Modular treatment approach for drinking water and wastewater satinder kaur brar - Download the ebook

Page 1


https://ebookmass.com/product/modular-treatment-approachfor-drinking-water-and-wastewater-satinder-kaur-brar/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Platform Chemical Biorefinery. Future Green Industry 1st Edition Satinder Kaur Brar

https://ebookmass.com/product/platform-chemical-biorefinery-futuregreen-industry-1st-edition-satinder-kaur-brar/

ebookmass.com

Catalytic Processes for Water and Wastewater Treatment

John Vakros

https://ebookmass.com/product/catalytic-processes-for-water-andwastewater-treatment-john-vakros-2/

ebookmass.com

Catalytic Processes for Water and Wastewater Treatment

John Vakros

https://ebookmass.com/product/catalytic-processes-for-water-andwastewater-treatment-john-vakros/

ebookmass.com

Using And Administering Linux: Volume 3 Zero To SysAdmin: Network Services (2nd ed.) 2nd Edition David Both

https://ebookmass.com/product/using-and-administering-linuxvolume-3-zero-to-sysadmin-network-services-2nd-ed-2nd-edition-davidboth/

ebookmass.com

https://ebookmass.com/product/kase-fur-dummies-markus-bornholdt/

ebookmass.com

Histología y biología celular, ed. 4 (Spanish Edition)

Abraham L Kierszenbaum & Laura Tres [Kierszenbaum

https://ebookmass.com/product/histologia-y-biologia-celulared-4-spanish-edition-abraham-l-kierszenbaum-laura-tres-kierszenbaum/

ebookmass.com

George Craig of Galashiels John Finlay

https://ebookmass.com/product/george-craig-of-galashiels-john-finlay/

ebookmass.com

Manual of Cardiovascular Medicine Thomas Lüscher

https://ebookmass.com/product/manual-of-cardiovascular-medicinethomas-luscher/

ebookmass.com

Conquering GRE Verbal Reasoning and Analytical Writing

Kathy A. Zahler

https://ebookmass.com/product/conquering-gre-verbal-reasoning-andanalytical-writing-kathy-a-zahler/

ebookmass.com

Virus as populations : composition, complexity, dynamics, and biological implications 1st Edition Domingo

https://ebookmass.com/product/virus-as-populations-compositioncomplexity-dynamics-and-biological-implications-1st-edition-domingo/

ebookmass.com

MODULARTREATMENTAPPROACH FORDRINKINGWATERAND WASTEWATER

Thispageintentionallyleftblank

MODULAR TREATMENT APPROACHFOR DRINKING WATERAND WASTEWATER

SatinderKaurBrar

DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto,ON,Canada; InstitutNationaldelaRechercheScientifique,Centre-EauTerreetEnvironnement,Québec,QC,Canada

PratikKumar

DepartmentofCivilEngineering,IndianInstituteofTechnologyJammu,JammuandKashmir,India

AgnieszkaCuprys

NorwegianUniversityofLifeSciences,Ås,Norway

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensing Agency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromany useoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-85421-4

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: LouisaMunro

EditorialProjectManager: AndraeAkeh

ProductionProjectManager: SelvarajRaviraj

CoverDesigner: MarkRogers

TypesetbyTNQTechnologies

Contents

Contributorsix

Prefacexiii

1.Introduction

RAHULSAINI,CARLOSSAULOSORIO-GONZALEZ,AND SATINDERKAURBRAR

1.1Introduction1 References9

2.Characteristicofwastewateranddrinking watertreatment

SABAMIRI,JAVADGHANEI,ANDSATINDERKAURBRAR

2.1Introduction13

2.2Wastewatertreatmentinfrastructure14

2.3Macropollutantsinwaterandsludge19

2.4Micropollutantsinwaterandwastewater21

2.5Waterqualityparameters26

2.6Bottlenecksandlimitationsofcentralizeddrinking waterandwastewatertreatmentfacilities29

2.7Conclusion31 References31

3.Perspectivesontheuseofmodularsystemsfor organicmicropollutantsremoval

SEYYEDMOHAMMADREZADAVOODI, MOHAMMADHOSSEINKARIMIDARVANJOOGHI,AND SATINDERKAURBRAR

3.1Introductiontochallengesrelatedtoremovalof organicmicropollutantsandpossiblesolutions33

3.2Organicmicropollutantsremoval:currentstateof art40

3.3Source-to-tap:Wheretoapplythenew modules?47

3.4Conclusion49

Acknowledgments49 References49

4.Modulartreatmentapproachfordrinking waterandwastewater:introductiontoa sustainableapproachtodecentralizedtreatment systems

A.DALILALARIOS-MARTÍNEZ, CHRISTELLBARRALES-FERNANDEZ, P.ELIZABETHALVAREZ-CHAVEZ,CARLOSMÉNDEZ-CARRETO, FABIOLASANDOVAL-SALAS,NORARUIZ-COLORADO, STÉPHANEGODBOUT,SÉBASTIENFOURNEL,AND ANTONIOAVALOS-RAMÍREZ

4.1Introduction55

4.2Wastewatertreatment57

4.3Wastewatertreatmentoperations57

4.4Modularwastewatertreatmentapproaches60 4.5Conclusions64 References64 Furtherreading66

5.Modularwatertreatmentpracticeincold countries

MOHAMMADHOSSEINKARIMIDARVANJOOGHI, WASEEMRAJA,PRATIKKUMAR,SARAMAGDOULI,AND SATINDERKAURBRAR

5.1Introduction67

5.2Treatmentunitsformodulardrinkingwater system68

5.3Operationalchallengesofmodulartreatmentsystems inacoldcountry76

5.4Conclusion77

Acknowledgments78 References78

6.Introductiontomodularwastewater treatmentsystemanditssignificance

ASHOKKUMARGUPTA,ABHRADEEPMAJUMDER,AND PARTHASARATHIGHOSAL

6.1Introduction81

6.2Wastewateranditscomponents82

6.3Conventionalpracticesandassociatedchallengesin wastewatertreatment88

6.4Prospectofmodularwastewatertreatmentunitsin developingcountries93

6.5Summaryof findings94 References95

7.Phytoremediationasamodularapproachfor greywatertreatment

FERNANDOJORGEMAGALHAESFILHO(CORREA)AND PAULAPAULO(LOUREIRO)

7.1Phytoremediationandconstructedwetlands:a modularapproach107

7.2Greywaterasamaincomponentofdomestic wastewater109

7.3Constructedwetlandsasnature-basedsolutionsfor greywatertreatment109

7.4Casestudy:authorsexperiencewithconstructed wetlandsandgreywater113

7.5Challengesandperspectives125 Acknowledgments126 References126

8.Designandprinciplesofadsorbent-based reactorsformodularwastewatertreatment

8.1Introduction129

8.2Adsorbent-basedreactors130

8.3Flowdirectionandtheextentofadsorption133

8.4Adsorbentsusedinadsorption-basedreactors134

8.5Principleofadsorptionanditsmechanism134

8.6Designofmultifunctionaladsorbents137

8.7Decentralized/modulartreatmentsystems:need, significance,andcasestudies138

8.8Challengesandfutureperspectives142

8.9Conclusion143 References143 Furtherreading148

9.Electrode-basedreactorsinmodular wastewatertreatment

GURUPRASADV.TALEKAR

9.1Introduction149

9.2Electrooxidation150

9.3Electrochemicaldisinfection157

9.4CLASS(closedloopadvancedsanitation system)161

9.5Conclusion167

References167

10.Areviewonadvancedbiologicalsystemsfor modularwastewatertreatmentplants:process, application,andfutureindevelopingcountries

ASHOKKUMARGUPTA,ABHRADEEPMAJUMDER,AND PARTHASARATHIGHOSAL

10.1Introduction171

10.2Modularconstructedwetland-basedtreatment units171

10.3Modularmembranebioreactor basedtreatment units178

10.4Modularmicrobialfuelcell basedtreatment units179

10.5Otheradvancedmodularbiologicalwastewater treatmentunits180

10.6Evaluationoftheperformanceofmodulartreatment units184 References185

11.Alifecycleassessmentperspectiveto conventionalandmodularwastewatertreatment

BIKASHR.TIWARIANDSATINDERKAURBRAR

11.1Introduction187

11.2Lifecyclephases188

11.3LCAofmodularwastewatertreatmentsystems194

11.4Casestudiescentralizedversusdecentralized198 References202

12.Conceptofbioproductrecoveryinrelation tothemodulartreatment

12.1Introduction207

12.2Sludge-to-energyconcept208

12.3Biodieselproduction210

12.4Biogasgeneration212

12.5Biofertilizers216

12.6Conclusion220

Acknowledgment220 References220

13.Introductiontomodulardrinkingwater treatmentsystem

KAIVALYAKULKARNI,WASEEMRAJA,ANDPRATIKKUMAR

13.1Introduction225

13.2Modulardrinkingwatertreatmentsystems: advantages226

13.3Challengesinsettingupmodulardrinkingwater treatmentsystems227

13.4Factorsaffectingselectionofmodulardrinkingwater treatmentsystems227

13.5Designconsiderationsformodulardrinkingwater treatmentsystems228

13.6Conclusion236 References236 Furtherreading237

14.Roleandimportanceof filtrationsystemin modulardrinkingwatertreatmentsystem

KAMALPREETKAURBRAR,HAYATRAZA,SARAMAGDOULI, ANDSATINDERKAURBRAR

14.1Introduction239

14.2CommercializedMDWTS240

14.3Casestudies242

14.4Ultrastructureof filtervesselandimportantstepsto befollowedforefficientfunctioningin MDWTS245

14.5Basicsizingformulaandexampleof filter media247

14.6Roleofpassive filtermediatodesignanovel MDWTS249

14.7Microbiologicalaspectofdrinkingwater256

14.8Conclusion261

References261

Furtherreading264

15.Roleofmembrane filtrationinmodular drinkingwatertreatmentsystem PRITHACHATTERJEE,UBHATALI,ANDPRATIKKUMAR

15.1Introduction267

15.2Typesofmembranesystems268

15.3Modulardesign:amembranetechnologyaspectsfor drinkingwatertreatment270

15.4Stateoftheart:applicationofthemembrane treatmentsystems271

15.5Casestudies276

15.6Conclusions277 Acknowledgment277

References277

Furtherreading279

16.Modulardrinkingwatersystems:chemical treatmentperspective

PRATISHTHAKHURANA,RAMAPULICHARLA,AND SATINDERKAURBRAR

16.1Introduction281

16.2Communitydrinkingwatertreatment282

16.3Thechlorinationprocess283

16.4Chlorinationby-products289

16.5Advancedchemicalmethods290

16.6Challengesandfutureoutlooks298

16.7Conclusion299

References299

17.Modulardrinkingwatertreatmentsystem usingozonationandUV

XUHANSHU,PRATIKKUMAR,ANDSATINDERKAURBRAR

17.1Ozonationdrinkingwatertreatmentsystem (DWTS):amodularapproachprincipleof ozonation303

17.2UV-basedtreatmentofdrinkingwatersources:a modularapproachprincipleofaUVlight307

17.3Currentbenefitandpossiblechallengestoprovide solutionforasmallercommunity311

17.4Casestudyandfutureperspectiveforthemodular watertreatmentsystem314

17.5Conclusion315

References316

18.Applicationofsolarenergyinmodular drinkingwatertreatment

PRATIKKUMAR,AGNIESZKACUPRYS,AND SATINDERKAURBRAR

18.1Introduction319

18.2Solarenergyusedfordesalinationpurpose320

18.3Disinfectionofdrinkingwaterusingsolarenergy: solardisinfection326

18.4Conclusion332

Acknowledgments332 References332

19.Lifecycleassessmentdrinkingwatersupply andtreatmentsystems

VRSANKARCHEELA,UBHATALI,PRATIKKUMAR,AND BRAJESHK.DUBEY

19.1Introduction335

19.2Casestudy338

19.3ReviewofLCAstudiesinwatersector342

19.4Summary348

Acknowledgment348 References348

Index351

Contributors

UbhatAli DepartmentofCivilEngineering,Indian InstituteofTechnologyJammu,Jammuand Kashmir,India

P.ElizabethAlvarez-Chavez ResearchandDevelopmentInstitutefortheAgri-Environment (IRDA),Québec,QC,Canada;Départementdes solsetdegénieagroalimentaire,Facultédessciencesdel’agricultureetdel’alimentation,UniversitéLaval,Quebec,QC,Canada

AntonioAvalos-Ramírez InstitutNationaldela RechercheScientifique-CentreEauTerreEnvironnement,UniversitéduQuébec,Québec,QC, Canada;CentreNationalen Electrochimieeten TechnologiesEnvironnementales,Shawinigan, QC,Canada

L.Barman AgriculturalandFoodEngineering Department,IndianInstituteofTechnology Kharagpur,Kharagpur,WestBengal,India

ChristellBarrales-Fernandez TecnologicoNacional deMéxico/ITSdePerote,Perote,Veracruz,México

G.D.Bhowmick AgriculturalandFoodEngineering Department,IndianInstituteofTechnology Kharagpur,Kharagpur,WestBengal,India

KamalpreetKaurBrar DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto,ON,Canada;Centre TechnologiquedesRésidusIndustrielsenAbitibi Témiscamingue,Rouyn-Noranda,QC,Canada

SatinderKaurBrar DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto,ON,Canada;InstitutNationaldela RechercheScientifique-CentreEauTerreEnvironnement,Québec,QC,Canada

PrithaChatterjee DepartmentofCivilEngineering, IndianInstituteofTechnologyHyderabad,Hyderabad,Telangana,India

M.Chaudhary DepartmentofDesalinationandWaterTreatment,ZuckerbergInstituteforWater Research,Ben-GurionUniversityoftheNegev, Beer-Sheba,Israel

VRSankarCheela EnvironmentalEngineeringand Management,DepartmentofCivilEngineering, IndianInstituteofTechnologyKharagpur,Kharagpur,WestBengal,India

AgnieszkaCuprys NorwegianUniversityofLife Sciences,Ås,Norway

SeyyedMohammadrezaDavoodi Departmentof CivilEngineering,LassondeSchoolofEngineering, YorkUniversity,Toronto,ON,Canada;Institut NationaldelaRechercheScientifique-CentreEau,TerreEnvironnement,Québec,QC,Canada

BrajeshK.Dubey EnvironmentalEngineeringand Management,DepartmentofCivilEngineering, IndianInstituteofTechnologyKharagpur,Kharagpur,WestBengal,India

SébastienFournel Départementdessolsetdegénie agroalimentaire,Facultédessciencesdel’agricultureetdel’alimentation,UniversitéLaval,Quebec, QC,Canada

JavadGhanei DepartmentofCivilEngineering, LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada

ParthaSarathiGhosal SchoolofWaterResources, IndianInstituteofTechnologyKharagpur,Kharagpur,WestBengal,India

StéphaneGodbout ResearchandDevelopment InstitutefortheAgri-Environment(IRDA),Québec, QC,Canada

AshokKumarGupta EnvironmentalEngineering Division,DepartmentofCivilEngineering,Indian InstituteofTechnologyKharagpur,Kharagpur, WestBengal,India

N.Jain IndianInstituteofTechnologyRoorkee, Roorkee,Uttarakhand,India

MohammadHosseinKarimiDarvanjooghi DepartmentofCivilEngineering,LassondeSchoolof Engineering,YorkUniversity,Toronto,ON,Canada

PratishthaKhurana DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto,ON,Canada

KaivalyaKulkarni TheMunicipalInfrastructure Group,CivilEIT-WaterLinear,Toronto,ON, Canada

PratikKumar DepartmentofCivilEngineering,IndianInstituteofTechnologyJammu,Jammuand Kashmir,India

A.DalilaLarios-Martínez ResearchandDevelopmentInstitutefortheAgri-Environment(IRDA), Québec,QC,Canada;TecnologicoNacionalde México/ITSdePerote,Perote,Veracruz,México

FernandoJorgeMagalhaesFilho(Correa) CNPq ResearchProductivityFellow(NationalScientific ResearchCouncil),Brasília,DF,Brazil;PhDinEnvironmentalSanitationandWaterResources(UFMS), CampoGrande,MS,Brazil;SpecialistinProject Management(USP),Piracicaba,SP,Brazil;Postdoctorate(UFMS),BrazilandperiodatAarhusUniversity,DenmarkandTechnologicalUniversityof Pereira,AarhusandColombia,Denmark

SaraMagdouli DepartmentofCivilEngineering, LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada;CentreTechnologiquedes RésidusIndustrielsenAbitibiTémiscamingue, Rouyn-Noranda,QC,Canada

AbhradeepMajumder SchoolofEnvironmental ScienceandEngineering,IndianInstituteofTechnologyKharagpur,Kharagpur,WestBengal,India

CarlosMéndez-Carreto TecnologicoNacionalde México/ITSdePerote,Perote,Veracruz,México

SabaMiri DepartmentofCivilEngineering, LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada;InstitutNationaldela RechercheScienti fique-Centre-EauTerreEnvironnement,Québec,QC,Canada

CarlosSaulOsorio-Gonzalez DepartmentofCivil Engineering,LassondeSchoolofEngineering, YorkUniversity,Toronto,ON,Canada

PaulaPaulo(Loureiro) DomBoscoCatholicUniversity,CampoGrande,MS,Brazil;PhDinEnvironmentalSciences(WUR),DelftandWageningen, Netherlands;SpecialistinResource-OrientedSanitation(SIDA),Stockholm,Sweden;Postdoctorate (WURandTUDelft),DelftandWageningen, Netherlands;FederalUniversityofMatoGrosso doSul(UFMS),CampoGrande,MS,Brazil

RamaPulicharla DepartmentofCivilEngineering, LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada

WaseemRaja DepartmentofCivilEngineering, IndianInstituteofTechnologyJammu,Jammu andKashmir,India

HayatRaza ContinentalCarbonGroup,Inc.,Stoney Creek,ON,Canada

NoraRuiz-Colorado TecnologicoNacionalde México/ITSdePerote,Perote,Veracruz,México

RahulSaini DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada

FabiolaSandoval-Salas TecnologicoNacionalde México/ITSdePerote,Perote,Veracruz,México

JosephSebastian InstitutNationaldelaRecherche Scientifique-CentreEauTerreEnvironnement, UniversitéduQuébec,Québec,QC,Canada

XuhanShu DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada

GuruprasadV.Talekar ResearchAssociate, AppliedEnvironmentalBiotechnologyLaboratory, DepartmentofBiologicalSciences,BirlaInstitute ofTechnologyandScience,KKBirlaGoaCampus, Goa,India

BikashR.Tiwari InstitutNationaldelaRecherche Scientifique-CentreEauTerreEnvironnement, UniversitéduQuébec,Quebec,QC,Canada

Preface

Earlywastewatertreatmentplantsduringthe Romanperiodwereprimaryconduitscarrying dirtywater,whichchangedinthelate19thand early20thcenturywiththeconstructionof centralizedsewagetreatment.Asenvironmental qualitybecameakeypreoccupationinthemid20thcentury,thetreatmentsystemsbecame morecomplexandlargerinsize.Withthepassageoftime,thetechnological,climatic,and demographicchangesstartedaffectingtheperformanceof “centralized” urbanwaterand wastewatertreatmentplants.Hence,ahigher waterqualityanddemandmanagementnecessitatetherequirementofanovelapproachforwatertreatmentplantdesign.Themodularsystems cametotherescueastheyallowa flexible, sustainable,andcost-effectivewatertreatment serviceandoperation.Suchmodularordecentralizedwatertreatmentsystemprovidesportabilityfeatures,suchaslowfootprint,andis amazinglyeffectiveforthedevelopmentofthe infrastructurethatrequireslessengineeringby adaptingtotheexistingspace.

Thepurposeofthisbookistopresentthe modernapproachoftacklingtheproblemof high-qualitywaterandwastewatertreatment demand.Themodularstrategyallowsthe customizedretrofitsolutiontoconstantlychangingparametersoftheurbanwaterthatistobe treated.Theadvancedtreatmentmodulescan beaddedorremoved,dependingonthecurrent demandandrequirements.Theapplicationof

modularwater/wastewatertreatmentcanbe remarkablysuccessfulfornontransient,noncommunitywatersystems,housingdevelopments, daycarecenters,schools,industriesandparks, manufacturingfacilities,aswellasenvironmentalremediation.Hence,thisbookis intendedtokeeptheglobalresearchcommunity, practitioners,industrialists,andyoungwater professionalsuptodatewiththecurrenttrend inthisemerging fieldofmodularwaterand wastewatertreatmentsystems.

Thisbooksummarizestheprinciplesof modulardesign(Chapters1 4),aswellasthe currentdevelopmentsandperspectives regardingtheusageofthemodularapproach inacoldclimate(Chapter5).Itintroducesthe modularapproachinurbanwatertreatment. Thenovelandup-to-datereviewofwastewater (Chapter6 12)anddrinkingwater(Chapter 13 19)treatmentmethodswithincorporated modularstrategyispresented.Thelifecycleassessmentsofwatertreatmentplantsaswellas theperspectivesofmodulartreatmentusage areexplained.

Wegratefullyappreciatethehardworkand patienceofallcontributingauthorsofthis book.Theviewsoropinionsexpressedineach chapterofthisbookarethoseoftheauthors andshouldnotbeinterpretedasopinionsof theiraffiliatedorganizations.

TheEditors

Thispageintentionallyleftblank

1 Introduction

DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto, ON,Canada

1.1Introduction

Thewatersectoraroundtheworldhasfaced manychallengesregardingitsmanagement. However,aspecificemphasishasbeenobserved inurbanwatersystemsincludingdrinkingand wastewatersystems.Waterisoneoftheessential elementsforsustainingqualityofcitylife,livelihoods,andurbaneconomy.Ingeneral,water managementinvolvesmeetingregulatory criteriaforsafedrinkingwater,storage,treatment,wastewaterdischarge,drainage,and collectionofstormwatertodecreaserisksofurban flooding.Thecurrentpoliciestowatermanagementhavewellservedintermsofpublic safety,economicdevelopment,andpublichealth (Melian,2020).However,increasingimpactof climatechange,urbanization,strainedecosystems,andhighenergyrequirementsonwater quantityandqualityarebecomingapparent andmorevisible. Fig.1.1 showsthebene fitsof sustainableandintegratedwatermanagement. Basically,theconceptofsustainablewatermanagementincludestheenvironmental,hydrological,ecological,andsocialintegrityofwater systemsinthepresentandlong-termfuture. However,becauseofthesustainablewatermanagementworkswiththeabovefactors,itis

necessarytoincludemultidisciplinaryobjectives,process,andparticipatoryagentswith theaimtomanage,develop,andimprovethe watersystems(Haasnootetal.,2011).Inthis sense,thesustainablewatermanagementconsidersthedrinkingandtapwaterasafundamentalforthehumanwell-being,while promotingthehealthycommunitiesbycreating theresilientenvironment.

Overthepastdecade,resourcerecoverytechnologiesfromwastewaterhavebeenextensively studiedasapotentialalternative,usedmainlyto helpinresolvingtheproblemofwaterscarcity. However,thecurrentproblemofthistypeof technologiesisthatalarge-scaleimplementation isstilllacking.However,totalkaboutwater managementcanbeahardtopicbecauseofthe wideapplicationofwateranditsdifferencesin specificapplication.Additionally,well-beingof humanitydependsontheavailabilityofdrinkingwater,whichdirectlyrelatedtothefoodproductionandwastewatertreatment (EL-Nwsany etal.,2019).Drinkingwatersuppliesaswellas stormwaterdisposalsystemshavebeena massivechallengeinalltheplaceshighlypopulated( 10millions).Themainconcernssurroundingthissituationarethefast urbanization,whichhaslargelysurpassedmost

oftheusedsystems,butespeciallydeveloping countriesaretheonesthathavesufferedthe mostduetothis (Biswas,2006).

Ontheotherhand,agriculturesectorsrequire atleast70%ofgroundwaterforirrigation. Nevertheless,thispercentagecouldincrease rapidlywiththetimebecauseoftheincreasing populationaswellas fieldirrigationanddistributionlosses(ChartzoulakisandBertaki,2015). Finally,wastewatersystemplaysacriticalrole inwatermanagement.Conventionally,thegoal ofwastewatertreatmentistoprotecttheecologicaluserlifeandecosystemintegrity.Nevertheless,eachofthesystemscanworkaswhole systembutwithdifferentapproachesand severalapplicationsdirectlyorindirectlyobtainedfromeachsystem.Forinstance,stormwaterrecoveredcanbeusedonurban gardeningandcarwashestablishments,among others.

Sofar,themajorresearchdevelopmenthas beenfocusedonwastewatersystemstoremove toxiccompoundsandinabestexploitationand maximumproductionofhighvalue-added products.Furthermore,oneofthemainaimsof wastewatersystemistoremovethepollutants suchasheavymetals,phosphorus,sulfur,nitrogen,orpathogens(Verstraeteetal.,2009).As

mentionedbeforeallwatersystemshave differentcharacteristics,applications,andtechnologies.Inthissense,themodulartreatment conceptcanbeapotentialalternativetoimprove itsef ficiencyfromthepointofviewofapproachabilitytoimprove,replace,update,orchangethe equipmentwithoutchangingtheentiresystem duethefreedomitbringstoeachstageofthe processofthesystem.Forexample,oneofthe mostusedtechnologiesinwastewatertreatment systemsisananaerobicdigestionwherethe microorganismconsumestheorganiccontent fromwastewater.Thistypeofprocesscouldbe agoodexampletouseamodularconcept becauseforinstancewithbaseonwastewater characteristicstwoormoretypesofanaerobic reactorcanbeadaptablefortheentireprocess (VerstraeteandVlaeminck,2011).Theabove factsandstatementsdrivethenecessityto developthesustainabletechnologywitha modularconceptasaresourcetohaveabetter watermanagementaswellasahighrecovery andproductionofvalue-addedcompounds lowenergyrequirementandlowornoimpact onenvironmentwithacircularresource flow thatcancontributetoincreasethesustainable developmentgoals(Guestetal.,2009; Ma etal.,2013).

FIGURE1.1 Illustrationofbenefitsofsustainablewatermanagement.

Thepresentchapterfocusesonthecurrentstatusofurbanwatermanagementincludingstandardsandguidelines.Issuesregarding wastewatertreatmentandsustainabilitysuch asenergyrequirement,nutrientrecovery,water qualitymonitoring,andmodularmodeling havebeendiscussedinthischapter.

1.1.1Urbanwatermanagement:current stateoftheart

Urbanwatermanagementincludesmanaging multipleparameterssuchaswaterstorage,treatment,collection,discharge,industrialef fluents, wastewatertreatment,andstormwatercollection.Ingeneral,urbanwatermanagementrequirestheholisticapproachforperformance assessmentofwatersustainabilitybyincluding themultipleparametersandcriteriaincluding wastewatermanagement,stormwatermanagement,andwaterdemandmanagement. Fig.1.2 representsthedifferentaspectsofurbanwater managementforsustainableuseofwater.It canalsobecharacterizedbyurbanwatercycle, whichincludesthewaterstream flowaround theenvironment.

1.1.1.1Wastewatermanagement

Thehistorybehindofwastewatermanagementisinterestingintermsofallstepsthatare involvedbeforeobtainingthe finalproductthat basicallyistoremovecertaincompoundsthat comefromhumanhygiene,food,pharmaceutical,andindustrialactivities.Furthermore,in additiontotheprevioussourcesinsomecountries,thestormwaterisalsoincludedintothe wastewatersystem.However,theseactions dependonthestructurethateachlocationpossessesthatiscloselyrelatedtothewaterdirectionstheyhold(LofranoandBrown,2010). Overthelastcentury,signi ficantchangeshave beenmadetotheguidelinesandlegislationon wastewatermanagementtofurtherincreasethe pollutioncontrolanddecreasetheimpacton ecosystem.ThesechangesstartwiththeEight ReportcreatedbytheRoyalCommissionon SewageandDisposalin1912,whenforthe first time,theinclusionofbiochemicaloxygendemand(BOD)standardprotocolwasappliedin wastewateref fluents.Afterthat,acascadeof newtechnologies,standardprotocols,and differentsystemsweredeveloped,tested,certified,andpatented.However,allthisdeveloped

FIGURE1.2 Theconceptofurbanwatermanagementforsustainableuseofwaterhasbeenillustrated.

knowledgehasbeenevolvedthroughthetimein differentmannersanddifferentroutesandevery timeeachprocessbegantobemorespeci ficin thedirectionofwastewatercharacteristicsand concerningtotheobtainedproductsasanadded valueoftheentireprocess(BrownandLofrano, 2015;Hellweger,2015;VillarínandMerel, 2020).Currently,anewconcepttohaveabetter exploitationandreliabilityofwastewatertreatmentprocesshasbeenraisedduringthelastdecades.Themainattributethatthemodular systemofferstothewastewatermanagement processandspeciallyinwastewatertreatment plantsisahighindependenceamongallsteps withoutdisturbingtheentireprocess flow.

1.1.1.2Stormwatermanagement

1.1.1.3Waterdemandmanagement

Thewaterdemandinurbanregionshasbeen increasedduetopopulationburstandeconomic activities.Derivedfromthetwoabovesituations,thewaterdemandhasbeenfacedchallengessuchasenoughsourcestoprovide qualitywater,wateravailability,increasedemandfromthe finalusers,aswellasprocessfactorslikehighenergydemand,highoperation, andmaintenancecost.Likewise,anothercritical factorisrelatedtotheenvironmentandmost specificallytoclimatechangebecausethe anthropogenicactivitiesdisruptthewatercycle causingchangesinrainingfrequency,periodicity,aswellastheintensity(Da-pingetal., 2011;Mishraetal.,2020).Sofar,mostofthe developedstudieshavebeenfocusedtogenerate modelsthatincludeenvironmentalandanthropogenicfactors.Additionally,bothfactorsfunctionasasocio-economicalcharacteristicsand waterdemandatthesitewherethemodelhas

Theconstantandgrowingurbanization derivedfromtheimminentgrowthpopulation aroundtheworldhasundesirableeffectsinthe naturalwatercyclebecausethehydrologicalcycleisdisturbedbyartificialpathsmainlyconstructedbyconcretewithlow filtration capacity.Theabovefactaffectsthewaterpermeabilitytothegroundwater,whichhasgivena waytoanewparadigmregardingthetreatment ofthestormwatermanagementprocessduring thelastdecades(Khadkaetal.,2020).Thenew paradigmhasnotbeenfocusedonnaturebasedsolutionssuchasinsitureuse,infiltration, andstorage.Nevertheless,theabovesolutions havebeenaddressedusingdifferent processessuchasgreenroofs,permeableconcrete,bio-retentioncells,orraingardens.All thesetechnologiesarecontemplatedthrough differentapproachessuchaswater-sensitiveurbandesigns(WSUDs),low-impactdevelopment (LID),low-impacturbandesignanddevelopment(LIUDD),integratedurbanwatermanagement(IUWM),orsustainableurbandrainage systems(SUDS),amongothers.Alltheseapproachesaredesignedinaspecificwayandaccordingtothenecessitiesofeachplacearound theworldinwhichtheyareimplemented (Fletcheretal.,2015).Although,theuseofthe technologiesmentionedaboveshowsthree considerablelimitationsinthemomentofits developmentandapplication.Firstly,they cannotbeusedinalltheurbanplaces,for instance,thegreenroofsonlycanbeusedin somebuildingsorhousesthatweredesigned withthispurpose;secondly,mostofthemhave ahighinvestmentcostandmaintenance,and thirdly,theefficacyintermsofwaterrecovery andmanagementisrelativelylow,whichcomplicatesitsuseandapplicationonalargescale. Besides,oncethestormwaterhasbeenrecovered,mostofitisdischargedintotheconventionaldrainagesystem(Saraswatetal.,2016). Sofar,theresearchhasbeenfocusedtodevelop moresuitable,ef ficient,andaffordabletechnologieswithlowinvestmentandmaintenancecosts. Inthissense,themodulartreatmentconceptrepresentsagreatopportunitytocreateapotential processthatcancontributetosolveabovechallengesinthesectorofstormwatermanagement.

beenlimitedlyappliedorwillbeapplied.Nevertheless,thesemodelsdonotconsideradrastic changesinlandscape,landuse,andurbandevelopment,aswellasextremeclimaticeventsthat mayoccurovertime(MoazeniandKhazaei, 2021;Sanchezetal.,2020).Onanotherhand,to facetheoperationalandprocesschallenges,the modularsystemconceptcanbeasuitablealternativetoimprovetheentirewatersupplyprocessthroughafastupdateoftheold technology,easymaintenance,andsubstitution ofsomeequipmentinspeci ficstepsoftheprocess,aswellasofferalternativestoincreasethe watermanagementonspecificapproachessuch asqualitycontrolthatisoneofthemostimportantparameterstoconsider.

Insummary,themanagementseekstoevaluatetheimpactofurbanizationonwatercycles. Itrequiresanunderstandingthenatural,predevelopment,andpostdevelopmentwaterbalance. Similarly,SustainableWaterManagementImprovesTomorrow’sCitiesHealth(SWITCH)is aresearchprogramfundedbyEuropeanUnion (EU)in2006tofacilitatemodifiedconceptsinurbanwatermanagement(Howeetal.,2011).The SWITCHframeworkhasfundedinfourcharacteristics:(i)interactiveinstitutionalactionthatincludesurbanwaterbodiesandwatercycle,(ii) foreseetheeffectofurbanizationthrough learningallianceapproach,(iii)along-termstrategydevelopmentforsustainableurbanwater management,and(iv)anef ficientdevelopment ofstormwater,wastewater,andurbanwater managementsystems.Finally,theframework considersalltheaspectsoftheurbanwatersysteminthecitiesaswellasitsmodificationwith respecttothechangesthatcanhappeninthe futuretime.Likewise,theframeworkmakes andemphasizesontheusedtechnologiesand theirrobustness,includingthesustainability conceptallthetime.Nevertheless,aroundthe world,eachcountryandeachcityhavetheir ownprogramsorcanfollowsomeoftheinternationalprotocolsthatmayvarywidelybetween them.

1.1.2Internationalconventions, guidelines,andagreements

AccordingtotheUnitedNations(UN),committeeonculturalrights,social,andeconomicissuesrighttowaterstatement,basedonArticle11 and12oftheInternationalCovenant;everyone hastherighttogetthehighestattainablestandardofmentalandphysicalhealth.Currently, twointernationalglobalwaterconventionsare active(Belinskijetal.,2020);the firstoneisthe conventionontheuseandprotectionofinternationallakesandtransboundarywatercourses publishedin1992,andthesecondoneisthe conventiononinternationalwatercoursesforits nonnavigationalusepublishedin1997.However,whatevertheinternationalguidelinesorprotocolsareimplemented,theysharethreemain principlesregardingutilization,protection,and sharingthewatercourse. Table1.1 showthe threeprinciplesandtheirmaincharacteristics. However,althoughthewatermanagement guidelinesfollowthethreepreviousprinciples, therearestillseveralchallengesthatneedtobe consideredforthedevelopmentandimplementationofmodelsfortheimprovementofwater managementsystems(drinkingwater,stormwater,andwastewater).Andmentionhow modularsystem/technologieswillhelp(fiveto sixsentences).

1.1.3Tacklingtheproblem:sustainable watertreatment

Thereisnodenyingthefactthatwaterscarcityhasbeenaforemostproblemalloverthe world.Moreover,overpopulation,climate change,pollutionofcoastalregions,andaquifers arecontinuouslyaffectingtheaccessibilitytosufficientqualitywater(Zhouetal.,2020).Ingeneral,toxicwastewaterorsewagemustbe treatedbeforebeingdischargedorreuse.There areseveralpollutantswhichshouldberemoved ortreatedastheyaffectbothnaturalenvironmentandhumanbeings.Thesecompounds

TABLE1.1 Demonstratetheprinciplestouseinternationalwaterways.

Principles

ReasonableandequitableutilizationNo-harmrule(UNECE,2013)Cooperationrule(Belinskijetal.,2020)

Theprinciplestatesthatinternational watercoursemustbedevelopedand utilizedinreasonableandequitable mannertoachievesustainableuseand equalbenefitthrough-outtheplace.In addition,severalotherfactorsshould alsobeconsideredbeforetakingthe decisionsonwaterutilizationsuchas economicandsocialneed,andtheeffect ofwateruseonanotherstateorarea.

Accordingtono-harmruleprinciple, authoritiesshouldtakeappropriateor strictmeasurestopreventtheharmor damagetowatercourses.Forinstance, statecanpassthelegislationtoprevent toharmfulorillegalactivitiesinits territory.

whendischargedinaquaticsystemresultsinincreaseorganicload,whichfurtherleadstoeutrophication.Similarly,hormonaldisruptorsare anothergroupofpollutantsthatposehuge healthrisktoanimalsandhumanssuchbisphenolA,pesticides,andseveralbleachingagents (Alvarez-RuizandPico,2020).Ingeneral,water treatmentmethodsincludeseveraltechniques suchasphysical,biological,andchemical methods.Thesetreatmentsaredesignedinordertoachievedifferentlevelsofcontaminant removal.Brie fly,thephysicaltreatmentinvolves thescreeningtoremovesolids,largeplastics, andgritbysedimentation.Thebiological methodsmainlyremoveheavymetals,organic load,nitrogen,andphosphorusfromthewastewaterandsludgeusingtechnologiessuchas trickling filters,rotatingbiologicalcontactors, anaerobicdigestion,activatedsludgeprocess, aeratedlagoons,andpondstabilization.Finally, thetreatedwatereffluentgoesthrough advancedtreatmentsystemswherepathogens, viruses,andotherbacteriaareremovedbefore dischargingintotheenvironment(OsorioGonzalezetal.,2018).Inthissense,theconcept ofmodularsystemcanbeagoodalternative helpingtotreatthewastewatergeneratedfrom thedifferentsources.Themainadvantageof modularconceptistheindependencethatcan providetoeachsystemaswellasitsspecificity

Theprincipleaimstoincreasethe cooperationbetweentwowatercourse sharingpartiestoachievetheprinciples ofno-harmruleandequitableutilization. Accordingtotherule,statessharingthe internationalwatersmustcooperatefor sovereignequality.Itcanalsoincludethe jointmonitoring,sharinginformationon currentandfutureuses,andalarm procedures.

foreachprocess.Furthermore,themodular treatmenthasthe flexibilitytouseseparatemodulesorsemi-interconnectedsystemsthatcanbe usedasapartialtreatmentinthesameplace wherethewaterfacilitiesareplaced.Additionally,modularsystemoffersawidevarietyof adaptabilitytoobtainseveralby-productssuch asbioenergy,biofertilizer,nutrientrecovery, andmanymore.Further,awidelyanddetailed discussionabouttheapplicationofmodular conceptasapotentialalternativetoimprove thewatermanagementwillbeperformedin thenextchapters.

1.1.3.1Low-gradeenergy

Ithasbeenapproximatedthatglobalenergy demandwouldincreaseby50%from2010to 2040.Hence,itdrivestheneedtodesigntheenergyefficienttreatmentandrecoveryprocess. Thewastewatertreatmentcurrentlyconsumed w4%oftotalenergyconsumptionintheUnited StatesandtheUnitedKingdom(Xuetal.,2015; Ohetal.,2010).Approximately,17.8kJ/gchemicaloxygendemand(COD)ispresentinmunicipalwastewater,whichis fivetimeshigherthan theenergyrequiredfortheactivatedsludgeprocess(Heidrichetal.,2011; Wanetal.,2016). Although,significantamountofCOD-basedenergyisgenerallylostduringmicrobialmetabolism(Frijnsetal.,2013).IntheUnitedStates

andEurope,morethan12plantshavebeenreportedtoachieve >90%ofself-suf ficiencyenergy(Guetal.,2017).Ontheotherhand, methanerecoveryfromanaerobicprocesscould provide30% 50%ofenergyrequiredduring wastewatertreatment(McCartyetal.,2011).In addition,ifrecoveredenergyfromtheprocess isusedinthesameorotherprocesscanbeapotentialalternativetodecreasethecarbon fingerprintorinsomecasesitneutralitycouldbe achieved(Haoetal.,2015).

1.1.3.2Nutrientrecovery

Ingeneral,fractionofphosphorusandnitrogenappliedasafertilizerinagricultureends upinthewastewaterplant(Daigger,2009).It wasestimatedthatfertilizersaccountfor >1% ofgreenhousegasemission,while90%ofthe emissioncomesfromammoniumfertilizerproduction(Sheiketal.,2014).Inaddition,ammonia fertilizerisknowntorequirehighinputenergy duringitsproductionstage,whichthenrequires alargeamountofenergytoundergonitrification anddenitri ficationprocedure.Hence,ammonia recoverywouldbeanoptiontosaveenergy onlyifitisdonewithlowerenergythanitsproductionstage(Daigger,2009).Similarly,therecoveryofphosphorusalsoholdsimportanceas its finiteresource,whichwillsoonbeexhausted. Itgenerallyentersthewastewaterfromindustrialeffluents,detergents,andfecalmatter(Xie etal.,2016).Ifthephosphorusisnotremoved, itcanendupinwaterbodiesandultimately affecttheecologicalintegrity(Cordelletal., 2009).Theseveraltechnologiesareavailablefor nutrientrecoverysuchasbio-electrochemicalrecovery,crystallization,reversibleadsorption, electrodialysis,bio-drying,ammoniastripping, alkalinehumicacidrecovery,andmembrane distillation(Kehreinetal.,2020).However, nutrientrecoveryproceduregenerallyaffected bylowerconcentrationofnutrientspresentin thewastewatereffluent;hence,fewshouldbe consideredthenutrientaccumulationormagnificationbyphysical,chemical,orbiological

means,thereleaseofconcentratednutrientsor theextractionoftheseconcentratednutrients bychemicalorphysicalmethods.Nevertheless, modulartreatmentallowstodevelopthemodel thatcannotonlyremoveexcessofnutrientsuch nitrogen,sulfur,orphosphorusfromthewater butcanalsoreusetheseextractednutrientsto growforesttreesaswellasbiofertilizerstoincreasethecropgrowth.

1.1.3.3Sensingandmonitoring

Watersuchaswetlands,streams,coasts, rivers,andestuariesarethemostimportant sourcesofwaterforlife,whilemostofthem arepollutedinmostofthecountries(Jiang etal.,2020).Hence,sensingandmonitoring wouldallowthepeopletounderstand,improve, andprotecttheaquaticlifeandwaterqualityby developingstandardsandmanagementpractices.Forinstance,waterqualitymonitoring networkisdesignedforprotectingandmanagingthewaterenvironmentbycollectingtheinformationonstatesofwatersystems.

Researchershavemadeimmenseeffortsto furtherimprovethemonitoringnetworksuch asbudgetrequirement,samplingfrequency andduration,siteselection,qualityindicators, andmanymore(Behmeletal.,2016; Shietal., 2018).Inaddition,WorldHealthOrganization (WHO)andenvironmentalprotectionagencies suchasUSEPA,EPA,andEUEPAhavepublishedguidelinesonmonitoringactivitiesand havebeenreviewedelsewhere(Behmeletal., 2016; Looetal.,2012; Watkinson,2000; Zhang etal.,2011).Watermonitoringhasevolved fromlab-scaleanalysistoon-sitemonitoring andin-situsensor-basedmonitoring,thathelps ingreatmannertoobtainahighknowledge “inrealtime”,whichcontributestodevelop andadjustthewaterprocessmanagement.Besides,thebiosensortechnologycontributestoa sustainabledevelopmentmainlyinplaceswhere thewatermanagementhaslimitationsrelatedto infrastructure,thatgenerateahighimpactinto thesociety(Vivianoetal.,2014).Pollutant

sensingandmonitoringhasbeenexpandedfrom conventionalstoichiometricanalysisto spectrum-basedanalysissuchasadsorption, scattering,andopticalreflection.Biosensorsare increasinglybecomingpopularintermsof detectinglowerconcentrationofpollutants suchasheavymetals,toxins,drugs,andpathogenicstrains(Sainietal.,2019). Fig.1.3 representsthepollutantsensingmechanismusing sensors.Themodularconcepthasanenormous potentialtouseinthiscontextduetoaseparate andmobilemodulecanbeplace,transport,or attachatthesameplacewherethewatermanagementorprocessisperformed.

1.1.3.4Modularmodeling

Theconceptofmodularizationiswithabase oftheseparationofcomplexproductionsystems,somethingthatcanbedefinedasa “modularproduction.” Themodularsystem conceptgainedstrengthinthe1980s,withthe concepttouseastrategythatwouldallowthe developmentandimplementationofavariety ofcombinationsofthedifferentproductionmodules(Schilling,2000; Langlois,2002; Hegdeetal., 2003; HellströmandWikström,2005).Currently, theconceptofmodularsystemshasevolved

throughtheinclusionofintrinsicfactorsandin somecasesanthropogenic.Thecurrentframeworkinmodeling,development,andimplementationofproductionprocessesthroughmodular systemshasfactorsbasedontheconceptofsustainability(economic,social,environmental) (Manninaetal.,2019).Inthissense,thedevelopmentandimplementationofthesustainability conceptinmodularsystemshavebeencoupled withtheconstantanddemandingchangein environmentalpoliciesaroundtheworldasa prevailingobjectiveforthesuccessofthese typesystems(Hammadetal.,2019; Pakizer etal.,2020).Likewise,duringtheplanningand designofmodularsystems,notonlythefactors mentionedaboveshouldbeconsidered,because eachsystemneedsadifferentlevelofcustomization,inordertohaveabetteradjusttotherequirementsofthesystemitself.Someofthese factorsarelocalconditions,inwhichtheinstallationofmodularsystemshasbeenaconstant challengetoitssuccessonanindustrialscale. Ontheotherhand,oncethemodularsystem modelhasbeenestablished,theoptimization andstandardizationoftheprocessmustbecarriedoutasasinglesystem.Thiswillallowcost reduction,whichinturnwillincreasethe

FIGURE1.3 Detectionofspecifictypeofpollutantusingsensors.

pro fitabilityandefficiencyofthemodularsystem(Saliuetal.,2020; ChopraandKhanna, 2014).Withtheaimofreducingheterogeneity andincreasingitsfunctionality,strategiessuch asfunctionalmodularizationandmassivecustomizationofmodularsystemshavebeenproposed.Theabovestrategiesarebasedonthe factthatwhendividingacomplexsysteminto moredetailedmodules,itdepends firstly;the producttobeobtainedandsecondly;thepurposeofthemodularsystemitself.Thisismainly duetothefactthat,althoughthemodulesareindependent,theyforma “whole,” whichcanbe calledintermsoftheprocessasan “industrial ecosystem” wherethemainadvantageisthat themodulescanbeoperatedandreplacedby othermoduleswiththesameordifferentfunction(dependingontherequirementsofthecompletesystem)(Benitoetal.,2002; ZhuandRuth, 2013).Anexampleofthistypeofsystemisthe processestoproducebiofuelsorsecondarymetabolites,inthemanagementofindustrialor agriculturalwaste,wheresomemodulesactas rawmaterialsuppliers,pretreatmentunits,and purification,amongothers(Pangetal.,2017; Fenolletal.,2019; Wangetal.,2020).Inthis sense,theestablishmentofthemodulesandtheir complementbetweenthemisachallengingtask duringtheirplanningandstandardization,since whenthistypeofmodularsystemspresentsa weakinterdependence(highindependence fromeachother),whichisbene ficialforthe entiresystemduringtheoptimizationandstandardizationperiod.Therefore,theimplementationanduseofmodularsystemsinproduction, purification,andrecoveryprocessesisan extremelyattractivealternative.Likewise,this modularsystemcanbethebeginningofacombinedsystem,wherethemodularprocesssystemcanbecomeabusinessmodelwithsome minoradjustments,whichleadstothecreation ofindustrialclustersinafastandsustainable route.

1.1.4Conclusion

Themarketofresourcerecoveryfromwastewaterhasbeenincreasedoverthepastyearsto meettheenergyandelementaldemandsofsocieties.Thefocusondevelopingthecircularwater flowhasincreasedalongwiththedevelopmentof resourcerecoveryroutestosatisfyoveralldemand inmostsustainablewaypossible.Severalstandards andconventionarein-effecttoimplementthe controlledandsustainablesharingofwaterways acrosstheworld.Ontheotherhand,developing waystotreatwastewatertoachievethestandards laidbygovernmentbeforeitsreuseareunderconstantresearch.Furthermore,designingthewater monitoringnetworkisanessentialaspectofsustainablewatermanagement.

References

Alvarez-Ruiz,R.,Pico,Y.,2020.Analysisofemergingand relatedpollutantsinaquaticbiota.TrendsinEnvironmentalAnalyticalChemistry25,e00082.

Behmel,S.,etal.,2016.Waterqualitymonitoringstrategies areviewandfutureperspectives.TheScienceoftheTotal Environment571,1312 1329.

Belinskij,A.,etal.,2020.Internationalgovernance.In: Saundry,P.,Ruddell,B.L.(Eds.),TheFood-Energy-Water Nexus.SpringerInternationalPublishing,Cham, pp.153 186.

Benito,J.,etal.,2002.Designandconstructionofamodular pilotplantforthetreatmentofoil-containing wastewaters.Desalination147(1),5 10.

Biswas,A.K.,2006.Watermanagementformajorurban centres.WaterResourcesDevelopment22(2),183 197. https://doi.org/10.1080/07900620600690789

Brown,J.,Lofrano,G.,2015.Overviewofwastewatermanagementthroughtheages.ASCELibrary.

Chartzoulakis,K.,Bertaki,M.,2015.Sustainablewatermanagementinagricultureunderclimatechange.Agriculture andAgriculturalScienceProcedia4,88 98. https:// doi.org/10.1016/j.aaspro.2015.03.011.

Chopra,S.S.,Khanna,V.,2014.Understandingresiliencein industrialsymbiosisnetworks:insightsfromnetwork analysis.JournalofEnvironmentalManagement141, 86 94.

Cordell,D.,Drangert,J.-O.,White,S.,2009.Thestoryofphosphorus:globalfoodsecurityandfoodforthought.Global EnvironmentalChange19(2),292 305.

Daigger,G.T.,2009.Evolvingurbanwaterandresiduals managementparadigms:waterreclamationandreuse, decentralization,andresourcerecovery.WaterEnvironmentResearch81(8),809 823.

Da-ping,X.,Hong-yu,G.,Dan,H.,2011.Discussiononthe demandmanagementofwaterresources.ProcediaEnvironmentalSciences10,1173. https://doi.org/10.1016/ j.proenv.2011.09.187,1173.

EL-Nwsany,R.I.,Maarouf,I.,El-Aal,W.A.,etal.,2019.Water managementasavitalfactorforasustainableschool. AlexandriaEngineeringJournal58,303 313. https:// doi.org/10.1016/j.aej.2018.12.012.

Fenoll,J.,etal.,2019.Implementationofanewmodularfacilitytodetoxifyagro-wastewaterpollutedwithneonicotinoidinsecticidesinfarmsbysolarphotocatalysis. Energy175,722 729.

Fletcher,T.D.,Shuster,W.,Hunt,W.F.,etal.,2015.SUDS, LID,BMPs,WSUDandmore Theevolutionandapplicationofterminologysurroundingurbandrainage.UrbanWaterJournal12(7),525 542. https://doi.org/ 10.1080/1573062X.2014.916314

Frijns,J.,Hofman,J.,Nederlof,M.,2013.Thepotentialof (waste)waterasenergycarrier.EnergyConversionand Management65,357 363.

Gu,Y.,etal.,2017.Energyself-sufficientwastewatertreatmentplants:feasibilitiesandchallenges.EnergyProcedia 105,3741 3751.

Guest,J.S.,etal.,2009.Anewplanninganddesignparadigmto achievesustainableresource recoveryfromwastewater. EnvironmentalScience & Technology43(16),6126 6130. Haasnoot,M.,etal.,2011.Amethodtodevelopsustainable watermanagementstrategiesforanuncertainfuture.SustainableDevelopment19(6),369 381.

Hammad,A.W.A.,etal.,2019.Buildinginformation modelling-basedframeworktocontrastconventional andmodularconstructionmethodsthroughselectedsustainabilityfactors.JournalofCleanerProduction228, 1264 1281.

Hao,X.,Liu,R.,Huang,X.,2015.Evaluationofthepotential foroperatingcarbonneutralWWTPsinChina.Water Research87,424 431.

Hegde,G.,Pullammanappallil,P.,Nayar,C.,2003.Modular ACcoupledhybridpowersystemsfortheemerging GHGmitigationproductsmarket.In:TENCON2003. ConferenceonConvergentTechnologiesforAsia-Pacific Region.

Heidrich,E.S.,Curtis,T.P.,Dolfing,J.,2011.Determinationof theinternalchemicalenergyofwastewater.EnvironmentalScience & Technology45(2),827 832.

Hellström,M.,Wikström,K.,2005.Projectbusinessconcepts basedonmodularity improvedmanoeuvrability throughunstablestructures.InternationalJournalofProjectManagement23(5),392 397.

Hellweger,F.L.,2015.100YearssinceStreeterandPhelps:it istimetoupdatethebiologyinourwaterqualitymodels. EnvironmentalScience & Technology49,6372 6373. https://doi.org/10.1021/acs.est.5b02130

Howe,C.,etal.,2011.SustainableWaterManagementinthe CityoftheFuture:FindingsfromtheSWITCHProject 2006-2011.

Jiang,J.,etal.,2020.Acomprehensivereviewonthedesignand optimizationofsurfacewaterqualitymonitoringnetworks. EnvironmentalModelling & Software132,104792.

Kehrein,P.,etal.,2020.Acriticalreviewofresourcerecovery frommunicipalwastewatertreatmentplants market supplypotentials,technologiesandbottlenecks.EnvironmentalScience:WaterResearch & Technology6(4), 877 910.

Khadka,A.,Kokkonen,T.,Niemi,T.J.,Lahde,E., Sillanpaa,N.,Koivusalo,H.,2020.Towardsnaturalwater cycleinurbanareas:modellingstormwatermanagement designs.UrbanWaterJournal17(7),587 597. https:// doi.org/10.1080/1573062X.2019.1700285

Langlois,R.N.,2002.Modularityintechnologyand organization.JournalofEconomicBehavior & Organization 49(1),19 37.

Lofrano,G.,Brown,J.,2010.Wastewatermanagement throughtheages:ahistoryofmankind.ScienceoftheTotalEnvironment408,5254 5264. https://doi.org/ 10.1016/j.scitotenv.2010.07.062

Loo,S.-L.,etal.,2012.Emergencywatersupply:areviewof potentialtechnologiesandselectioncriteria.Water Research46(10),3125 3151.

Ma,J.,etal.,2013.Organicmatterrecoveryfrommunicipal wastewaterbyusingdynamicmembraneseparation process.ChemicalEngineeringJournal219,190 199.

Mannina,G.,etal.,2019.Decisionsupportsystems(DSS)for wastewatertreatmentplants areviewofthestateofthe art.BioresourceTechnology290,121814.

McCarty,P.L.,Bae,J.,Kim,J.,2011.Domesticwastewatertreatmentasanetenergyproducer canthisbeachieved?EnvironmentalScience & Technology45(17),7100 7106.

Melian,J.A.H.,2020.SustainableWasteWaterTreatment Systems(2018 2019).

Mishra,B.K.,Chakraborty,S.,Kumar,P.,Saraswat,C.,2020. Urbanwatersecurity:backgroundandconcepts. SustainableSolutionsforUrbanWaterSecurity.Springer, USA.

Moazeni,F.,Khazaei,J.,2021.Optimalenergymanagement ofwater-energynetworksviaoptimalplacementof pumps-as-turbinesanddemandresponsethroughwater storagetanks.AppliedEnergy283,116335. https:// doi.org/10.1016/j.apenergy.2020.116335

Oh,S.T.,etal.,2010.Sustainablewastewatertreatment:how mightmicrobialfuelcellscontribute.BiotechnologyAdvances28(6),871 881.

Osorio-Gonzalez,C.S.,Mendez-Carreto,C.,GomezFalcon,N.,Sandoval-Salas,F.,Larios-Martínez,A.D., 2018.TechnologicalDevelopmentsinIndustrialWastewaterManagement.HandbookofEnvironmentalEngineering,1st.McGraw-HillEducation.

Pakizer,K.,Fischer,M.,Lieberherr,E.,2020.Policyinstrumentmixesforoperatingmodulartechnologywithin hybridwatersystems.EnvironmentalScience & Policy 105,120 133.

Pang,H.,etal.,2017.Effectivebiodegradationoforganicmatterandbiogasreuseinanovelintegratedmodularanaerobicsystemforruralwastewatertreatment:apilotcase study.ChemicalEngineeringandProcessing:Process Intensification119,131 139.

Saini,R.,etal.,2019.Chapter13-Advancesinwholecellbasedbiosensorsinenvironmentalmonitoring.In:Kaur Brar,S.,Hegde,K.,Pachapur,V.L.(Eds.),Tools,TechniquesandProtocolsforMonitoringEnvironmental Contaminants.Elsevier,pp.263 284.

Saliu,T.D.,etal.,2020.Preparationandcharacterizationofa decentralizedmodularyellowwaternutrientrecovery system.JournalofEnvironmentalManagement276,111345. Sanchez,G.M.,Terando,A.,Smith,J.W.,García,A.M., Wagner,C.R.,Meentemeyer,R.K.,2020.Forecastingwaterdemandacrossarapidlyurbanizingregion.Science oftheTotalEnvironment730,139050. https://doi.org/ 10.1016/j.scitotenv.2020.139050

Saraswat,C.,Kumar,P.,Mishra,B.K.,2016.Assessmentof stormwaterrunoffmanagementpracticesandgovernanceunderclimatechangeandurbanization:ananalysis ofBangkok,HanoiandTokyo.EnvironmentalScience & Policy64,101 117. https://doi.org/10.1016/j.env sci.2016.06.018

Schilling,M.A.,2000.Towardageneralmodularsystemstheoryanditsapplicationtointerfirmproductmodularity. AcademyofManagementReview25(2),312 334.

Sheik,A.R.,Muller,E.E.L.,Wilmes,P.,2014.Ahundredyears ofactivatedsludge:timeforarethink.FrontiersinMicrobiology5,47

Shi,B.,etal.,2018.Quantitativedesignofemergencymonitoringnetworkforriverchemicalspillsbasedondiscrete entropytheory.WaterResearch134,140 152.

UNECE,2013.U.N.E.C.F.E,Guide.In:toImplementingthe WaterConvention.ECE/MP.WAT/39,UnitedNations. Verstraete,W.,Vlaeminck,S.E.,2011.ZeroWasteWater: short-cyclingofwastewaterresourcesforsustainablecitiesofthefuture.TheInternationalJournalofSustainable DevelopmentandWorldEcology18(3),253 264. Verstraete,W.,VandeCaveye,P.,Diamantis,V.,2009. Maximumuseofresourcespresentindomestic “used water”.BioresourceTechnology100(23),5537 5545.

Villarín,M.C.,Merel,S.,2020.Paradigmshiftsandcurrent challengesinwastewatermanagement.JournalofHazardousMaterials390,122139. https://doi.org/10.1016/ j.jhazmat.2020.122139.

Viviano,G.,etal.,2014.Surrogatemeasuresforproviding highfrequencyestimatesoftotalphosphorus concentrationsinurbanwatersheds.WaterResearch64, 265 277.

Wan,J.,etal.,2016.CODcapture:afeasibleoptiontowards energyself-sufficientdomesticwastewatertreatment.ScientificReports6(1),25054.

Wang,Y.,etal.,2020.Amodularvariable-processtreatment systemforoperationliquidwaste:acasestudy.Journalof WaterProcessEngineering35,101221.

Watkinson,C.J.,2000.Oilspillpreventionandresponseinitiativesinthegreatbarrierreef.SpillScience & TechnologyBulletin6(1),31 44.

Xie,M.,etal.,2016.Membrane-basedprocessesforwastewaternutrientrecovery:technology,challenges,and futuredirection.WaterResearch89,210 221.

Xu,J.,etal.,2015.Occurrenceofantibioticsandantibiotic resistancegenesinasewagetreatmentplantandits effluent-receivingriver.Chemosphere119,1379 1385.

Zhang,X.-j.,etal.,2011.EmergencyDrinkingWaterTreatmentduringSourceWaterPollutionAccidentsinChina: OriginAnalysis,FrameworkandTechnologies.ACS Publications.

Zhou,Y.,etal.,2020.Eutrophicationcontrolstrategiesfor highlyanthropogenicinfluencedcoastalwaters.TheScienceoftheTotalEnvironment705,135760.

Zhu,J.,Ruth,M.,2013.Exploringtheresilienceofindustrial ecosystems.JournalofEnvironmentalManagement122, 65 75.

Thispageintentionallyleftblank

Characteristicofwastewateranddrinking watertreatment

SabaMiri1,2,JavadGhanei1,SatinderKaurBrar1,2

1DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto,ON, Canada; 2InstitutNationaldelaRechercheScientifi que-Centre-EauTerreEnvironnement,Quebec, QC,Canada

2.1Introduction

Inthelastcentury,understandingandknowledgeoftherelationshipbetweenwater/wastewatertreatmentandpublichealthhave increased,sohastheimpetusforinnovationof newtreatmentstechnologies.Duetoincreasing urbanizationandnewstringentregulations,the existingprocessesshouldbemodified,andinnovativetechnologiesareaninevitableneedfor achievingenhancedremovalofpollutantsfrom wastewateranddrinkingwater.Worldwide, 1.8millionchildrendiefromdiarrheaevery yearduetowatercontamination(Supplyetal., 2015),leadingtoanurgentneedtoprovideefficientandaffordablewatertreatmentindevelopingcountries.Waterandwastewater facilitiesareoftennonexistentinthesecountries, orcurrenttechnologiescannotaddresswater qualityorquantitydemand.Modulartreatment systemsallow flexibilityinresponsetochanging qualityorquantitydemands.Also,itprovides theplatformforavailingadecentralizedtreatmentsystemthatcanbelinkedwiththecentral

pipelinesforbettermanagementofthewater system.Thechangesinwaterqualitycanbe attributedtoemergingcontaminantssuchas personalcareproducts,pharmaceuticals,andviruses.Whilequantitychangesarerelatedto rapidpopulationgrowth.

Thereareseveraltechnologiesandfacilities usedforthetreatmentofwastewateranddrinkingwater.However,thewastewatereffluent cannotbeusedasdrinkingwaterandneeds moretreatment.Thewastewaterqualitycan affectthenecessaryprocessofdrinkingwater treatment.Mostoften,treatmentinfrastructure forwastewateranddrinkingwaterhassome commonstepsandhasarelationtotheurban watercycle. Fig.2.1 showsanoverviewofprocessesusedinplantstotreatwaterintwoforms: wastewateranddrinkingwater.Sourceseparationandquality-separationsewagetreatment andresourcerecoveryareessentialtrendsof wastewateranddrinkingwatertreatment. Modularpackagescanbedesignedforwastewatersource-separationtreatmentandcanbe appliedinresourcerecoveryforremotecamps

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.