Model predictive control for doubly-fed induction generators and three-phase power converters alfeu

Page 1


https://ebookmass.com/product/model-predictive-control-fordoubly-fed-induction-generators-and-three-phase-powerconverters-alfeu-j-sguarezi-filho/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Design

of Three-phase AC Power Electronics Converters Fei "Fred" Wang

https://ebookmass.com/product/design-of-three-phase-ac-powerelectronics-converters-fei-fred-wang/

ebookmass.com

Advanced Control of Power Converters Hasan Komurcugil

https://ebookmass.com/product/advanced-control-of-power-convertershasan-komurcugil/

ebookmass.com

Model Predictive Control: Theory, Computation, and Design, 2nd Edition Rawlings James B.

https://ebookmass.com/product/model-predictive-control-theorycomputation-and-design-2nd-edition-rawlings-james-b/

ebookmass.com

Tongue Eater: Mage Errant Book 6 John Bierce

https://ebookmass.com/product/tongue-eater-mage-errant-book-6-johnbierce/

ebookmass.com

How To Write Your Literature Review 1st Edition Edition

https://ebookmass.com/product/how-to-write-your-literature-review-1stedition-edition-bryan-greetham/ ebookmass.com

A Song for the Dead: A totally addictive edge-of-your-seat crime thriller (Detectives Kane and Alton Book 21) D.K. Hood

https://ebookmass.com/product/a-song-for-the-dead-a-totally-addictiveedge-of-your-seat-crime-thriller-detectives-kane-and-altonbook-21-d-k-hood/ ebookmass.com

Dragon Descendants: Books One - Four Weil

https://ebookmass.com/product/dragon-descendants-books-one-four-weil/

ebookmass.com

Introduction to Bioplastics Engineering 1st Edition Ashter

https://ebookmass.com/product/introduction-to-bioplasticsengineering-1st-edition-ashter/ ebookmass.com

Topology Optimization in Engineering Structure Design 1st Edition Edition Weihong Zhang

https://ebookmass.com/product/topology-optimization-in-engineeringstructure-design-1st-edition-edition-weihong-zhang/ ebookmass.com

Brooklyn Kings: The Complete Collection: Books 1-7 Shaw

https://ebookmass.com/product/brooklyn-kings-the-complete-collectionbooks-1-7-shaw/

ebookmass.com

ModelPredictiveControlfor Doubly-FedInductionGeneratorsand Three-PhasePowerConverters

This page intentionally left blank

ModelPredictive ControlforDoubly-Fed InductionGenerators andThree-PhasePower Converters

AlfeuJ.SguareziFilho

Engineering,ModelingandAppliedSocialSciencesCenter FederalUniversityofABC SantoAndré,SP,Brazil

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission. TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook. Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstitute endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachor particularuseoftheMATLAB® software.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-323-90964-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JosephP.Hayton

AcquisitionsEditor: GrahamNisbet

EditorialProjectManager: AndraeAkeh

ProductionProjectManager: PoulouseJoseph

Designer: GregHarris

TypesetbyVTeX

ThisbookisdedicatedtomybelovedsonNicolasSguarezi, mywife,andmyfamily.

This page intentionally left blank

1.Introduction

AlfeuJ.SguareziFilho

1.1Overview 1 1.2Structureofthebook 3

2.Inductionmachineandthree-phasepowerconverter dynamicmodels

AlfeuJ.SguareziFilho

2.1Spacevectornotation 5

2.1.1Thestationaryreferenceframe (αβ) 5

2.1.2Thesynchronousreferenceframe (dq) 6

2.2Inductionmachinedynamicmodel 7

2.2.1IMrepresentationinthree-phasesystems8

2.2.2IMrepresentationinstationaryreferenceframe (αβ) 9

2.2.3IMrepresentationinsynchronousreferenceframe (dq) 12

2.2.4Speeddynamicsrepresentation14

2.3Three-phasepowerconverterconnectedtothegriddynamic model 14

2.3.1Three-phasepowerCCGrepresentationinthree-phase systems15

2.3.2CCGrepresentationinstationaryframe (αβ) 16

2.3.3CCGrepresentationinsynchronousframe dq 17

2.4Pulse-width-modulationtechniques 18

2.4.1SinusoidalPWM18

2.4.2Spacevectormodulation21 2.5Summary 25 2.6Furtherreading 25

3.FundamentalsofvectorcontrolforDFIGandforthe three-phaseCCG

AlfeuJ.SguareziFilho

3.1Doubly-fedinductiongenerator

3.1.1Vectorcontrol28

3.1.2ClosedlooprotorcurrentcontrolusingPIcontrollers31

3.1.3DeadbeatrotorcurrentcontrolforDFIG33

3.1.4DeadbeatdirectpowercontrolforDFIG35

3.2Three-phasepowerCCGvectorcontrol 37

3.2.1Filterelements38

3.2.2VectorcontrolfundamentalsfortheCCG38

4.Fundamentalsofmodelpredictivecontrol

AlfeuJ.SguareziFilho

4.1Overview 43

4.1.1MPCappliedinpowerelectronicssystems45

4.2Finitecontrolsetmodelpredictivecontrol 45

4.2.1Principlesoffinitecontrolsetmodelpredictivecontrol45

4.2.2ConstrainsinFCS-MPC47

4.2.3Modulatedfinitecontrolsetmodelpredictivecontrol47

4.3MPCwithmodulator(MPC-WM)

4.3.1ConstrainsinMPC52

5.ModulatedFCS-MPCforDFIG-DPC

AlfeuJ.SguareziFilhoandRogérioV.Jacomini

5.1RepresentationofDFIGusingDPC

5.1.1Rotorvoltagerepresentation55

5.2DPCforDFIGusingthemodulatedFCS-MPC 57

5.2.1ComputationofthedutycycleusingmodulatedFCS-MPC58

6.AwirelesscodedmodulatedFCS-MPCDPCfor renewableenergysourcesinsmartgridenvironment

AlfeuJ.SguareziFilho,AngeloS.Lunardi,CarlosE.Capovilla,and IvanR.S.Casella

6.1Overview

6.2Three-phasepowerCCGusingdirectpowerpredictivecontrol

6.3Representationofthewirelesscommunicationsystem

6.4Analysisoftheexperimentalresults 75

6.4.1OFDM-CCresults76

6.4.2OFDM-LDPCresults77

6.4.3FastFouriertransformanalysis80

6.5Summary 83

7.MPC-WMfordoubly-fedinductiongeneratorand three-phaseCCG

AlfeuJ.SguareziFilho

7.1DFIGrotorcurrentcontrolusingMPC-WM 85

7.1.1Spacestateequations85

7.1.2RotorcurrentcontrolusingMPC-WM87

7.2DFIGDPCusingMPC-WM 91

7.2.1DPCusingMPC-WM94

7.3Three-phaseCCGcurrentcontrolusingMPC-WM 97

7.3.1Spacestateequations98

7.3.2GridcurrentcontrolusingMPC-WM100

7.3.3Simulationresults101

7.3.4Experimentalresults101

7.4Informationaboutthechoiceofweightingmatricesand horizonsvalues 103

7.5Summary 105

8.Fundamentalsofthemodelpredictiverepetitive control

AlfeuJ.SguareziFilho

8.1Fundamentalsofrepetitivecontrol 107

8.1.1IMPforanyperiodicsignal107

8.1.2BasicRCstructureanddesign108

8.2Fundamentalsofmodelpredictiverepetitivecontrol 109

8.2.1Periodicsignalsrepresentation109

8.2.2MPRCtechnique111

8.3Summary 115

9.MPRC-WMforDFIGandthree-phaseCCGoperation undervoltagedistortions

AlfeuJ.SguareziFilho,AngeloS.Lunardi,andEliomarR.CondeD.

9.1Representationofvoltagedistortions 117

9.2ModelofDFIGunderstatordistortedvoltage 118

9.2.1Influenceofdistortedvoltageinthestatoractiveand reactivepowerrepresentation119

9.2.2InfluenceofdistortedvoltageinDClinkvoltage121

9.3DFIGrotorcurrentcontrolusingMPRC-WM 123

9.3.1Criterionforchoosingpolynomial D(z) 126 9.3.2Experimentalresults128

9.4Three-phasepowerCCGmodelundergriddistortedvoltage 131

9.4.1Influenceofdistortedvoltageintheactiveandreactive powerrepresentation133

9.5Three-phasepowerCCGcurrentcontrolusingMPRC-WM 134

9.5.1Criterionforchoosingthepolynomial Dg (z) 139 9.5.2Experimentalresults139

10.Finitepositionsetphase-lockedloopoperatingunder nonidealgridvoltages

AlfeuJ.SguareziFilho,FernandoLino,andRogérioV.Jacomini

10.1PLLfundamentals 145 10.1.1PLLforthree-phasesystems146

10.2Representationofgridvoltagedisturbances 147

10.3FinitepositionsetPLLoperationundergriddisturbances 149

10.3.1RepresentationoftheDSOGI149 10.3.2RepresentationoftheMAF151 10.3.3FinitepositionsetPLL152 10.4Experimentalresults

11.ImplementationofDFIGMPC-WMandthree-phase powerCCGMPRC-WMusingSimulink/MATLAB®

AlfeuJ.SguareziFilho,AngeloS.Lunardi,andEliomarR.CondeD.

11.1Introduction 157

11.2BuildingembeddedfunctionsforPark–Clarketransformation 157 11.2.1Park–Clarketransformation157

11.2.2InversePark–Clarketransformation159 11.2.3Pulsewidthmodulation160

11.3BuildingsimulationmodelforDFIG 168

11.3.1BuildingsimulationmodelforDFIGusingMPC-WM173 11.3.2BuildingsimulationmodelforDFIGusingMPRC-WM178

11.4Buildingsimulationmodelforthree-phasepowerCCG 184

11.4.1BuildingsimulationMPCforpowerconverter185

11.5Summary 190

12.DFIGandthree-phasepowerCCGexperimental setup

AlfeuJ.SguareziFilho

12.1Experimentalsetups 191 12.1.1DFIGsetup191

12.1.2Three-phaseCCGsetup191

12.1.3ThePLLsetup192

12.1.4Dataacquisition,powersupply,andDCmotor192

12.1.5Systeminitialization194

12.2Informationaboutthemicrocontroller 195

12.2.1Functionalityofthemicrocontroller195

12.3Predictivecontrolimplementation 196

12.3.1BuildingembeddedcontrollerinDSP196

12.4Summary 198

A.DFIGparameters

B.Three-phasepowerCCGparameters

C.DClinkvoltagerepresentation

Bibliography205 Index213

This page intentionally left blank

Listoffigures

Fig.1.1 BasicstructurediagramofaDFIGconnectedtotheelectricalgrid. 2

Fig.1.2 Structureblockdiagramofthebook. 3

Fig.2.1 Thestationaryandsynchronousreferenceframesforthespacevector. 7

Fig.2.2 Inductionmachinerepresentationinathree-phasesystem. 8

Fig.2.3 DetailedcircuitofCCG. 15

Fig.2.4 SimplifiedcircuitofCCG.

Fig.2.5 BlockdiagramforimplementationoftheSPWM.

15

19

Fig.2.6 SPWMcurves:(a)comparisonofthecarrierandthemodulatingsignals, (b) va 0 ,(c) vb 0 ,and(d) vab 19

Fig.2.7 Voltagebyusingthirdharmoniccomponent.

Fig.2.8 THSPWMdiagram.

20

20

Fig.2.9 Spacevectorrepresentationbyusingtheswitchesstatesinthe αβ frame. 21

Fig.2.10 SVMdigitalimplementation.

Fig.3.1 DFIGconnectedtothemainsblockdiagram.

Fig.3.2 Orientationdiagrams:(a)voltageorientationand(b)statorfluxorientation.

Fig.3.3 DFIGrotorcurrentcontroldiagram.

Fig.3.4 DFIGdeadbeatrotorcurrentcontroldiagram.

Fig.3.5 Detailofdeadbeatdiagram.

Fig.3.6 DFIGdeadbeatdirectpowercontrolgeneralscheme.

Fig.3.7 Three-phasepowerCCGclosed-loopgridcurrentcontrolbyusingPI controllers.

Fig.4.1 MPCbasicdiagram.

Fig.5.1 Graphicalrepresentationofconverterswitchingconditionsandtherotor voltagevectorintherotorreference.

Fig.5.2 DPCforDFIGusingmodulatedFCS-MPCblockschemeofthe implementedcontrolalgorithm.

Fig.5.3 DPCforDFIGusingmodulatedFCS-MPCblockschemeoftherotorvoltage prediction.

Fig.5.4 ModulatedFCS-MPCDPC.Steptestsforapparentpower:(a)activepower and(b)reactivepower.

Fig.5.5 ModulatedFCS-MPCDPC.Detailofthesteptestforapparentpower: (a)activepowerand(b)reactivepower.

Fig.5.6 ModulatedFCS-MPCDPC.Detailofthesteptestforapparentpower: (a)reactivepowerandactivepower,(b)statorcurrentandvoltage.

Fig.5.7 ModulatedFCS-MPCDPC.Detailofthesteptestforapparentpower: (a)reactivepowerandactivepower,(b)statorcurrentandvoltage.

Fig.5.8 ModulatedFCS-MPCDPC.THDoftherotorvoltageduringthetest.

Fig.5.9 ModulatedFCS-MPCDPC.Rotorspeed.

24

27

30

32

35

36

38

41

44

59

60

61

63

64

64

64

65

65

Fig.5.10

ModulatedFCS-MPCDPC.Steptestforapparentpower:(a)statoractive powerand(b)statorreactivepower.

66

Fig.5.11 ModulatedFCS-MPCDPC.Rotorcurrentduringseveral-speedoperation. 66

Fig.6.1 Smartgridinfrastructure.

Fig.6.2 VSIsextant.

Fig.6.3 BlockdiagramforthemodulatedFCS-MPCDPCforCCG.

Fig.6.4 Blockdiagramforthewirelesscommunicationsystem.

Fig.6.5 Experimentalsetupfortests.

Fig.6.6 Responseofreceivedpowersteptest, Pgref and Qgref ,usingOFDM-CC.

Fig.6.7 GridvoltageandcurrentsignalsusingOFDM-CCandresponseofreceived Pgref steptestusingOFDM-CC.

Fig.6.8

GridcurrentsignalsusingOFDM-CC(Q =−300var).Theblue(grayin printversion)lineisthereferencesignalandthedashedred(darkgrayin printversion)lineisthecurrentsignal.

Fig.6.9 Responseofreceivedpowersteptest, Qgref and Pgref ,usingOFDM-LDPC.

Fig.6.10

Fig.6.11

GridvoltageandcurrentsignalsusingOFDM-LDPCandresponseof received Pgref steptestusingOFDM-LDPC.

GridcurrentsignalsusingOFDM-CC(Qgref =−300var).

Fig.6.12 FFTanalysisforswitching.

Fig.6.13 CurrentFFTanalysisforOFDM-LDPC.

Fig.6.14 CurrentFFTanalysisforOFDM-CC.

Fig.7.1 DFIGrotorcurrentcontrolbyusingMPC-WMdiagram.

Fig.7.2

Fig.7.3

Fig.7.4

Fig.7.5

Fig.7.6

Fig.7.7

Fig.7.8

Fig.7.9

Fig.7.10

Fig.7.11

Fig.7.12

Fig.7.13

Fig.7.14

Fig.7.15

Fig.7.16

Fig.7.17

Fig.7.18

MPC-WM.Steptestsforrotorcurrent:(a) q –quadratureaxis,(b) d –direct axis,(c)inthe αβ frame,and(d)inthethree-phaserotorframe.

MPC-WM.Steptestsforrotorcurrentinthe dq frame.

MPC-WM.Detailofsteptestforrotorcurrentinthe dq frame.

MPC-WM.Statorvoltageandcurrentduringstepofrotorcurrent ir,d : (a)statorvoltageandcurrent,(b)rotorcurrentvectorcomponents.

MPC-WM:Statorvoltageandcurrentduringstepofrotorcurrent ir,q (a)Statorvoltageandcurrent.(b)Rotorcurrentvectorcomponents.

MPC-WM:Severalspeedoperationtest.(a)Speedoftherotor.(b)Rotor currentinrotorframe.(c)Rotorcurrentvectorcomponentsin dq frame.

MPC-WM:DFIGDPC.

DPCMPC-WM.Steptestsforactiveandreactivepower:(a)activepower, (b)reactivepower.

DPCMPC-WM.Detailofsteptestforactivepower:(a)activepower, (b)reactivepower.

DPCMPC-WM.Statorvoltageandcurrentduringstepofactivepower: (a)reactiveandactivepower,(b)statorvoltageandcurrent.

DPCMPC-WM.Statorvoltageandcurrentduringstepofreactivepower: (a)reactiveandactivepower,(b)statorvoltageandcurrent.

DPCMPC-WM.Several-speedoperationtest:(a)rotorspeed,(b)rotor current,(c)reactiveandactivepower.

MPC-WM.CCGcurrentcontroldiagram.

MPC-WM.Simulationresultofthegridcurrentbehaviorduringthepower steptests.

MPC-WM:THDofthegridcurrent.

MPC-WM.Steptestsforgridpowercontrol:(a)activepower,(b)reactive power.

MPC-WM.Detailofgridactivepowerstep:(a)activepower,(b)reactive power.

68

70

74

74

76

77

78

79

79

80

81

81

82

82

88

90

90

91

91

92

92

96

97

97

98

98

99

102

103

103

104

104

Fig.7.19

Fig.7.20

Fig.7.21

MPC-WM.Gridcurrentduringpowersteptests:(a)realcomponentofthe gridcurrentvector,(b)imaginarycomponentofthegridcurrentvector. 105

MPC-WM.Gridcurrentduringthereactivepowerstep:(a)activeand reactivepower,(b)gridvoltageandcurrent.

MPC-WM.Gridcurrentduringtheactivepowerstep:(a)activeandreactive power,(b)gridvoltageandcurrent.

105

106

Fig.8.1 ControlsystemloopbyusingtheIMP. 108

Fig.8.2 RCinaplug-inscheme.

Fig.8.3 MPRCdiagram.

Fig.9.1 DiagramofrotorcurrentcontrolofDFIGusingMPRC-WM. 127

Fig.9.2

Fig.9.3

Fig.9.4

Fig.9.5

Fig.9.6

Fig.9.7

Fig.9.8

Fig.9.9

Fig.9.10

Fig.9.11

Fig.9.12

Fig.9.13

Fig.9.14

Fig.9.15

Fig.9.16

Fig.9.17

Fig.9.18

Fig.9.19

Fig.9.20

MPRC-WM.Steptestsforrotorcurrentvectorcomponents.

MPRC-WM.Detailsofthesteptestfor ir,q .

MPRC-WM.Detailofthesteptestfor ir,q :(a)statorvoltageandcurrent, (b)rotorcurrentvectorcomponents.

MPRC-WM.Detailsofthesteptestfor ir,d :(a)statorvoltageandcurrent, (b)rotorcurrentvectorcomponents.

MPRC-WM.Testusingseveral-speedoperation:(a)speedoftherotor, (b)rotorcurrentinrotorframe,and(c)rotorcurrentvectorcomponentsin the dq frame.

MPRC-WM.Testundervoltagedistortedby7%ofthe5thharmonic component:(a)statorvoltageandcurrent,(b)rotorcurrentvectorcomponents.

MPRC-WM.THDandharmonicscomponentsofstatorcurrent.

MPC-WM.Testundervoltagedistortedby7%ofthe5thharmonic component:(a)statorvoltageandcurrent,(b)rotorcurrentvectorcomponents.

MPC-WM.THDandharmonicscomponentsofthestatorcurrent.

DiagramofgridcurrentcontrolusingMPRC-WM.

MPRC-WM.Steptestsforactiveandreactivepower:(a)activepower, (b)reactivepower.

MPRC-WM.Detailsofthesteptestforactivepower:(a)activepower, (b)reactivepower.

MPRC-WM.Steptestsforgridcurrentvectorcomponents:(a)real componentofgridcurrentvector,(b)imaginarycomponentofgridcurrent vector.

MPRC-WM.Gridvoltageandcurrentactionduringsteptestofactivepower: (a)reactiveandactivepower,(b)gridvoltageandcurrent.

MPRC-WM.Gridvoltageandcurrentactionduringasteptestofreactive power:(a)reactiveandactivepower,(b)gridvoltageandcurrent.

MPRC-WM.Gridvoltageandcurrentactionduringasteptestofactive powerduringthedistortedgridvoltage:(a)reactiveandactivepower, (b)gridvoltageandcurrent.

MPRC-WM.THDofstatorcurrentduringthedistortedgridvoltage.

MPC-WM.Gridvoltageandcurrentactionduringasteptestofactivepower duringthedistortedgridvoltage:(a)reactiveandactivepower,(b)grid voltageandcurrent.

MPC-WM.THDofstatorcurrentduringthedistortedgridvoltage.

Fig.10.1 BasicstructureofthePLLblockdiagram.

Fig.10.2 PLLforthree-phasesystems’blockdiagram.

Fig.10.3 ExperimentalresultofSRF-PLLtestforunbalancedvoltagesag: (a)three-phasevoltage,(b)gridvoltageselementsinthe dq frame,(c)grid frequency,and(d)gridangle.

Fig.10.4 BlockdiagramofstructureoftheDSOGI.

128

129

129

130

130

131

131

132

132

138

140

140

141

141

142

143

143

144

144

145

147

149

150

Fig.10.5 DiagramoftheDSOGI-MAF-FPS-PLL.

Fig.10.6

ExperimentalresultofDSOGI-MAF-FPS-PLLtestforunbalancedsag: (a)three-phasevoltage,(b)positivesequenceofthegridvoltageselementsin the dq frame,(c)gridfrequency,and(d)gridangle.

Fig.10.7 ExperimentalresultofDSOGI-MAF-FPS-PLLtestforvoltagesagwiththe 5thharmonic:(a)three-phasevoltage,(b)positivesequenceofthegrid voltageselementsinthe dq frame,(c)gridfrequency,and(d)gridangle.

Fig.10.8

ExperimentalresultofDSOGI-MAF-FPS-PLLtestunderdistortedvoltage: (a)three-phasevoltage,(b)positivesequenceofthegridvoltageselementsin the dq frame,(c)gridfrequency,and(d)gridangle.

Fig.11.1 Clarketransformation(CT).

Fig.11.2 Parktransformation(PT).

Fig.11.3 Parktransformation(PT)inSimulink.

Fig.11.4 InverseClarketransformation.

Fig.11.5 InverseParktransformation.

Fig.11.6 PWMinSimulink.

Fig.11.7 SVMinSimulink.

Fig.11.8 Modelforthree-phasepowerconverterinSimulink.

Fig.11.9 Three-phasegridvoltagesmodel.

Fig.11.10 Currents’blockofDFIGsimulationmodel.

Fig.11.11 Fluxes’blockofDFIGsimulationmodel.

Fig.11.12 TorqueblockofDFIGsimulationmodel.

Fig.11.13 DFIGsystemsimulationblock.

154

155

156

156

Fig.11.14 Modelpredictivecontrolblock,MATLAB/Simulinkimplementation. 174

Fig.11.15 PredictiveRepetitivecontrolblock,MATLAB/Simulinkimplementation. 179

Fig.11.16 Completethree-phasepowerCCGmodelinSimulink.

Fig.11.17 CurrentreferenceinSimulink.

Fig.11.18 Modelpredictivecontrolblock,MATLAB/Simulinkimplementation. 187

Fig.12.1 TheexperimentalsetupofDFIGusedinMPCtests. 191

Fig.12.2 Theexperimentalsetupofthree-phaseCCGusedinMPCtests. 192

Fig.12.3 TheexperimentalsetupforPLLtests.

193

Listoftables

Table2.1 Switchingstatesandvoltagevectors.

Table2.2 PWMtimescaledefinition.

Table2.3 Timesforregistersinfunctionofthesector.

Table3.1 Doubly-fedinductionmachineoperationconditions.

Table5.1 Switchingstatesandvoltagevectors.

Table5.2 Sectorofreferencerotorvoltagevector.

Table5.3 Calculationofthedutycycleoftheadjacentvectorstoeachsector k

inthe αβr frame.

Table6.1 Switchingstatesandvoltagevectors.

Table9.1 Distortedvoltageharmonicscomponents.

TableA.1 IMparameters.

TableB.1 Three-phasepowerCCGparameters.

This page intentionally left blank

Listofcontributors

CarlosE.Capovilla,FederalUniversityofABC,SantoAndré,SP,Brazil

IvanR.S.Casella,FederalUniversityofABC,SantoAndré,SP,Brazil

EliomarR.CondeD.,FederalUniversityofABC,SantoAndré,SP,Brazil

RogérioV.Jacomini,FederalInstituteofSãoPaulo,Hortolândia,SP,Brazil

FernandoLino,FederalUniversityofABC,SantoAndré,SP,Brazil

AngeloS.Lunardi,FederalUniversityofABC,SantoAndré,SP,Brazil

AlfeuJ.SguareziFilho,FederalUniversityofABC,SantoAndré,SP,Brazil

This page intentionally left blank

Biography

HewasborninCuiabá–MT–Brazilin1981,receivedhisElectricalEng.degreefromÁREA1–FacultyofEngineeringinBa–Brazilin2005,hisMaster’s andPhDdegreesfromCampinasUniversityinSP–Brazilin2007and2010, respectively.HeisIEEESeniormember.Since2012,heisafulltimeprofessor atFederalUniversityofABC–UFABC,inSantoAndré–SP–Brazil,teaching intheareasofElectricalMachines,PowerElectronics,andElectricalDrives.

This page intentionally left blank

Abbreviationlist

Abbreviations

ACAlternatingCurrent

CCGConverterConnectedtotheGrid

DCDirectCurrent

DFIGDoubly-FedInductionGenerator

DFTDiscreteFourierTransform

DPCDirectPowerControl

DTCDirectTorqueControl

DSPDigitalSignalProcessor

FCSFiniteControlSet

FOCFieldOrientedControl

IMInductionMachine

IMPInternalModelPrinciple

IGBTInsulated-GateBipolarTransistor

MPCModelPredictiveControl

MPRCModelPredictiveRepetitiveControl

PWMPulseWidthModulation

PIProportional-Integral

PLLPhaseLockedLoop

SPWMSinusoidalPWM

SVOCStatorVoltageOrientedControl

SVMSpaceVectorModulation

THSPWMThirdHarmonicSinusoidalPWM

RCRepetitiveControl

VSIVoltageSourceInverter

WMWithModulator

ZOHZeroOrderHold

Variablesandsymbols

I m Imaginarycomponentofthecomplexnumber

Re Realcomponentofthecomplexnumber

i Instantaneousvalueofcurrentasafunctionoftime

l Relatedtotheharmoniccomponents

s Laplaceoperator

v Instantaneousvalueofvoltageasafunctionoftime #» v Voltagevector

Currentvector

Fluxvector J Costfunction

xxiv Abbreviationlist

TL Loadormechanicaltorque

ω Speedorangularfrequency

NP Polepairs

ny Predictionhorizon

nu Controlhorizon

R Resistance

L Inductance

Lm Mutualinductance

σ Globalleakage

Te Electromagnettorque

JJ Totalmomentofinertia

x State

u Incrementofinput

λs , |λs | Magnitudeofstatorflux

rmsRootmeansquarevalue

q 1 Backwardshiftoperator

k Instantsampling

(k + 1) Nextsampling

I Identitymatrix

O Zeromatrix

θ Angularposition

P Activepower

Q Reactivepower

Wy Weightingmatrixforpredictioneffort

Wu Weightingmatrixforcontroleffort

u Input out

Numberofoutputs

Superscript

∗ ”Conjugateofthecomplexnumber

Subscripts

s Relatedtothestator

r Relatedtotherotor

g Relatedtotheelectricalgrid

αβ Relatedtothestationaryreferenceframe

α Relatedtotherealcomponentofthestationaryreferenceframe

β Relatedtotheimaginarycomponentofthestationaryreferenceframe

αβr Relatedtotherotorreferenceframe

αr Relatedtotherealcomponentoftherotorreferenceframe

βr Relatedtotheimaginatycomponentoftherotorreferenceframe

ρ Relatedtothefilterorder

dq Relatedtothesynchronousreferenceframe

d Relatedtotherealcomponentofthesynchronousreferenceframe

q Relatedtotheimaginatycomponentofthesynchronousreferenceframe

ee Relatedtotheexpandedmodel

ir Relatedtotherotorcurrent

mec Relatedtothemechanicalcomponentsofthemachine

pq Relatedtothestatoractiveandreactivepower

ref Relatedtothereferences

sl Relatedtotheslip

Chapter1 Introduction

FederalUniversityofABC,SantoAndré,SP,Brazil

1.1Overview

Theevolutionofpowersemiconductorcomponentspermittedprocessingpower atlevelsofthousandsofvoltsandampers.Inthiscontext,severalpowerelectronicsdevicesbuiltwitharrangementsofthesesemiconductorelementsenabledtheconversionofenergyfromAC–AC,withdifferentfrequenciesand amplitudes,DC–AC,AC–DC,andDC–AC[1].Thus,itwaspossibletomake thedifferentwaysofusingelectricenergymoreflexibleand,consequently,to diversifythewaysofitsapplication.Finally,theevolutionofpowersemiconductors,theincreaseintheprocessingandstoragecapacityofprocessorsand theirperipherals,respectively,enabledgreaterflexibilityintheimplementation ofmorecomplexcontrolalgorithms.

Oneapplicationofpowerelectronicsisinrenewableenergysuchaswind, smallhydroelectricplants,orinelectricalenergystoragesystems,amongothers [2].Thistypeofapplicationisimportantduetothegrowingdemandforenergy indevelopedanddevelopingcountries,andinthesearchforalternativeenergy sourcesratherthanusingfossilfuels.Inthiscase,powerelectronicscanbeused toprocessenergyfromelectricgeneratorsortoprocessenergypresentinthe energystoragesystems.

Amongthegeneratorsemployedintherenewableenergy,thedoubly-fedinductiongenerator(DFIG)hasbecomepopular.Thistypeofgeneratoremerged asanalternativetopermanentmagnetssynchronousgenerators,duetoitslow costandrobustness.TheordinaryconfigurationofDFIGemployedinrenewableenergysystemshasitsstatorconnecteddirectlytothegridanditsrotor connectedtothegridthroughabidirectionalconverter,whichprocessesamaximumof30%ofthetotalpowerofthegenerator[3].Inthisway,itdecreasesthe costofthesystem.Thebidirectionalconverter,calledback-to-backconverter, isanarrangementoftwoelectronicpowerconvertersthathaveACinput/output andsharethesameDClink.AdiagramoftheDFIGusingthisconfigurationis depictedinFig. 1.1.Itispossibletonoticethebasicstructureofthegridandrotorsideconverterscontrolusingthemeasurementsofcurrent,torque,poweror speedofthegenerator,orusingthemeasurementsofcurrent,voltageorpower ofthegrid.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Model predictive control for doubly-fed induction generators and three-phase power converters alfeu by Education Libraries - Issuu