MODERN TREATMENT STRATEGIESFOR MARINE POLLUTION
P.SENTHILKUMAR
DepartmentofChemicalEngineering, SriSivasubramaniyaNadarCollegeofEngineering, Kalavakkam,India
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2021ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
ISBN:978-0-12-822279-9
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: CandiceJanco
AcquisitionsEditor: LouisaMunro
EditorialProjectManager: AliceGrant
ProductionProjectManager: BharatwajVaratharajan
CoverDesigner: VictoriaPearson
TypesetbyMPSLimited,Chennai,India
Forewordxv
Preface xvii
Acknowledgementxix
1.Introductiontomarinebiology1
1.1 Introduction1
1.1.1 Natureofseawater1
1.1.2 Categoriesofmarineecosystem1
1.1.3 Presenceofbioticandabioticcomponentsinmarinebiota2
1.1.4 Natureofbiotainseawater3
1.1.5 Environmentalfactorsinfluencingthemarineecosystem5
1.1.6 Anthropogenicfactorsinfluencingmarineecosystem5
1.1.7 Bioticandabioticinteraction5
1.1.8 Differenttypesofinteractioninmarinebiota7
1.1.9 Blueprintonmarinepollution7
1.2 Conclusion9 References10
2.Biologicalandchemicalimpactsonmarinebiology11
P.SenthilKumarandG.Prasannamedha
2.1 Introduction11
2.2 Categoriesofpollutantsinmarineenvironment11
2.2.1 Chemicalcompounds12
2.2.2 Oilspills13
2.2.3 Solidsubstances13
2.2.4 Radioactivewaste13
2.3 Effectofplasticdebris14
2.3.1 Classesofplasticdebris14
2.3.2 Sourcesofplasticsinmarineenvironment15
2.3.3 Sourcesofocean-baseddebris15
2.3.4 Sourcesofland-basedemission15
2.3.5 Degradationofplasticdebrisinmarineenvironment16
2.3.6 Impactsofplasticdebrisinthemarineenvironment16
2.4 Nitrogenandphosphorousimbalance18
2.4.1 Oceanacidification19
2.4.2 Deadzones19
2.4.3 Human/animalhealth19
2.5 Evolutionofoilspills/oildispersantanditsimpacts19
2.5.1 Fateofoilspillsinmarineenvironment20
2.5.2 Impactsofoilspillsinmarinewaterbodies20
2.6 Organiccontaminantsinteractionwithmarinebiota21
2.7 Keyproblemsinmarineecosystem22
2.8 Oceanacidificationanditsimpacts23
2.8.1 Impactsofoceanacidification23
2.8.2 Factorsaffectingoceanacidification24
2.9 Shipbreakingandrecyclingindustries24
2.9.1 Impactsofreleasedpollutantsfromshipbreaking25
2.9.2 Factorsaffectingshipbreakingpollutants25
2.10 Eco-cyclecommunicationbetweenpollutantsandbiota26
2.11 Conclusion27 References27
3.Detectionandmonitoringofmarinepollution29
3.1 Introduction29
3.2 Importanceonidentificationofmarinepollution29
3.3 Factorsmonitoredwithrespecttomarinepollution30
3.4 Remotesensingplatforminmonitoringmarinepollution31
3.4.1 Remotesensing31
3.4.2 Typesofsensors31
3.4.3 Remote-sensingplatform32
3.4.4 Remotesensinginprincipleanditsroleinoceanwatermonitoring32
3.4.5 Applicationofremotesensing33
3.5 Analyticaltechniquesinidentifyingpollutants34
3.5.1 Basicsinanalyticaltechniques34
3.5.2 Physicalcharacterizationofmarinepollutantsidentification34
3.5.3 Chemicalcharacterizationofmarinepollutantsidentification34
3.6 Electrochemicaldetectionofmarinepollutants35
3.6.1 Basicsinelectrochemicaldetectionofmarinepollutants35
3.6.2 Structureofsensor36
3.6.3 Applicationofsensorsforidentifyingmarinepollutants37
3.7 Computationalmodelsindetectingmarinepollution37
3.7.1 Introductiontocomputationalmodels37
3.7.2 Objectiveofnumericalmodelling37
3.7.3 Oilspillmodels39
3.7.4 Plasticsormarinedebrismodel39
3.8 Cyclodextrin-promotedfluorescencemodulation40
3.8.1 Promotionoffluorescencemodulation40
3.8.2 Principlebehindoperation40
3.8.3 Generalprocedurefordetection41
3.9 Algalbiosensor bioindicatorfororganicpollutants42
3.9.1 Principlebehindoperation analgalbiosensor42
3.9.2 Stagesinbioassaydetection42
3.9.3 Useofalgalbioindicator43
3.10 Bioluminescentbacteria biomarkerfororganicpollutants43
3.10.1 Principleofoperationofbioluminescentbacteria44
3.10.2 Developmentofbioluminescentbacteriafordetectionofheavy metalsandpesticides44
3.10.3 Usesofbioluminescentbacteria45
3.11 Microfluidicdeviceintegratedwithalgalfluorescenceforpesticide detection45
3.11.1 Stepsinthefabricationofdevice46
3.11.2 Usesofmicrofluidicdevicewithalgalfilm46
3.12 Applicationofultravioletfluorescencespectroscopy oil/mineral aggregateformation46
3.12.1 Sampleapplicationprocess47
3.12.2 Basiccodebehindindetectingoil mineralaggregates47
3.12.3 Interferenceinultravioletfluorescencespectroscopy47
3.13 Directobservationofmarinedebris applicationofvariousplatforms48
3.13.1 Satellites,aircraftanddrones48
3.13.2 Ships49
3.13.3 Autonomousplatforms49
3.13.4 Fixedpointobservations49
3.13.5 Benthiclandersandcrawlers49
3.13.6 Shorelinemonitoringandbeachcombing49
3.14 Conclusion49 References50
4.Oilspillclean-up53
4.1 Introductiontooilspillsanditscontamination53
4.2 Treatmentmethodologiesfollowedforremovingoilspillsfrommarine water53
4.3 Oilspillremovalusingsorbents54
4.3.1 Introductiontosorption54
4.3.2 Classificationofadsorbents55
4.3.3 Organicandagro-basedproducts55
4.3.4 Syntheticadsorbents55
4.3.5 Inorganicadsorbents56
4.3.6 Nanoparticlesasadsorbents56
4.3.7 Biosorbents56
4.4 Microbialdegradationofpetroleumhydrocarbons57
4.4.1 Introductiontopolycyclicaromatichydrocarbonsanditseffects inmarinebiota57
4.4.2 Factorsinfluencingbioremdiationofpolycyclicaromatic hydrocarbons58
4.4.3 Aerobicdegradationofpolycyclicaromatichydrocarbon59
4.4.4 Anaerobicdegradationofpolycyclicaromatichydrocarbon59
4.4.5 Commonmicrobesinvolvedinpolycyclicaromatichydrocarbon degradation59
4.4.6 Fertilizersenhancedbiodegradation60
4.4.7 Efficacyintheuseofbioremediation61
4.5 Applicationofbiosurfactantsinremovingpolycyclicaromatichydrocarbon61
4.5.1 Introductiontobiosurfactants61
4.5.2 Classificationofbiosurfactants62
4.5.3 Propertiesofsurfactants63
4.5.4 Oilremediationusingbiosurfactants63
4.6 Spongesinremovalofoilspills63
4.7 Floatingfoamsincleaningupoilspills65
4.8 Oilremovalfrommarineenvironmentusingpolymericnanofibres66
4.8.1 Propertiesofpolymericnanofibres66
4.8.2 Mechanismofoilremoval67
4.9 Oilremovalusingparticulateinteractions68
4.9.1 Roleofflocculation interactionwithinorganicmatters68
4.9.2 Biologicalflocculationinclearingoilspills68
4.9.3 Potentialofsuspendedparticlemattertoincreasesettlingrateof surfaceoil69
4.10 Chemicaltreatmentusingdispersantsandemulsionbreakers69
4.11 Thermaltreatment70
4.11.1 Incineration70
4.11.2 Low-temperaturethermaldesorption71
4.12 Stabilization/solidification71
4.13 Soilvapourextraction71
4.14 Miscellaneoustechnologiesinremovingoilspillsfromwater72
4.15 Conclusion72 References72
5.Ballastwatermanagement75
5.1 Introductiontoballastwater75
5.2 Ballastwaterqualitybyinternationalmaritimeorganisation75
5.3 Regulationsforballastwastemanagement76
5.3.1 Internationalregime76
5.3.2 USfederaldomesticregime76
5.4 Ballastwatertreatment77
5.4.1 Primarytreatment78
5.4.2 Mechanicaltreatment78
5.4.3 Chemicaltreatment79
5.4.4 Electroionizationmagneticseparation81
5.4.5 Deoxygenation81
5.5 Ballastwatermanagementsystemusingactivesubstances81
5.5.1 Electrochlorination82
5.5.2 Ozonation83
5.5.3 UVlight83
5.5.4 Neutralizationofactivesubstance83
5.6 Ballastwaterexchange84
5.6.1 Sequentialballastwaterexchange84
5.6.2 Flowthroughballastwaterexchange84
5.7 Problemsassociatedwithballastwater84
5.7.1 Sedimentsinballasttanks85
5.7.2 Biofoulingintheballasttanks85
5.7.3 Largerorganisminthetank85
5.7.4 Trapsamples85
5.8 Conclusion86 References87
6.Pesticidesclean-up89
6.1 Introductiontopesticidespollutioninmarineenvironment89
6.2 Removalofpesticidesfrommarinewaterusingdifferentmethodologies90
6.3 Microbialdegradationofpesticidesinaquaticenvironment91
6.3.1 Variousmodesofbioremediationwithmicroorganisms92
6.3.2 Bacterialdegradationofpesticides93
6.3.3 Fungaldegradationofpesticides94
6.3.4 Enzymaticdegradationofpesticidesusingmicrobes94
6.4 Photodegradationofpesticides95
6.4.1 Mechanismofdegradationbyhydroxylradicals96
6.4.2 Degradationofsomepesticidesinseawater97
6.5 Nanocompositemembranesinremovingpesticidesfromwater97
6.5.1 Introductiontonanocompositemembraneinwaterpurification97
6.5.2 Formationofnanocompositemembrane98
6.5.3 Applicationofnanocompositemembraneinremovingpesticides fromwater98
6.6 Phytoremediation anadvancedbiologicaltreatment99
6.6.1 Mechanisminvolvedinphytoremediation100
6.6.2 Activeplantsinremovingpesticides100
6.6.3 Phytoremediationtechnologyinorganics101
6.6.4 Factorsthatinfluenceuptakeandchemicalreactionspesticidesby plants102
6.6.5 Enhancementofphytoremediation102
6.6.6 Limitationofphytoremediation103
6.7 Mycodegradation104
6.7.1 Fungaldevelopment104
6.7.2 Mechanismofmycodegradation105
6.8 Conclusion105 References106
7.Plasticlittersremoval109
7.1 Introductiontoplasticdebrisinmarinewater109
7.2 Sourcesofplasticlitters109
7.3 Differentsettlementofplasticlittersinoceancomponents110
7.3.1 Floatingmarinedebris110
7.3.2 Seafloor110
7.3.3 Microplastics111
7.4 Persistenceofplasticlittersinocean111
7.5 Someoftheeffectsofplasticslittertomarinebiota111
7.6 Commontypesofplasticlittersfoundinmarineenvironment112
7.7 Biodegradationofplasticlitters112
7.7.1 Introductiontobiodegradabilityofplastics112
7.7.2 Potentiallybiodegradableplasticsmaterials113
7.7.3 Measurementofbiodegradationinplastics114
7.7.4 Overviewonbiodegradationofplasticsanditsmechanism114
7.7.5 Biodegradationofsyntheticplasticfoams116
7.8 Roleoffloatersinplasticremoval116
7.9 Plasticcatcher forfloatingdebris118
7.10 Insituremovalofplasticsfrommarinesystem118
7.11 Marinedebrisinseabedanditsrecovery119
7.11.1 Identificationofplasticsusingprobingdevice119
7.11.2 Removingplasticsfromshallowdepth119
7.12 Plasticdebristreatment119
7.12.1 Plasticrecycling marinedebrismanagement119
7.12.2 Mechanicalrecycling120
7.12.3 Energyrecovery121
7.12.4 Chemicalrecycling121
7.13 Biodegradationofmarineplasticdebrisbyplastisphere122
7.14 Conclusion123
References123
Furtherreading124
8.Microplasticsanditsremovalstrategiesfrommarinewater125
8.1 Introduction125
8.2 Microplasticsanditscategories125
8.3 Sourcesandmodesoftransferofmicroplasticsinmarine environment126
8.4 Propertiesanddistributionofmicroplastics127
8.5 Changesinmicroplasticsafterdegradationinmarineecosystem128
8.6 Impactsofmicroplasticsinmarineenvironment129
8.6.1 Microplasticsingestion130
8.6.2 Microplasticsleachates131
8.6.3 Microplasticswithadheredpollutants131
8.6.4 Aggregationofbiofilmcoveredmicroplasticswithmarine biogenicparticles131
8.7 Treatmentprotocolsformarinemicroplastics132
8.8 Sorption/bioflocculationofmicroplasticsonalgalsurfaceandwith biopolymer132
8.9 Effectiveremovalusingmetalbasedsaltcoagulation/ultrafiltration134
8.10 Electrocoagulationinextractingmicrobeads135
8.11 Alkoxy-silylinducedagglomeration sustainableremovalof microplastics136
8.12 Membraneprocessformicroplasticsremoval137
8.13 Functionofdensityseparationinextractingmicroplasticsfromwater139
8.14 Biologicalremovalofmicroplastics140
8.15 Degradationusingphotochemicaloxidation141
8.16 Miscellaneoustreatment142
8.16.1 Degradationusingfunctionalizedcarbonnanosprings142
8.17 Conclusion143 References143
9.Removaloftoxicalgalbloomsfrommarinewater145
9.1 Introduction145
9.2 Harmfuleffectsofharmfulalgalbloom146
9.2.1 Ecologicconcerns146
9.2.2 Economicconcerns146
9.2.3 Publichealthconcerns146
9.3 Algalbloomsanditstoxins147
9.4 Mechanisminvolvedinoccurrenceofharmfulalgalbloomandits removalstrategies148
9.4.1 Mechanismbehindformationofharmfulalgalbloom149
9.4.2 Solutionsforalgalbloomcontrol149
9.5 Removalofredtideorganismusingflocculants150
9.5.1 Cationicpolymericflocculant150
9.5.2 Clay151
9.5.3 Compositeclay151
9.5.4 Compositesand151
9.6 Influenceoflowzinc,copperandironionsinlimitingbloomgrowth152
9.6.1 Effectsoflowconcentrationoftracemetalinaquatic environment152
9.6.2 Tracemetalsserveaslimitingnutrients153
9.6.3 Toxicityeffectsoftracemetals153
9.7 Removalusingcoagulation magneticseparationmethod154
9.8 Microorganism-basedcontrolofalgalblooms155
9.8.1 Basedonbacterialbioflocculation155
9.8.2 Basedonfungalbioflocculation156
9.8.3 Removal/killingmechanismofmicrobesonharmfulalgalblooms156
9.8.4 Microbialaggregatesforalgalgrowthcontrol157
9.9 Controlofalgalgrowththroughultrasoundtechnology157
9.10 Triboelectricnanogeneratorforalgaeremovalusingwaterwaveenergy159
9.11 Electrochemicaltreatmentforremovalofalgaefromwater160
9.12 Miscellaneousremovalofalgalbloomsandtoxinsfromwater161
9.12.1 Usingseawaterreverseosmosistechnology161
9.12.2 Usingvermiculite162
9.13 Conclusion162 References163
10.Miscellaneoustechnologiesforremovingmicropollutantsfrom marinewater165
10.1 Introduction165
10.2 Nanomembranes removingcontaminantsfromseawater166
10.2.1 Useofseawaterindesalinationprocess asfeed166
10.2.2 Methodsadoptedforfabricatingnanomembranes166
10.2.3 Stepsinvolvedindesalinationprocess167
10.2.4 Advancedmaterialsinvolvedinmembraneremoval168
10.2.5 Differentnanomembraneanditsuses169
10.3 Powderedactivatedcarbonpulsedblanket170
10.4 Roleofbioemulsificantonoilspillremoval171
10.5 OilspillremovalusingskimmersbyNationalOceanandAtmospheric Administration172
10.5.1 Skimming172
10.5.2 Insituburning172
10.5.3 Chemicaldispersant173
10.6 Marineactsandregulations173
10.6.1 ExclusiveEconomicZoneandContinentalShelf(Environmental Effects)Act2012173
10.6.2 RegulationsundertheExclusiveEconomicZoneand ContinentalShelf(EnvironmentalEffects)Act2012173
10.6.3 ResourceManagement(MarinePollution)Regulations1998174
10.7 Marinepollutionremovalusingnewinnovationsasreportedideas174
10.7.1 Cleaningupoilspillswithmagnetsandnanotechnology174
10.7.2 IllinoisteamOilspillcleanupusingskimmingoption175
10.8 Conclusion175 References175
Casestudyonmarinepollutantsanditsimpacts177 Appendix1:Listofabbreviations183 Appendix2:Listofsymbols185 Glossary187 Index 189
Foreword
Theoceanplaysakeyroleinmaintainingtheecologicalbalanceofthe carbon,nitrogenandphosphorouscyclesandavarietyofimportantchemicals.Itisdisturbedwhenexternalmattermingleswithmarineecology anditsenvironment.Thisexternalmattercanbepollutantsproducedby humanactivities.Iftheseactivitiesarenotcontrolled,theywilldestroy thenaturalenvironment.Thereisathree-wordmantrainthefieldof environmentalengineering ‘RRR’ , Reduce,RecycleandReuse.This principlecouldbeappliedforcontrollingorremovingmarinecontaminantsfromwater.Inthisregard,readersinthemarketwillfinddelightful andexistingtrendsinthefieldofmarinepollutantsremovalthroughthis book,whichiswrittenbyDr.P.SenthilKumar.Hehasmorethantwo decadesofexperienceinthefieldofenvironmentpollutionremediation throughvarioustechnologieslikeadsorption,microbiologicalinnovations, electrochemicalreductionandmanymore.Heisaddressingtheenvironmentalissueofdisturbingtheecologyanditsrelatedproperties.The authorinvolvedhimselfinwritingthisbookbycollectinglotsofarticles andtechnologiesfromvariousprivatesectorsandpublishedpapers.His addresstothenationregardingmarinepollutantremovalthroughnovel strategieswillhelpreadersacrosstheworldingatheringmoreknowledge inremovaltechnologiesandthetypeofpollutantsinmarinewater.These pollutantscanbefurtheraddressedbyreadersinvarioussectorslikeprovidingmanymorenovelremovalproperties.
Thisbookwilldescribeconceptsonvariouspollutantsthatdisturb marinewaterandtheirinteractionswithmarineecology.Someofthe recentstrategiesfortheremovalofthesepollutantsarediscussedinan elaboratewayforeasyunderstanding.Alsorecentissuesthatarefacedby theworldincontrollingmarinepollutionsareevenhighlightedwithcase studies.Someofthepollutantslikemicroplastics,plasticdebrisandalgal pollutionsareaddressedinanenlargedandneatmannerwithmorescientificconcepts.Onthewhole,thebookfindsaclearpathtoaddress marinepollutionanditsremoval,offeringthereadersasimpleportrayalof clearandcleanideas.
Preface
Purpose
Thematerialinthebookisappropriateforbeginnerstolearnabout thestrategiesusedintreatingremoving/clearingmarinepollutantsfrom ocean.Thisbookisappropriateforself-studyandcanbeusedforreferencestudy,aswellforthepeopleworkinginthisfield.Manyofthetreatmentmethodologiesarediscussedindetailwithappropriatepoints. Currentmethodologiesthatareadoptedallovertheworldforcleaning marinedebrisarediscussedandhighlightedwithsimplicity.
Background
Itisnotmandatorytohaveknowledgeofmarineengineering.The conceptsofpollutantsandmarinelifearesufficienttousethisbook.This bookprovidesclearknowledgeonmarinebiotaanditsinteractionswith pollutantsfromvarioussources.Itcanbeconsideredtobeaminireview identifyingtheimportanceofmarinewater,impactsonmarinebiota,and thepurposeofcleaningupthedebris.
Organization
Beforebeginninganychapter,anabstractisprovidedthatcovers theconceptsthataretobediscussedindetailinsidethechapter.Thecontentsthatarelistedhighlightthesubdivisionthatisdiscussedinsidethe chapters.Theconceptsarehighlightedwithreferencesfromwherethe pointischosenanddiscussed.Eachchapterendswithconclusionsthat provideshortpointsofwhathasbeendiscussedwithin.Thetechnologies thatarediscussedarealreadyknownbytheuserswhichallowthemtobe enhancedinabetterway.
Concept
Themainconceptthatthisbookcoversisthetreatmenttechnologiesthatarebeingusedworldwideinordertoremovemarinedebrisina safeway.Alsothebookshowssomeoftheimpactsgeneratedbypollutants.Itshowsthatmajorpollutantsareenteringthemarinematrixand theirtoxicitylevels.SomeoftherecentinnovationsinthemarinecleanuparehighlightedinChapters7 9.
Acknowledgement
Ihavereceivedimmensehelpfromseveralsourcesduringthepreparation ofthisbookandgratefullyacknowledgevarioussocieties,journals,associationsandseveralauthorsforthereproductionofsalientfeaturesthatare includedthroughoutthetext.
Iwishtorecordmygratitudetoallmyscholars,particularlyMs.G. Prasannamedha,fulltimeresearchscholar,inshoulderingthedomestic responsibilitiesandhelpingmetoconcentrateonthecompilationof sourcematerialforthepreparationofthetext.
Finally,Ialsoexpressgratitudetomyparentinstitution,SSNCollege ofEngineering,mystudents,friends,familymembers,colleaguesandthe publisherfortheirkindencouragement,cooperationandtimelyhelp extendedduringthepreparationofthetext.
Lastbutnottheleast,Iexpressmysoulfulgratitudetoalmightyfor givingmeachanceindraftingthisbookandcompilingontime.
IwouldliketodedicatethisbooktomydaughterMs.S.Vishrutha.
P.SenthilKumar
Casestudyonmarinepollutants anditsimpacts
Casestudy1:Evaluatingtheoceancleanupin cleaningmarinedebrisinNorthPacificGyreusing
SWOTanalysis
TheworkhasbeencarriedoutbyMorrison,E.,Shipman, A.,Shrestha,S.,Squier,E.,&StackWhitney,K.(2019).
Reference: “MorrisonE,ShipmanA,ShresthaS,SquierE,Stack WhitneyK.EvaluatingTheOceanCleanup,aMarineDebrisRemoval ProjectintheNorthPacificGyre,UsingSWOTAnalysis.CaseStudiesin theEnvironment;2019.doi:10.1525/cse.2018.001875”
Introduction
Marinedebriscomesfromvarioussourcescarieswood,plastics, metals,andStyrofoam.Themajoreffectbythesepollutantsisthatthey havethecapacitytoleachintoseawater.Pollutantsthatarecommonly foundinthe “GreatGarbagePatch” intheNorthPacificgyreinclude carcinogens,pesticides,heavymetals,andendocrinedisruptors.Theconcentrationofthesepollutantsexceeds1000partsperbillionwhichis extremelyhighforseawater.Thiscasestudyaddresshowplasticsendsup inoceanasdebris,impactsonhumanhealth,wildlifeconservation,and economicaspectsinthelocationchose.
SWOTanalysis
Itisastrategicplanningtechnologyforprojectsintheorganisation andinstitution.SWOTstandsforStrength,Weakness,Opportunities, Threats.Thisanalysisprovidesthecomprehensiveadvantagesanddisadvantagesonthestudyaddressed.Itisappliedinmanyfieldsincluding environmentalplanningandconservation.
Caseexamination
Cleaningupofoceanthathasplasticpollutionisacriticalissue becauseitinvolvesmultipletime-andspatialscales.Likebeachcleanupit hastakenplaceforadecadeandisorganisedatlocalandregionalbodies. OceancleanupwasfoundedbyBoyanSlatin2013withthegoalof designingandcleaningmarinedebrisfromtheocean.Thereareseveral advantagesanddisadvantagestothisoceancleanupwhicharestudied usingthistechnologytoachieveitssuccess.
Strengths
TherearetwostrengthsinusingthisideaincleaningtheNorth PacificGyrethatispollutedbymarinedebris.
• Theoceancleanupisthefirstorganizationattemptingtocleanmarine debrisatalargescale.TheNorthPacificGyrehasthegreatestaccumulationoffloatingtrashintheworld,around1.8trillionplastics accordingtothesurveyreport.ThedesignisaU-shapedsystemthat canfloatinthegyretocollectfloatingplastics.Thecollectionsystem willusetheforceoftheoceanicgyretodirectdebrisintoabarrier.
• Theorganizationhaslearntfrommanypreviousexperienceswith faileddesignedprototypes,hencetheproposeddesignwillachieveits goalinasuccessfulway.
Weakness
• Thefirstfull-scaledeploymentwasnotsuccessful.Themainagenda wastoproposea600-m-longsystemandtoengageitincleaningthat workswithsupportingvesselstoextractthedebrisforevery6weeks. ButattheendofDecember2018thedebriswasnotsuccessfullycollectedbutratheritwasbroughtbacktoshoreafterbreakage.
• Itisunclearhowitwillimpactthemarinelife.Therearepossibilities forthesystemtoremovemanyfloatingorganismslikeneustonthat liveonthesurfaceoftheoceanwater.
• Thissystemdoesnotreducetheoverallproductionorconsumptionof plastics.
Opportunities
• Thereisaglobalneedtoaddressthecleaningofmarinedebrisandits harmstomarinelife.Majorharmiseatingofplasticsbywildlifein marinebiota.Theyattackthefoodchainthroughindirectways.
• Cleaningupmarinedebrismayhelpinimprovingtheeconomyand preventsimpactsreachinghumanhealth.
• Citizenscienceandcommunity-ledinitiativesdonotappeartobe effectiveincleaningmarinedebris.TheGeorgiaSeaturtlecentre marinedebrisinitiative(GSTCMDI),whichinvolvedcitizensincleaningmarinedebris,togethercollected6527piecesin461hours.
Threats
• Therearechancesforotherorganizationstobuildbettersystemsthan cleanup.LikeKoreafisheriesinfrastructurepromotionassociation operatesavesselthatcanremove350tonsofmarinedebrisannually.
• Anotherimportantmonitoringtechnologyistheuseofsatellitelocationtrackingbuoysthatareusedtomonitorthemovementofdebris. Thishelpstheresearcherstoidentifywherethedebrisislocatedand hastraveled.
Conclusion
Thisanalysishelpedtofindthemeritsanddemeritsofanytechnologies thatareusedbyorinitiatedbyanyorganization.Thiscanalsobeextendedto comparealternativeapproachessuch ascoastalcontainmentofplastics
wreck:Firstevidencesfromabiomonitoringcasestudy.EnvironPollut 2017;227:207 214.doi:10.1016/j.envpol.2017.04.066”
Thecasestudydealswiththeaccumulationofmicroplasticsinmarine lifeatdifferentzones.Ingestionofmicroplasticsdependsonparameters, forexample,size,shape,anddensity,thatdeterminethepositionofparticlesinthewatercolumnorsediments,andhencetheiravailabilityfor marineorganisms.Itisfoundthatlotsofmicroplasticshadbeendetected inwildcaughtandcommercialfishspeciesfrommanypartsofthecoast. Thesemicroplasticsarepolystyrene,polyamide,nylon,polypropylene, polyester,andpolyurethane.MicroplasticsaredefinedasemergingpollutantsandtheEuropeanMarineStrategyFrameworkDirective(MSFD, 2008/56/EC)includedmarinelitterandmicroplasticsamongthedescriptorsoftheGoodEnvironmentalStatus.
Thiscasestudypurelydenotestheavailabilityofmicroplasticsindifferentbenthicfishessampledafter2.5yearsofhugeengineeringoperation fortheparbucklingprojectontheCostaConcordiawreckatGiglio Island.Thisoperationrequiredtheuseof30,000tonsofsteel(equivalent tofourEiffelTowers),21pylonsofmorethan1mdiameterdrilledfor 9minthegranitesea-bottomoftheislandtofixsixartificialplatforms, 56chainsfortheanchoringsystemeach58mlongand26tonsinweight, and1189cementgroutbagswithatotalvolumeof12,000m3 andmore than16.000tonsweight.Nearly30vesselsandaircraftwereusedwith 500workersonsite.Thisdenotesanthropogenicpressureonthisareafor completingthisprojectinsitemighthavereleasedpollutantsinthearea. TheNationalCivilProtectionandtheItalianInstituteforEnvironmental ProtectionandResearch(ISPRA)coordinatedalargemonitoringprogram,excludingseriouscontaminationeventsfromthewreckoraconsistentincreaseofchemicalpollutioninthisarea.Itwastheself-interestof theauthorstoidentifythepollutantsinthelocation.
Atotalof41fishrepresentativeofdifferentcommercialspecieswere sampledfromtwoareasofGiglioislandinSeptember2014duringthe finaloperationsfortheremovalandtowingawayoftheCostaConcordia wreck.Someofthecommonspeciescollectedinthetwoareasincluded Scorpaena sp., Uranoscopusscaber,and Phycisphycis astypicallybenthonic fishes,and Spondyliosomacantharus asabenthopelagicspecies.Duetothe lackofawildmusselpopulationonthelsland,anactivemusselwatch approachwasperformedcagingtheseorganismsatdifferentdepthsofthe watercolumninthewreckandacontrolsite.Twocagingsiteswere selected,onenorthoftheCostaConcordiawreckandanotherinfrontof
theCaldanebeach.Twodifferentdepthswereused:1.5mfromsurface and30 35mfromthebottom,forincubationandfinallysampleswere dissected.Thepolymerswereextractedfromgastrointestinaltractsoffish andsofttissueofmusselsusingtriturationofdriedsamplesfollowedby separationunderdensitygradientandfiltrationundervacuum,partial digestionin15%H2O2,visualsorting,andFT-IRcharacterization.
Theresultsshowedthattheextractionofgastrointestinaltractsshowed thepresenceofingestedmicroplasticsfromoceanwater.Onaverage,the typicallybenthonicspecies, Phycisphycis,Scorpaena sp.,and Uranoscopusscaber,showedplasticparticlesin77%,84%,86%ofmicroplastics,respectively,whilethebenthopelagic Spondyliosomacantharus exhibited microplasticsin100%.Thesizeofplasticsitemsingestedbyfishexhibit somecommonsizeclassesrangingbetween0.5and1mm(37%), 0.1 0.5mm(35%),followedby1 5mm(20%),andsmallerthan 0.1mm(8%).FTIRanalysisconfirmedthatpolyethylenewasthemost commonpolymerfoundinthesampledfishes.Shapesofplasticsarefragments,lines,andfilmsinthesampledspecies.Theresultsfromcaged musselsdenotethepresenceofplasticsvariedfrom1 2items/individuals dependingonthedepth.Surface-cagedmusselscontainedparticlesinthe sizeclasses0.1 0.5mm,0.5 1mm,and1 5mm,whereasmusselscaged inproximitytothebottomwerelargelydominatedbythe1 5mmsize class.
Thusthisstudyrevealsaconsistentincreaseofmicroplasticpollution inthebenthicenvironmentcausedbythehugeoperationsforthe removaloftheCostaConcordiawreck.Thestudyalsodenotesthehigh frequencyofmicroplasticsinfishesandlimitedcapacityofmusselsfor microplastics.Thisclearlyindicatestheimpactonthebenthicenvironmentandontheseawatercolumnattheendofremovalactivities.
Introductiontomarinebiology
1.1Introduction
About75%oftheEarth’ssurfaceiscoveredwithseawater,whichis themajorsourceoffood,energyandmineralresources.Thisoceanwater carrieslivingorganisms,henceitiscalledanaquaticecosystem.Theocean helpstocontroltheglobalclimatethatfurtherdependsonenvironmental factorsliketemperature,monsoon,humanactivities,etc.Theaquaticecosystemisclassifiedintotwotypes:freshwaterecosystemandmarinewater ecosystem.Themarineecosystemincludeshabitatsofopenseas,coastal zones,saltmarshesandwetlandsalongshoresandrivermouths.Alsoit includesestuaries,tidalinletsandtheforeshoreecosystem [1]
1.1.1Natureofseawater
Seawaterisadifferentsolutionthathaswaterandchemicalcompoundsas itsconstituents.Whenanyexternalfactorcomesintocontactwithseawater,adegreeofsolubilizationtakesplace.Water,whichactsasasolvent medium,isanuniversalsolutioninwhichdiffusion/transportofionstakes place.Ontheotherhand,thechemicalconstituentsofseawaterinclude dissolvedandundissolvedsubstances.Dissolvedsubstancesincludesalts, organiccompoundsandgases.Undissolvedsubstancesincludegasbubbles, inorganicandorganicsolids.ThechemistryofseawaterrevealsthepresenceofsixionslikeCl ,Na 1 ,SO2 ,Mg2 1 ,Ca2 1 andK1 .Theseions arecategorizedasmajorconstituentsthatcontributenearly99.5%inseawater,whereasironfallsunderthecategoryofminorconstituents [2]
1.1.2Categoriesofmarineecosystem
Themarineecosystemischaracterizedbytwocomponents:bioticand abioticcomponents.Bioticcomponentsarelivingorganismslikeparasites, predators,competitorsandotherspecies.Abioticcomponentsaretemperature,salinity,turbulence,density,sunlightandconcentrationofnutrients. Allthesecomponentsareaffectedbyvariousfactorslikequalityof
seawater,buoyancy,gravity,temperature,density,penetrationoflight, waterturbulenceandhydrostaticpressure [1].Ingeneralbioticfactors includeplants,animals,fungi,algaeandbacteria.Abioticfactorsinclude sunlight,temperature,moisture,wind,soiltypeandnutrientavailability.
1.1.3Presenceofbioticandabioticcomponentsinmarine biota
Themarineecosystemprovidesinformationaboutmarineorganismsand theirhabitatswhichprovideknowledgeabouttheeffectsofglobal changesonmarineecology.Thisecologicalstudyprovidesabetterunderstandingoftheinteractionsbetweenorganismsandenvironmentalfactors. Thiscomplexinteractionprovidesarouteforvariousexternalfactorsthat areinvolvedinthemarineecosystem.Theyareoceantemperature,dramaticchangesinweatherpatterns,oceanacidification,meltingofglaciers andpollution.Thereareafewfactorsthataffectlifeintheocean.Some ofthemarediscussedbelow [3]
1.1.3.1Temperature
Temperatureisoneofthemostimportantfactorsthataffectstherateof biologicalprocessesinocean.Ingeneralthedifferenceintemperature affectsweatherglobally.Itisknownthatincreasedwatertemperature resultsinweakenedcurrentsandlessrainfall,whichfurtheraffectsphysiochemicalandbiologicalconditionsoftheocean [3]
1.1.3.2Nutrientconcentration
Temperaturechangeintheoceanaffectsthenutrientconcentration, whichinturnaffectsthebiologicalgrowthofbiotawithinoceanwater.
Thisalsoaffectstheprimaryproductionoffishstocksandinturnthe effectsoffishstockproductionaffectglobalyieldandsupply [3].
1.1.3.3InfluenceofCO2
levels
TheinfluenceofglobalindustrializationaffectstheCO2 levelinthe atmosphere.AnincreasedlevelofCO2 lowersoceanpH,producingacidificationinoceanwater.Therearecertainorganismsthatareaffectedby reducedpH,suchascorals,bivalvesandcalcareousplankton,whichin turninducesnegativeeffectsinthefoodweb [3].
1.1.3.4Meltingofice
Meltingoficecausesariseinsealevel,fresheningofseawaterandreductioninthespeedofwatercurrents.Ariseinsealevelaffectshumanhabitation,whereasfresheningofseawateraffectsalllifeformsdueto alterationsintheglobalclimate [3]
1.1.3.5Miscellaneousfactors
Thereareotherfactorslikesalinity,UV,hypoxiaandpollutionthataffect marineorganismsincoastalareas.Thesefactorsshowreducedresistance inbiotalikecoralreefs.Alsopollutioninducestoxicitytomarinebiotain aquaticsystems [3].
1.1.4Natureofbiotainseawater
Inthemarineecosystemthedistributionofbiologicalorganismsis restrictedbyenvironmentalparameterslikepH,salinity,depth,temperature,pressure,current,nutrientsandsedimentproperties.Classificationof marinebiologyisbasedonseabottom,depth,lightandspecificrelationshiptoland.
Theoceanhastwobroadenvironments:benthicandpelagic.
• Benthic alsocalledthebottomofocean;ithasgreatervariability.
• Pelagic termedasanearwaterenvironment,especiallywatercloseto landthatisaffectedbyrunoffandtheinfluenceoftides.
Thebenthiczoneissubdividedintodifferentzones,namelyintertidal orlittoralzone,supralittoralzone,sublittoralzone,bathyalzone,abyssal zoneandhadalzone.
• Intertidalorlittoralzone theregionofhigh-tidemarktolow-tide mark
• Supralittoralzone thebeachorshoreabovehigh-tidelinesinfluencedbyoceanactivities
• Sublittoralzone awayfromland,thatis,low-tidemarktoedgeof thecontinentalshelf
• Bathyalzone slopesandrisesoftheoceanfloor
• Abyssalzone theregionofoceanfloorplains
• Hadalzone theregionofdeeptrenchesinocean Thepelagiczonehastwomainsubdivisions:neriticzoneandoceanic zone.
• Neriticzone startsattheedgeofthelow-tidemarkandextendsto theedgeofthecontinentalshelf
• Oceaniczone theregionbetweencontinentalshelves Theoceaniczoneisfurthersubdividedintofourtypesbasedondepth. Theyareepipelagic(0 200m),mesopelagic(200 1000m),bathypelagic (1000 3800m)andabyssopelagic(greaterthan3800m)zone [2]
Organismslivinginmarinebiotacanbeclassifiedintoplanktonsand nektonssurvivinginthepelagicenvironment,whereasbenthoslivesin thebenthicenvironment.Someofthebenthicproducersaremicroalgae, macroalgae,seagrass,etc.Single/multicelledplanktonsofthephoticzone arepelagicproducers. Fig.1.1 illustartesthezonesthatarecommonly foundinocean.
Figure1.1 Oceaniczones.
1.1.5Environmentalfactorsinfluencingthemarine ecosystem
Everyspeciesliveswithinanenvironmentwhosetolerancelimitdepends ontheenvironmentalfactorslikesalinity,temperatureandhydrodynamic conditions.Inthemarineenvironmentthereisastrongrelationship betweentheabiotichabitatandthebiologicalcommunityitsupports. Oneoftheimportantfactorsthatdefinestheoccurrenceofspeciesisthe typeofsubstratum,whichcanbedividedintorockandsediments.Some importantfactorsthataffectthemarinecommunityarelistedbelow [4]
• Substratum
• Exposuretowaveaction
• Strengthoftidalcurrents
• Salinity
• Temperature
• Topography
• Geology
• Oxygenation
• Wavesurge
• Scour,turbidityandsiltation
• Shading
• Organiccarbon
• Hydrographicregime
1.1.6Anthropogenicfactorsinfluencingmarineecosystem
Physicaldisturbance,liketourism,fisheriesanddredging,affectsrocky habitatsofthemarineecosystem.Otheractivitieslikeaggregateextraction andbenthicfisheriesactivitiesmayaffectthesedimenthabitatsofthe marineenvironment.Severepollutionmayreducespeciesrichnessand encouragehigherdensitiesofopportunistspecies [4].
1.1.7Bioticandabioticinteraction
Theinteractionofthephysicalandbiologicalprocessisimportantinvisualizingcommunitiesinthemarineenvironment.Itiscommonthatlight, nutrients,temperatureandfeedingbehaviouraretheuniversalfactorsthat affecttheinteraction.Thereareotherfactorsthatcontroltheinteraction betweenbioticandabioticcomponents.Thesefactorsarecategorizedas physicalandbiologicalprocesses.