MuhammadImran H.E.J.ResearchInstituteof Chemistry,InternationalCenterforChemical

andBiologicalSciences(ICCBS),Universityof Karachi,Karachi,Pakistan

S.KimRatanathanwongsWilliams Department ofChemistry,ColoradoSchoolofMines, Golden,CO,UnitedStates

AlbenaLederer DepartmentAnaylsis,LeibnizInstitutfurPolymerforschungDresdene.V.; SchoolofScience,TechnischeUniversitat Dresden,Dresden,Germany;Departmentof ChemistryandPolymerScience,Stellenbosch University,Matieland,SouthAfrica

WeiLu TosohBioscienceLLC,KingofPrussia, PA,UnitedStates

MuhammadImranMalik H.E.J.Research InstituteofChemistry,InternationalCenterfor ChemicalandBiologicalSciences(ICCBS), UniversityofKarachi,Karachi,Pakistan

JimmyMays DepartmentofChemistry, UniversityofTennessee,Knoxville,TN,United States

ToshikazuMiyoshi DepartmentofPolymer Science,TheUniversityofAkron,Akron,OH, UnitedStates

HaraldPasch DepartmentofChemistryand PolymerScience,UniversityofStellenbosch, Stellenbosch,SouthAfrica

JigneshkumarPatel IntelCorporation (Chandler),Chandler,AZ,UnitedStates

GeorgesM.Pavlov InstituteofMacromolecular Compounds,RussianAcademyofSciences, Saint-Petersburg,Russia

IgorPerevyazko DepartmentofMolecular BiophysicsandPhysicsofPolymers,SaintPetersburgStateUniversity,Saint-Petersburg, Russia

JawadurRehman H.E.J.ResearchInstituteof Chemistry,InternationalCenterforChemical

andBiologicalSciences(ICCBS),Universityof Karachi,Karachi,Pakistan

SebastienRouzeau TosohBioscienceLLC,King ofPrussia,PA,UnitedStates

PaulS.Russo SchoolofMaterialsScience& Engineering;SchoolofChemistry& Biochemistry,GeorgiaInstituteofTechnology, Atlanta,GA,UnitedStates

SalimSaifullah H.E.J.ResearchInstituteof Chemistry,InternationalCenterforChemical andBiologicalSciences(ICCBS),Universityof Karachi,Karachi,Pakistan

MuhammadRazaShah H.E.J.Research InstituteofChemistry,InternationalCenterfor ChemicalandBiologicalSciences(ICCBS), UniversityofKarachi,Karachi,Pakistan

WilliamC.Smith DepartmentofChemistry, ColoradoSchoolofMines,Golden,CO,United States

AliSoleymannezhad TosohBioscienceLLC, KingofPrussia,PA,UnitedStates

KirilA.Streletzky DepartmentofPhysics, ClevelandStateUniversity,Cleveland,OH, UnitedStates

MichaelToney DepartmentofChemistry, ColoradoSchoolofMines,Golden,CO,United States

XujunZhang WyattTechnologyCorporation, SantaBarbara,CA,UnitedStates

WeiweiZhao NingboMaterialsInstitute, Ningbo,China

Foreword

Aswecontemplatethecentennialofmacromolecularchemistry,wemaybereasonably certainthatHermannStaudingerneversaid“Polymerscientiaestomnisdivisainpartestres,” butifhehad,hewouldhavebeenright!Thefirstpartofpolymerchemistryissynthesis: whatmolecularstructurescanwemake,howeasily,andhowreproducibly?Thethirdpart comprisesmaterialproperties:whatisthispolymergoodfor,howcanwemakeitbetter,and howcanwecombinemultipledesirablepropertiesinonematerial?Theintermediatedomain, andtheessentialcomponentinordertoclosethestructure-propertyloop,ispolymer characterization:whatdidwemake,exactly?

Thereisnodoubtthatpolymercharacterizationis,ingeneral,aformidableexperimental challenge.Attherootoftheproblemistheunavoidablefactthatallsyntheticpolymersareheterogeneousintheirmolecularstructure.Asimplecalculationrevealsthatevenatankcarfullof homopolymerwillnotcontaintwomoleculesthatarepreciselyidentical.Notonlyistherea distributionofmolarmass,butthereisalsoheterogeneityinmultiplevariables,including, forexample,regioisomerism,stereochemistry,long-andshort-chainbranching,andcopolymersequenceandcomposition.Ideally,wewouldliketocharacterizeallofthesedistributions, atleasttothelevelofameanvalueandavariance.Thisgoaliscurrentlybeyondthecapabilities ofmostlaboratories,althoughexperimentalsciencecontinuestoadvancesignificantly.

Itisnosurprisethatfullmolecularcharacterizationdemandsasuiteofexperimentaltools. Eachtechniquewillprovidevaluableinformation,butnonecanbesensitivetoallofthevariablesofinterest.Thiscreatesafurtherchallengeforthepolymerscientist:howtodecidewhich techniquestouse,andhowtousethemeffectively?Itistemptingtovieweachinstrumentasa blackbox:insertsomesamplematerial,andoutpopsananswer(typicallywitharidiculous numberofsignificantfigures).Asexperimentalscientists,weknowthisisdangerous;every techniquereliesonasetofassumptions,whichmayormaynotapplyforthesamplewecare about.Wecanconsultatextbook,or,morelikely,Wikipedia,andfindabriefdiscussionofthe technique,andastatementoftheworkingequations.Whilehelpful,thisisnotsufficient. Agoodpractitionerneedstounderstandtheassumptions,andalsotobeconversantwith thestrengthsandweaknesses,theopportunitiesandblindspots,ofeachcharacterizationtool.

Thisisthevoidthat MolecularCharacterizationofPolymers:AFundamentalGuide aimstofill. Theauthorsadoptatutorialstyle,sothatspecificpriorknowledgeisnotrequired.And,by takingthisapproach,thereaderisempoweredtoacquireadeeperunderstandingofthe theoryunderlyingeachapproach.Asnotedbefore,therehavebeensubstantialrecentadvancesininstrumentaltechniques,andthusthisup-to-datetreatmentwillbeveryvaluable forexperiencedpractitionersaswell.

UniversityofMinnesota,Minneapolis,MN,UnitedStates

Preface

Itisveryappropriateaswecelebratein 2020the100-yearanniversaryofNobelLaureateHermannStaudinger’s“discovery”of polymers,thatweassemblethisnewbook on MolecularCharacterizationofPolymers:A FundamentalGuide.ThisisbecauseStaudinger,beginningin1920until1930,utilized aseriesofingenious molecularcharacterization studies toprovethelongchainnatureofpolymers,theirhighmolecularweights,andtheir distributionofchainlengths(molecular weightdistribution,MWD) [1–3].Thiswork earnedStaudingertheNobelPrizeinChemistryin1953.

InthedecadesafterStaudinger’sdiscoveryofpolymers,thesynthesisofpolymers ofever-increasingcomplexityledtothe “polymerage”ofmaterialswhichcontinues tothisday,andnewmethodshavebeen continuallydevelopedinordertobetter characterizepolymers.However,evenin 1975,theeminentpolymerscientistFred Billmeyerstated“…characterizationofpolymersisinherentlymoredifficultthanthatof othermaterials.Polymersareroughlyequivalentincomplexityto,ifnotmorecomplex than,othermaterials,ateveryphysicallevel oforganizationfrommicroscopictomacroscopic ”and“Wewouldwish,ideally,to characterizeallaspectsofpolymerstructure inenoughdetailtopredictitsperformance fromfirstprinciples.Iseriouslydoubtthat thiswilleverbepossible… ” [4].

Billmeyer’sremarksstemfromthefact thatsyntheticpolymersalwaysexhibita distributionofchainlengthsorMWD. Homopolymersarefurthercomplicatedby

tacticity,modeofmonomerinsertion(e.g., head-to-tailorhead-to-head),chainconformation(flexibility),endgroups,and branching(longchainand/orshortchain). Copolymersarefurthercomplicatedby monomersequencedistributionsandvariationsincomonomercontentacrossthe MWD.Allofthesefactorsaffectpolymer processingandthepropertiesofthepolymericmaterial,butpolymercharacterization methodsonlyyieldaveragevaluesanddistributionsofkeymolecularparameters.Even today,nearlyahalfcenturysinceBillmeyer’s statements,despitealltheadvancesincharacterizationtechniquesandcomputation,the thoroughandaccuratemolecularcharacterizationofpolymericmaterialsremainshighly challenging.

Anotherfactorcomplicatingthethorough characterizationofpolymersistheneedto employacombinationofdifferentcharacterizationtechniques,aswellassomeknowledgeonhowthepolymerwassynthesized, inordertorigorouslycharacterizeeventhe simplestofpolymers.Unfortunately,scientistsactivelyinvolvedincharacterizingpolymers,eitherinindustryorinacademia,are usuallyspecialistsinoneortwoanalytical techniquesandlackdetailedknowledgein awiderangeofcomplementarypolymer characterizationtechniques,aswellaspolymersynthesismethodsandtheirimpacton polymerstructure,thatmustbeemployed inordertounderstandthepolymer’smolecularstructureindetail.Asexamples,in industryanalyticalchemistsareoften confrontedforthefirsttimewith

characterizingpolymersandtheymayhave littleornoexperienceincharacterizingsuch complexmixtures.Also,fewpolymerscientistsarerigorouslytrainedinawiderangeof polymercharacterizationtechniques.

Thustheprimarypurposeofthisbookis toserveasatextbookforacourse(academic courseorshortcourse)onpolymercharacterizationinordertobettertrainthenext generationofpolymercharacterization experts.Thisbookisthuswritteninatutorial styletoserveasanintroductiontothevariouspolymercharacterizationtechniques. Weanticipatethatthisbook,writteninthis style,willalsobeusefultoscientistsinindustrialpolymeranalysislaboratorieswho areapplyingacharacterizationtechnique topolymersforthefirsttime.Inadditionto fundamentals,wehavealsoincludedineach chapterrecentadvancesinthetechnique, informationoninstrumentation,andrecent applicationstomakethisbookusefultoscientistswithexperienceinatechniquebut lookingforupdatesonrecentadvancesand applications.

Thisbookbeginswithseveralchapterson chromatographyofpolymers. Chapter1 introducesbasicprinciplesofchromatography ofpolymer,includingsizeexclusionchromatography(SEC),highperformanceliquid chromatography(HPLC),andliquidchromatographyatthecriticalcondition.Data reductionmethodsandcolumntechnologies arediscussed. Chapter2 discusses multidetectorSECofpolymers,usingdetectorssuchaslightscatteringandviscositydetectors,forcharacterizingsimpleand complex(copolymer,branched)polymers. SECremainstheworkhorseforcharacterizingpolymermolecularweightdistributions. Chapter3 discussestheuseoftemperature gradientinteractionchromatographyfor characterizationofbranchedpolymers andcopolymers,endfunctionalizedpolymers,andisotopicallylabeledpolymers.

Chapter4 describesbasicprinciplesandapplicationsoffieldflowfractionation(FFF)to polymers. Chapter5 focusesontheindustriallyimportantareaofcharacterizationof polyolefins,whichconstitutehalfoftheannualpolymerproductionworldwide.Becauseoftheirlimitedsolubility,polyolefins presentspecialchallengesintheircharacterization.MultidetectorSECofpolyolefinsis discussed,alongwithcrystallinity-based techniquessuchastemperaturerisingelutionfractionationandcrystallizationanalysis fractionation.

Chapter6 describestheuseofcombinationsoffundamentalhydrodynamicapproaches(analyticalultracentrifugation, intrinsicviscosity,translationaldiffusion, andSEC)tocharacterizemolecularweights, dimensions,andconformation.Thesecombinedtechniquesareespeciallyusefulwith complexpolymerssuchaspolyelectrolytes. Chapter7 describestheuseofviscometry tomeasurepolymersize,molecularweight, aswellasgatherinsightintoconformational characteristicsandbranching.Methodsfor detectingandquantifyinglongchain branching,includingviscometry,lightscattering,andmultidetectorSECaredescribed in Chapter8.

Chapter9 isfocusedonrecentadvancesin massspectrometryofpolymers,focusingon MALDI-TOF-MSandMS/MS. Chapters10 and11 describetheuseofvibrationalspectroscopyandNMRforstructuralcharacterizationofpolymers,includingendgroups, composition,tacticity,etc. Chapters12and 13 describetheuseofstaticanddynamic lightscatteringtocharacterizepolymermolecularweights,sizes,thermodynamicinteractionsandconformations. Chapter14 introducesLenS3,anewlightscatteringdetectorthatmeasurespolymermolecular weightsandallowsforradiusofgyration measurementsinthesub-10-nmrange.The useofX-raysandneutronsforprobing

polymerstructureandconformation,inbulk, thinfilm,andinsolution,isdescribedin Chapter15 alongwithselectedapplications. Chapter16 coversmicroscopyofpolymers, withabasicintroductiontoSEM,TEM,and AFMandrecentapplicationstopolymers. Wearegratefultoalltheauthorswho madethetimelyassemblyofthisbookpossibleevenunderthechallengesimposedby theCovid-19pandemic.

MuhammadImranMalika,JimmyMaysb,and MuhammadRazaShaha aUniversityofKarachi,Karachi,Pakistan bUniversityofTennessee,Knoxville,TN, UnitedStates

References

[1] H.Staudinger, Uberpolymerisation,Ber.Deut. Chem.Ges.53(1920)1073–1085.

[2] H.Staudinger, UberdieKonstitutionder Hochpolymeren,Ber.Deut.Chem.Ges.61(1928) 2427–2431.

[3] H.Staudinger,W.Heuer, Uberhochpolymere Verbindungen,33.Mitteilung:Beziehungen zwischenViscosit€ atundMolekulargewichtbei Poly-styrolen,Ber.Deut.Chem.Ges.63(1930)222–234.

[4] F.W.Billmeyer,Trendsinpolymercharacterization, J.Polym.Sci.Symp.55(1975)1–10.

Basicprinciplesofsizeexclusionand liquidinteractionchromatography ofpolymers

MuhammadImranMalika andHaraldPaschb

aH.E.J.ResearchInstituteofChemistry,InternationalCenterforChemicalandBiological Sciences(ICCBS),UniversityofKarachi,Karachi,Pakistan bDepartmentofChemistryand PolymerScience,UniversityofStellenbosch,Stellenbosch,SouthAfrica

Polymersareinherentlycomplexmulticomponentmaterialshavingseveralsimpleand distributedproperties.Simplepropertiesincludetotalweightofthepolymer,residualmonomer/oligomer,gelcontent,etc.Distributedpropertiesarethoseinwhichdifferentmolecules ofthesamesamplehavedissimilarvalues.Theimportantdistributedpropertiesofpolymers includemolarmass,chemicalcomposition,sequencelength,endgroupfunctionality,moleculartopology,etc.Theperformancepropertiesofpolymersarehighlydependentuponthese distributedproperties.Theperformanceofpolymersforanyparticularapplicationcanbeimprovedsignificantlybycarefullymonitoring,adjusting,andunderstandingtheirmolecular distributions.Animportanttoolforthedeterminationofdistributedmolecularpropertiesof polymersisseparationscience.

Thesize,chemicalcomposition,sequenceofrepeatunits,andarchitecturearesomeimportantparametersthatneedtobeconsideredwhenanalyzinganypolymer.Theconstitution, configuration,andconformationofmacromoleculesarealsocriticalforregulatinganypotentialapplication.Polymershavingsimilarmolarmassesandchemicalcompositionscanhave completelydifferentpropertiesdependinguponthesequence,constitution,configuration, andconformationoftheirrepeatunits.Polymershavinganydistributionbeyondonlymolar massaretermedascomplexpolymers.

Theconceptofmolecularheterogeneitycanbeutilizedtodescribethestructuralcomplexityofsyntheticpolymers,see Fig.1.1.Differenttypesofheterogeneitiesofpolymerchains mightsuperimposeeachotherandagivenpolymersamplemayexhibitamolarmassdistribution,achemicalcompositiondistribution,individualblocklengthdistributions,

2 1.Basicprinciplesofsizeexclusionandliquidinteractionchromatographyofpolymers

FIG.1.1 Molecularheterogeneityofcomplexpolymers. ReproducedfromH.Pasch,Hyphenatedtechniquesinliquid chromatographyofpolymers,Adv.Polym.Sci.150(2000)1–66,withpermissionfromSpringerNature.Copyright2000.

afunctionalitytypedistribution(endgroupdistribution),andamoleculararchitecture distribution.Importantinformationrequiredforthecomprehensivecharacterizationof complexpolymersarethemolarmassdistributionswithineachtypeofheterogeneity.

Syntheticpolymersalwayshaveadispersitywithregardtomolarmassthatoriginates fromthepresenceofpolymerchainshavingdifferentlengths.Molarmassesofpolymers maybeexpressedasdifferentaverages,e.g.,number-averagemolarmass(Mn),weightaveragemolarmass(Mw),etc.Thebroadnessofthemolarmassdistributioncanbeexpressed bythemolarmassdispersity(Ð)thatistheratioofweight-averageandnumber-averagemolarmasses(Mw/Mn).Sizeexclusionchromatography(SEC)isoneofthemostimportant methodsfortheanalysisofmolarmassdistributionsofpolymers [1].

Differentfunctionalgroupsatthepolymerchainendoralongthepolymerchainintroduce anotherheterogeneitythatisparticularlyimportantforoligomersandtelechelicpolymers. Thepropertiesandreactivitiesofoligomersandtelechelicpolymersdifferwithregardto thenumberandnatureofthefunctionalgroups.Spectroscopictechniquescanonlyprovide averagenumbers,whereaswell-designedchromatographicseparationmethodscanreveal thefunctionalitydistributionasafunctionofotherheterogeneities,e.g.,themolarmass distribution [2]

Theinvolvementofmorethanonemonomerinapolymerizationreactioncomplicatesthe situationandtheresultingpolymermayhaveachemicalcompositiondistribution superimposingthemolarmassdistribution.SpectroscopictechniquessuchasNMRandFTIR canprovideanaveragechemicalcompositionofthesample.However,noinformationonthe distributionofchemicalcompositionasafunctionofmolarmasscanbeobtained.Moreover, spectroscopictechniquescantypicallynotdifferentiatebetweencopolymersandmixturesof theirrespectivehomopolymers.Interactionchromatographictechniquescanprovidemore

insightintothecomplexcompositionofcopolymers.Therecanbeseveraladditionalheterogeneitiesincopolymerssuchasthebulkmolarmassdistribution,thedistributionofrepeat unitsinthecopolymer,thelengthsofdifferentsegmentsincaseofsegmentedcopolymers,the presenceofanytypeofhomopolymerinthebulksample,etc.Theabove-mentionedfactors makethecomprehensivecharacterizationofpolymersamultifacetedtask.Fortheanalysisof thechemicalcompositionasafunctionofmolarmass,multidetectorapproachesmayberequired(see Chapter2 fordetaileddiscussion).Theindependentanalysisofeachtypeofheterogeneityrequiresindependentseparationtechniquesthatareselectiveregardingspecific typesofdistributions.Inordertogetaccesstoonetypeofheterogeneityasafunctionofother heterogeneities,couplingofindependentchromatographictechniquesorhyphenationof chromatographicseparationwithspectroscopictechniquesisimperative.

Tosummarize,aminimumoftwoindependentmethodsarerequiredfortheanalysisof complexpolymerseachwithacertainselectivityforonetypeofheterogeneity.Inthiscontext, differentmodesofHPLCofpolymerssuchasSEC,liquidchromatographyatcriticalconditions(LCCC),andinteractionchromatography(IC)orliquidadsorptionchromatography (LAC)canbecoupledtoeachother.Couplingofachromatographicseparationwithspectroscopictechniquescanalsobeafascinatingapproachinordertoobtainthedistributionofone propertyasafunctionofanotherdistribution.

1.1Liquidchromatographyofpolymers

Thebasicprincipleofanychromatographicprocessisbasedontheselectivedistributionof theanalytemoleculesbetweenthemobileandthestationaryphase.Theseparationprocess ofchromatographycanbedescribedby

where Ve, Vi, Vp,and Kd representtheelution(retention)volumeoftheanalyte,theinterstitial volumeofthecolumn,theporevolumeofthepacking,andthedistributioncoefficient,respectively.Thedistributioncoefficientistheratiooftheanalyteconcentrationinthemobile andthestationaryphase. Kd isrelatedtothevariationsinGibbsfreeenergy Δ G thatdepends onanalytepartitioningbetweeninterstitialandporevolume [3].

Thelogarithmicplotofthedistributioncoefficientallowsthedeterminationoftheentropic (ΔS)andenthalpic(ΔH)contributions(vant’Hoffplot):

DifferenteffectsthatcontributetothechangeinGibbsfreeenergyare(1)thedecrease inconformationalentropythatoriginatesfromlimiteddimensionsinsidetheporesofthe stationaryphase,and(2)changesinenthalpythatoriginatefromthe(adsorptive)interaction ofmacromoleculeswiththestationaryphase.

SECseparatesmacromoleculeswithregardtotheirhydrodynamicvolumeindilutesolution.ThestationaryphaseinSECisaswollengelhavingacharacteristicporesize

distribution.Themacromoleculesmayhavelessormoreaccesstotheporesdependingon theirhydrodynamicsizes.Verylargemoleculescannotentertheporesandareexcluded,elutingattheinterstitialvolume Vi.Verysmallmoleculeshavefullaccesstotheporesofthestationaryphaseandeluteatthevoidvolumeofthecolumnwhichisthesumofinterstitialand porevolume(Vo ¼ Vi + Vp).Hence,theseparationrangeofSECis0 < KSEC < 1.

InidealSEC,thedistributioncoefficientdependsonlyonentropychangeswithoutany involvementofenthalpicinteractions;however,inrealSECthisisdifficulttoachieve.On theotherhand,thedistributioncoefficientinthecaseofICtotallydependsontheinteraction strengthoftheanalytemoleculeswiththestationaryphase.Thisisperfectlytrueonlyfor smallmolecules.Longerchainsofpolymersmaynothaveaccesstothewholeporevolume, hence,entropicfactorsmustbeassumedtocontributeinadditiontoenthalpiccontributions.

Incaseofpolymers,oftenmixedmodesofchromatographyareoperativeandmethodsare definedbythepredominanceofentropicorenthalpicinteractions.Entropicinteractionsare predominantincaseofthesizeexclusionmode,i.e. T Δ S > Δ H correspondstonegativevalue of Δ G,whileseparationintheinteractionmodeisdominatedbyenthalpicinteractions,i.e. Δ H > T Δ S correspondstopositivevalueof Δ G.Interactionforcesexactlycompensate entropylossesatthetransitionpointoftheexclusionandinteractionmodes,i.e. Δ H ¼ T Δ S correspondstozerovalueof Δ G.Thismodeofliquidchromatographyofpolymersisoften termedasliquidchromatographyatcriticalconditions.

Hence,Gibbsfreeenergyatthechromatographiccriticalpointisconstant(Δ G ¼ 0)andthe valueofthedistributioncoefficientequals1, Kd ¼ 1,independentofthemolarmassofthe polymerandtheporesizeofthestationaryphase.Anarrowrangebetweensizeexclusion andinteractionmodesofLCthatissensitivetochangesintemperatureandmobilephase compositionisrelatedtothechromatographiccriticalpoint.Thistransitionfromonemode ofseparationtotheotherwasreportedforthefirsttimebyBelenkiietal. [4] andTennikov etal. [5].Theydemonstratedsuddenchangesintheelutionbehaviorbyslightvariationsin thecompositionofthemobilephase.Hence,thetransitionpointbetweentheSECandIC modescanberealizedbycarefullyadjustingthemobilephasecompositionandthetemperature.Thisspecifictransitionpointislabeledasthechromatographiccriticalpoint(CCP)and thecorrespondingmodeofliquidchromatographyistermedasliquidchromatographyat criticalconditions(LCCC).

Apresentationofthetransitionbetweenthethreemodesofliquidchromatographyof polymersisshownin Fig.1.2.InSEC,retentiondecreaseswithincreasingmolarmass whereasretentionincreaseswithmolarmassinICorLAC.AtLCCC,theexclusionandinteractioneffectsarecompensatedrenderingamolarmassindependentelutionofaparticular polymerataconstantelutionvolume.Theseseparationmodescanbecombinedinvarious waystorealizeseparationsofpolymerswithregardtodifferentdistributionssuchasmolar mass,chemicalcomposition,andfunctionality.SEC,themostfrequentlyusedmethodfor polymeranalysis,separatespolymerswithregardtotheirhydrodynamicsizeindilutesolution,andseveralapproachesareinplacetoobtainchemicalcompositioninformationasa functionofmolarmassthatincludemultipleconcentrationdetectorsystems,anduniversal calibrationwithviscometricandlightscatteringdetection(see Chapter2 fordetaileddiscussion).Onemustkeepinmind,however,thatSECseparationisbasedonsizeandthechemical compositionsobtainedbydifferentapproachesareonlyaveragevaluesrelatedtoagivenSEC fraction.

Dependenceofelutionvolumeonmolarmassindifferentmodesofliquidchromatographyofpolymers.

1.2Theoryofpolymerchromatography

RetentionofananalyteonthestationaryphaseinHPLCisexpressedintermsofthe distributioncoefficientasfollows:

Thedistributioncoefficientmayassumedifferentvaluesindifferentmodesofliquid chromatography.Inthiscontext,deGennesintroducedafunctionthatistermedtheinteractionparameter, c [6,7].Thevalueofinteractionparameterdependsonthemobilephase composition(foragivenpolymer-stationaryphasesystem)andtemperature.Theunitof theinteractionparameterisinverselength(nm 1).

1.2.1Sizeexclusionchromatography

InSEC,thevalueoftheinteractionparameter c isnegativewhilethedistributioncoefficient assumesvaluesbetweenzeroandone(0 < K < 1).SECseparationiscontrolledbyentropy changesinducedbydifferentlysizedspeciesmovingthroughthechromatographiccolumn. TheelutionvolumeofSECinidealconditionsisgivenbyEq. (1.5)[8]

FIG.1.2

where R istheradiusofgyrationoftheanalytewhile D istheporediameterofthestationary phase.Theradiusofgyrationexpressedintermsoflengthandnumberofrepeatunitsis givenas

where a isthelengthand n isthenumberoftherepeatunits.

SeparationinSECisrealizedwithregardtomoleculardimensionsregardlessofcompositionandfunctionality.

1.2.2Interactionchromatographyorliquidadsorptionchromatography

ICisbasedonthestrengthofinteractionoftheanalytemoleculeswiththestationaryphase. Thevalueof c ispositivewhereasthedistributioncoefficienthasvalueslargerthanone(k > 1) thatincreasesexponentiallywiththenumberofrepeatunits.

RetentioninICisoftendescribedintermsofMartin’srule [9,10]

Thedimensionlessfactor k isdeducedfromtheelutionvolumeofthesoluteandholdup volume(differentfromvoidvolume)ofthecolumn.Anexcellentreviewwithregardto holdupvolumeofthecolumnispresentedbyRimmeretal. [11].Inthiscontext,Gorbunov andSkvortsovdevelopedatheoryofchromatographyforflexiblehomopolymersthatcan interactwiththestationaryphase [12,13].Accordingtothistheory,theelutionvolumeof anonfunctionalpolymerchaininICisgivenby

wherein D istheporediameterofthestationaryphase, R istheradiusofgyrationofthemacromolecule, c istheinteractionparameter,and erf(cR)istheerrorfunction.Itispertinentto mentionherethatthevalueof c isindependentof D, Vp, Vi,or R (i.e.,thedegreeofpolymerization n).

Theterm erf(cR)approachesunityatsufficientlystronginteraction(typicalforIC)and, therefore,Eq. (1.8) canberewrittenas

where Vo∗ istheaccessiblevolumeforthepolymerchain.

Obviously,theaccessiblevolumeissmallerthanthevoidvolume(Vo ¼ Vi + Vp).TheaccessiblevolumeinICcanbeobtainedbyplottingtheelutionvolumesofoligomers Vn with n repeatunitsversusthedifferenceinelutionvolumeofconsecutivepeaks(Δ Vn ¼ Vn Vn 1)

Theaccessiblevolumeisrepresentedbytheinterceptoftheplot,andslope γ ¼ e B/(e B 1) canbeusedtocalculatetheinteractionparameter c,wherein B ¼ (c 2 a2)/6istheslopein Martin’srule(seeEq. 1.7)

Itcanbenoticedthatthenumber n oftheindividualpeaksisnotrequiredforthe determinationoftheaccessiblevolumeandtheinteractionparameter,providedsufficiently stronginteractionispresent.Moreover,Gorbunovetal.developedasoftwareforthedeterminationofinteractionparametersinallmodesofLC [14].Theapproachisbasedonasetof measurementsofnonfunctionalpolymerstandardsofknownmolarmass.Eq. (1.10) canalso berewrittenintermsoftheretentionfactor k

ThelogarithmicformoftheequationcorrespondstoMartin’srule.

Martin’srulecanalsoberewrittenfornonfunctionalchainsas

TheporesurfacecanalsobedeterminedfromtheinterceptofMartin’splotoncethe interactionparameterisdeterminedusingtheearlierequations.However,theidentification ofthepeaksisrequiredforthedeterminationoftheporesurface.Formono-functionalchains, anadditionalparameter q isrequired [15].Thespecificendgroupparameter q measuresthe differenceoffreeenergyofadsorptionofendgroupandrepeatunit [16].Afacilemethod forthedeterminationof q hasbeenelaboratedbyNguyenandTrathnigg [17].

InIC,retentionofmono-functionalchainswithanadsorbingendgroupcanbewrittenas

V0,m ∗ istheaccessiblevolumeformono-functionalchainsthatissmallerthantheaccessible volumefornonfunctionalchains.

1.Basicprinciplesofsizeexclusionandliquidinteractionchromatographyofpolymers

Thevalueof k increasesexponentiallywiththenumberofrepeatunits.Straightlines withthesameslopesareobtainedinaplotof lnk vs n inbothcases,havingratherdifferent intercepts.

ICallowsforseparationofoligomersofnonfunctionalpolymersaswellasmonofunctionalpolymerswitharatherweaklyadsorbingendgroup.Strongerinteractionofthe endgroupresultsinpoorresolutionofindividualoligomers.

1.2.3Liquidchromatographyatcriticalconditions

Entropicandenthalpictermscompensateeachotherinliquidchromatographyatcritical conditions.Atthisso-calledchromatographiccriticalpoint(CCP),thevaluesofthedistributioncoefficientandtheinteractionparameterequaltooneandzero,respectively.Thecompensationofenthalpicinteractionandentropicexclusionrendersmolarmass-independent elutionofnonfunctionalchainsatthevoidvolumeofthecolumn.Anadditionalterm qa is requiredtodescribetheinfluenceofaninteractingendgroup a onretention.Theelutionvolumeofchainswithanadsorbingendgroupattheirchromatographiccriticalpointislarger thanthevoidvolume,however,independentofmolarmass [16,18].

Thecontributionoftheendgrouponretentionatthecriticalpointallowsforseparationof mono-functionalchainswithregardtotheinteractionstrengthoftheendgroupindependent ofmolarmass.However,averydifferentbehaviorisobservedwithdi-functionalchains(with adsorbinggroupsatbothends) [16,19].Theelutionvolumeofchainswithsymmetrical groupsatbothendsisgivenby

Theequationindicatesthatdi-functionalchainsareseparatedwithregardtotheradiusof gyration R ofthecriticalpolymerchain.Asymmetricaldi-functionalpolymerchains(bearing differentgroupsatthechainends)holdthesamerelation,

where a and b areendgroups.

Di-functionalchainselutelaterthanmono-functionalpolymericchains;however,their elutionvolumeisnotonlydependentoncontributionsoftheendgroups a and b butalso containanadditionaltermthatistheratiooftheporediameter D ofthestationaryphase andtheradiusofgyration R ofthepolymermolecules [16,19].Consequently,elutionof di-functionalpolymerchainswithadsorbingendgroupsfollowsSECorder.

Thereisanotherspecialsituationwheretheendgroupadsorbswhiletherepeatunitsarein SECmode.Thisregimeofliquidchromatographyofpolymersistermedasliquidexclusion adsorptionchromatography(LEAC) [20].Undertheseconditions,theinteractionparameter oftherepeatunit c isnegativewhiletheinteractionparameteroftheendgroup cB ispositive. Thisconditionrenderselutionofmono-functionalchainsinSECorderbeyondthevoid

Vaa Vi + Vp 1+2qa + q
Vab

volumeofthecolumn.Themathematicalrelationfortheelutionvolume VAB ofshort mono-functionalpolymerchainsunderthedescribedconditionsisgivenby

where A istherepeatunitwhile B istheendgroup.

Theelutionvolumedecreaseswithincreaseinthenumberofrepeatunits(andhence radiusofgyration).Themethodcanbeusedforoligomerseparationsofmono-functional polymerchainscontaining10–15repeatunitsinSECorderbeyondthevoidvolumeofthe column.ThisisessentiallyanisocraticseparationthatallowsaRIdetectortobeemployed, resultinginaccuratequantification [21].

1.3Thermodynamicsofpolymerchromatography

ThedistributioncoefficientdependsonchangesinGibbsfreeenergythatcorrespondto variationsinentropyandenthalpy,seeEqs. (1.2)and(1.3).Separationinthesizeexclusionregimeisgovernedbytheentropictermwhereasinteractionisanenthalpicprocess.However, entropicorenthalpiccontributionsarenoteasytoavoidcompletelyespeciallyinthecase ofmacromolecules.Bothenthalpicandentropictermscompensateeachotheratthecritical modeofliquidchromatographyofpolymerswhichmeans Δ G ¼ 0,as Δ H ¼ T Δ S.

Asdescribedpreviously,SECandICmechanismsmayshowdifferentdependenceson temperature.ThedistributioncoefficientsolelydependsonentropicchangesinidealSEC (noenthalpicinteractions)renderingnodependenceontemperature.InLCCC,entropic andenthalpiceffectsarecounterbalanced,hence,anychangeintemperaturewouldrequire adifferentmobilephasecompositiontoretainthecriticalbehavior.Consequently,retention inICdependsbothonenthalpyandentropychanges.Retentionofanypolymeronagiven stationaryphasedependsonthemobilephasecompositionandthetemperature.However, theextentanddirectionofthisdependencevaries.

Thechangesinentropyandenthalpycanbedeterminedfromthevan’tHoffplot,ln K vs 1/T.Variousapproachesthatprimarilydifferinthecalculationofthedistributioncoefficient areusedforthedeterminationofthermodynamicparameters [22,23].

Directproportionalitybetween thedistributioncoefficient K andtheretentionfactor k ¼ ( Ve V0 )/V 0 isoftenappliedinthisregard

whereinterm lnφ correspondstomobileandstationaryphaseratio(generallynotknown), principallyindicatingtheporevolumeandinterstitialvolume.Hence,theslopeand interceptinaplotofln K vs1/T representthethermodynamicparameters Δ H°/R and (Δ S∗/R) ¼ (Δ S°/R) +lnφ.However,thereisnodirectcorrelationbetweenthedistribution coefficient K andtheretentionfactor k asisclearfromequations

10 1.Basicprinciplesofsizeexclusionandliquidinteractionchromatographyofpolymers

Therelationshipbetweenthedistributioncoefficient K andtheretentionfactor k canbe devisedas

Contrarytoatypicalassumption,thereisnodirectproportionalitybetween K and k.The assumptionthat K ¼ k φ isanapproximationandholdsonlyfor K ≫ 1.Theexactrelationcontainsthedistributioncoefficient K;however,thedeterminationofcharacteristicvolumes Vi, Vp,and V0 arerequired.

Itispertinenttomentionherethatthedeterminationofthevalueofvoidvolumeisnot trivial.Numerousarticlesaddresstheissueoftheaccuratedeterminationofthevoidvolume, thedeadvolume,andtheholdupvolume [11,24],havingdifferentdefinitionsrelevanttoparticularsituations [11,25–27].Thevoidvolumeisusuallytakenasthetotalamountofsolvent inthecolumnthatcanbedeterminedgravimetrically.Ontheotherhand,theholdupvolume isconsideredastheelutionvolumeofanunretainedcompoundthatcanbedeterminedby variousmethods [11,24].TheinterstitialvolumecanbedeterminedbyinverseSEC.Itisactuallytheelutionvolumeofacompletelyexcludedpolymerfromtheporesofthestationary phase.However,thesevaluesareverymuchdependentonthemobilephaseandmayassume dissimilarvaluesindifferentmobilephases.

1.4Equipmentandmaterials

Separationsbydifferentmodesofliquidchromatographyofpolymersposeseveralchallengesthatcanbeaddressedbystate-of-the-artHPLCinstrumentation.Typically,aflexible pump(forisocraticandgradientseparations),acolumnoven(forstabletemperature conditions),andareliablesetofdetectors(forquantitativeinformationwithregardtodifferentmolecularparameters)arerequired.

ThemaincomponentsofanyHPLCinstrumentincludeasolventdeliverysystem,asampleinjector,asetofdetectors,andadataacquisitionsystem.Columnsarethecoreofany separationsystemthatcontainstationaryphasesofdifferentnature,whichareselected accordingtothetargetedseparation.

1.4.1Solventdeliveryandinjector

OneofthemostimportantrequirementsofanyHPLCsystemisaconstantandreproduciblesupplyofmobilephase.Severaltypesofpumpsareemployedforareliablemobilephase deliveryinHPLC.Theseincludesyringepumps(workslikeasyringeforpulselessflow)and reciprocatingpumpsthatexistinvariousmodificationsassinglepistons,paralleldualpistons,anddualpistonsinseries.GeneralrequirementsofHPLC/SECwithregardtothepump includeaflowrateprecisionof0.2%,apressureoutputof6000psi,apressurepulsationofless

than1%at1mL/min,aflowraterangeof0.01–10mL/min,chemicalresistancetoawide rangeofsolvents,andsmallholdupvolumesforrapidsolventexchange.Mobilephasesused forHPLCaregenerallydegassedbyinlinedegasserstogetridofdissolvedgases.Analternativeisthedegassingofthemobilephasebyultrasonicationpriortouse.

TheselectionofthepumpforanyHPLCsystemdependsontheintendedapplication.SyringepumpsaresuitableforSECandLCCCduetotheirflowstabilityandminimumevaporationofthesolvent.However,syringepumpsarenotsuitablewherehighpressuremixing isrequired.Reciprocatingpumpsallowlowpressuremixingandarethepreferredchoicefor gradientelution.Recently,reciprocatingpumpsindifferentvariationsarealmostexclusively employedforHPLCbyallthemanufacturers.

Theinjectionofsampleasanarrowbandisimperativetoavoidpeakbroadeningfrominjection.Thisrequiresasharpplugofsamplesolutioninjectedintothemobilephase.Sample injectionistypicallyconductedthroughatwo-position,six-portvalvewhichmaybeoperated manuallyorautomatically.Forprecisemeasurements,thesampleloopshouldbecompletely filled.Thesizeofthesampleloopdependsonthecolumndimensions,thesensitivityofthe detectors,andthenatureofseparation.Largerloops(50–100 μL)withdilutesamplesolutions arerecommendedforSECratherthanusinghigherconcentrationswithsmallerloops.Onthe otherhand,higherconcentrationsarepreferredusingsmallerloops(10–50 μL)forICand LCCC.Moderninstrumentsareequippedwithautosamplingdevicesthatallowanalysis ofmultiplesampleswithoutinterventionofoperator.Mostcommercialautosamplerspermit injectionofanyvolumeintherange0–2000 μLwithaprecisionof 0.5%.Additionally,modernautosamplersarealsoequippedwithsamplefiltration,variablespeedandtemperature mixing,needlewash,etc.

1.4.2Columndimensions

Typesanddimensionsofchromatographiccolumnsdependonthemodeofoperation.In contrasttoothermodesofHPLC,separationinSECispredominantlydeterminedbythetype ofstationaryphasewithminimalinfluenceofthemobilephase.Theseparationtakesplacein theporevolumethatequals30%–40%oftotalelutionvolume.Therefore,forachievingfairly goodseparationefficiency,longercolumns(25–60cm)withlargervolumesofstationary phasearerequired.Typically,amultiple-columnsetisusedforSECanalysis.Innerdiameters ofcommerciallyavailablecolumnsareintherangeof5–8mmforanalyticalSECand 22–25mmforsemipreparativeSEC.Theplateheightdecreaseswithadecreaseinparticlesize resultinginahighernumberofplatesperunitlength.SECcolumnsareclassifiedinto microbore,narrowbore,analytical,semipreparativeandpreparativewithincreaseinparticle size,columndiameter,andlengthinthesameorder.Separationefficiencyofanychromatographicsystemisexpressedintermsofnumberoftheoreticalplates,whereatheoreticalplate referstoasingleequilibriumstep.Highernumbersoftheoreticalplatesrefertobetterseparation.Inthiscontext,plateheight, H,isobtainedbydividingthelengthofcolumnbythe numberoftheoreticalplates.Smallerparticlesarepreferredtoallowhigherpackingdensities henceprovidinghigherplatenumbers;however,thisresultsinanincreasedcolumnback pressure.Thebackpressureshouldnotexceed150barformostofthepackings.Besides thepackingdensityofthestationaryphasethecolumnbackpressurealsodependsonthe

viscosityofthemobilephase.Asaruleofthumb,1mL/minshouldbetheflowrateofacolumnwith8mminnerdiameterwhile0.25mL/minforacolumnwith4mminnerdiameter. Thetotalcolumnlengthshouldbeadjustedaccordingtothebackpressureproducedina givenmobilephaseatoptimumflowrate.Highercolumntemperaturesarepreferredasatool toreducethebackpressurecomparedtolowerflowratesduetothefactthatlowerflowrates resultinarapidincreaseinplateheightandthusdecreaseinseparationefficiency.

Ontheotherhand,usingsmaller(highefficiency)columnsisatrendinHPLCcomparedto SECwherehighefficiencycanonlybeachievedusinglongercolumns.RetentioninHPLC dependsonthedistributioncoefficientoftheanalytebetweenthemobileandthestationary phase.IncontrasttoSEC,separationinHPLCisgovernedbythecompositionofthemobile phase.Smallercolumnsleadtofasteranalysisandlowersolventconsumption.Thereare, however,limitationsofminiaturizationduetothefactthatsmallerparticlesgivinghigher separationefficiencyresultinanincreasedbackpressure.Furthermore,thelengthsanddiametersofconnectingcapillariesandtheinternalvolumeofthedetectorcellhavetobesmall foranacceptableoverallefficiencyofthesystem.Smallsizedparticlesresultinsmallerplate heightthatinturnincreasesthenumberoftheoreticalplatesperunitvolume.Microbore HPLCrequiresspecializedinjectionsystems,capillaries,anddetectors.Narrowborecolumns canbeoperatedwithnormalHPLCsystems.

1.4.3Stationaryphases

Stationaryphasesareselectedwithrespecttotheintendedseparation.Poroussilicaor cross-linkedorganicgelsarecommonlyusedstationaryphasesforSEC.StyrenedivinylbenzenecopolymeristhemostwidelyemployedstationaryphaseforSECinorganic solvents.Modifiedsilicaorcross-linkedhydrophilicpolymersareacommonchoiceforaqueousSEC.Nonetheless,polymerpackingsareavailablethatcanbeusedforalargevarietyof differentmobilephases.Generally,silica-basedpackingsareratherrobustcomparedtoorganicpolymer-basedpackings.Commerciallyavailablecolumnpackingsfororganicand aqueousSEChavingvarietiesofporesizesandapplicablemolarmassrangeareproduced byseveralcompaniessuchasAgilent,Macherey-Nagel,TosohHaas,PolymerLaboratories, Merck,Phenomenex,PolymerStandardsService,Shodex,Malvern,andWaters.Commerciallyavailablecolumnscanbesubdividedintotwomajorcategories,namelysingleporecolumnsandmixedcolumns(alsotermedaslinear). Fig.1.3Ademonstratestheelutionvolume ofnarrowmolarmassPSstandardsasafunctionofmolarmassonSDVcolumnsofvarious poresizes.Ascanbenoticed,thecalibrationcurveonsingleporesizedcolumnsisnotlinear. Approximatelytwodecadesofmolarmasses(e.g.,103–105 g/mol)arecoveredbytraditional singleporesizecolumns.Recently,theuseofmixedbedcolumns,madeofmixingparticlesof differentporesizes,isinfashion.Linearormixedcolumnsallowtocoverawidermolarmass rangeandtheobtainedplotofelutionvolumeasafunctionofmolarmassislinear, Fig.1.3B.

TraditionalHPLCcolumnsthatareusedfortheseparationoflowmolarmassorganiccompoundsareequallyapplicabletointeractivemodesofliquidchromatographyofpolymers.As ageneralrule,sphericalparticlesaresuperiortoirregularparticles.Theefficiencyofacolumn increaseswithdecreasingparticlesizeofthestationaryphasethat,ontheotherhand,leadsto anincreasedbackpressure.SECissolelybasedonthelimitedaccessibilityofthepolymer

FIG.1.3 ElutionvolumeasafunctionofmolarmassofPSstandardsonSDVcolumnsinTHF(A)singleporesize columns,(B)linearormixedcolumns.DataprovidedbyPolymerStandardsService [28]

moleculestotheporesofthestationaryphase,whileseparationinICisbasedontheavailable surfaceareaofthestationaryphase.InLCCC,bothadsorption/interactionandexclusion effectsarecompensated,henceporesizeisveryimportant. Thenatureoftherequiredstationaryphaseisbasicallydeterminedbytheseparation problem.StationaryphasesforHPLCaremostlybasedonsilicaorcross-linkedpolymers.

1.Basicprinciplesofsizeexclusionandliquidinteractionchromatographyofpolymers

Ageneralclassificationisbasedonthepolarityofstationaryandmobilephases.Thestationaryphaseispolarcomparedtothemobilephaseinnormalphasechromatography(NP).On thecontrary,themobilephaseispolarcomparedtothestationaryphaseinreversedphase chromatography(RP).Typically,plainsilicahavingsilanolgroupsismodifiedwithdimethyl silanehavingavarietyofRgroups.TheRgroupdeterminesthenatureofthestationary phase.Sometypicalstationaryphasesforbothnormalandreversedphasechromatography areshownin Fig.1.4.StationaryphasesbasedonmodifiedsilicaaretypicallyusedinRPchromatography.Theseareobtainedbyreactingsilicawithsilanes.Thereactionofsilicawith silanesisseldomcompleteresultinginresidualsilanolgroupsinthestationaryphase.These residualsilanolgroupsmayaffecttheseparationespeciallyintheanalysisofbasiccompoundssuchasamines.Acurrenttrendtoovercomethisproblemistheapplicationofpackingswithahighcarbonloadandahighdegreeofend-capping.Nonetheless,polymer-based packingssuchascross-linkedstyrene-divinylbenzenecopolymersmaybethebetterchoiceto overcomethislimitation.Itisworthmentioningherethatnitrile-modifiedphasescanbeused eitherasnormalorreversedphasesdependingonthepolarityofthemobilephase.

1.4.4Mobilephases

SinglesolventsaretypicallyusedasmobilephasesforSEC.ThemobilephaseforSEC shouldbeathermodynamicallygoodsolventforthepolymertobeanalyzed.Additionally, itshouldbeabletosolvatethestationaryphase,shouldbechemicallyinert,havealow

FIG.1.4 Typicalpolar(normalphase)andnonpolar(reversedphase)stationaryphasesforliquid chromatography.

viscosity,beUVtransparent,andpossessanappropriaterefractiveindexandlowtoxicity. Themobilephaseisselectedwithrespecttothenatureofthepolymerandthestationary phase.FrequentlyemployedorganicsolventsforSECanalysisaretetrahydrofuran,chloroform,toluene,esters,ketones,dimethylformamide,etc.Lowmolarmasselectrolytescan beaddedtominimizenonexclusioneffectsintheanalysisofpolarpolymerssuchaspolyelectrolytes.Polyolefinsarenotsolubleinanysolventatroomtemperatureand,hence,require separationathightemperaturesinhighboilingsolvents,trichlorobenzenebeingthemost widelyusedmobilephaseforpolyolefins(seeChapter5fordetaileddiscussion).

TheprimarycriterionfortheselectionofamobilephaseforinteractivemodesofHPLC includessamplesolubilityandcomplexinteractionsbetweenthesample,thestationary phase,andthesolvent.Solventsareclassifiedwithregardtotheirchemicalnatureandpolarity.ThemostimportantcriterionfortheselectionofamobilephaseinICispolarity.Solventsareclassifiedintermsof“eluotropicseries”withregardtopolarity.Althoughvarying valuesforsolventpolarityarereportedbydifferentsources,theorderremainsthesame.Itis worthmentioningherethatsolventpolaritymayvarywithinchemicallysimilarclassesof solvents.TypicalHPLCsolventswiththeirpolarityindexandUVcutoffarelistedin Table1.1.Anotherimportantconcernwhenselectingasolventforanyseparationsystem isitsmodeofdetection.Thespectroscopicbehaviorofamobilephaseneedstobeconsidered whenspectrometricdetectorssuchasUV,FTIR,orNMRareused.

1.4.5Detectors

Theseparationofthesampleinthecolumnhastobemonitoredbyoneormoredetectors whosesignalmustrepresenttheconcentrationofthepolymer.TypicalHPLCdetectorsfor lowmolarmassanalytesareequallyapplicabletoSEC/HPLCofpolymers.However,there arespecificrequirementsandapproachesthatareassociatedwiththepeculiarnatureoflarge molecules.DetectorsusedinHPLCofpolymerscanbebroadlyclassifiedintotwomajorcategories,concentrationsensitivedetectorsandmolarmassdetectors.Additionally,thereare spectroscopicdetectorsthatcanprovidedirectchemicalcompositioninformation.

1.4.5.1Concentrationsensitivedetectors

Theconcentrationofthesoluteinthesolventisdirectlyrelatedtothedetectorsignalin concentrationsensitivedetectors.Thesedetectorscanbeclassifiedintotwomajorgroups, namely,selectivedetectorsthatmeasureapropertyofasolute,anduniversaldetectorsthat measureabulkpropertyofthemobilephase.Combinationsofdetectorsmayberequiredfor theanalysisofcopolymers.

Selectivedetectors

SeveralselectivedetectorsareavailableinHPLC;however,notallofthemareapplicableto polymers.TheUVdetectoristhemostwidelyemployedselectivedetectorinpolymeranalysis.IRdetectorscanbeusefulbutarelimitedtomobilephasesthatdonotabsorbradiationat thedetectionwavelength.TheintroductionofanevaporativeinterfaceprovidesagoodalternativeforofflinecouplingtoFTIR [29,30].TheeluateissprayedonaGermaniumdiskthatis rotatedataparticularspeed.ThediskisthentransferredtotheFTIRspectrometertoyield

1.Basicprinciplesofsizeexclusionandliquidinteractionchromatographyofpolymers

TABLE1.1 Typicalsolventsusedinliquidchromatographyofpolymers.

ClassSolventPolarityindexUVcutoff

AlkanesHexane,heptane0.0200

Cyclohexane0.2200

AromaticsBenzene2.7280

Toluene2.4285

Xylene2.5290

EtherDiisopropylether2.2220

Methyl-tert-butylether2.5210

Tetrahydrofuran4.0215

Dioxane4.8215

AlkylhalidesTetrachloromethane1.6263

Dichloromethane2.5235

Dichloroethane4.0225

Trichloromethane4.8245

EstersButylacetate4.0254

Ethylacetate4.4260

KetonesMethylethylketone4.7329

Acetone5.1330

Alcohols n-Butanol3.9215 i-Propanol3.9210 n-Propanol4.0210

Methanol5.1205

NitrilesAcetonitrile5.8190

AmidesDimethylformamide6.4268

CarboxylicacidsAceticacid6.2230

Water9.0200

ReproducedfromH.Pasch,B.Trathnigg,MultidimensionalHPLCofPolymers,Springer,Berlin-Heidelberg-NewYork, 2013,withpermissionfromSpringerNature.Copyright2013.

spectralinformationasafunctionofelutiontimeofthechromatogram.Thissetupmust, however,becombinedwithanadditionalconcentrationsensitivedetectorforaccuratequantification.FluorescenceandelectrochemicaldetectorsareotherselectivedetectorsforHPLC thatarenotapplicabletopolymers.

TheUVdetectoristhemostfamiliarsolutepropertydetector.Itiscommerciallyavailable indifferentmodifications.TheUVdetectorisbasedontheprincipleofabsorptionoflightofa

selectedwavelengthbythechromophore-containinganalyte.Thetypicalwavelengthrange inthiscontextis180–350nm.UVdetectorscanonlybeappliedtosolventswithlowUVcutoff. TherearebasicallythreetypesofUVdetectors,namely,fixedwavelengthdetectors,variable wavelengthdetectors,anddiode-arraydetectors(DAD).Fixedwavelengthdetectorsare mostlyequippedwithalampemittinglightat254nm.Variablewavelengthdetectorsallow forselectionofaparticularwavelengthbymeansofaholographicgrating.DADallowsfor simultaneousmeasurementofthewholeUVspectrumovertheentirechromatogram.

Universaldetectors

Universaldetectorsmeasurethechangeinabulkpropertyofthemobilephase.Important universaldetectorsarerefractiveindex,conductivity,density,andevaporativedetectors. Universaldetectorsarelesssensitivecomparedtoselectivedetectors;however,theyarecommonlyappliedinanalysisofpolymers.Themostwidelyemployeddetectorinthisregardis theRIdetectorthatisavailableinmanymodifications.Applicationsoftheconductivitydetectortopolymersarenotcommon.Densitydetectorworksonthemechanicaloscillatorprincipleandisaneffectivedetectorinpolymeranalysisespeciallyincombinationwithother detectors.Evaporativedetectorsarebasedonthevaporizationofthevolatilecomponent oftheeluate(typicallythesolvent)andthedetectionofthenonvolatilecomponentsbyscatteringofthetransversallightbeam.

RIdetector

ThreetypesofRIdetectorsareavailable,namelydeflectionrefractometers,Fresnelrefractometers,andinterferometricrefractometers.Deflectionrefractometeristhemostcommonly employeddetectorinthisregard.Deflectionrefractometershavealargecellbutabetterlinear rangecomparedtoFresnelrefractometers.Sensitivityofinterferometricrefractometersis higherbyoneorderofmagnitudecomparedtootherRIdetectors.Theresponsefactorof RIdetectorsisdependentuponmolarmassaswellasonchemicalcomposition.Hence,an additionalconcentrationdetectorisrequiredforanalysisofcopolymersandpolymerblends. Moreover,preferentialsolvationofonecomponentofcopolymermayaffectthedetector signal [1].

Densitydetector

DensitydetectorincombinationwithUVorRIdetectorsrevealsadditionalinformation inisocraticelutionmode.Itworksonthemechanicaloscillatorprinciple [31,32].Atypical densitydetectorconsistsofanoscillatingU-shapedcapillarywhoseperioddependsupon thedensityofthecontent.However,therearenorecentapplicationsofdensitydetector foranalysisofpolymers.

Evaporativelightscatteringdetector

TheELSDcanberegardedasuniversaldetectorsinceitdetectsanynonvolatilecomponentsoftheeluate [33,34].OnlyfewcompaniesofferELSDscomparedtoawiderangeof availableUVdetectors.Insuchinstrument,theeluateisnebulizedandthesolventfrom thedropletisevaporated.Particlesareformedbythenonvolatilecomponentsofeachdroplet thatscattertheincidentlightbeaminaphotodiodecell.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.