https://ebookmass.com/product/model-predictive-control-fordoubly-fed-induction-generators-and-three-phase-powerconverters-alfeu-j-sguarezi-filho/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Design of Three-phase AC Power Electronics Converters Fei "Fred" Wang
https://ebookmass.com/product/design-of-three-phase-ac-powerelectronics-converters-fei-fred-wang/
ebookmass.com
Advanced Control of Power Converters Hasan Komurcugil
https://ebookmass.com/product/advanced-control-of-power-convertershasan-komurcugil/
ebookmass.com
Model Predictive Control: Theory, Computation, and Design, 2nd Edition Rawlings James B.
https://ebookmass.com/product/model-predictive-control-theorycomputation-and-design-2nd-edition-rawlings-james-b/
ebookmass.com
Tongue Eater: Mage Errant Book 6 John Bierce
https://ebookmass.com/product/tongue-eater-mage-errant-book-6-johnbierce/
ebookmass.com
How To Write Your Literature Review 1st Edition Edition
Bryan Greetham
https://ebookmass.com/product/how-to-write-your-literature-review-1stedition-edition-bryan-greetham/ ebookmass.com
A Song for the Dead: A totally addictive edge-of-your-seat crime thriller (Detectives Kane and Alton Book 21) D.K. Hood
https://ebookmass.com/product/a-song-for-the-dead-a-totally-addictiveedge-of-your-seat-crime-thriller-detectives-kane-and-altonbook-21-d-k-hood/ ebookmass.com
Dragon Descendants: Books One - Four Weil
https://ebookmass.com/product/dragon-descendants-books-one-four-weil/
ebookmass.com
Introduction to Bioplastics Engineering 1st Edition Ashter
https://ebookmass.com/product/introduction-to-bioplasticsengineering-1st-edition-ashter/ ebookmass.com
Topology Optimization in Engineering Structure Design 1st Edition Edition Weihong Zhang
https://ebookmass.com/product/topology-optimization-in-engineeringstructure-design-1st-edition-edition-weihong-zhang/ ebookmass.com
Brooklyn Kings: The Complete Collection: Books 1-7 Shaw
https://ebookmass.com/product/brooklyn-kings-the-complete-collectionbooks-1-7-shaw/
ebookmass.com
ModelPredictiveControlfor Doubly-FedInductionGeneratorsand Three-PhasePowerConverters This page intentionally left blank
ModelPredictive ControlforDoubly-Fed InductionGenerators andThree-PhasePower Converters AlfeuJ.SguareziFilho
Engineering,ModelingandAppliedSocialSciencesCenter FederalUniversityofABC SantoAndré,SP,Brazil
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierInc.Allrightsreserved.
MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission. TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook. Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstitute endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachor particularuseoftheMATLAB® software.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-323-90964-8
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: JosephP.Hayton
AcquisitionsEditor: GrahamNisbet
EditorialProjectManager: AndraeAkeh
ProductionProjectManager: PoulouseJoseph
Designer: GregHarris
TypesetbyVTeX
ThisbookisdedicatedtomybelovedsonNicolasSguarezi, mywife,andmyfamily.
This page intentionally left blank
1.Introduction
AlfeuJ.SguareziFilho
1.1Overview 1 1.2Structureofthebook 3
2.Inductionmachineandthree-phasepowerconverter dynamicmodels
AlfeuJ.SguareziFilho
2.1Spacevectornotation 5
2.1.1Thestationaryreferenceframe (αβ) 5
2.1.2Thesynchronousreferenceframe (dq) 6
2.2Inductionmachinedynamicmodel 7
2.2.1IMrepresentationinthree-phasesystems8
2.2.2IMrepresentationinstationaryreferenceframe (αβ) 9
2.2.3IMrepresentationinsynchronousreferenceframe (dq) 12
2.2.4Speeddynamicsrepresentation14
2.3Three-phasepowerconverterconnectedtothegriddynamic model 14
2.3.1Three-phasepowerCCGrepresentationinthree-phase systems15
2.3.2CCGrepresentationinstationaryframe (αβ) 16
2.3.3CCGrepresentationinsynchronousframe dq 17
2.4Pulse-width-modulationtechniques 18
2.4.1SinusoidalPWM18
2.4.2Spacevectormodulation21 2.5Summary 25 2.6Furtherreading 25
3.FundamentalsofvectorcontrolforDFIGandforthe three-phaseCCG
AlfeuJ.SguareziFilho
3.1Doubly-fedinductiongenerator
3.1.1Vectorcontrol28
3.1.2ClosedlooprotorcurrentcontrolusingPIcontrollers31
3.1.3DeadbeatrotorcurrentcontrolforDFIG33
3.1.4DeadbeatdirectpowercontrolforDFIG35
3.2Three-phasepowerCCGvectorcontrol 37
3.2.1Filterelements38
3.2.2VectorcontrolfundamentalsfortheCCG38
4.Fundamentalsofmodelpredictivecontrol
AlfeuJ.SguareziFilho
4.1Overview 43
4.1.1MPCappliedinpowerelectronicssystems45
4.2Finitecontrolsetmodelpredictivecontrol 45
4.2.1Principlesoffinitecontrolsetmodelpredictivecontrol45
4.2.2ConstrainsinFCS-MPC47
4.2.3Modulatedfinitecontrolsetmodelpredictivecontrol47
4.3MPCwithmodulator(MPC-WM)
4.3.1ConstrainsinMPC52
5.ModulatedFCS-MPCforDFIG-DPC
AlfeuJ.SguareziFilhoandRogérioV.Jacomini
5.1RepresentationofDFIGusingDPC
5.1.1Rotorvoltagerepresentation55
5.2DPCforDFIGusingthemodulatedFCS-MPC 57
5.2.1ComputationofthedutycycleusingmodulatedFCS-MPC58
6.AwirelesscodedmodulatedFCS-MPCDPCfor renewableenergysourcesinsmartgridenvironment
AlfeuJ.SguareziFilho,AngeloS.Lunardi,CarlosE.Capovilla,and IvanR.S.Casella
6.1Overview
6.2Three-phasepowerCCGusingdirectpowerpredictivecontrol
6.3Representationofthewirelesscommunicationsystem
6.4Analysisoftheexperimentalresults 75
6.4.1OFDM-CCresults76
6.4.2OFDM-LDPCresults77
6.4.3FastFouriertransformanalysis80
6.5Summary 83
7.MPC-WMfordoubly-fedinductiongeneratorand three-phaseCCG
AlfeuJ.SguareziFilho
7.1DFIGrotorcurrentcontrolusingMPC-WM 85
7.1.1Spacestateequations85
7.1.2RotorcurrentcontrolusingMPC-WM87
7.2DFIGDPCusingMPC-WM 91
7.2.1DPCusingMPC-WM94
7.3Three-phaseCCGcurrentcontrolusingMPC-WM 97
7.3.1Spacestateequations98
7.3.2GridcurrentcontrolusingMPC-WM100
7.3.3Simulationresults101
7.3.4Experimentalresults101
7.4Informationaboutthechoiceofweightingmatricesand horizonsvalues 103
7.5Summary 105
8.Fundamentalsofthemodelpredictiverepetitive control
AlfeuJ.SguareziFilho
8.1Fundamentalsofrepetitivecontrol 107
8.1.1IMPforanyperiodicsignal107
8.1.2BasicRCstructureanddesign108
8.2Fundamentalsofmodelpredictiverepetitivecontrol 109
8.2.1Periodicsignalsrepresentation109
8.2.2MPRCtechnique111
8.3Summary 115
9.MPRC-WMforDFIGandthree-phaseCCGoperation undervoltagedistortions
AlfeuJ.SguareziFilho,AngeloS.Lunardi,andEliomarR.CondeD.
9.1Representationofvoltagedistortions 117
9.2ModelofDFIGunderstatordistortedvoltage 118
9.2.1Influenceofdistortedvoltageinthestatoractiveand reactivepowerrepresentation119
9.2.2InfluenceofdistortedvoltageinDClinkvoltage121
9.3DFIGrotorcurrentcontrolusingMPRC-WM 123
9.3.1Criterionforchoosingpolynomial D(z) 126 9.3.2Experimentalresults128
9.4Three-phasepowerCCGmodelundergriddistortedvoltage 131
9.4.1Influenceofdistortedvoltageintheactiveandreactive powerrepresentation133
9.5Three-phasepowerCCGcurrentcontrolusingMPRC-WM 134
9.5.1Criterionforchoosingthepolynomial Dg (z) 139 9.5.2Experimentalresults139
10.Finitepositionsetphase-lockedloopoperatingunder nonidealgridvoltages
AlfeuJ.SguareziFilho,FernandoLino,andRogérioV.Jacomini
10.1PLLfundamentals 145 10.1.1PLLforthree-phasesystems146
10.2Representationofgridvoltagedisturbances 147
10.3FinitepositionsetPLLoperationundergriddisturbances 149
10.3.1RepresentationoftheDSOGI149 10.3.2RepresentationoftheMAF151 10.3.3FinitepositionsetPLL152 10.4Experimentalresults
11.ImplementationofDFIGMPC-WMandthree-phase powerCCGMPRC-WMusingSimulink/MATLAB®
AlfeuJ.SguareziFilho,AngeloS.Lunardi,andEliomarR.CondeD.
11.1Introduction 157
11.2BuildingembeddedfunctionsforPark–Clarketransformation 157 11.2.1Park–Clarketransformation157
11.2.2InversePark–Clarketransformation159 11.2.3Pulsewidthmodulation160
11.3BuildingsimulationmodelforDFIG 168
11.3.1BuildingsimulationmodelforDFIGusingMPC-WM173 11.3.2BuildingsimulationmodelforDFIGusingMPRC-WM178
11.4Buildingsimulationmodelforthree-phasepowerCCG 184
11.4.1BuildingsimulationMPCforpowerconverter185
11.5Summary 190
12.DFIGandthree-phasepowerCCGexperimental setup
AlfeuJ.SguareziFilho
12.1Experimentalsetups 191 12.1.1DFIGsetup191
12.1.2Three-phaseCCGsetup191
12.1.3ThePLLsetup192
12.1.4Dataacquisition,powersupply,andDCmotor192
12.1.5Systeminitialization194
12.2Informationaboutthemicrocontroller 195
12.2.1Functionalityofthemicrocontroller195
12.3Predictivecontrolimplementation 196
12.3.1BuildingembeddedcontrollerinDSP196
12.4Summary 198
A.DFIGparameters
B.Three-phasepowerCCGparameters
C.DClinkvoltagerepresentation
Bibliography205 Index213
This page intentionally left blank
Listoffigures Fig.1.1 BasicstructurediagramofaDFIGconnectedtotheelectricalgrid. 2
Fig.1.2 Structureblockdiagramofthebook. 3
Fig.2.1 Thestationaryandsynchronousreferenceframesforthespacevector. 7
Fig.2.2 Inductionmachinerepresentationinathree-phasesystem. 8
Fig.2.3 DetailedcircuitofCCG. 15
Fig.2.4 SimplifiedcircuitofCCG.
Fig.2.5 BlockdiagramforimplementationoftheSPWM.
15
19
Fig.2.6 SPWMcurves:(a)comparisonofthecarrierandthemodulatingsignals, (b) va 0 ,(c) vb 0 ,and(d) vab 19
Fig.2.7 Voltagebyusingthirdharmoniccomponent.
Fig.2.8 THSPWMdiagram.
20
20
Fig.2.9 Spacevectorrepresentationbyusingtheswitchesstatesinthe αβ frame. 21
Fig.2.10 SVMdigitalimplementation.
Fig.3.1 DFIGconnectedtothemainsblockdiagram.
Fig.3.2 Orientationdiagrams:(a)voltageorientationand(b)statorfluxorientation.
Fig.3.3 DFIGrotorcurrentcontroldiagram.
Fig.3.4 DFIGdeadbeatrotorcurrentcontroldiagram.
Fig.3.5 Detailofdeadbeatdiagram.
Fig.3.6 DFIGdeadbeatdirectpowercontrolgeneralscheme.
Fig.3.7 Three-phasepowerCCGclosed-loopgridcurrentcontrolbyusingPI controllers.
Fig.4.1 MPCbasicdiagram.
Fig.5.1 Graphicalrepresentationofconverterswitchingconditionsandtherotor voltagevectorintherotorreference.
Fig.5.2 DPCforDFIGusingmodulatedFCS-MPCblockschemeofthe implementedcontrolalgorithm.
Fig.5.3 DPCforDFIGusingmodulatedFCS-MPCblockschemeoftherotorvoltage prediction.
Fig.5.4 ModulatedFCS-MPCDPC.Steptestsforapparentpower:(a)activepower and(b)reactivepower.
Fig.5.5 ModulatedFCS-MPCDPC.Detailofthesteptestforapparentpower: (a)activepowerand(b)reactivepower.
Fig.5.6 ModulatedFCS-MPCDPC.Detailofthesteptestforapparentpower: (a)reactivepowerandactivepower,(b)statorcurrentandvoltage.
Fig.5.7 ModulatedFCS-MPCDPC.Detailofthesteptestforapparentpower: (a)reactivepowerandactivepower,(b)statorcurrentandvoltage.
Fig.5.8 ModulatedFCS-MPCDPC.THDoftherotorvoltageduringthetest.
Fig.5.9 ModulatedFCS-MPCDPC.Rotorspeed.
24
27
30
32
35
36
38
41
44
59
60
61
63
64
64
64
65
65
Fig.5.10
ModulatedFCS-MPCDPC.Steptestforapparentpower:(a)statoractive powerand(b)statorreactivepower.
66
Fig.5.11 ModulatedFCS-MPCDPC.Rotorcurrentduringseveral-speedoperation. 66
Fig.6.1 Smartgridinfrastructure.
Fig.6.2 VSIsextant.
Fig.6.3 BlockdiagramforthemodulatedFCS-MPCDPCforCCG.
Fig.6.4 Blockdiagramforthewirelesscommunicationsystem.
Fig.6.5 Experimentalsetupfortests.
Fig.6.6 Responseofreceivedpowersteptest, Pgref and Qgref ,usingOFDM-CC.
Fig.6.7 GridvoltageandcurrentsignalsusingOFDM-CCandresponseofreceived Pgref steptestusingOFDM-CC.
Fig.6.8
GridcurrentsignalsusingOFDM-CC(Q =−300var).Theblue(grayin printversion)lineisthereferencesignalandthedashedred(darkgrayin printversion)lineisthecurrentsignal.
Fig.6.9 Responseofreceivedpowersteptest, Qgref and Pgref ,usingOFDM-LDPC.
Fig.6.10
Fig.6.11
GridvoltageandcurrentsignalsusingOFDM-LDPCandresponseof received Pgref steptestusingOFDM-LDPC.
GridcurrentsignalsusingOFDM-CC(Qgref =−300var).
Fig.6.12 FFTanalysisforswitching.
Fig.6.13 CurrentFFTanalysisforOFDM-LDPC.
Fig.6.14 CurrentFFTanalysisforOFDM-CC.
Fig.7.1 DFIGrotorcurrentcontrolbyusingMPC-WMdiagram.
Fig.7.2
Fig.7.3
Fig.7.4
Fig.7.5
Fig.7.6
Fig.7.7
Fig.7.8
Fig.7.9
Fig.7.10
Fig.7.11
Fig.7.12
Fig.7.13
Fig.7.14
Fig.7.15
Fig.7.16
Fig.7.17
Fig.7.18
MPC-WM.Steptestsforrotorcurrent:(a) q –quadratureaxis,(b) d –direct axis,(c)inthe αβ frame,and(d)inthethree-phaserotorframe.
MPC-WM.Steptestsforrotorcurrentinthe dq frame.
MPC-WM.Detailofsteptestforrotorcurrentinthe dq frame.
MPC-WM.Statorvoltageandcurrentduringstepofrotorcurrent ir,d : (a)statorvoltageandcurrent,(b)rotorcurrentvectorcomponents.
MPC-WM:Statorvoltageandcurrentduringstepofrotorcurrent ir,q (a)Statorvoltageandcurrent.(b)Rotorcurrentvectorcomponents.
MPC-WM:Severalspeedoperationtest.(a)Speedoftherotor.(b)Rotor currentinrotorframe.(c)Rotorcurrentvectorcomponentsin dq frame.
MPC-WM:DFIGDPC.
DPCMPC-WM.Steptestsforactiveandreactivepower:(a)activepower, (b)reactivepower.
DPCMPC-WM.Detailofsteptestforactivepower:(a)activepower, (b)reactivepower.
DPCMPC-WM.Statorvoltageandcurrentduringstepofactivepower: (a)reactiveandactivepower,(b)statorvoltageandcurrent.
DPCMPC-WM.Statorvoltageandcurrentduringstepofreactivepower: (a)reactiveandactivepower,(b)statorvoltageandcurrent.
DPCMPC-WM.Several-speedoperationtest:(a)rotorspeed,(b)rotor current,(c)reactiveandactivepower.
MPC-WM.CCGcurrentcontroldiagram.
MPC-WM.Simulationresultofthegridcurrentbehaviorduringthepower steptests.
MPC-WM:THDofthegridcurrent.
MPC-WM.Steptestsforgridpowercontrol:(a)activepower,(b)reactive power.
MPC-WM.Detailofgridactivepowerstep:(a)activepower,(b)reactive power.
68
70
74
74
76
77
78
79
79
80
81
81
82
82
88
90
90
91
91
92
92
96
97
97
98
98
99
102
103
103
104
104
Fig.7.19
Fig.7.20
Fig.7.21
MPC-WM.Gridcurrentduringpowersteptests:(a)realcomponentofthe gridcurrentvector,(b)imaginarycomponentofthegridcurrentvector. 105
MPC-WM.Gridcurrentduringthereactivepowerstep:(a)activeand reactivepower,(b)gridvoltageandcurrent.
MPC-WM.Gridcurrentduringtheactivepowerstep:(a)activeandreactive power,(b)gridvoltageandcurrent.
105
106
Fig.8.1 ControlsystemloopbyusingtheIMP. 108
Fig.8.2 RCinaplug-inscheme.
Fig.8.3 MPRCdiagram.
Fig.9.1 DiagramofrotorcurrentcontrolofDFIGusingMPRC-WM. 127
Fig.9.2
Fig.9.3
Fig.9.4
Fig.9.5
Fig.9.6
Fig.9.7
Fig.9.8
Fig.9.9
Fig.9.10
Fig.9.11
Fig.9.12
Fig.9.13
Fig.9.14
Fig.9.15
Fig.9.16
Fig.9.17
Fig.9.18
Fig.9.19
Fig.9.20
MPRC-WM.Steptestsforrotorcurrentvectorcomponents.
MPRC-WM.Detailsofthesteptestfor ir,q .
MPRC-WM.Detailofthesteptestfor ir,q :(a)statorvoltageandcurrent, (b)rotorcurrentvectorcomponents.
MPRC-WM.Detailsofthesteptestfor ir,d :(a)statorvoltageandcurrent, (b)rotorcurrentvectorcomponents.
MPRC-WM.Testusingseveral-speedoperation:(a)speedoftherotor, (b)rotorcurrentinrotorframe,and(c)rotorcurrentvectorcomponentsin the dq frame.
MPRC-WM.Testundervoltagedistortedby7%ofthe5thharmonic component:(a)statorvoltageandcurrent,(b)rotorcurrentvectorcomponents.
MPRC-WM.THDandharmonicscomponentsofstatorcurrent.
MPC-WM.Testundervoltagedistortedby7%ofthe5thharmonic component:(a)statorvoltageandcurrent,(b)rotorcurrentvectorcomponents.
MPC-WM.THDandharmonicscomponentsofthestatorcurrent.
DiagramofgridcurrentcontrolusingMPRC-WM.
MPRC-WM.Steptestsforactiveandreactivepower:(a)activepower, (b)reactivepower.
MPRC-WM.Detailsofthesteptestforactivepower:(a)activepower, (b)reactivepower.
MPRC-WM.Steptestsforgridcurrentvectorcomponents:(a)real componentofgridcurrentvector,(b)imaginarycomponentofgridcurrent vector.
MPRC-WM.Gridvoltageandcurrentactionduringsteptestofactivepower: (a)reactiveandactivepower,(b)gridvoltageandcurrent.
MPRC-WM.Gridvoltageandcurrentactionduringasteptestofreactive power:(a)reactiveandactivepower,(b)gridvoltageandcurrent.
MPRC-WM.Gridvoltageandcurrentactionduringasteptestofactive powerduringthedistortedgridvoltage:(a)reactiveandactivepower, (b)gridvoltageandcurrent.
MPRC-WM.THDofstatorcurrentduringthedistortedgridvoltage.
MPC-WM.Gridvoltageandcurrentactionduringasteptestofactivepower duringthedistortedgridvoltage:(a)reactiveandactivepower,(b)grid voltageandcurrent.
MPC-WM.THDofstatorcurrentduringthedistortedgridvoltage.
Fig.10.1 BasicstructureofthePLLblockdiagram.
Fig.10.2 PLLforthree-phasesystems’blockdiagram.
Fig.10.3 ExperimentalresultofSRF-PLLtestforunbalancedvoltagesag: (a)three-phasevoltage,(b)gridvoltageselementsinthe dq frame,(c)grid frequency,and(d)gridangle.
Fig.10.4 BlockdiagramofstructureoftheDSOGI.
128
129
129
130
130
131
131
132
132
138
140
140
141
141
142
143
143
144
144
145
147
149
150
Fig.10.5 DiagramoftheDSOGI-MAF-FPS-PLL.
Fig.10.6
ExperimentalresultofDSOGI-MAF-FPS-PLLtestforunbalancedsag: (a)three-phasevoltage,(b)positivesequenceofthegridvoltageselementsin the dq frame,(c)gridfrequency,and(d)gridangle.
Fig.10.7 ExperimentalresultofDSOGI-MAF-FPS-PLLtestforvoltagesagwiththe 5thharmonic:(a)three-phasevoltage,(b)positivesequenceofthegrid voltageselementsinthe dq frame,(c)gridfrequency,and(d)gridangle.
Fig.10.8
ExperimentalresultofDSOGI-MAF-FPS-PLLtestunderdistortedvoltage: (a)three-phasevoltage,(b)positivesequenceofthegridvoltageselementsin the dq frame,(c)gridfrequency,and(d)gridangle.
Fig.11.1 Clarketransformation(CT).
Fig.11.2 Parktransformation(PT).
Fig.11.3 Parktransformation(PT)inSimulink.
Fig.11.4 InverseClarketransformation.
Fig.11.5 InverseParktransformation.
Fig.11.6 PWMinSimulink.
Fig.11.7 SVMinSimulink.
Fig.11.8 Modelforthree-phasepowerconverterinSimulink.
Fig.11.9 Three-phasegridvoltagesmodel.
Fig.11.10 Currents’blockofDFIGsimulationmodel.
Fig.11.11 Fluxes’blockofDFIGsimulationmodel.
Fig.11.12 TorqueblockofDFIGsimulationmodel.
Fig.11.13 DFIGsystemsimulationblock.
154
155
156
156
Fig.11.14 Modelpredictivecontrolblock,MATLAB/Simulinkimplementation. 174
Fig.11.15 PredictiveRepetitivecontrolblock,MATLAB/Simulinkimplementation. 179
Fig.11.16 Completethree-phasepowerCCGmodelinSimulink.
Fig.11.17 CurrentreferenceinSimulink.
Fig.11.18 Modelpredictivecontrolblock,MATLAB/Simulinkimplementation. 187
Fig.12.1 TheexperimentalsetupofDFIGusedinMPCtests. 191
Fig.12.2 Theexperimentalsetupofthree-phaseCCGusedinMPCtests. 192
Fig.12.3 TheexperimentalsetupforPLLtests.
193
Listoftables Table2.1 Switchingstatesandvoltagevectors.
Table2.2 PWMtimescaledefinition.
Table2.3 Timesforregistersinfunctionofthesector.
Table3.1 Doubly-fedinductionmachineoperationconditions.
Table5.1 Switchingstatesandvoltagevectors.
Table5.2 Sectorofreferencerotorvoltagevector.
Table5.3 Calculationofthedutycycleoftheadjacentvectorstoeachsector k
inthe αβr frame.
Table6.1 Switchingstatesandvoltagevectors.
Table9.1 Distortedvoltageharmonicscomponents.
TableA.1 IMparameters.
TableB.1 Three-phasepowerCCGparameters.
This page intentionally left blank
Listofcontributors CarlosE.Capovilla,FederalUniversityofABC,SantoAndré,SP,Brazil
IvanR.S.Casella,FederalUniversityofABC,SantoAndré,SP,Brazil
EliomarR.CondeD.,FederalUniversityofABC,SantoAndré,SP,Brazil
RogérioV.Jacomini,FederalInstituteofSãoPaulo,Hortolândia,SP,Brazil
FernandoLino,FederalUniversityofABC,SantoAndré,SP,Brazil
AngeloS.Lunardi,FederalUniversityofABC,SantoAndré,SP,Brazil
AlfeuJ.SguareziFilho,FederalUniversityofABC,SantoAndré,SP,Brazil
This page intentionally left blank
Biography ProfessorDr.AlfeuJ.SguareziFilho
HewasborninCuiabá–MT–Brazilin1981,receivedhisElectricalEng.degreefromÁREA1–FacultyofEngineeringinBa–Brazilin2005,hisMaster’s andPhDdegreesfromCampinasUniversityinSP–Brazilin2007and2010, respectively.HeisIEEESeniormember.Since2012,heisafulltimeprofessor atFederalUniversityofABC–UFABC,inSantoAndré–SP–Brazil,teaching intheareasofElectricalMachines,PowerElectronics,andElectricalDrives.
This page intentionally left blank
Abbreviationlist Abbreviations
ACAlternatingCurrent
CCGConverterConnectedtotheGrid
DCDirectCurrent
DFIGDoubly-FedInductionGenerator
DFTDiscreteFourierTransform
DPCDirectPowerControl
DTCDirectTorqueControl
DSPDigitalSignalProcessor
FCSFiniteControlSet
FOCFieldOrientedControl
IMInductionMachine
IMPInternalModelPrinciple
IGBTInsulated-GateBipolarTransistor
MPCModelPredictiveControl
MPRCModelPredictiveRepetitiveControl
PWMPulseWidthModulation
PIProportional-Integral
PLLPhaseLockedLoop
SPWMSinusoidalPWM
SVOCStatorVoltageOrientedControl
SVMSpaceVectorModulation
THSPWMThirdHarmonicSinusoidalPWM
RCRepetitiveControl
VSIVoltageSourceInverter
WMWithModulator
ZOHZeroOrderHold
Variablesandsymbols I m Imaginarycomponentofthecomplexnumber
Re Realcomponentofthecomplexnumber
i Instantaneousvalueofcurrentasafunctionoftime
l Relatedtotheharmoniccomponents
s Laplaceoperator
v Instantaneousvalueofvoltageasafunctionoftime #» v Voltagevector
Currentvector
Fluxvector J Costfunction
xxiv Abbreviationlist
TL Loadormechanicaltorque
ω Speedorangularfrequency
NP Polepairs
ny Predictionhorizon
nu Controlhorizon
R Resistance
L Inductance
Lm Mutualinductance
σ Globalleakage
Te Electromagnettorque
JJ Totalmomentofinertia
x State
u Incrementofinput
λs , |λs | Magnitudeofstatorflux
rmsRootmeansquarevalue
q 1 Backwardshiftoperator
k Instantsampling
(k + 1) Nextsampling
I Identitymatrix
O Zeromatrix
θ Angularposition
P Activepower
Q Reactivepower
Wy Weightingmatrixforpredictioneffort
Wu Weightingmatrixforcontroleffort
u Input out
Numberofoutputs
Superscript
“
∗ ”Conjugateofthecomplexnumber
Subscripts s Relatedtothestator
r Relatedtotherotor
g Relatedtotheelectricalgrid
αβ Relatedtothestationaryreferenceframe
α Relatedtotherealcomponentofthestationaryreferenceframe
β Relatedtotheimaginarycomponentofthestationaryreferenceframe
αβr Relatedtotherotorreferenceframe
αr Relatedtotherealcomponentoftherotorreferenceframe
βr Relatedtotheimaginatycomponentoftherotorreferenceframe
ρ Relatedtothefilterorder
dq Relatedtothesynchronousreferenceframe
d Relatedtotherealcomponentofthesynchronousreferenceframe
q Relatedtotheimaginatycomponentofthesynchronousreferenceframe
ee Relatedtotheexpandedmodel
ir Relatedtotherotorcurrent
mec Relatedtothemechanicalcomponentsofthemachine
pq Relatedtothestatoractiveandreactivepower
ref Relatedtothereferences
sl Relatedtotheslip
Chapter1 Introduction AlfeuJ.SguareziFilho
FederalUniversityofABC,SantoAndré,SP,Brazil
1.1Overview
Theevolutionofpowersemiconductorcomponentspermittedprocessingpower atlevelsofthousandsofvoltsandampers.Inthiscontext,severalpowerelectronicsdevicesbuiltwitharrangementsofthesesemiconductorelementsenabledtheconversionofenergyfromAC–AC,withdifferentfrequenciesand amplitudes,DC–AC,AC–DC,andDC–AC[1].Thus,itwaspossibletomake thedifferentwaysofusingelectricenergymoreflexibleand,consequently,to diversifythewaysofitsapplication.Finally,theevolutionofpowersemiconductors,theincreaseintheprocessingandstoragecapacityofprocessorsand theirperipherals,respectively,enabledgreaterflexibilityintheimplementation ofmorecomplexcontrolalgorithms.
Oneapplicationofpowerelectronicsisinrenewableenergysuchaswind, smallhydroelectricplants,orinelectricalenergystoragesystems,amongothers [2].Thistypeofapplicationisimportantduetothegrowingdemandforenergy indevelopedanddevelopingcountries,andinthesearchforalternativeenergy sourcesratherthanusingfossilfuels.Inthiscase,powerelectronicscanbeused toprocessenergyfromelectricgeneratorsortoprocessenergypresentinthe energystoragesystems.
Amongthegeneratorsemployedintherenewableenergy,thedoubly-fedinductiongenerator(DFIG)hasbecomepopular.Thistypeofgeneratoremerged asanalternativetopermanentmagnetssynchronousgenerators,duetoitslow costandrobustness.TheordinaryconfigurationofDFIGemployedinrenewableenergysystemshasitsstatorconnecteddirectlytothegridanditsrotor connectedtothegridthroughabidirectionalconverter,whichprocessesamaximumof30%ofthetotalpowerofthegenerator[3].Inthisway,itdecreasesthe costofthesystem.Thebidirectionalconverter,calledback-to-backconverter, isanarrangementoftwoelectronicpowerconvertersthathaveACinput/output andsharethesameDClink.AdiagramoftheDFIGusingthisconfigurationis depictedinFig. 1.1.Itispossibletonoticethebasicstructureofthegridandrotorsideconverterscontrolusingthemeasurementsofcurrent,torque,poweror speedofthegenerator,orusingthemeasurementsofcurrent,voltageorpower ofthegrid.