Contents
Contributorsix
Prefacexiii
1.Introduction
RAHULSAINI,CARLOSSAULOSORIO-GONZALEZ,AND SATINDERKAURBRAR
1.1Introduction1 References9
2.Characteristicofwastewateranddrinking watertreatment
SABAMIRI,JAVADGHANEI,ANDSATINDERKAURBRAR
2.1Introduction13
2.2Wastewatertreatmentinfrastructure14
2.3Macropollutantsinwaterandsludge19
2.4Micropollutantsinwaterandwastewater21
2.5Waterqualityparameters26
2.6Bottlenecksandlimitationsofcentralizeddrinking waterandwastewatertreatmentfacilities29
2.7Conclusion31 References31
3.Perspectivesontheuseofmodularsystemsfor organicmicropollutantsremoval
SEYYEDMOHAMMADREZADAVOODI, MOHAMMADHOSSEINKARIMIDARVANJOOGHI,AND SATINDERKAURBRAR
3.1Introductiontochallengesrelatedtoremovalof organicmicropollutantsandpossiblesolutions33
3.2Organicmicropollutantsremoval:currentstateof art40
3.3Source-to-tap:Wheretoapplythenew modules?47
3.4Conclusion49
Acknowledgments49 References49
4.Modulartreatmentapproachfordrinking waterandwastewater:introductiontoa sustainableapproachtodecentralizedtreatment systems
A.DALILALARIOS-MARTÍNEZ, CHRISTELLBARRALES-FERNANDEZ, P.ELIZABETHALVAREZ-CHAVEZ,CARLOSMÉNDEZ-CARRETO, FABIOLASANDOVAL-SALAS,NORARUIZ-COLORADO, STÉPHANEGODBOUT,SÉBASTIENFOURNEL,AND ANTONIOAVALOS-RAMÍREZ
4.1Introduction55
4.2Wastewatertreatment57
4.3Wastewatertreatmentoperations57
4.4Modularwastewatertreatmentapproaches60 4.5Conclusions64 References64 Furtherreading66
5.Modularwatertreatmentpracticeincold countries
MOHAMMADHOSSEINKARIMIDARVANJOOGHI, WASEEMRAJA,PRATIKKUMAR,SARAMAGDOULI,AND SATINDERKAURBRAR
5.1Introduction67
5.2Treatmentunitsformodulardrinkingwater system68
5.3Operationalchallengesofmodulartreatmentsystems inacoldcountry76
5.4Conclusion77
Acknowledgments78 References78
6.Introductiontomodularwastewater treatmentsystemanditssignificance
ASHOKKUMARGUPTA,ABHRADEEPMAJUMDER,AND PARTHASARATHIGHOSAL
6.1Introduction81
6.2Wastewateranditscomponents82
6.3Conventionalpracticesandassociatedchallengesin wastewatertreatment88
6.4Prospectofmodularwastewatertreatmentunitsin developingcountries93
6.5Summaryof findings94 References95
7.Phytoremediationasamodularapproachfor greywatertreatment
FERNANDOJORGEMAGALHAESFILHO(CORREA)AND PAULAPAULO(LOUREIRO)
7.1Phytoremediationandconstructedwetlands:a modularapproach107
7.2Greywaterasamaincomponentofdomestic wastewater109
7.3Constructedwetlandsasnature-basedsolutionsfor greywatertreatment109
7.4Casestudy:authorsexperiencewithconstructed wetlandsandgreywater113
7.5Challengesandperspectives125 Acknowledgments126 References126
8.Designandprinciplesofadsorbent-based reactorsformodularwastewatertreatment
M.CHAUDHARY,N.JAIN,L.BARMAN,ANDG.D.BHOWMICK
8.1Introduction129
8.2Adsorbent-basedreactors130
8.3Flowdirectionandtheextentofadsorption133
8.4Adsorbentsusedinadsorption-basedreactors134
8.5Principleofadsorptionanditsmechanism134
8.6Designofmultifunctionaladsorbents137
8.7Decentralized/modulartreatmentsystems:need, significance,andcasestudies138
8.8Challengesandfutureperspectives142
8.9Conclusion143 References143 Furtherreading148
9.Electrode-basedreactorsinmodular wastewatertreatment
GURUPRASADV.TALEKAR
9.1Introduction149
9.2Electrooxidation150
9.3Electrochemicaldisinfection157
9.4CLASS(closedloopadvancedsanitation system)161
9.5Conclusion167
References167
10.Areviewonadvancedbiologicalsystemsfor modularwastewatertreatmentplants:process, application,andfutureindevelopingcountries
ASHOKKUMARGUPTA,ABHRADEEPMAJUMDER,AND PARTHASARATHIGHOSAL
10.1Introduction171
10.2Modularconstructedwetland-basedtreatment units171
10.3Modularmembranebioreactor basedtreatment units178
10.4Modularmicrobialfuelcell basedtreatment units179
10.5Otheradvancedmodularbiologicalwastewater treatmentunits180
10.6Evaluationoftheperformanceofmodulartreatment units184 References185
11.Alifecycleassessmentperspectiveto conventionalandmodularwastewatertreatment
BIKASHR.TIWARIANDSATINDERKAURBRAR
11.1Introduction187
11.2Lifecyclephases188
11.3LCAofmodularwastewatertreatmentsystems194
11.4Casestudiescentralizedversusdecentralized198 References202
12.Conceptofbioproductrecoveryinrelation tothemodulartreatment
CARLOSSAULOSORIO-GONZALEZ,JOSEPHSEBASTIAN, SATINDERKAURBRAR,ANDANTONIOAVALOS-RAMÍREZ
12.1Introduction207
12.2Sludge-to-energyconcept208
12.3Biodieselproduction210
12.4Biogasgeneration212
12.5Biofertilizers216
12.6Conclusion220
Acknowledgment220 References220
13.Introductiontomodulardrinkingwater treatmentsystem
KAIVALYAKULKARNI,WASEEMRAJA,ANDPRATIKKUMAR
13.1Introduction225
13.2Modulardrinkingwatertreatmentsystems: advantages226
13.3Challengesinsettingupmodulardrinkingwater treatmentsystems227
13.4Factorsaffectingselectionofmodulardrinkingwater treatmentsystems227
13.5Designconsiderationsformodulardrinkingwater treatmentsystems228
13.6Conclusion236 References236 Furtherreading237
14.Roleandimportanceof filtrationsystemin modulardrinkingwatertreatmentsystem
KAMALPREETKAURBRAR,HAYATRAZA,SARAMAGDOULI, ANDSATINDERKAURBRAR
14.1Introduction239
14.2CommercializedMDWTS240
14.3Casestudies242
14.4Ultrastructureof filtervesselandimportantstepsto befollowedforefficientfunctioningin MDWTS245
14.5Basicsizingformulaandexampleof filter media247
14.6Roleofpassive filtermediatodesignanovel MDWTS249
14.7Microbiologicalaspectofdrinkingwater256
14.8Conclusion261
References261
Furtherreading264
15.Roleofmembrane filtrationinmodular drinkingwatertreatmentsystem PRITHACHATTERJEE,UBHATALI,ANDPRATIKKUMAR
15.1Introduction267
15.2Typesofmembranesystems268
15.3Modulardesign:amembranetechnologyaspectsfor drinkingwatertreatment270
15.4Stateoftheart:applicationofthemembrane treatmentsystems271
15.5Casestudies276
15.6Conclusions277 Acknowledgment277
References277
Furtherreading279
16.Modulardrinkingwatersystems:chemical treatmentperspective
PRATISHTHAKHURANA,RAMAPULICHARLA,AND SATINDERKAURBRAR
16.1Introduction281
16.2Communitydrinkingwatertreatment282
16.3Thechlorinationprocess283
16.4Chlorinationby-products289
16.5Advancedchemicalmethods290
16.6Challengesandfutureoutlooks298
16.7Conclusion299
References299
17.Modulardrinkingwatertreatmentsystem usingozonationandUV
XUHANSHU,PRATIKKUMAR,ANDSATINDERKAURBRAR
17.1Ozonationdrinkingwatertreatmentsystem (DWTS):amodularapproachprincipleof ozonation303
17.2UV-basedtreatmentofdrinkingwatersources:a modularapproachprincipleofaUVlight307
17.3Currentbenefitandpossiblechallengestoprovide solutionforasmallercommunity311
17.4Casestudyandfutureperspectiveforthemodular watertreatmentsystem314
17.5Conclusion315
References316
18.Applicationofsolarenergyinmodular drinkingwatertreatment
PRATIKKUMAR,AGNIESZKACUPRYS,AND SATINDERKAURBRAR
18.1Introduction319
18.2Solarenergyusedfordesalinationpurpose320
18.3Disinfectionofdrinkingwaterusingsolarenergy: solardisinfection326
18.4Conclusion332
Acknowledgments332 References332
19.Lifecycleassessmentdrinkingwatersupply andtreatmentsystems
VRSANKARCHEELA,UBHATALI,PRATIKKUMAR,AND BRAJESHK.DUBEY
19.1Introduction335
19.2Casestudy338
19.3ReviewofLCAstudiesinwatersector342
19.4Summary348
Acknowledgment348 References348
Index351
Contributors
UbhatAli DepartmentofCivilEngineering,Indian InstituteofTechnologyJammu,Jammuand Kashmir,India
P.ElizabethAlvarez-Chavez ResearchandDevelopmentInstitutefortheAgri-Environment (IRDA),Québec,QC,Canada;Départementdes solsetdegénieagroalimentaire,Facultédessciencesdel’agricultureetdel’alimentation,UniversitéLaval,Quebec,QC,Canada
AntonioAvalos-Ramírez InstitutNationaldela RechercheScientifique-CentreEauTerreEnvironnement,UniversitéduQuébec,Québec,QC, Canada;CentreNationalen Electrochimieeten TechnologiesEnvironnementales,Shawinigan, QC,Canada
L.Barman AgriculturalandFoodEngineering Department,IndianInstituteofTechnology Kharagpur,Kharagpur,WestBengal,India
ChristellBarrales-Fernandez TecnologicoNacional deMéxico/ITSdePerote,Perote,Veracruz,México
G.D.Bhowmick AgriculturalandFoodEngineering Department,IndianInstituteofTechnology Kharagpur,Kharagpur,WestBengal,India
KamalpreetKaurBrar DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto,ON,Canada;Centre TechnologiquedesRésidusIndustrielsenAbitibi Témiscamingue,Rouyn-Noranda,QC,Canada
SatinderKaurBrar DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto,ON,Canada;InstitutNationaldela RechercheScientifique-CentreEauTerreEnvironnement,Québec,QC,Canada
PrithaChatterjee DepartmentofCivilEngineering, IndianInstituteofTechnologyHyderabad,Hyderabad,Telangana,India
M.Chaudhary DepartmentofDesalinationandWaterTreatment,ZuckerbergInstituteforWater Research,Ben-GurionUniversityoftheNegev, Beer-Sheba,Israel
VRSankarCheela EnvironmentalEngineeringand Management,DepartmentofCivilEngineering, IndianInstituteofTechnologyKharagpur,Kharagpur,WestBengal,India
AgnieszkaCuprys NorwegianUniversityofLife Sciences,Ås,Norway
SeyyedMohammadrezaDavoodi Departmentof CivilEngineering,LassondeSchoolofEngineering, YorkUniversity,Toronto,ON,Canada;Institut NationaldelaRechercheScientifique-CentreEau,TerreEnvironnement,Québec,QC,Canada
BrajeshK.Dubey EnvironmentalEngineeringand Management,DepartmentofCivilEngineering, IndianInstituteofTechnologyKharagpur,Kharagpur,WestBengal,India
SébastienFournel Départementdessolsetdegénie agroalimentaire,Facultédessciencesdel’agricultureetdel’alimentation,UniversitéLaval,Quebec, QC,Canada
JavadGhanei DepartmentofCivilEngineering, LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada
ParthaSarathiGhosal SchoolofWaterResources, IndianInstituteofTechnologyKharagpur,Kharagpur,WestBengal,India
StéphaneGodbout ResearchandDevelopment InstitutefortheAgri-Environment(IRDA),Québec, QC,Canada
AshokKumarGupta EnvironmentalEngineering Division,DepartmentofCivilEngineering,Indian InstituteofTechnologyKharagpur,Kharagpur, WestBengal,India
N.Jain IndianInstituteofTechnologyRoorkee, Roorkee,Uttarakhand,India
MohammadHosseinKarimiDarvanjooghi DepartmentofCivilEngineering,LassondeSchoolof Engineering,YorkUniversity,Toronto,ON,Canada
PratishthaKhurana DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto,ON,Canada
KaivalyaKulkarni TheMunicipalInfrastructure Group,CivilEIT-WaterLinear,Toronto,ON, Canada
PratikKumar DepartmentofCivilEngineering,IndianInstituteofTechnologyJammu,Jammuand Kashmir,India
A.DalilaLarios-Martínez ResearchandDevelopmentInstitutefortheAgri-Environment(IRDA), Québec,QC,Canada;TecnologicoNacionalde México/ITSdePerote,Perote,Veracruz,México
FernandoJorgeMagalhaesFilho(Correa) CNPq ResearchProductivityFellow(NationalScientific ResearchCouncil),Brasília,DF,Brazil;PhDinEnvironmentalSanitationandWaterResources(UFMS), CampoGrande,MS,Brazil;SpecialistinProject Management(USP),Piracicaba,SP,Brazil;Postdoctorate(UFMS),BrazilandperiodatAarhusUniversity,DenmarkandTechnologicalUniversityof Pereira,AarhusandColombia,Denmark
SaraMagdouli DepartmentofCivilEngineering, LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada;CentreTechnologiquedes RésidusIndustrielsenAbitibiTémiscamingue, Rouyn-Noranda,QC,Canada
AbhradeepMajumder SchoolofEnvironmental ScienceandEngineering,IndianInstituteofTechnologyKharagpur,Kharagpur,WestBengal,India
CarlosMéndez-Carreto TecnologicoNacionalde México/ITSdePerote,Perote,Veracruz,México
SabaMiri DepartmentofCivilEngineering, LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada;InstitutNationaldela RechercheScienti fique-Centre-EauTerreEnvironnement,Québec,QC,Canada
CarlosSaulOsorio-Gonzalez DepartmentofCivil Engineering,LassondeSchoolofEngineering, YorkUniversity,Toronto,ON,Canada
PaulaPaulo(Loureiro) DomBoscoCatholicUniversity,CampoGrande,MS,Brazil;PhDinEnvironmentalSciences(WUR),DelftandWageningen, Netherlands;SpecialistinResource-OrientedSanitation(SIDA),Stockholm,Sweden;Postdoctorate (WURandTUDelft),DelftandWageningen, Netherlands;FederalUniversityofMatoGrosso doSul(UFMS),CampoGrande,MS,Brazil
RamaPulicharla DepartmentofCivilEngineering, LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada
WaseemRaja DepartmentofCivilEngineering, IndianInstituteofTechnologyJammu,Jammu andKashmir,India
HayatRaza ContinentalCarbonGroup,Inc.,Stoney Creek,ON,Canada
NoraRuiz-Colorado TecnologicoNacionalde México/ITSdePerote,Perote,Veracruz,México
RahulSaini DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada
FabiolaSandoval-Salas TecnologicoNacionalde México/ITSdePerote,Perote,Veracruz,México
JosephSebastian InstitutNationaldelaRecherche Scientifique-CentreEauTerreEnvironnement, UniversitéduQuébec,Québec,QC,Canada
XuhanShu DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity, Toronto,ON,Canada
GuruprasadV.Talekar ResearchAssociate, AppliedEnvironmentalBiotechnologyLaboratory, DepartmentofBiologicalSciences,BirlaInstitute ofTechnologyandScience,KKBirlaGoaCampus, Goa,India
BikashR.Tiwari InstitutNationaldelaRecherche Scientifique-CentreEauTerreEnvironnement, UniversitéduQuébec,Quebec,QC,Canada
1 Introduction
RahulSaini,CarlosSaulOsorio-Gonzalez,SatinderKaurBrar
DepartmentofCivilEngineering,LassondeSchoolofEngineering,YorkUniversity,Toronto, ON,Canada
1.1Introduction
Thewatersectoraroundtheworldhasfaced manychallengesregardingitsmanagement. However,aspecificemphasishasbeenobserved inurbanwatersystemsincludingdrinkingand wastewatersystems.Waterisoneoftheessential elementsforsustainingqualityofcitylife,livelihoods,andurbaneconomy.Ingeneral,water managementinvolvesmeetingregulatory criteriaforsafedrinkingwater,storage,treatment,wastewaterdischarge,drainage,and collectionofstormwatertodecreaserisksofurban flooding.Thecurrentpoliciestowatermanagementhavewellservedintermsofpublic safety,economicdevelopment,andpublichealth (Melian,2020).However,increasingimpactof climatechange,urbanization,strainedecosystems,andhighenergyrequirementsonwater quantityandqualityarebecomingapparent andmorevisible. Fig.1.1 showsthebene fitsof sustainableandintegratedwatermanagement. Basically,theconceptofsustainablewatermanagementincludestheenvironmental,hydrological,ecological,andsocialintegrityofwater systemsinthepresentandlong-termfuture. However,becauseofthesustainablewatermanagementworkswiththeabovefactors,itis
necessarytoincludemultidisciplinaryobjectives,process,andparticipatoryagentswith theaimtomanage,develop,andimprovethe watersystems(Haasnootetal.,2011).Inthis sense,thesustainablewatermanagementconsidersthedrinkingandtapwaterasafundamentalforthehumanwell-being,while promotingthehealthycommunitiesbycreating theresilientenvironment.
Overthepastdecade,resourcerecoverytechnologiesfromwastewaterhavebeenextensively studiedasapotentialalternative,usedmainlyto helpinresolvingtheproblemofwaterscarcity. However,thecurrentproblemofthistypeof technologiesisthatalarge-scaleimplementation isstilllacking.However,totalkaboutwater managementcanbeahardtopicbecauseofthe wideapplicationofwateranditsdifferencesin specificapplication.Additionally,well-beingof humanitydependsontheavailabilityofdrinkingwater,whichdirectlyrelatedtothefoodproductionandwastewatertreatment (EL-Nwsany etal.,2019).Drinkingwatersuppliesaswellas stormwaterdisposalsystemshavebeena massivechallengeinalltheplaceshighlypopulated( 10millions).Themainconcernssurroundingthissituationarethefast urbanization,whichhaslargelysurpassedmost
oftheusedsystems,butespeciallydeveloping countriesaretheonesthathavesufferedthe mostduetothis (Biswas,2006).
Ontheotherhand,agriculturesectorsrequire atleast70%ofgroundwaterforirrigation. Nevertheless,thispercentagecouldincrease rapidlywiththetimebecauseoftheincreasing populationaswellas fieldirrigationanddistributionlosses(ChartzoulakisandBertaki,2015). Finally,wastewatersystemplaysacriticalrole inwatermanagement.Conventionally,thegoal ofwastewatertreatmentistoprotecttheecologicaluserlifeandecosystemintegrity.Nevertheless,eachofthesystemscanworkaswhole systembutwithdifferentapproachesand severalapplicationsdirectlyorindirectlyobtainedfromeachsystem.Forinstance,stormwaterrecoveredcanbeusedonurban gardeningandcarwashestablishments,among others.
Sofar,themajorresearchdevelopmenthas beenfocusedonwastewatersystemstoremove toxiccompoundsandinabestexploitationand maximumproductionofhighvalue-added products.Furthermore,oneofthemainaimsof wastewatersystemistoremovethepollutants suchasheavymetals,phosphorus,sulfur,nitrogen,orpathogens(Verstraeteetal.,2009).As
mentionedbeforeallwatersystemshave differentcharacteristics,applications,andtechnologies.Inthissense,themodulartreatment conceptcanbeapotentialalternativetoimprove itsef ficiencyfromthepointofviewofapproachabilitytoimprove,replace,update,orchangethe equipmentwithoutchangingtheentiresystem duethefreedomitbringstoeachstageofthe processofthesystem.Forexample,oneofthe mostusedtechnologiesinwastewatertreatment systemsisananaerobicdigestionwherethe microorganismconsumestheorganiccontent fromwastewater.Thistypeofprocesscouldbe agoodexampletouseamodularconcept becauseforinstancewithbaseonwastewater characteristicstwoormoretypesofanaerobic reactorcanbeadaptablefortheentireprocess (VerstraeteandVlaeminck,2011).Theabove factsandstatementsdrivethenecessityto developthesustainabletechnologywitha modularconceptasaresourcetohaveabetter watermanagementaswellasahighrecovery andproductionofvalue-addedcompounds lowenergyrequirementandlowornoimpact onenvironmentwithacircularresource flow thatcancontributetoincreasethesustainable developmentgoals(Guestetal.,2009; Ma etal.,2013).
FIGURE1.1 Illustrationofbenefitsofsustainablewatermanagement.
Thepresentchapterfocusesonthecurrentstatusofurbanwatermanagementincludingstandardsandguidelines.Issuesregarding wastewatertreatmentandsustainabilitysuch asenergyrequirement,nutrientrecovery,water qualitymonitoring,andmodularmodeling havebeendiscussedinthischapter.
1.1.1Urbanwatermanagement:current stateoftheart
Urbanwatermanagementincludesmanaging multipleparameterssuchaswaterstorage,treatment,collection,discharge,industrialef fluents, wastewatertreatment,andstormwatercollection.Ingeneral,urbanwatermanagementrequirestheholisticapproachforperformance assessmentofwatersustainabilitybyincluding themultipleparametersandcriteriaincluding wastewatermanagement,stormwatermanagement,andwaterdemandmanagement. Fig.1.2 representsthedifferentaspectsofurbanwater managementforsustainableuseofwater.It canalsobecharacterizedbyurbanwatercycle, whichincludesthewaterstream flowaround theenvironment.
1.1.1.1Wastewatermanagement
Thehistorybehindofwastewatermanagementisinterestingintermsofallstepsthatare involvedbeforeobtainingthe finalproductthat basicallyistoremovecertaincompoundsthat comefromhumanhygiene,food,pharmaceutical,andindustrialactivities.Furthermore,in additiontotheprevioussourcesinsomecountries,thestormwaterisalsoincludedintothe wastewatersystem.However,theseactions dependonthestructurethateachlocationpossessesthatiscloselyrelatedtothewaterdirectionstheyhold(LofranoandBrown,2010). Overthelastcentury,signi ficantchangeshave beenmadetotheguidelinesandlegislationon wastewatermanagementtofurtherincreasethe pollutioncontrolanddecreasetheimpacton ecosystem.ThesechangesstartwiththeEight ReportcreatedbytheRoyalCommissionon SewageandDisposalin1912,whenforthe first time,theinclusionofbiochemicaloxygendemand(BOD)standardprotocolwasappliedin wastewateref fluents.Afterthat,acascadeof newtechnologies,standardprotocols,and differentsystemsweredeveloped,tested,certified,andpatented.However,allthisdeveloped

FIGURE1.2 Theconceptofurbanwatermanagementforsustainableuseofwaterhasbeenillustrated.
knowledgehasbeenevolvedthroughthetimein differentmannersanddifferentroutesandevery timeeachprocessbegantobemorespeci ficin thedirectionofwastewatercharacteristicsand concerningtotheobtainedproductsasanadded valueoftheentireprocess(BrownandLofrano, 2015;Hellweger,2015;VillarínandMerel, 2020).Currently,anewconcepttohaveabetter exploitationandreliabilityofwastewatertreatmentprocesshasbeenraisedduringthelastdecades.Themainattributethatthemodular systemofferstothewastewatermanagement processandspeciallyinwastewatertreatment plantsisahighindependenceamongallsteps withoutdisturbingtheentireprocess flow.
1.1.1.2Stormwatermanagement
1.1.1.3Waterdemandmanagement
Thewaterdemandinurbanregionshasbeen increasedduetopopulationburstandeconomic activities.Derivedfromthetwoabovesituations,thewaterdemandhasbeenfacedchallengessuchasenoughsourcestoprovide qualitywater,wateravailability,increasedemandfromthe finalusers,aswellasprocessfactorslikehighenergydemand,highoperation, andmaintenancecost.Likewise,anothercritical factorisrelatedtotheenvironmentandmost specificallytoclimatechangebecausethe anthropogenicactivitiesdisruptthewatercycle causingchangesinrainingfrequency,periodicity,aswellastheintensity(Da-pingetal., 2011;Mishraetal.,2020).Sofar,mostofthe developedstudieshavebeenfocusedtogenerate modelsthatincludeenvironmentalandanthropogenicfactors.Additionally,bothfactorsfunctionasasocio-economicalcharacteristicsand waterdemandatthesitewherethemodelhas
Theconstantandgrowingurbanization derivedfromtheimminentgrowthpopulation aroundtheworldhasundesirableeffectsinthe naturalwatercyclebecausethehydrologicalcycleisdisturbedbyartificialpathsmainlyconstructedbyconcretewithlow filtration capacity.Theabovefactaffectsthewaterpermeabilitytothegroundwater,whichhasgivena waytoanewparadigmregardingthetreatment ofthestormwatermanagementprocessduring thelastdecades(Khadkaetal.,2020).Thenew paradigmhasnotbeenfocusedonnaturebasedsolutionssuchasinsitureuse,infiltration, andstorage.Nevertheless,theabovesolutions havebeenaddressedusingdifferent processessuchasgreenroofs,permeableconcrete,bio-retentioncells,orraingardens.All thesetechnologiesarecontemplatedthrough differentapproachessuchaswater-sensitiveurbandesigns(WSUDs),low-impactdevelopment (LID),low-impacturbandesignanddevelopment(LIUDD),integratedurbanwatermanagement(IUWM),orsustainableurbandrainage systems(SUDS),amongothers.Alltheseapproachesaredesignedinaspecificwayandaccordingtothenecessitiesofeachplacearound theworldinwhichtheyareimplemented (Fletcheretal.,2015).Although,theuseofthe technologiesmentionedaboveshowsthree considerablelimitationsinthemomentofits developmentandapplication.Firstly,they cannotbeusedinalltheurbanplaces,for instance,thegreenroofsonlycanbeusedin somebuildingsorhousesthatweredesigned withthispurpose;secondly,mostofthemhave ahighinvestmentcostandmaintenance,and thirdly,theefficacyintermsofwaterrecovery andmanagementisrelativelylow,whichcomplicatesitsuseandapplicationonalargescale. Besides,oncethestormwaterhasbeenrecovered,mostofitisdischargedintotheconventionaldrainagesystem(Saraswatetal.,2016). Sofar,theresearchhasbeenfocusedtodevelop moresuitable,ef ficient,andaffordabletechnologieswithlowinvestmentandmaintenancecosts. Inthissense,themodulartreatmentconceptrepresentsagreatopportunitytocreateapotential processthatcancontributetosolveabovechallengesinthesectorofstormwatermanagement.
beenlimitedlyappliedorwillbeapplied.Nevertheless,thesemodelsdonotconsideradrastic changesinlandscape,landuse,andurbandevelopment,aswellasextremeclimaticeventsthat mayoccurovertime(MoazeniandKhazaei, 2021;Sanchezetal.,2020).Onanotherhand,to facetheoperationalandprocesschallenges,the modularsystemconceptcanbeasuitablealternativetoimprovetheentirewatersupplyprocessthroughafastupdateoftheold technology,easymaintenance,andsubstitution ofsomeequipmentinspeci ficstepsoftheprocess,aswellasofferalternativestoincreasethe watermanagementonspecificapproachessuch asqualitycontrolthatisoneofthemostimportantparameterstoconsider.
Insummary,themanagementseekstoevaluatetheimpactofurbanizationonwatercycles. Itrequiresanunderstandingthenatural,predevelopment,andpostdevelopmentwaterbalance. Similarly,SustainableWaterManagementImprovesTomorrow’sCitiesHealth(SWITCH)is aresearchprogramfundedbyEuropeanUnion (EU)in2006tofacilitatemodifiedconceptsinurbanwatermanagement(Howeetal.,2011).The SWITCHframeworkhasfundedinfourcharacteristics:(i)interactiveinstitutionalactionthatincludesurbanwaterbodiesandwatercycle,(ii) foreseetheeffectofurbanizationthrough learningallianceapproach,(iii)along-termstrategydevelopmentforsustainableurbanwater management,and(iv)anef ficientdevelopment ofstormwater,wastewater,andurbanwater managementsystems.Finally,theframework considersalltheaspectsoftheurbanwatersysteminthecitiesaswellasitsmodificationwith respecttothechangesthatcanhappeninthe futuretime.Likewise,theframeworkmakes andemphasizesontheusedtechnologiesand theirrobustness,includingthesustainability conceptallthetime.Nevertheless,aroundthe world,eachcountryandeachcityhavetheir ownprogramsorcanfollowsomeoftheinternationalprotocolsthatmayvarywidelybetween them.
1.1.2Internationalconventions, guidelines,andagreements
AccordingtotheUnitedNations(UN),committeeonculturalrights,social,andeconomicissuesrighttowaterstatement,basedonArticle11 and12oftheInternationalCovenant;everyone hastherighttogetthehighestattainablestandardofmentalandphysicalhealth.Currently, twointernationalglobalwaterconventionsare active(Belinskijetal.,2020);the firstoneisthe conventionontheuseandprotectionofinternationallakesandtransboundarywatercourses publishedin1992,andthesecondoneisthe conventiononinternationalwatercoursesforits nonnavigationalusepublishedin1997.However,whatevertheinternationalguidelinesorprotocolsareimplemented,theysharethreemain principlesregardingutilization,protection,and sharingthewatercourse. Table1.1 showthe threeprinciplesandtheirmaincharacteristics. However,althoughthewatermanagement guidelinesfollowthethreepreviousprinciples, therearestillseveralchallengesthatneedtobe consideredforthedevelopmentandimplementationofmodelsfortheimprovementofwater managementsystems(drinkingwater,stormwater,andwastewater).Andmentionhow modularsystem/technologieswillhelp(fiveto sixsentences).
1.1.3Tacklingtheproblem:sustainable watertreatment
Thereisnodenyingthefactthatwaterscarcityhasbeenaforemostproblemalloverthe world.Moreover,overpopulation,climate change,pollutionofcoastalregions,andaquifers arecontinuouslyaffectingtheaccessibilitytosufficientqualitywater(Zhouetal.,2020).Ingeneral,toxicwastewaterorsewagemustbe treatedbeforebeingdischargedorreuse.There areseveralpollutantswhichshouldberemoved ortreatedastheyaffectbothnaturalenvironmentandhumanbeings.Thesecompounds
TABLE1.1 Demonstratetheprinciplestouseinternationalwaterways.
Principles
ReasonableandequitableutilizationNo-harmrule(UNECE,2013)Cooperationrule(Belinskijetal.,2020)
Theprinciplestatesthatinternational watercoursemustbedevelopedand utilizedinreasonableandequitable mannertoachievesustainableuseand equalbenefitthrough-outtheplace.In addition,severalotherfactorsshould alsobeconsideredbeforetakingthe decisionsonwaterutilizationsuchas economicandsocialneed,andtheeffect ofwateruseonanotherstateorarea.
Accordingtono-harmruleprinciple, authoritiesshouldtakeappropriateor strictmeasurestopreventtheharmor damagetowatercourses.Forinstance, statecanpassthelegislationtoprevent toharmfulorillegalactivitiesinits territory.
whendischargedinaquaticsystemresultsinincreaseorganicload,whichfurtherleadstoeutrophication.Similarly,hormonaldisruptorsare anothergroupofpollutantsthatposehuge healthrisktoanimalsandhumanssuchbisphenolA,pesticides,andseveralbleachingagents (Alvarez-RuizandPico,2020).Ingeneral,water treatmentmethodsincludeseveraltechniques suchasphysical,biological,andchemical methods.Thesetreatmentsaredesignedinordertoachievedifferentlevelsofcontaminant removal.Brie fly,thephysicaltreatmentinvolves thescreeningtoremovesolids,largeplastics, andgritbysedimentation.Thebiological methodsmainlyremoveheavymetals,organic load,nitrogen,andphosphorusfromthewastewaterandsludgeusingtechnologiessuchas trickling filters,rotatingbiologicalcontactors, anaerobicdigestion,activatedsludgeprocess, aeratedlagoons,andpondstabilization.Finally, thetreatedwatereffluentgoesthrough advancedtreatmentsystemswherepathogens, viruses,andotherbacteriaareremovedbefore dischargingintotheenvironment(OsorioGonzalezetal.,2018).Inthissense,theconcept ofmodularsystemcanbeagoodalternative helpingtotreatthewastewatergeneratedfrom thedifferentsources.Themainadvantageof modularconceptistheindependencethatcan providetoeachsystemaswellasitsspecificity
Theprincipleaimstoincreasethe cooperationbetweentwowatercourse sharingpartiestoachievetheprinciples ofno-harmruleandequitableutilization. Accordingtotherule,statessharingthe internationalwatersmustcooperatefor sovereignequality.Itcanalsoincludethe jointmonitoring,sharinginformationon currentandfutureuses,andalarm procedures.
foreachprocess.Furthermore,themodular treatmenthasthe flexibilitytouseseparatemodulesorsemi-interconnectedsystemsthatcanbe usedasapartialtreatmentinthesameplace wherethewaterfacilitiesareplaced.Additionally,modularsystemoffersawidevarietyof adaptabilitytoobtainseveralby-productssuch asbioenergy,biofertilizer,nutrientrecovery, andmanymore.Further,awidelyanddetailed discussionabouttheapplicationofmodular conceptasapotentialalternativetoimprove thewatermanagementwillbeperformedin thenextchapters.
1.1.3.1Low-gradeenergy
Ithasbeenapproximatedthatglobalenergy demandwouldincreaseby50%from2010to 2040.Hence,itdrivestheneedtodesigntheenergyefficienttreatmentandrecoveryprocess. Thewastewatertreatmentcurrentlyconsumed w4%oftotalenergyconsumptionintheUnited StatesandtheUnitedKingdom(Xuetal.,2015; Ohetal.,2010).Approximately,17.8kJ/gchemicaloxygendemand(COD)ispresentinmunicipalwastewater,whichis fivetimeshigherthan theenergyrequiredfortheactivatedsludgeprocess(Heidrichetal.,2011; Wanetal.,2016). Although,significantamountofCOD-basedenergyisgenerallylostduringmicrobialmetabolism(Frijnsetal.,2013).IntheUnitedStates
andEurope,morethan12plantshavebeenreportedtoachieve >90%ofself-suf ficiencyenergy(Guetal.,2017).Ontheotherhand, methanerecoveryfromanaerobicprocesscould provide30% 50%ofenergyrequiredduring wastewatertreatment(McCartyetal.,2011).In addition,ifrecoveredenergyfromtheprocess isusedinthesameorotherprocesscanbeapotentialalternativetodecreasethecarbon fingerprintorinsomecasesitneutralitycouldbe achieved(Haoetal.,2015).
1.1.3.2Nutrientrecovery
Ingeneral,fractionofphosphorusandnitrogenappliedasafertilizerinagricultureends upinthewastewaterplant(Daigger,2009).It wasestimatedthatfertilizersaccountfor >1% ofgreenhousegasemission,while90%ofthe emissioncomesfromammoniumfertilizerproduction(Sheiketal.,2014).Inaddition,ammonia fertilizerisknowntorequirehighinputenergy duringitsproductionstage,whichthenrequires alargeamountofenergytoundergonitrification anddenitri ficationprocedure.Hence,ammonia recoverywouldbeanoptiontosaveenergy onlyifitisdonewithlowerenergythanitsproductionstage(Daigger,2009).Similarly,therecoveryofphosphorusalsoholdsimportanceas its finiteresource,whichwillsoonbeexhausted. Itgenerallyentersthewastewaterfromindustrialeffluents,detergents,andfecalmatter(Xie etal.,2016).Ifthephosphorusisnotremoved, itcanendupinwaterbodiesandultimately affecttheecologicalintegrity(Cordelletal., 2009).Theseveraltechnologiesareavailablefor nutrientrecoverysuchasbio-electrochemicalrecovery,crystallization,reversibleadsorption, electrodialysis,bio-drying,ammoniastripping, alkalinehumicacidrecovery,andmembrane distillation(Kehreinetal.,2020).However, nutrientrecoveryproceduregenerallyaffected bylowerconcentrationofnutrientspresentin thewastewatereffluent;hence,fewshouldbe consideredthenutrientaccumulationormagnificationbyphysical,chemical,orbiological
means,thereleaseofconcentratednutrientsor theextractionoftheseconcentratednutrients bychemicalorphysicalmethods.Nevertheless, modulartreatmentallowstodevelopthemodel thatcannotonlyremoveexcessofnutrientsuch nitrogen,sulfur,orphosphorusfromthewater butcanalsoreusetheseextractednutrientsto growforesttreesaswellasbiofertilizerstoincreasethecropgrowth.
1.1.3.3Sensingandmonitoring
Watersuchaswetlands,streams,coasts, rivers,andestuariesarethemostimportant sourcesofwaterforlife,whilemostofthem arepollutedinmostofthecountries(Jiang etal.,2020).Hence,sensingandmonitoring wouldallowthepeopletounderstand,improve, andprotecttheaquaticlifeandwaterqualityby developingstandardsandmanagementpractices.Forinstance,waterqualitymonitoring networkisdesignedforprotectingandmanagingthewaterenvironmentbycollectingtheinformationonstatesofwatersystems.
Researchershavemadeimmenseeffortsto furtherimprovethemonitoringnetworksuch asbudgetrequirement,samplingfrequency andduration,siteselection,qualityindicators, andmanymore(Behmeletal.,2016; Shietal., 2018).Inaddition,WorldHealthOrganization (WHO)andenvironmentalprotectionagencies suchasUSEPA,EPA,andEUEPAhavepublishedguidelinesonmonitoringactivitiesand havebeenreviewedelsewhere(Behmeletal., 2016; Looetal.,2012; Watkinson,2000; Zhang etal.,2011).Watermonitoringhasevolved fromlab-scaleanalysistoon-sitemonitoring andin-situsensor-basedmonitoring,thathelps ingreatmannertoobtainahighknowledge “inrealtime”,whichcontributestodevelop andadjustthewaterprocessmanagement.Besides,thebiosensortechnologycontributestoa sustainabledevelopmentmainlyinplaceswhere thewatermanagementhaslimitationsrelatedto infrastructure,thatgenerateahighimpactinto thesociety(Vivianoetal.,2014).Pollutant

sensingandmonitoringhasbeenexpandedfrom conventionalstoichiometricanalysisto spectrum-basedanalysissuchasadsorption, scattering,andopticalreflection.Biosensorsare increasinglybecomingpopularintermsof detectinglowerconcentrationofpollutants suchasheavymetals,toxins,drugs,andpathogenicstrains(Sainietal.,2019). Fig.1.3 representsthepollutantsensingmechanismusing sensors.Themodularconcepthasanenormous potentialtouseinthiscontextduetoaseparate andmobilemodulecanbeplace,transport,or attachatthesameplacewherethewatermanagementorprocessisperformed.
1.1.3.4Modularmodeling
Theconceptofmodularizationiswithabase oftheseparationofcomplexproductionsystems,somethingthatcanbedefinedasa “modularproduction.” Themodularsystem conceptgainedstrengthinthe1980s,withthe concepttouseastrategythatwouldallowthe developmentandimplementationofavariety ofcombinationsofthedifferentproductionmodules(Schilling,2000; Langlois,2002; Hegdeetal., 2003; HellströmandWikström,2005).Currently, theconceptofmodularsystemshasevolved
throughtheinclusionofintrinsicfactorsandin somecasesanthropogenic.Thecurrentframeworkinmodeling,development,andimplementationofproductionprocessesthroughmodular systemshasfactorsbasedontheconceptofsustainability(economic,social,environmental) (Manninaetal.,2019).Inthissense,thedevelopmentandimplementationofthesustainability conceptinmodularsystemshavebeencoupled withtheconstantanddemandingchangein environmentalpoliciesaroundtheworldasa prevailingobjectiveforthesuccessofthese typesystems(Hammadetal.,2019; Pakizer etal.,2020).Likewise,duringtheplanningand designofmodularsystems,notonlythefactors mentionedaboveshouldbeconsidered,because eachsystemneedsadifferentlevelofcustomization,inordertohaveabetteradjusttotherequirementsofthesystemitself.Someofthese factorsarelocalconditions,inwhichtheinstallationofmodularsystemshasbeenaconstant challengetoitssuccessonanindustrialscale. Ontheotherhand,oncethemodularsystem modelhasbeenestablished,theoptimization andstandardizationoftheprocessmustbecarriedoutasasinglesystem.Thiswillallowcost reduction,whichinturnwillincreasethe
FIGURE1.3 Detectionofspecifictypeofpollutantusingsensors.
pro fitabilityandefficiencyofthemodularsystem(Saliuetal.,2020; ChopraandKhanna, 2014).Withtheaimofreducingheterogeneity andincreasingitsfunctionality,strategiessuch asfunctionalmodularizationandmassivecustomizationofmodularsystemshavebeenproposed.Theabovestrategiesarebasedonthe factthatwhendividingacomplexsysteminto moredetailedmodules,itdepends firstly;the producttobeobtainedandsecondly;thepurposeofthemodularsystemitself.Thisismainly duetothefactthat,althoughthemodulesareindependent,theyforma “whole,” whichcanbe calledintermsoftheprocessasan “industrial ecosystem” wherethemainadvantageisthat themodulescanbeoperatedandreplacedby othermoduleswiththesameordifferentfunction(dependingontherequirementsofthecompletesystem)(Benitoetal.,2002; ZhuandRuth, 2013).Anexampleofthistypeofsystemisthe processestoproducebiofuelsorsecondarymetabolites,inthemanagementofindustrialor agriculturalwaste,wheresomemodulesactas rawmaterialsuppliers,pretreatmentunits,and purification,amongothers(Pangetal.,2017; Fenolletal.,2019; Wangetal.,2020).Inthis sense,theestablishmentofthemodulesandtheir complementbetweenthemisachallengingtask duringtheirplanningandstandardization,since whenthistypeofmodularsystemspresentsa weakinterdependence(highindependence fromeachother),whichisbene ficialforthe entiresystemduringtheoptimizationandstandardizationperiod.Therefore,theimplementationanduseofmodularsystemsinproduction, purification,andrecoveryprocessesisan extremelyattractivealternative.Likewise,this modularsystemcanbethebeginningofacombinedsystem,wherethemodularprocesssystemcanbecomeabusinessmodelwithsome minoradjustments,whichleadstothecreation ofindustrialclustersinafastandsustainable route.
1.1.4Conclusion
Themarketofresourcerecoveryfromwastewaterhasbeenincreasedoverthepastyearsto meettheenergyandelementaldemandsofsocieties.Thefocusondevelopingthecircularwater flowhasincreasedalongwiththedevelopmentof resourcerecoveryroutestosatisfyoveralldemand inmostsustainablewaypossible.Severalstandards andconventionarein-effecttoimplementthe controlledandsustainablesharingofwaterways acrosstheworld.Ontheotherhand,developing waystotreatwastewatertoachievethestandards laidbygovernmentbeforeitsreuseareunderconstantresearch.Furthermore,designingthewater monitoringnetworkisanessentialaspectofsustainablewatermanagement.
References
Alvarez-Ruiz,R.,Pico,Y.,2020.Analysisofemergingand relatedpollutantsinaquaticbiota.TrendsinEnvironmentalAnalyticalChemistry25,e00082.
Behmel,S.,etal.,2016.Waterqualitymonitoringstrategies areviewandfutureperspectives.TheScienceoftheTotal Environment571,1312 1329.
Belinskij,A.,etal.,2020.Internationalgovernance.In: Saundry,P.,Ruddell,B.L.(Eds.),TheFood-Energy-Water Nexus.SpringerInternationalPublishing,Cham, pp.153 186.
Benito,J.,etal.,2002.Designandconstructionofamodular pilotplantforthetreatmentofoil-containing wastewaters.Desalination147(1),5 10.
Biswas,A.K.,2006.Watermanagementformajorurban centres.WaterResourcesDevelopment22(2),183 197. https://doi.org/10.1080/07900620600690789
Brown,J.,Lofrano,G.,2015.Overviewofwastewatermanagementthroughtheages.ASCELibrary.
Chartzoulakis,K.,Bertaki,M.,2015.Sustainablewatermanagementinagricultureunderclimatechange.Agriculture andAgriculturalScienceProcedia4,88 98. https:// doi.org/10.1016/j.aaspro.2015.03.011.
Chopra,S.S.,Khanna,V.,2014.Understandingresiliencein industrialsymbiosisnetworks:insightsfromnetwork analysis.JournalofEnvironmentalManagement141, 86 94.
Cordell,D.,Drangert,J.-O.,White,S.,2009.Thestoryofphosphorus:globalfoodsecurityandfoodforthought.Global EnvironmentalChange19(2),292 305.
Daigger,G.T.,2009.Evolvingurbanwaterandresiduals managementparadigms:waterreclamationandreuse, decentralization,andresourcerecovery.WaterEnvironmentResearch81(8),809 823.
Da-ping,X.,Hong-yu,G.,Dan,H.,2011.Discussiononthe demandmanagementofwaterresources.ProcediaEnvironmentalSciences10,1173. https://doi.org/10.1016/ j.proenv.2011.09.187,1173.
EL-Nwsany,R.I.,Maarouf,I.,El-Aal,W.A.,etal.,2019.Water managementasavitalfactorforasustainableschool. AlexandriaEngineeringJournal58,303 313. https:// doi.org/10.1016/j.aej.2018.12.012.
Fenoll,J.,etal.,2019.Implementationofanewmodularfacilitytodetoxifyagro-wastewaterpollutedwithneonicotinoidinsecticidesinfarmsbysolarphotocatalysis. Energy175,722 729.
Fletcher,T.D.,Shuster,W.,Hunt,W.F.,etal.,2015.SUDS, LID,BMPs,WSUDandmore Theevolutionandapplicationofterminologysurroundingurbandrainage.UrbanWaterJournal12(7),525 542. https://doi.org/ 10.1080/1573062X.2014.916314
Frijns,J.,Hofman,J.,Nederlof,M.,2013.Thepotentialof (waste)waterasenergycarrier.EnergyConversionand Management65,357 363.
Gu,Y.,etal.,2017.Energyself-sufficientwastewatertreatmentplants:feasibilitiesandchallenges.EnergyProcedia 105,3741 3751.
Guest,J.S.,etal.,2009.Anewplanninganddesignparadigmto achievesustainableresource recoveryfromwastewater. EnvironmentalScience & Technology43(16),6126 6130. Haasnoot,M.,etal.,2011.Amethodtodevelopsustainable watermanagementstrategiesforanuncertainfuture.SustainableDevelopment19(6),369 381.
Hammad,A.W.A.,etal.,2019.Buildinginformation modelling-basedframeworktocontrastconventional andmodularconstructionmethodsthroughselectedsustainabilityfactors.JournalofCleanerProduction228, 1264 1281.
Hao,X.,Liu,R.,Huang,X.,2015.Evaluationofthepotential foroperatingcarbonneutralWWTPsinChina.Water Research87,424 431.
Hegde,G.,Pullammanappallil,P.,Nayar,C.,2003.Modular ACcoupledhybridpowersystemsfortheemerging GHGmitigationproductsmarket.In:TENCON2003. ConferenceonConvergentTechnologiesforAsia-Pacific Region.
Heidrich,E.S.,Curtis,T.P.,Dolfing,J.,2011.Determinationof theinternalchemicalenergyofwastewater.EnvironmentalScience & Technology45(2),827 832.
Hellström,M.,Wikström,K.,2005.Projectbusinessconcepts basedonmodularity improvedmanoeuvrability throughunstablestructures.InternationalJournalofProjectManagement23(5),392 397.
Hellweger,F.L.,2015.100YearssinceStreeterandPhelps:it istimetoupdatethebiologyinourwaterqualitymodels. EnvironmentalScience & Technology49,6372 6373. https://doi.org/10.1021/acs.est.5b02130
Howe,C.,etal.,2011.SustainableWaterManagementinthe CityoftheFuture:FindingsfromtheSWITCHProject 2006-2011.
Jiang,J.,etal.,2020.Acomprehensivereviewonthedesignand optimizationofsurfacewaterqualitymonitoringnetworks. EnvironmentalModelling & Software132,104792.
Kehrein,P.,etal.,2020.Acriticalreviewofresourcerecovery frommunicipalwastewatertreatmentplants market supplypotentials,technologiesandbottlenecks.EnvironmentalScience:WaterResearch & Technology6(4), 877 910.
Khadka,A.,Kokkonen,T.,Niemi,T.J.,Lahde,E., Sillanpaa,N.,Koivusalo,H.,2020.Towardsnaturalwater cycleinurbanareas:modellingstormwatermanagement designs.UrbanWaterJournal17(7),587 597. https:// doi.org/10.1080/1573062X.2019.1700285
Langlois,R.N.,2002.Modularityintechnologyand organization.JournalofEconomicBehavior & Organization 49(1),19 37.
Lofrano,G.,Brown,J.,2010.Wastewatermanagement throughtheages:ahistoryofmankind.ScienceoftheTotalEnvironment408,5254 5264. https://doi.org/ 10.1016/j.scitotenv.2010.07.062
Loo,S.-L.,etal.,2012.Emergencywatersupply:areviewof potentialtechnologiesandselectioncriteria.Water Research46(10),3125 3151.
Ma,J.,etal.,2013.Organicmatterrecoveryfrommunicipal wastewaterbyusingdynamicmembraneseparation process.ChemicalEngineeringJournal219,190 199.
Mannina,G.,etal.,2019.Decisionsupportsystems(DSS)for wastewatertreatmentplants areviewofthestateofthe art.BioresourceTechnology290,121814.
McCarty,P.L.,Bae,J.,Kim,J.,2011.Domesticwastewatertreatmentasanetenergyproducer canthisbeachieved?EnvironmentalScience & Technology45(17),7100 7106.
Melian,J.A.H.,2020.SustainableWasteWaterTreatment Systems(2018 2019).
Mishra,B.K.,Chakraborty,S.,Kumar,P.,Saraswat,C.,2020. Urbanwatersecurity:backgroundandconcepts. SustainableSolutionsforUrbanWaterSecurity.Springer, USA.
Moazeni,F.,Khazaei,J.,2021.Optimalenergymanagement ofwater-energynetworksviaoptimalplacementof pumps-as-turbinesanddemandresponsethroughwater storagetanks.AppliedEnergy283,116335. https:// doi.org/10.1016/j.apenergy.2020.116335
Oh,S.T.,etal.,2010.Sustainablewastewatertreatment:how mightmicrobialfuelcellscontribute.BiotechnologyAdvances28(6),871 881.
Osorio-Gonzalez,C.S.,Mendez-Carreto,C.,GomezFalcon,N.,Sandoval-Salas,F.,Larios-Martínez,A.D., 2018.TechnologicalDevelopmentsinIndustrialWastewaterManagement.HandbookofEnvironmentalEngineering,1st.McGraw-HillEducation.
Pakizer,K.,Fischer,M.,Lieberherr,E.,2020.Policyinstrumentmixesforoperatingmodulartechnologywithin hybridwatersystems.EnvironmentalScience & Policy 105,120 133.
Pang,H.,etal.,2017.Effectivebiodegradationoforganicmatterandbiogasreuseinanovelintegratedmodularanaerobicsystemforruralwastewatertreatment:apilotcase study.ChemicalEngineeringandProcessing:Process Intensification119,131 139.
Saini,R.,etal.,2019.Chapter13-Advancesinwholecellbasedbiosensorsinenvironmentalmonitoring.In:Kaur Brar,S.,Hegde,K.,Pachapur,V.L.(Eds.),Tools,TechniquesandProtocolsforMonitoringEnvironmental Contaminants.Elsevier,pp.263 284.
Saliu,T.D.,etal.,2020.Preparationandcharacterizationofa decentralizedmodularyellowwaternutrientrecovery system.JournalofEnvironmentalManagement276,111345. Sanchez,G.M.,Terando,A.,Smith,J.W.,García,A.M., Wagner,C.R.,Meentemeyer,R.K.,2020.Forecastingwaterdemandacrossarapidlyurbanizingregion.Science oftheTotalEnvironment730,139050. https://doi.org/ 10.1016/j.scitotenv.2020.139050
Saraswat,C.,Kumar,P.,Mishra,B.K.,2016.Assessmentof stormwaterrunoffmanagementpracticesandgovernanceunderclimatechangeandurbanization:ananalysis ofBangkok,HanoiandTokyo.EnvironmentalScience & Policy64,101 117. https://doi.org/10.1016/j.env sci.2016.06.018
Schilling,M.A.,2000.Towardageneralmodularsystemstheoryanditsapplicationtointerfirmproductmodularity. AcademyofManagementReview25(2),312 334.
Sheik,A.R.,Muller,E.E.L.,Wilmes,P.,2014.Ahundredyears ofactivatedsludge:timeforarethink.FrontiersinMicrobiology5,47
Shi,B.,etal.,2018.Quantitativedesignofemergencymonitoringnetworkforriverchemicalspillsbasedondiscrete entropytheory.WaterResearch134,140 152.
UNECE,2013.U.N.E.C.F.E,Guide.In:toImplementingthe WaterConvention.ECE/MP.WAT/39,UnitedNations. Verstraete,W.,Vlaeminck,S.E.,2011.ZeroWasteWater: short-cyclingofwastewaterresourcesforsustainablecitiesofthefuture.TheInternationalJournalofSustainable DevelopmentandWorldEcology18(3),253 264. Verstraete,W.,VandeCaveye,P.,Diamantis,V.,2009. Maximumuseofresourcespresentindomestic “used water”.BioresourceTechnology100(23),5537 5545.
Villarín,M.C.,Merel,S.,2020.Paradigmshiftsandcurrent challengesinwastewatermanagement.JournalofHazardousMaterials390,122139. https://doi.org/10.1016/ j.jhazmat.2020.122139.
Viviano,G.,etal.,2014.Surrogatemeasuresforproviding highfrequencyestimatesoftotalphosphorus concentrationsinurbanwatersheds.WaterResearch64, 265 277.
Wan,J.,etal.,2016.CODcapture:afeasibleoptiontowards energyself-sufficientdomesticwastewatertreatment.ScientificReports6(1),25054.
Wang,Y.,etal.,2020.Amodularvariable-processtreatment systemforoperationliquidwaste:acasestudy.Journalof WaterProcessEngineering35,101221.
Watkinson,C.J.,2000.Oilspillpreventionandresponseinitiativesinthegreatbarrierreef.SpillScience & TechnologyBulletin6(1),31 44.
Xie,M.,etal.,2016.Membrane-basedprocessesforwastewaternutrientrecovery:technology,challenges,and futuredirection.WaterResearch89,210 221.
Xu,J.,etal.,2015.Occurrenceofantibioticsandantibiotic resistancegenesinasewagetreatmentplantandits effluent-receivingriver.Chemosphere119,1379 1385.
Zhang,X.-j.,etal.,2011.EmergencyDrinkingWaterTreatmentduringSourceWaterPollutionAccidentsinChina: OriginAnalysis,FrameworkandTechnologies.ACS Publications.
Zhou,Y.,etal.,2020.Eutrophicationcontrolstrategiesfor highlyanthropogenicinfluencedcoastalwaters.TheScienceoftheTotalEnvironment705,135760.
Zhu,J.,Ruth,M.,2013.Exploringtheresilienceofindustrial ecosystems.JournalofEnvironmentalManagement122, 65 75.
Thispageintentionallyleftblank