Microbial electrochemical technology s. venkata mohan - Download the ebook now for an unlimited read

Page 1


https://ebookmass.com/product/microbial-electrochemical-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Selected Contemporary Essays Saumitra Mohan

https://ebookmass.com/product/selected-contemporary-essays-saumitramohan/

ebookmass.com

Electrochemical Biosensors Ali A. Ensafi

https://ebookmass.com/product/electrochemical-biosensors-ali-a-ensafi/

ebookmass.com

Advanced water treatment electrochemical methods Sillanpää

https://ebookmass.com/product/advanced-water-treatmentelectrochemical-methods-sillanpaa/

ebookmass.com

Punished: Brides of the Kindred book 27 1st Edition Evangeline Anderson

https://ebookmass.com/product/punished-brides-of-the-kindredbook-27-1st-edition-evangeline-anderson/

ebookmass.com

Microbiology with Diseases by Body System 5th Edition, (Ebook PDF)

https://ebookmass.com/product/microbiology-with-diseases-by-bodysystem-5th-edition-ebook-pdf/

ebookmass.com

Earl's Well That Ends Well Jane Ashford

https://ebookmass.com/product/earls-well-that-ends-well-jane-ashford/

ebookmass.com

Pearl of the Desert: A History of Palmyra Rubina Raja

https://ebookmass.com/product/pearl-of-the-desert-a-history-ofpalmyra-rubina-raja/

ebookmass.com

A Not So Prince Charming (Castleton University Book 1)

Jennifer Chipman

https://ebookmass.com/product/a-not-so-prince-charming-castletonuniversity-book-1-jennifer-chipman/

ebookmass.com

Nanopharmaceuticals: Expectations and Realities of Multifunctional Drug Delivery Systems: Volume 1: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)

https://ebookmass.com/product/nanopharmaceuticals-expectations-andrealities-of-multifunctional-drug-delivery-systemsvolume-1-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar-ed/ ebookmass.com

Via Mari

https://ebookmass.com/product/elusive-surrender-a-dark-mafia-romancesinful-duets-book-3-via-mari/

ebookmass.com

BIOMASS,BIOFUELS,BIOCHEMICALS

MICROBIAL ELECTROCHEMICAL TECHNOLOGY

SUSTAINABLEPLATFORMFORFUELS, CHEMICALSANDREMEDIATION

Series:Biomass,Biofuels,Biochemicals

SERIES EDITOR:ASHOK PANDEY

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2019ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageandretrieval system,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-444-64052-9

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

AcquisitionEditor: KostasMarinakis

EditorialProjectManager: HilaryCarr

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: GregHarris

TypesetbyTNQTechnologies

Contributors

RouzbehAbbassi SchoolofEngineering, FacultyofScienceandEngineering,Macquarie University,Sydney,NSW,Australia

IbrahimM.Abu-Reesh EnergyandEnvironmentLab,DepartmentofChemicalEngineering,QatarUniversity,Doha,Qatar

JuanS.Arcila LaboratoryforResearchon AdvancedProcessesforWaterTreatment, InstitutodeIngeniería,UnidadAcadémica Juriquilla,UniversidadNacionalAutónomade México,Queretaro,Mexico

KotakondaArunasri Prof.BrienHoldenEye ResearchCentre,LVPrasadEyeInstitute, Hyderabad,India

JuanAntonioBaeza GENOCOV,Department ofChemical,BiologicalandEnvironmental Engineering,SchoolofEngineering,UniversitatAutònomadeBarcelona,Barcelona, Spain

EnricBlázquez GENOCOV,Departmentof Chemical,BiologicalandEnvironmental Engineering,SchoolofEngineering,Universitat AutònomadeBarcelona,Barcelona,Spain

AbhijeetP.Borole TheUniversityofTennessee, Knoxville,TN,UnitedStates;OakRidge NationalLaboratory,OakRidge,TN,United States

GermánBuitrón LaboratoryforResearchon AdvancedProcessesforWaterTreatment, InstitutodeIngeniería,UnidadAcadémica Juriquilla,UniversidadNacionalAutónomade México,Queretaro,Mexico

SaiKishoreButti BioengineeringandEnvironmentalSciencesLab,CEEFFCentre,CSIRIndianInstituteofChemicalTechnology, Hyderabad,India

RenéCardeña LaboratoryforResearchon AdvancedProcessesforWaterTreatment, InstitutodeIngeniería,UnidadAcadémica Juriquilla,UniversidadNacionalAutónomade México,Queretaro,Mexico

CarlosCastillo-Zacarias TecnologicodeMonterrey,SchoolofEngineeringandScience, CampusMonterrey,Monterrey,Mexico

RashmiChandra TecnologicodeMonterrey, SchoolofEngineeringandScience,Campus Monterrey,Monterrey,Mexico

K.Chandrasekhar DepartmentofCivilEngineering,YeungnamUniversity,Gyeongsan, RepublicofKorea;DepartmentofBiotechnology,NationalInstituteofTechnology, Warangal,TelanganaState,India

KaYuCheng CSIROLandandWater,Floreat, Perth,WA,Australia;SchoolofEngineering andInformationTechnology,MurdochUniversity,Perth,WA,Australia

GovindaChilkoor CivilandEnvironmental Engineering,SouthDakotaSchoolofMines andTechnology,RapidCity,SD,UnitedStates

P.Chiranjeevi DepartmentofEarthandEnvironmentalSciences,IndianInstituteofScience EducationandResearch(IISER)Mohali,India

HulyaCivelekYoruklu DepartmentofEnvironmentalEngineering,YildizTechnical University,DavutpasaCampus,Istanbul, Turkey

NazuaL.Costa InstitutodeTecnologiaQuímica eBiológicaAntónioXavier,Universidade NOVAdeLisboa,Oeiras,Portugal

DebabrataDas DepartmentofBiotechnology, IndianInstituteofTechnologyKharagpur, Kharagpur,India

AhmetDemir DepartmentofEnvironmental Engineering,YildizTechnicalUniversity, DavutpasaCampus,Istanbul,Turkey

ChirayuDesai P.D.PatelInstituteofApplied Sciences,CharotarUniversityofScienceand Technology(CHARUSAT),Changa,India

PridhvirajDesale LaboratoireGénieCivilet géoEnvironnement(LGCgE)GroupeISALille, YncréaHauts-de-France,LilleCedex,France

BiproRanjanDhar CivilandEnvironmental Engineering,UniversityofAlberta,Edmonton, AB,Canada

SangeethaDharmalingam Departmentof MechanicalEngineering,AnnaUniversity, Chennai,India

SaurabhSudhaDhiman BuGReMeDEEconsortium,DepartmentofChemicalandBiologicalEngineering,SouthDakotaSchoolof MinesandTechnology,RapidCity,SD,United States

AhmedElMekawy GeneticEngineeringand BiotechnologyResearchInstitute,Universityof SadatCity(USC),SadatCity,Egypt

AdrianEscapa ChemicalandEnvironmental BioprocessEngineeringGroup,Natural ResourcesInstitute(IRENA)-Universityof Leon,León,Spain

J.SatyaEswari DepartmentofBiotechnology, NationalInstituteofTechnology(NITRR), Raipur,India

YujieFeng StateKeyLaboratoryofUrban WaterResourceandEnvironment,Harbin InstituteofTechnology,Harbin,China

AnaP.Fernandes InstitutodeTecnologiaQuímicaeBiológicaAntónioXavier,Universidade NOVAdeLisboa,Oeiras,Portugal

BrunoM.Fonseca InstitutodeTecnologiaQuímicaeBiológicaAntónioXavier,Universidade NOVAdeLisboa,Oeiras,Portugal

DavidGabriel GENOCOV,Departmentof Chemical,BiologicalandEnvironmentalEngineering,SchoolofEngineering,Universitat AutònomadeBarcelona,Barcelona,Spain

VenkataramanaGadhamshetty Civiland EnvironmentalEngineering,SouthDakota SchoolofMinesandTechnology,RapidCity, SD,UnitedStates;SurfaceEngineering ResearchCenter,SouthDakotaSchoolof MinesandTechnology,RapidCity,SD, UnitedStates

LeiGao StateKeyLaboratoryofUrbanWater ResourceandEnvironment,HarbinInstituteof Technology,Harbin,China

VikramGaraniya AustralianMaritimeCollege (AMC),UniversityofTasmania,Launceston, TAS,Australia

RajeevK.Gautam SustainableEnvironergy ResearchLab(SERL),DepartmentofChemical Engineering,IndianInstituteofTechnology Delhi,NewDelhi,India

VeeraGnaneswarGude DepartmentofCivil andEnvironmentalEngineering,Mississippi StateUniversity,MississippiState,MS,United States

AlbertGuisasola GENOCOV,Departmentof Chemical,BiologicalandEnvironmentalEngineering,SchoolofEngineering,Universitat AutònomadeBarcelona,Barcelona,Spain

WeihuaHe StateKeyLaboratoryofUrban WaterResourceandEnvironment,Harbin InstituteofTechnology,Harbin,China

HanaaM.Hegab DepartmentofChemical Engineering,MonashUniversity,Clayton,VIC, Australia

ManupatiHemalatha BioengineeringandEnvironmentalScienceLab,CEEFFCentre,CSIRIndianInstituteofChemicalTechnology, Hyderabad,India

AbidHussain CivilandEnvironmentalEngineering,UniversityofWaterloo,Waterloo,ON, Canada

KunalJain DepartmentofBiosciences,Sardar PatelUniversity,VallabhVidyanagar,India

JennyJohnson DepartmentofBiosciences,SardarPatelUniversity,VallabhVidyanagar, India

SokheeP.Jung DepartmentofEnvironment andEnergyEngineering,ChonnamNational University,Gwangju,Korea

RameshKakarla DepartmentofEnvironmental ScienceandEngineering,KyungHeeUniversity,Yongin-si,RepublicofKorea

VidhiKalola P.D.PatelInstituteofApplied Sciences,CharotarUniversityofScienceand Technology(CHARUSAT),Changa,India

RengasamyKarthikeyan DepartmentofBiology,WashingtonUniversityinSaintLouis,St. Louis,MO,UnitedStates

JamesKilduff CivilandEnvironmentalEngineering,RensselaerPolytechnicInstitute,Troy, NY,UnitedStates

BaharehKokabian DepartmentofCiviland EnvironmentalEngineering,MississippiState University,MississippiState,MS,UnitedStates

SanathKondaveeti EnergyandEnvironment Lab,DepartmentofChemicalEngineering, QatarUniversity,Doha,Qatar

K.VamshiKrishna BioengineeringandEnvironmentalScienceLab,CEEFF,CSIR-Indian InstituteofChemicalTechnology,Hyderabad, India;AcademyofScientificandInnovative Research,Hyderabad,India

VaidhegiKugarajah DepartmentofMechanical Engineering,AnnaUniversity,Chennai,India

B.SudheerKumar MedicinalChemistryand Biotechnology,CSIR-IndianInstituteofChemicalTechnology,Hyderabad,India

A.KiranKumar BioengineeringandEnvironmentalSciencesLab,CEEFFCenter,CSIRIndianInstituteofChemicalTechnology(CSIRIICT),Hyderabad,India

A.NareshKumar BioengineeringandEnvironmentalScienceLab,CEEFF,CSIR-IndianInstituteofChemicalTechnology,Hyderabad, India;AcademyofScientificandInnovative Research,Hyderabad,India

Hyung-SoolLee CivilandEnvironmental Engineering,UniversityofWaterloo,Waterloo, ON,Canada

P.N.L.Lens UNESCO-IHEInstituteforWater Education,Delft,TheNetherlands;DepartmentofMicrobiology,NationalUniversityof Ireland,Galway,Ireland

AlexJ.Lewis TheUniversityofTennessee, Knoxville,TN,UnitedStates

DaLi StateKeyLaboratoryofUrbanWater ResourceandEnvironment,HarbinInstituteof Technology,Harbin,China

NanLi SchoolofEnvironmentalScienceand Engineering,TianjinUniversity,Tianjin, China

JiaLiu StateKeyLaboratoryofUrbanWater ResourceandEnvironment,HarbinInstituteof Technology,Harbin,China

WenzongLiu StateKeyLaboratoryofUrban WaterResourceandEnvironment,Harbin InstituteofTechnology,Harbin,China

RicardoO.Louro InstitutodeTecnologiaQuímicaeBiológicaAntónioXavier,Universidade NOVAdeLisboa,Oeiras,Portugal

DattaMadamwar DepartmentofBiosciences, SardarPatelUniversity,VallabhVidyanagar, India

ElenaI.Mancera-Andrade Tecnologicode Monterrey,SchoolofEngineeringandScience, CampusMonterrey,Monterrey,Mexico

RaulMateos ChemicalandEnvironmentalBioprocessEngineeringGroup,NaturalResources Institute(IRENA)-UniversityofLeon,León, Spain

BookiMin DepartmentofEnvironmentalScienceandEngineering,KyungHeeUniversity, Yongin-si,RepublicofKorea

J.AnnieModestra BioengineeringandEnvironmentalSciencesLab,CEEFFCentre,CSIRIndianInstituteofChemicalTechnology, Hyderabad,India

S.VenkataMohan BioengineeringandEnvironmentalSciencesLab,CEEFF,CSIR-Indian InstituteofChemicalTechnology,Hyderabad, India

GundaMohanakrishna EnergyandEnvironmentLab,DepartmentofChemicalEngineering,QatarUniversity,Doha,Qatar

AntonioMoran ChemicalandEnvironmental BioprocessEngineeringGroup,Natural ResourcesInstitute(IRENA)-Universityof Leon,León,Spain

Y.V.Nancharaiah BiofoulingandBiofilmProcessesSectionofWaterandSteamChemistry Division,BhabhaAtomicResearchCentre, Kalpakkam,India;HomiBhabhaNational Institute,Mumbai,India

G.N.Nikhil DepartmentofBiotechnology,Dr. B.R.AmbedkarNationalInstituteofTechnologyJalandhar,Jalandhar,Punjab,India

EmreOguzKoroglu DepartmentofEnvironmentalEngineering,YildizTechnicalUniversity,DavutpasaCampus,Istanbul,Turkey

BestamiOzkaya DepartmentofEnvironmental Engineering,YildizTechnicalUniversity, DavutpasaCampus,Istanbul,Turkey

AshokPandey CSIR-IndianInstituteofToxicologyResearch,Lucknow,India

SoumyaPandit DepartmentofBiotechnology, IndianInstituteofTechnologyKharagpur, Kharagpur,India;AmityInstituteofBiotechnology,Mumbai,India

DeepakPant SeparationandConversionTechnologies,FlemishInstituteforTechnological Research(VITO),Boeretang,Mol,Belgium

CatarinaM.Paquete InstitutodeTecnologia QuímicaeBiológicaAntónioXavier,UniversidadeNOVAdeLisboa,Oeiras,Portugal

AlkaPareek BioengineeringandEnvironmental ScienceLab,CEEFFCSIR-IndianInstituteof ChemicalTechnology,Hyderabad,India

PiyushParkhey AmityInstituteofBiotechnology,AmityUniversity,Raipur,India

RobertoParra-Saldívar TecnologicodeMonterrey,SchoolofEngineeringandScience, CampusMonterrey,Monterrey,Mexico

SunilA.Patil DepartmentofEarthandEnvironmentalSciences,IndianInstituteofScience

EducationandResearch(IISER)Mohali,Punjab,India

R.S.Prakasham MedicinalChemistryandBiotechnology,CSIR-IndianInstituteofChemical Technology,Hyderabad,India

NavaniethaK.Rathinam BuGReMeDEEconsortium,DepartmentofChemicalandBiologicalEngineering,SouthDakotaSchoolof MinesandTechnology,RapidCity,SD,United States;DepartmentofChemistryandApplied BiologicalSciences,SouthDakotaSchoolof MinesandTechnology,RapidCity,SD,United States

RohitRathour P.D.PatelInstituteofApplied Sciences,CharotarUniversityofScienceand Technology(CHARUSAT),Changa,India

C.NagendranathaReddy DepartmentofEnvironmentalScienceandEngineering,Kyung HeeUniversity,Yongin-si,RepublicofKorea

M.VenkateswarReddy InstitutfürMolekulare MikrobiologieundBiotechnologie,WestfälischeWilhelmsUniversitätMunster,Munster,Germany

IsaacRivera InstituteofEnvironmentaland SustainableChemistry,TU-Braunschweig, Braunschweig,Germany

ShantonuRoy DepartmentofBiotechnology, NationalInstituteofTechnologyArunachal Pradesh,ArunachalPradesh,India

DavidR.Salem BuGReMeDEEconsortium, DepartmentofChemicalandBiological Engineering,SouthDakotaSchoolofMines andTechnology,RapidCity,SD,United States;DepartmentofMaterialsandMetallurgicalEngineering,SouthDakotaSchoolof MinesandTechnology,RapidCity,SD,United States;CompositeandNanocomposite AdvancedManufacturing BiomaterialsCenter(CNAM-BioCenter),RapidCity,SD,United States

RajeshK.Sani BuGReMeDEEconsortium, DepartmentofChemicalandBiological Engineering,SouthDakotaSchoolofMines andTechnology,RapidCity,SD,United

States;CompositeandNanocomposite AdvancedManufacturing Biomaterials Center(CNAM-BioCenter),RapidCity,SD, UnitedStates;DepartmentofChemistryand AppliedBiologicalSciences,SouthDakota SchoolofMinesandTechnology,RapidCity, SD,UnitedStates

SambhuSaptoka CivilandEnvironmental Engineering,SouthDakotaSchoolofMines andTechnology,RapidCity,SD,UnitedStates

OmprakashSarkar BioengineeringandEnvironmentalSciencesLab,CEEFF,CSIR-Indian InstituteofChemicalTechnology,Hyderabad, India

UweSchröder InstituteofEnvironmentaland SustainableChemistry,TU-Braunschweig, Braunschweig,Germany

NamitaShrestha CivilandEnvironmental Engineering,SouthDakotaSchoolofMines andTechnology,RapidCity,SD,UnitedStates

AnaV.Silva InstitutodeTecnologiaQuímicae BiológicaAntónioXavier,UniversidadeNOVA deLisboa,Oeiras,Portugal

J.ShanthiSravan BioengineeringandEnvironmentalSciencesLab,CEEFF,CSIR-Indian InstituteofChemicalTechnology,Hyderabad, India

PratikshaSrivastava AustralianMaritimeCollege(AMC),UniversityofTasmania,Launceston,TAS,Australia

MoogambigaiSugumar Departmentof MechanicalEngineering,AnnaUniversity, Chennai,India

XiaohangSun DepartmentofAppliedSciences, CollegeofEnvironmentalTechnology,MuroranInstituteofTechnology,050-8585Hokkaido,Muroran,Japan

KuchiSwathi BioengineeringandEnvironmentalScience(BEES)Lab,CEEFFCentre, CSIR-IndianInstituteofChemicalTechnology, Hyderabad,India

EkantTamboli DepartmentofBiotechnology, NationalInstituteofTechnology(NITRR), Raipur,India

Pier-LucTremblay SchoolofChemistry, ChemicalEngineeringandLifeScience,Wuhan UniversityofTechnology,Wuhan,People’ s RepublicofChina

InêsB.Trindade InstitutodeTecnologiaQuímicaeBiológicaAntónioXavier,Universidade NOVAdeLisboa,Oeiras,Portugal

KarolienVanbroekhoven SeparationandConversionTechnologies,FlemishInstitutefor TechnologicalResearch(VITO),Boeretang, Mol,Belgium

JhansiL.Varanasi DepartmentofBiotechnology,IndianInstituteofTechnology Kharagpur,Kharagpur,India

SunitaVarjani GujaratPollutionControlBoard, Gandhinagar,Gujarat,India

RamyaVeerubhotla DepartmentofBiotechnology,IndianInstituteofTechnology Kharagpur,Kharagpur,India

G.Velvizhi BioengineeringandEnvironmental ScienceLab,CEEFF,CSIR-IndianInstituteof ChemicalTechnology,Hyderabad,India

BhuvanVemuri CivilandEnvironmental Engineering,SouthDakotaSchoolofMines andTechnology,RapidCity,SD,UnitedStates

AnilVerma SustainableEnvironergyResearch Lab(SERL),DepartmentofChemicalEngineering,IndianInstituteofTechnologyDelhi, NewDelhi,India

LingWang StateKeyLaboratoryofUrban WaterResourceandEnvironment,Harbin InstituteofTechnology,Harbin,China

XinWang MOEKeyLaboratoryofPollution ProcessesandEnvironmentalCriteria,Tianjin KeyLaboratoryofEnvironmentalRemediation andPollutionControl,CollegeofEnvironmentalScienceandEngineering,NankaiUniversity,Tianjin,China

Ai-JieWang StateKeyLaboratoryofUrban WaterResourceandEnvironment,Harbin InstituteofTechnology,Harbin,China

HuantingWang DepartmentofChemical Engineering,MonashUniversity,Clayton,VIC, Australia

JonathanW.C.Wong Sino-ForestApplied ResearchCentreforPearlRiverDelta Environment,DepartmentofBiology,Hong KongBaptistUniversity,HongKong,P.R. China

LichaoXia CivilandEnvironmentalEngineering,RensselaerPolytechnicInstitute,Troy,NY, UnitedStates

AsheeshKumarYadav CSIR-InstituteofMineralsandMaterialsTechnology,Bhubaneswar, India

DileepKumarYeruva Bioengineeringand EnvironmentalSciencesLab,EEFFCenter, CSIR-IndianInstituteofChemicalTechnology (CSIR-IICT),Hyderabad,India

TianZhang SchoolofChemistry,Chemical EngineeringandLifeScience,WuhanUniversityofTechnology,Wuhan,People’ s RepublicofChina

Preface

Renewableenergygenerationusing microbialcatalyzedfuelcellsisgainingprominenceforitspotentialasanalternativeand sustainableroute.Scanningthroughtheliterature,the firstreportonoriginofelectrical effectsthroughmicrobialcatalyzedreactions wasreportedbyGalvaniin1789in “frog musclestwitchingwithcopper-zinccouples.”

Subsequently,M.C.Potterin1911reported electricaleffectaccompanyingthedecompositionoforganiccompoundsinpresenceof microorganismssuchas Saccharomyces or bacteria. Itremainedasoneoftheearliest observationsuntil1980s,whereresearchon syntheticmediatorshaslightenedupthe ideaofusingbacteria-catalyzedfuelcellslater termedas “microbialfuelcells(MFC).” However,from2000onwardtheconcepthas resurfacedandgainedsignificantattention intheresearchfraternityduetoitsinherent scopeforwiderapplication,initiallywith speci ficfocusonrenewableenergygenerationandlaterbyintegratedwithwaste remediation.

Understandingonthisconcepthasbeen rapidlystretchedtocoverseveraldomains andapplicationssincethepast15years,givingrisetodevelopmentof “microbialelectrochemicaltechnology(MET)” asa platformtechnology.Inthiscourseofdevelopment,METshavesprungintocurrent researchpavinganewfoundpathforrenewableenergy/fuelgeneration,chemicalssynthesis,andwasteremediation.METswith theirmalleablenaturehavebeensignificantlydiversifiedto findtheirapplications inbioelectricitygeneration(asMFC),

bio-basedplatformchemicalsynthesis (asbioelectrochemicalsystems[BES]), hydrogen/methane/hythaneproduction(as microbialelectrolysiscell[MEC]),water desalination(asmicrobialdesalinationcell [MDC]),enhancedbioprocess(aselectrofermentation[EF])andwasteremediation(as bioelectrochemicaltreatmentsystem[BET]). Eachofthesebio-electro-mediatedprocesses canbeindividuallyintegratedwith acidogenesis,photosynthesis,andbioanoxygenesiscascadicallytoclosetheloop enablingazerowastetechnology.METcan bepotentiallyestablishedasasustainable alternatewiththeenergyharnessedbeing clean,green,andrenewableinnature.These applicationsinnumerousmundaneactivities haspotentialtolowerthecarbonfootprint ontheenvironmentandgarnersigni ficance towardabio-basedcircularbioeconomy.

Inthiscontext,thisbook “Microbial ElectrochemicalTechnology:SustainablePlatformforFuels,ChemicalsandRemediation” aimstocomprehensivelybringforththe recentscientificdevelopmentsinthis domain.Thisbookaimedtodisseminate thewideinformationondiverseapplications ofMETsatonejunctureasasinglesource, describingdetailsaboutmaterials,biocatalysts,design,andconfigurationsaswell asunderstandingtheprocessmechanism. Theprimaryfocusistodrawattentionin termsofimprovingmicrobialelectrometabolism,bioelectrogenesis,multipleproductsynthesis,complexwasteremediation,carbon dioxidesequestration,etc.,alongwithdiscussingthemajorbottlenecksthatneedto

beaddressed.Theinterdisciplinaryapproach encompasseselectrochemistry,materialscience,microbiology,bioengineering,energy engineering,environmentalmanagement, etc.,thatareessentialtoscaleuptheprocess witheconomicviabilityandsocioeconomic acceptance.Thechapterswerewrittenby experiencedresearcherswhohavebeen workingintheinterfaceofelectrochemistry andbiotechnology.TheprogressanddevelopmentsinMETwerecomprehensivelyoutlinedundersixbroadthemes.

• Microbialelectrochemicaltechnology (MET) basics

• Electromicrobiologyandelectrontransfer mechanism

• Microbialfuelcell:powerproduction

• Bioelectrochemicaltreatmentsystems: wasteremediation

• Bioelectrochemicalsystemsforbiofuels andchemicals

• Applicationsandbioelectrore finery

Thebookintendstodissipatecomprehensivetransferofessentialknowledgetoresearchers,students,andscienceenthusiasts providingacompleteviewofMETs,detailingthefunctionalmechanismsemployed andvariousoperationalcon figurations, influencingfactorsgoverningthereaction progressandintegrationstrategies.The bookalsoprovidesintricatedetailsoneach individualparameteressentialforevolving ofMETfromabenchscaletopilotscale,offeringmultipleproductsynthesisand resourcerecovery,essentialforrenewable energyandchemicalindustrialsector,water treatmentbodies,policymakers,etc.,documentingthefollowingfeatures:

• Holisticviewofthemultipleapplications ofMETsinaunifiedcomprehensible mannermakingitasinglepointofreferenceofanyqueryinoperationor application.

• Widenedscopeoftheexistingtechnologiesgivingup-to-datestate-of-the-artinformationandknowledgeinvarious aspectsforresearchand commercialization.

• Topicsprovidinginterdisciplinary knowledgeontheelectrochemistry, microbiology,materialscience,environment,molecularbiology,engineering, biotechnology,andeconomicaspects.

• Comprehensivesourceofunderstanding theprocessandparametersbecominga richsourceofknowledgeforpractical applicability,socioeconomicimpact,and costenergyanalysiswithmorethan75 illustrations, figures,diagrams, flow charts,andtables.

• ProvidesstrategicintegrationsofMET withvariousbioprocessthatareessential inestablishingacircularbiorefinery. Theeditorswouldliketoexpresstheir sinceregratitudetotheauthorsforsubmitting theirworkpreciselyandtimelyandalso revisingitappropriatelyatashortnotice. Editorsaregratefultothereviewersfortheir precioustimeandcontributioninsignificantlyreviewingvariouschaptersofthis bookandprovidingtheirvaluablesuggestionstoimprovethemanuscripts.We acknowledgethesupportreceivedfrom Elsevierteam,speciallyDrKostasMarinakis, SeniorBookAcquisitionEditor;MsHilary Carr,BookProductionManager;andMr PremKumarKaliamoorthiandothersinthe publishingteamfortheirsupportinbringing outthisbook.

Editors

CHAPTER

MicrobialElectrochemical Technology:Emergingand SustainablePlatform

S.VenkataMohan1,J.ShanthiSravan1,SaiKishoreButti1, K.VamshiKrishna1, 2,J.AnnieModestra 1,G.Velvizhi1, A.NareshKumar1, 2,SunitaVarjani3,AshokPandey4

1BioengineeringandEnvironmentalScienceLab,CEEFF,CSIR-IndianInstituteofChemical Technology,Hyderabad,India; 2AcademyofScienti ficandInnovativeResearch,Hyderabad, India; 3GujaratPollutionControlBoard,Gandhinagar,Gujarat,India; 4CSIR-IndianInstitute ofToxicologyResearch,Lucknow,India

1.1.1INTRODUCTION

Theconceptofelectrochemicalenergysystem, i.e.,microbialelectr ochemicaltechnology (MET)functioningwiththebiologicalinte rventionsisanemergingareaforbasicand appliedresearchinthelastdecade.METapplicationisreportedindiversedomains,viz., bioenergy,wasteremediation,CO 2 sequestration,bioelectronics,resourcerecovery,desalination,etc.Itsbasicadvantageliesinits fl exibilitytovalorizeanyformofwaste(solid, liquid,andgaseous)togenerateaspectrumofproducts(electricity,biofuel,biogas,platformchemicals)inasustainableway [1 3] .Thesystemsarebasicallyhybridinnature andareinterdisciplinarywithcohesiveaggregationofvariousareas, viz.,electrochemistry, microbiology,environmentalengineering,materialsciences,biochemistry,andmanyother relatedareas [4 9] .Basedonitsapplications( Fig.1.1.1)METcanbebroadlyclassi fi edinto microbialfuelcell(MFC)togeneratebioelectricityandbioelectrochemicaltreatment(BET) systemtotreatcomplex,recalcitrant,andhighstrengthwastewaters;microbialelectrolysis cell(MEC)forhydrogenandmethaneproduction;microbialelectrosynthesissystem(MES) togenerateplatformchemicals;microbialdesalinationcell(MDC)toseparateions;and

1.1.MICROBIALELECTROCHEMICALTECHNOLOGY

FIGURE1.1.1 ApplicationsofdiverseMETsforbio-basedproductrecoveryfromvariouswastefeedstocks. BES, bioelectrochemicalsystem; BET,bioelectrochemicaltreatment; EF,electrofermentation; MDC,microbialdesalination cell; MEC,microbialelectrolysiscell; MET,microbialelectrochemicaltechnology; MFC,microbialfuelcell.

electrofermentation(EF)toenhancebio-basedproductsynthesis [10 19].Everyindividual applicationofferssubstantialadvantagesfromenvironmental,econ omic,andtechnical perspectives.

1.1.2MICROBIALELECTROCHEMICALTECHNOLOGYORIGIN

TheoriginofelectricaleffectsthroughbiologicalcatalyzedreactionswasreportedbyGalvaniin1789whenheobservedthatfrogmusclestwitchedwithcopper-zinccouples [20], whichisprobablytheearliestobservationon “physiologicalprocessesaccompaniedbychemicalchangesassociatedwithelectricalchanges.” Fig.1.1.2 depictsanoverviewoftheorigin andhistoryofMET.Afteraconsiderablegap,in1911M.C.Potterreportedmicrobialinducedelectrodereduction,whichhasledtothedevelopmentofbiofuelcells,latertermed as “microbialfuelcell(MFC)” [21].Thechemicalenergystoredinthebondsoforganic substrateiscatalyzedbytheactionofbacterialmetabolismproducingelectricalenergy, throughacascadeofredoxreactionsinadefinedfuelcellsetup.Contrarytothefuelcell, MFCusesbiologicalorganismstocatalyzetheelectrochemicalreactionswhichareanalogous toaninorganiccatalyst.ThisbioenergyobtainedfromMFCisrecognizedasanalternativeto

Galvani 1789

(Observed electrical effects in biological catalyzed reactions)

Thrustonet al., 1985 (Reported on glucose metabolism and its stoichiometry of product formation in MFC )

M C Potter in 1911

(Worked on microbial induced electrode reduction and thus lead to the development of biofuelcells later termed as MFC)

Karubeet al., 1977

(Studied anodic reaction of C. butyricum as biocatalyst and reported constant current of 1.1 to 1.2 mA)

BranetCohen in 1931

(Extended Potter’s work with stacking type of microbial fuel cell)

Davis and Yarbrough 1962

(Experiments using microbes with hydrocarbons as substrate)

Kim et al., 1990 (Patented the process of microbial desulfurization utilizing bioelectrochemical energy)

Allen and Bennetto in 1993 (Bacterial culture immobilization for electricity in MFC )

Year 2000 onwards (Microbial electrochemical technologies were extensively evaluated and published)

Microbial Fuel Cell (MFC)

Bioelectrochemical System (BES)

Microbial Electrolysis Cell (MEC)

FIGURE1.1.2 Originandtransitionofmicrobialmediatedelectrochemicalsystems. 1.1.2MICROBIALELECTROCHEMICALTECHNOLOGYORIGIN

Bio-Electrochemical Treatment (BET)

Microbial Desalination Cell (MDC)

Microbial Electrofermentation (MEF) MET’s

theconventionalfuelsthatreducestheglobalcarbonfootprintifapplied.Potterhadexperimentedwithaspecialtypeofgalvaniccellsusingplatinumelectrodestodeterminetheelectromotiveforce(EMF)developedduetothedisintegrationoforganiccompoundsby microorganismsthroughfermentativeactivity.Thestudyinferredamaximumpotential differenceof0.3 0.5Vwhentheexperimentswereperformedwithmicroorganisms [21]. BarnettCohenin1931stackedsixcellsusingyea stasabiocatalystandglucoseassubstrate anddevelopedabatterywithanoutputof35V(2mA) [22] .Healsousedpotassiumferricyanide/benzoquinoneasarti fi cialelectronmediators.In1962,DavisandYarbroughstudiedmicrobesfunctioninutilizinghydrocarbon [23] .Electricaloutputwasnotdetected whenethanewasusedasthesolesubstrate.

DucaandFuscoein1964explainedthethermodynamicspertainingtobioelectrochemical energyconversionalongwiththechangesinelectrodepotentialduringthebiochemical reactions [24].ThereportalsosuggestedMETtohaveapplicationinfourgeneralareas, viz.,aspowersources,detectorsofspecificcontaminantsinlowconcentrations,sensorsfor generationofcontrolsignals,andcatalystsforthegenerationofelectrochemicalreactions [24].In1977,Karubeandco-workersstudiedanodicreactionsofabiochemicalcellbyusing

immobilized C.butyricum asabiocatalystandreportedaconstantcurrentof1.1 1.2mA alongwithsimultaneousproductionof0.6molofhydrogenand0.2molofformicacid from1molofglucose [25].Thestudyconcludedthatcarbohydrates,lipids,andproteins arenotusuallyelectroactive,buttheintermediatesformedduringthebiologicaloxidation maybeactiveattheelectrode.Matsunagaandco-workers [26] reportedmicrobialsensor composedofimmobilizedmicroorganismsandelectrochemicaldeviceswithoxygenelectrode andfuelcelltypeelectrode.Davisandco-workers [27] usedisolatedenzyme(dehydrogenase) tocatalyzeoxidationreactionsofmethanolnearanodeofanenzymaticfuelcell.Thruston etal., [28] reportedglucosemetabolismanditsstoichiometryofproductformationusing thionine-mediated Proteusvulgaris fuelcellandrelatedtothecoulombicyield.

After1990,researchonMFChasgraduallygainedinterest.Kimandco-workersin1990 patentedamicrobialdesulfurizationprocessutilizingbioelectrochemicalenergytocatalyze thereductionofasulfurcompoundforhydrogensul fideproduction [29].AllenandBennetto in1993reportedMFCoperatedwithimmobilized Proteusvulgaris onthesurfaceofgraphite forelectricityproduction [30].ThestudieswereeventuallyshiftedlatertowardsmediatorlessMFCwithemphasisonthemechanismofelectrontransferbybacteria.From2000 onward,researchonMFCwasintensifiedwithsignificantattentionofresearchers.Thekey roleofalltheMETsisdependentonwiringofmicrobialmetabolismtosolid-stateelectrodes, viaaprocesstypicallyreferredtoasextracellularelectrontransfer(EET) [31].Usageofmixed cultureasinoculumandwaste/wastewaterassubstrateshowedsignificantimpactonthe economicsandenergyintensivenessofMETs.METshavealsogainedtheattentionamong environmentalengineersandbiotechnologistsandgraduallydiversifiedbasedontheir speci ficapplications.

1.1.2.1ScientographyofMET

AccordingtotheClarivateAnalyticsWebofSciencereport(5thMarch,2018),research publicationsintheMETdomainareincreasinggraduallywiththecourseoftime (Fig.1.1.3and1.1.4).Atpresent,atotalnumberofresearcharticlesof11,183with2,82,060 citationsareinrecords.AmongMETs,MFCcontributedhighnumberofpublications followedbyBES,MEC,BET,andMDC.InthecaseofMFC,thetotalnumberofresearch articlesrecordedwas7,537with2,08,620citations.Ontheotherhand,BESstoodatsecond placewith1,584researcharticleswhichcontributedto29,946citations.MECandBETare alsoemergingareas,whichcontributedto972and694researcharticleswith23,843and 12,311citationsrespectively.MDChasrecorded396researcharticlesandresultedin7340 citations.Thisstatisticsdepictsthesignificanceandmomentumthatisbeinggainedfor METresearch.

1.1.3MICROBIALSYSTEMSASSOCIATEDWITHENERGY GENERATION

Earlyresearchonelectro-physiologyacquaintedtheconceptof “ physiologicalprocess accompaniedbyachemicalchangeinvolvinganalliedelectricalchange ” [21] .Apparently, 1.1.MICROBIALELECTROCHEMICALTECHNOLOGY

FIGURE1.1.3 Scientographyofindividualmicrobialmediatedelectrochemicalsystems.

theobservationoflightstimulusbeingabsorbe daselectricalenergyinphotosynthesishas driventowardsconceptionofanideathataresultofdissociation/associationgenerates current.Tocon fi rmthisideaofelectricalenergygeneration,preliminaryexperiments werecarriedouttodetermineifanyEMForpotentialdifferencewasdevelopedby

1.1.MICROBIALELECTROCHEMICALTECHNOLOGY

*MFC: Microbial Fuel Cell, BES: Bioelectrochemical System, MEC: Microbial Electrolysis Cell, BET: Bioelectrochemical Treatment, MDC: Microbial Desalination Cell, MES: Microbial Electrochemical System

FIGURE1.1.4 Year-wisepublishedpapersandcitationindicesofdifferentmicrobialelectrochemicaltechnologies. ClarivateAnalyticsWebofSciencereport(5thMarch-2018).

fermentativeactivityofyeastorbacteria [23] .Asimpleyeastglucoseexperimentwas designedandcarriedoutinagalvaniccell,whichgeneratedEMFbyglucosemetabolism andhasgivenpromisingleadsforinvestigatingthisconceptfurther [22].Thevoltage/ EMFregisteredinyeastglucosecellswasrecognizedtobetheeffectofchargecollected inthefermentingliquid.Itwasalsoobserve dthatsomeenzymespartlycontributetopotentialdifference/voltagegeneration.Consec utively,fewexperimentswerecarriedoutusingbacterialspecies,speci fi cally Bacillus asbiocatalystinthegalvaniccellcontaining nutrientmediumwhichdepictedconsiderablegrowthalongwithcurrentandEMF.It wasobservedthatbiochemicalsystemssuchaswhole-cellorganism/crystallized enzyme/cell-freeextracts cangenerateammonia,hydrogenormethanolfromcomplex organicrawmaterialssuchasstarch,protein,fats,sugars,urea,etc.assubstrate [32].These studiesconcludedthatelectrodematerialscaneffectpotentialdifference,andtheelectrical energygenerationisdependentontheactivityofmicroorganism,nutrientavailability,temperature,etc. [25] .

Biologicalsystemsareassociatedwithenergytransferreactionsofoxidation/reduction reactions.Therelationbetweenfreeenergychangeandstandardredoxpotentialofbiological reactionscanbedeterminedthroughthesecondlawofthermodynamics,whichwillprovide aholisticviewofbioenergetics [33].Ingeneral,fromathermodynamicperspective,areaction isdefinedas “spontaneous” or “non-spontaneous” basedonthefreeenergychangeandthe redoxpotential.Electrontransferfromonecompoundtotheotherisinturndependenton redoxpotentialsbetweenelectrondonorandacceptor.Thetendencyofaredoxreactionto

occurdependsupontherelativeelectronaffinityoftheacceptorinaredoxpair,whichcanbe facilitatedeitherthroughenzyme/cytochromecomponents/proteins/intermediateorganic orinorganiccompounds.Electronswilltendto flowfromthehalfcelloflowerstandard reductionpotentialtothehalfcellofhigherstandardreductionpotential.Thedirectionof electron flowdependsupontherelativeelectronconcentrationorpotentialofthetwocells. Theelectronaffinityofdonorsandacceptorsbasedonthestandardredoxpotentialis depictedin Fig.1.1.5.Thecompoundswithpositivestandardreductionpotentialactas strongoxidizingagentsthatwillhavethetendencytoacceptmoreelectrons,whileitis vice-versainthecaseofreducingagents.Experimentswerecarriedoutusingeither enzymeorwholeorganism catalyzedredoxcouplesunderlaboratoryconditionsforenergy generation [2,33].

Pyruvate/Acetate[-0.7]

CytochromebC1

Cytochrome C

Cytochrome

2H+/H2 [-0.42]

LaticAcid/Xanthine[-0.39]

CO2/Methanol[-0.38]

Gluconolactone/Glucose[-0.36]

Cystine/Cysteine[-0.33]

NAD/NADH2 [-0.32]

CO2/Acetate[-0.28]

Acetaldehyde/Ethanol[-0.2]

Pyruvate/Lactate[-0.18]

Oxaloacetate/Malate[-0.16]

Fumarate/Succinate[0.02]

Ubiquinol/Ubiquinone[0.1]

NO3-/N2 [0.74]

Fe3+/Fe2+ [0.76]

O2/H2O [0.82]

FIGURE1.1.5 Standardredoxpotentialsreportedwithstandardhydrogenelectrode(SHE)involts(V)for severalbiologicalredoxmediators.

Acetate/Acetaldehyde[-0.58]

1.1.4ELECTROGENS

1.1.4.1ElectronTransferandConservationofEnergy

Microorganismsgainenergybyrespiration,catalyzeredoxreactionsorbreakdown reducedorganic/inorganiccompounds.Electronsaretransferredfromadonor(reduced substrate)toaterminalelectronacceptor,makingthedonoroxidizedandacceptorreduced. Theenergyreleasedbybreakdownofreducedsubstratewillbecapturedbynicotinamide adeninedinucleotide(NAD), flavinadeninedinucleotide(FAD),etc.Variousbiocatalysts thatcanbeusedinMEToperationaredepictedin Fig.1.1.6.Bacteriacanextracellularly transportelectronsbyoutermembranecytochromes,nanowiresandendogenousmediators, whilealgaeandyeastcantransportelectronsextracellularlybydirectandmediatedelectron transport.WhenNADandFADtransferelectronsto fi nalelectronacceptorssuchasoxygen andnitrates,electrontransportchain(ETC)conservesaportionoftheenergywhiletransferringelectronstothe fi nalelectronacceptor.Theseelectronscanbeharvestedbyusing bioelectrochemicalsystemsanscanbeconservedinseveralformslikebioelectricity, biohydrogen,etc(Fig.1.1.7).Electrontransferfromreducedsubstrateto finalelectron acceptorwillbeusedtotransportprotonsacrosstheinnermembrane,thusgeneratingan electrochemicalprotongradientwhichis fi nallyusedforgeneratingenergy [34].Unlike

FIGURE1.1.6 VariousbiocatalystsusedinMETsandtheirmodesofextracellularelectrontransport.

FIGURE1.1.7 Extracellularelectrontransportforbio-basedproductsynthesis. EET,extracellularelectron transfer; IM,innermembrane; OM,outermembrane; VFA,volatilefattyacid.

fermentation,respirationofmetalsoranyotherelectronacceptorsneedstransferofelectronsfromandonortoanacceptorwhileconservingtheenergy.Respirationenablesbacteriatouseawiderangeofsubstrates [35].

Somemicroorganismscanconserveenergytosupportgrowthbycouplingtheoxidationof reducedorganiccompoundswiththereductionofmetalssuchasiron,manganese,etc.or electrodes [36].Althoughironisknowntobeakeycomponentofseveralredoxproteins involvedinanETCtotransferelectronsfromanelectrondonortoterminalelectronacceptors suchasoxygen,sulfate,nitrates,etc.,ithasonlybeenrecentlyfoundthatitcanalsoserveas anelectronacceptor.Bacteriawhichusemetalsasterminalelectronacceptorshaveanimportantroleinthegeochemistryofaquaticsediments,submergedsoilsandtheterrestrial subsurface.

Bacterialrespiratorypathwayshavegreaterdiversityofelectrontransferduetotheirabilitytoutilizeawiderangeofsubstratesandelectronacceptorscomparedwitheukaryotes. Thisismainlybecauseofthevastarrayofnaturalhabitatswherebacteriacanliveandtheir modesofmetabolism.Respiratorysystemsandelectrontransportsystemsarebranched, signifyingtheadaptabilityofbacteria [37].Dehydrogenasesandoxidasesconnectedbyquininesandbranched.ETClinkshighenergycompoundssuchasNADandFADwith final electronacceptorssuchasoxygen,nitrates,sulfates,andmetals/electrodesinthecaseofelectroactivebacteria(EAB).CarriersandmechanismofextracellularelectrontransportinEAB varyfromorganismtoorganism.Thecytoplasmicmembraneistheprimarybarriertothe externalenvironmentandthecenterofelectrontransfer,whichisessentialformicrobialenergygeneration.However,themicrobialcellenvelopeoftenincludesotherexternalstructural components,suchaspeptidoglycan,theoutermembrane,andtheS-layer,whichare

1.1.MICROBIALELECTROCHEMICALTECHNOLOGY

electricallynon-conductiveandphysicallyimpermeabletominerals.Themajorityoforganismsthatperformthemetabolicoxidationorreductionofmetalspeciestransportselectrons tothecellsurfacewherethecatalyticredoxreactiontakesplace.Bacteriathatutilizeminerals/electrodesasterminalelectronacceptorsrequirethetransportofelectronsgenerated inthecytoplasmtobetransportedtothesurfaceofthecell.Forbacteriathatuseminerals asanelectronsource,theelectronsmustbebroughttothecytoplasmicmembraneinorder toreduceterminalelectronacceptors.Theoutermembraneofgram-negativebacteriaisan insulatingbarrierthatrequiresaconduitforelectronpassage,whileingram-positivebacteria,thecellouterwallactsasabarrierbetweenthecellandmineralsurface.Consequently,in ordertotransferelectronsfrominsidethecelltothecellsurface,bacteriauseadiverserange ofco-factorrichproteins.Awiderangeofmicrobeshavebeendiscoveredtobeabletoexchangeelectronswithsolidsurface(directEET)and/orsolublemediators(indirectEET), butonlyafewhavebeenstudiedindepth.Infact,themechanismsofelectrontransport thatarefoundindifferentspeciesdiffersigni ficantlyfromoneanother [38].

AsmetalelectrodesandseveralmetalionslikeFe(III)andMn(IV)arepracticallyinsoluble inwaterunderphysiologicalconditions.Bacteriausingtheseinsolubleelectronacceptors needtoexportelectronstoreducethemextracellularlyastheycannotimportthesemetalspecies [39].Theelectronsaretransferredfromthebacterialcelltotheinsolubleelectronacceptor eitherthroughdirectcontactbetweenthemandamineralsurface/electrodeorfacilitatedby solubleredoxmediatorssuchas flavins,phenazines,methylviologen,humicacids,etc.The reasonforhighelectrochemicalactivityof Shewanellaoneidensis and Geobactersulfurreducens is duetocellsurfacec-typecytochromes.Theferricreductaseof Geobactersulfurreducens isa complexproteincontainingc-typecytochromesandFADwhichisinvolvedinreductionof ferricions [40].ManyFe(III)reducersareelectrochemicallyactiveandcapableofexchanging electronswithanelectrode.Theymetabolizeelectrondonorswiththeelectrodebeingusedas anelectronacceptororelectronsink.ExpressionofgenesinvolvedinEETdependsonseveral factorssuchaselectrondonor,acceptor,availableoxygen,quorumsensing,etc [41].

1.1.5WEAKELECTRICIGENS THEFUTURISTICANDVERSATILE MICROBIOME

METswhicharededicatedtowardsspecificapplicationsbasedonterminalelectronacceptorsemploydiversemicrobiomesasabiocatalyst.InanMFC,exoelectrogensareconsidered vitalastheirelectrontransfermechanismishighlyregulatedandspeci fiedtowardselectrode/metalasasolidelectronacceptor.However,themicrobialcommunitythathasbeen observedinseveralMFCstudiesnotonlypossesshighlyelectroactivebacteria(EAB)and exoelectrogensbutalsootherbacteriathatarenotelectrogenicandcanperformmoderate electro-activity,recentlyemergingas “weakelectricigens ” [42].PhylogeneticanalysisobtainedfromseveralstudiesrevealedmostoftheEABbelongtogram-negativeclassi fication, whilemoderate/weakelectricigensaregram-positive,withthestructuraldifferenceincell wallanditscompositionbeingthekeyfactorindeterminingtheelectroactivity [43].These weakelectricigenstypicallyrelyonsolubleelectronacceptorsandcanalsousesolidelectron acceptorsundercertainstress/variableconditions.AstheresearchtransitionhasbeenenvisionedtowardsbiotechnologicalandbiomedicalapplicationsusingtheprincipleofMET,

theseweakelectricigens findimportanceinthisemergingdomain,distinctfrompowergeneration [44].Weakelectricigensarecapableofgrowinginarangeofdifferentenvironments andcancompensateforspeci fiedmetabolicshortcomingsofanEAB,facilitatingastablebioprocessinamixedmicrobiome [45,46]

Thepotentialapplicationofweakelectricigenis “bioelectrosynthesis” foracetate,and methanesynthesisusingcathodicmicrobiomehasbeenexpandingtowardselectrofermentationaswell [1,17,47].Boththeseprocessesemployelectricalstimulitosteerandenhancethe metabolicratesofmicrobes(weakelectricigens),aswellasendproducts.Understandingthe microbialecologyofweakelectricigenswouldbroadenthescopeandapplicationstowards speci ficproductsynthesisandbioremediationofspeci ficcompounds,recoveryofmetals, etc.,althoughthecolumbicefficienciesareless [48 50].Besidesthisdiversity,scalability and flexibilityisconsideredasakeytothefunctioningofMETbytakingintoaccountthe emergingweakelectricigenstobeadaptabletowardsyieldingmaximumproductivity [48]. Noveltechniquetoscreenandenrichweakelectricigensformulti-facetedapplicationsis possiblethroughelectrochemicallycontrolledexperiments(potentiostatically)athighoxidativepotentials.Currentapplicationsofweakelectricigensmajorlyalignwiththe fieldof whitebiotechnologysuchaselectrofermentationandbioelectrosynthesis,whichisgaininginterestinthecurrentresearchscenario.Explorationoftheseprocesseswouldgreatlyimpact thebiotechnology fieldintermsoftransitioningfromlinearfossil basedeconomytobiobasedeconomy.

1.1.6CONCLUSIONSANDPERSPECTIVES

METisanemergingplatformandhavethescopetobecomedisruptivetechnologydueto itsdocumentedapplicationsinmultipledomains.METifsuccessfullydeployedtoapplicationwillhaveacriticalimpactondiversespheresofactivity,speci ficallyinthedomainof wastemanagementandresourcerecoveryalongwithbioenergygeneration[Fig.1.1.8]. MFCstosomeextentcanbeusedastheadditionalenergysourceinruralandremoteareas wherethereisnoenergysupply [51].However,theenergygeneratedbyindividualMFCsis ofaveryloworder,andtoachieveapplicability,upscaledversionwithstackingisneeded. TheabilityofMETtoremediatecomplexwastewaters/industrialeffluentswhilesimultaneouslygeneratingenergyandbiobasedproductsgivesitanadvantageoverthepre-existing wastemanagementtechnologiesandpractices [52 55,11,12].Moreover,mostoftheconventionalwastetreatmenttechnologiesconsumerelativelylargeamountsofenergyfortreating wastes,whichoftenmakestheprocessenergyintensiveandtheenergypossessedinthe wasteremainsuntapped.The fluegasesfromtheindustrymajorlyconsistofCO2,CH4 andCOalongwithNOx/SOx.METhasthecapabilitiestoutilizethesegasesasfeedstock forsynthesisofvalueaddedproducts.CO2 sequestrationthroughMETisanemerging domainofalternativeroutesforplatformchemicalssynthesis [56 59].METscanalsobe deployedtotreatsaltsasMDC [60].UpscaledversionsofMFCscanbedeployedinlakes forecologicalrestorationbybenthicMFCs,whichcanalsobeusedasbiosensorstomonitor theoverallpollutionlevelsoranyspecificpollutants [48,61].Themicrobesarespeci ficto environmentandgivediscreteresponsetoanychangeswhichcanbecapturedasan

FIGURE1.1.8 Variousapplicationsandlocationswheremicrobialelectrochemicaltechnologycanbeincorporatedandenablethedevelopmentofasustainableecosystem.

analogouselectricalsignalbyMET(inherentsensingcapability).Recentdevelopment,electrofermentationcanbeemployedforthecommoditychemicalsynthesis [1,5,17,18].

Inthecurrentscenario,METshavenotyettakentheleapforcommercialization.However, continuous,systematicandcross-disciplinaryresearchisessentialrequirementtoovercome theissues.Thecriticalparametersthatneedtobeextensivelyunderstoodaremicrobialphysiology,systemdesign,materials,interfaceofbiologyandmaterials,etc.whichwouldenable inovercomingthelowefficiency,limitedreliabilityandcomplexscalability [2,4,62].UnderstandingtheEETmechanismsandmicrobialphysiologyinarationalmanneriscriticalfor betterdesignofthesehybridsystems.Recentadvancesshowedthatthequantummechanics caninfluenceseveralbiochemicalreactions,especiallyelectrontransportandredoxenzymes. Quantumfunctioninbiologicalsystemscalledasquantumtunnelingmighthelpinunderstandingthemovementofelectronsthroughabarrierinaquickandefficientway [63] Tunnelingcurrentisproducedbyelectronswhentheymovethroughabarrierthatshould notactuallybeallowedtopass.Inbiologicalsystems,electrontransfermayoccurbydelocalization,tunneling,superexchangeandredoxconduction.Whileallthemechanismshavean equalroleinelectrontransport,tunnelingtendstodominateovertheshortdistances (< 2mm) [64].Tunnelingphenomenawasfoundinseveralelectrontransportproteinslike respiratorycomplexIorNADHdehydrogenaseI [65].Understandingofthesemechanisms

isafundamentalscienti ficchallengeandcangiveleadstodesignmolecularredoxmachines withimportanttechnologicalapplications.Themicrobe-electrodeinteractionsonthestructuralandfunctionaldevelopmentofamicrobialcommunitygoverntheexo-electrogenic efficiency.Speci ficelectrodesanditsmaterialwithgoodcatalyticactivity,biocompatibility andcosteffectivenessisanotherdomainthatneedtobepursued [62,48].Advancedanalytical toolshelptounderstandtheinteractionsofexo-electrogenicmicrobeswithelectrodematerialsindetail.METhasthepotentialtodrivethecurrentfossilbasedlineareconomyinto aself-sustainedbioeconomy.Multidisciplinaryresearchinthisdomainisessentialforits translation.

Acknowledgments

AuthorsatCSIR-IICTacknowledgethe financialsupportfromDepartmentofScienceandTechnology(NewIndigo Project;DST/IMRCD/NewIndigo/Bio-e-MAT/2014/(G)/(ii)).GVacknowledgesDSTforSERB-Grant(YSS/2015/ 001438).JSS,ANK,KVKandJAMacknowledgeCSIRforprovidingresearchfellowship.SKBacknowledgeUGCfor providingresearchfellowship.

References

[1]S.VenkataMohan,J.A.Modestra,K.Amulya,S.K.Butti,G.Velvizhi,Acircularbioeconomywithbio-based productsfromCO2 sequestration,TrendsBiotechnol.34(6)(2016)506 519.

[2]S.K.Butti,G.Velvizhi,M.L.K.Sulonen,J.M.Haavisto,E.O.Koroglu,A.Y.Cetinkaya,S.Singh,D.Arya, J.A.Modestra,K.V.Krishna,A.Verma,B.Ozkaya,A.Lakaniemi,J.A.Puhakka,S.VenkataMohan,Microbial electrochemicaltechnologieswiththeperspectiveofharnessingbioenergy:maneuveringtowardsupscaling, Renew.Sustain.EnergyRev.53(2016)462 476.

[3]S.Bajracharya,M.Sharma,G.Mohanakrishna,X.D.Benneton,D.P.Strik,P.M.Sarma,D.Pant,Anoverviewon emergingbioelectrochemicalsystems(BESs):technologyforsustainableelectricity,wasteremediation,resource recovery,chemicalproductionandbeyond,Renew.Energy98(2016)153 170.

[4]F.Aulenta,S.Puig,F.Harnisch,Microbialelectrochemicaltechnologies:maturingbutnotmature,Microb. Biotechnol.11(1)(2018)18 19.

[5]M.Villano,P.Paiano,E.Palma,A.Miccheli,M.Majone,Electrochemically-drivenfermentationoforganic substrateswithundefinedmixedmicrobialcultures,ChemSusChem10(15)(2017)3091 3097.

[6]A.Kumar,L.H.H.Hsu,K.Paul,F.Barriere,P.N.L.Lens,L.Lapinsonniere,J.H.V.Lienhard,U.Schroder,X.Jiang, D.Leech,Theinsandoutsofmicroorganism-electrodeelectrontransferreactions,Nat.Rev.Chem.1(2017)24.

[7]V.R.Stamenkovic,D.Strmcnik,P.P.Lopes,N.M.Markovic,Energyandfuelsfromelectrochemicalinterfaces, Nat.Mater.16(2016)57 69.

[8]O.Choi,B.I.Sang,Extracellularelectrontransferfromcathodetomicrobes:applicationforbiofuelproduction, Biotechnol.Biofuels9(1)(2016)11.

[9]K.Rabaey,P.Girguis,L.K.Nielsen,Metabolicandpracticalconsiderationsonmicrobialelectrosynthesis,Curr. Opin.Biotechnol.22(3)(2011)371 377.

[10]S.VenkataMohan,G.Velvizhi,K.V.Krishna,M.L.Babu,Microbialcatalyzedelectrochemicalsystems:abiofactorywithmulti-facetapplications,Bioresour.Technol.165(2014)355 364.

[11]S.Sreelatha,G.Velvizhi,C.N.Reddy,J.A.Modestra,S.VenkataMohan,Solidelectronacceptoreffectonbiocatalystactivityintreatingazodyebasedwastewater,RSCAdv.5(2015)95926 95938.

[12]A.Domínguez-Garay,J.R.Quejigo,U.Dörfler,R.Schroll,A.Esteve-Núñez,Bioelectroventing:an electrochemical-assistedbioremediationstrategyforcleaning-upatrazine-pollutedsoils,Microb.Biotechnol. 11(1)(2018)50 62.

[13]J.A.Modestra,M.L.Babu,S.VenkataMohan,Electro-fermentationofreal-fieldacidogenicspentwasheffluents foradditionalbiohydrogenproductionwithsimultaneoustreatmentinamicrobialelectrolysiscell,Separ.Purif. Technol.150(2015)308 315.

1.1.MICROBIALELECTROCHEMICALTECHNOLOGY

[14]Y.Kim,B.E.Logan,Microbialdesalinationcellsforenergyproductionanddesalination,Desalination308(2013) 122 130.

[15]A.Schievano,T.PepéSciarria,K.Vanbroekhoven,H.DeWever,S.Puig,S.J.Andersen,K.Rabaey,D.Pant, Electro-fermentation mergingelectrochemistrywithfermentationinindustrialapplications,TrendsBiotechnol. 34(2016)866 878.

[16]J.S.Sravan,S.K.Butti,O.Sarkar,K.V.Krishna,S.VenkataMohan,Electrofermentationoffoodwaste Regulatingacidogenesistowardsenhancedvolatilefattyacidsproduction,Chem.Eng.J.334(2018)1709 1718.

[17]K.Rabaey,R.A.Rozendal,Microbialelectrosynthesis revisitingtheelectricalrouteformicrobialproduction, Nat.Rev.Microbiol.8(2010)706 716.

[18]R.Moscoviz,E.Trably,N.Bernet,Electro-fermentationtriggeringpopulationselectioninmixed-cultureglycerol fermentation,Microb.Biotechnol.11(1)(2018)74 83.

[19]G.N.Nikhil,G.V.Subhash,Y.Dileep,S.VenkataMohan,Synergisticyieldofdualenergyformsthrough biocatalyzedelectrofermentationofwaste:stoichiometricanalysisofelectronandcarbondistribution,Energy 88(2015)281 291.

[20]L.Galvani,Commentaryontheeffectofelectricityonmuscularmotion,Am.J.Phys.22(1954)40.

[21]M.C.Potter,Electricaleffectsaccompanyingthedecompositionoforganiccompounds,Proc.Roy.Soc.Lond.84 (1911)260 276.

[22]B.Cohen,Thebacterialcultureasanelectricalhalf-cell,J.Bacteriol.21(1931)18 19.

[23]J.B.Davis,H.F.Yarbrough,Preliminaryexperimentsonamicrobialfuelcell,Science137(3530)(1962)615 616.

[24]M.G.DelDuca,J.M.Fuscoe,ThermodynamicsandApplicationsofBioelectro-chemicalEnergyConversionSystems,1964.

[25]I.Karube,T.Matsunaga,S.Tsuru,S.Suzuki,Biochemicalfuelcellutilizingimmobilizedcellsof Clostridium butyricum,Biotechnol.Bioeng.19(11)(1977)1727 1733.

[26]T.Matsunaga,I.Karube,S.Suzuki,Aspecificmicrobialsensorforformicacid,Eur.J.Appl.Microbiol. Biotechnol.10(3)(1980)235 243.

[27]G.Davis,H.A.O.Hill,W.J.Aston,I.J.Higgins,A.P.Turner,Bioelectrochemicalfuelcellandsensorbasedona quinoprotein,alcoholdehydrogenase,Enzym.Microb.Technol.5(5)(1983)383 388.

[28]C.F.Thurston,H.P.Bennetto,G.M.Delaney,J.R.Mason,S.D.Roller,J.L.Stirling,Glucosemetabolismina microbialfuelcell.Stoichiometryofproductformationinathionine-mediated Proteusvulgaris fuelcellandits relationtocoulombicyields,Microbiology131(6)(1985)1393 1401.

[29]B.H.Kim,T.S.Kim,H.Y.Kim,BioelectrochemicalDesulfurizationofPetroleum,1990.USPatent-4954229.

[30]R.M.Allen,H.P.Bennetto,Microbialfuelcells:electricityproductionfromcarbohydrates,Appl.Biochem. Biotechnol.39(1)(1993)27 40.

[31]G.M.Delaney,H.P.Bennetto,J.R.Mason,S.D.Roller,J.L.Stirling,C.F.Thurston,Electron-transfercouplingin microbialfuelcells.2.performanceoffuelcellscontainingselectedmicroorganism-mediator-substratecombinations,J.Chem.Technol.Biotechnol.34(1)(1984)13 27.

[32]M.A.Robin,H.P.Bennetto,Microbialfuelcells.Electricityproductionfromcarbohydrates,Appl.Biochem. Biotechnol.37(1993)27 40.

[33]G.D.D.Micheal,M.F.John,ThermodynamicsandApplicationsofBioelectrochemicalEnergyConversion Systems,in:BiotechnologyandHumanResearchOfficeofAdvancedResearchandTechnology,vol.242, NASA,Washington,D.C,1964,p.35.

[34]D.G.Nicholls,S.J.Ferguson,Bioenergetics,vol.4,AcademicPress,2013.

[35]Y.Yang,Y.Xiang,C.Xia,W.M.Wu,G.Sun,M.Xu,Physiologicalandelectrochemicaleffectsofdifferent electronacceptorsonbacterialanoderespirationinbioelectrochemicalsystems,Bioresour.Technol.164(2014) 270 275.

[36]J.R.Lloyd,Microbialreductionofmetalsandradionuclides,FEMS(Fed.Eur.Microbiol.Soc.)Microbiol.Rev.27 (2 3)(2003)411 425.

[37]Y.Anraku,Bacterialelectrontransportchains,Annu.Rev.Biochem.57(1)(1988)101 132.

[38]L.Shi,H.Dong,G.Reguera,H.Beyenal,A.Lu,J.Liu,H.Q.Yu,J.K.Fredrickson,Extracellularelectrontransfer mechanismsbetweenmicroorganismsandminerals,Nat.Rev.Microbiol.14(10)(2016)651.

[39]D.R.Lovley,D.E.Holmes,K.P.Nevin,DissimilatoryFe(iii)andMn(iv)reduction,Adv.Microb.Physiol.49 (2004)219 286.

[40]S.Seeliger,R.Cord-Ruwisch,B.Schink,Aperiplasmicandextracellularc-typecytochromeof Geobactersulfurreducens actsasaferricironreductaseandasanelectroncarriertootheracceptorsortopartnerbacteria, J.Bacteriol.180(14)(1998)3686 3691.

[41]N.Chabert,V.Bonnefoy,W.Achouak,Quorumsensingimprovescurrentoutputwith Acidithiobacillusferrooxidans,MicrobBiotechnol11(1)(2018)136 140.

[42]L.E.Doyle,E.Marsili,Weakelectricigens:anewavenueforbioelectrochemicalresearch,Bioresour.Technol. (2018), https://doi.org/10.1016/j.biortech.2018.02.073

[43]J.A.Modestra,S.VenkataMohan,Bio-electrocatalyzedelectroneffluxinGrampositiveandGramnegative bacteria:aninsightintodisparityinelectrontransferkinetics,RSCAdv.4(64)(2014)34045 34055.

[44]L.E.Doyle,E.Marsili,Methodsforenrichmentofnovelelectrochemically-activemicroorganisms,Bioresour. Technol.195(2015)273 282.

[45]C.Koch,F.Harnisch,Whatistheessenceofmicrobialelectroactivity?Front.Microbiol.7(2016)1890.

[46]J.Arends,Thenextsteptowardsusablemicrobialbioelectrochemicalsensors?MicrobBiotechnol11(1)(2018) 20 21.

[47]J.Sadhukhan,J.R.Lloyd,K.Scott,G.C.Premier,E.H.Yu,T.Curtis,I.M.Head,Acriticalreviewofintegration analysisofmicrobialelectrosynthesis(MES)systemswithwastebiorefineriesfortheproductionofbiofueland chemicalfromreuseofCO2,Renew.Sustain.EnergyRev.56(2016)116 132.

[48]C.Koch,B.Korth,F.Harnisch,Microbialecology-basedengineeringofmicrobialelectrochemicaltechnologies, MicrobBiotechnol11(1)(2018)22 38.

[49]M.Villares,Life-cycleassessmentofmetalrecoveryfromelectronicwaste,in:E.R.Rene,E.Sahinkaya,A.Lewis, P.N.L.Lens(Eds.),SustainableHeavyMetalRemediation.EnvironmentalChemistryforaSustainableWorld, Springer,Cham,2017,pp.1 23.

[50]T.Ewing,P.T.Ha,H.Beyenal,Evaluationoflong-termperformanceofsedimentmicrobialfuelcellsandtherole ofnaturalresources,Appl.Energy192(2017)490 497.

[51]B.G.Lusk,A.Colin,P.Parameswaran,B.E.Rittmann,C.I.Torres,Simultaneousfermentationofcelluloseand currentproductionwithanenrichedmixedcultureofthermophilicbacteriainamicrobialelectrolysiscell, Microb.Biotechnol.11(1)(2018)63 73.

[52]Y.Kajikawa,J.Yoshikawa,Y.Takeda,K.Matsushima,Trackingemergingtechnologiesinenergyresearch: towardaroadmapforsustainableenergy,Technol.Forecast.Soc.Change75(6)(2008)771 782.

[53]T.Zhang,P.L.Tremblay,Currentchallengesandfutureperspectivesonemergingbioelectrochemicaltechnologies,Front.Microbiol.7(2016)860.

[54]N.Pous,M.D.Balaguer,J.Colprim,S.Puig,Opportunitiesforgroundwatermicrobialelectro-remediation, Microb.Biotechnol.11(1)(2018)119 135.

[55]E.Palma,M.Daghio,A.Franzetti,M.PetrangeliPapini,F.Aulenta,Thebioelectricwell:anovelapproachfor in situ treatmentofhydrocarbon-contaminatedgroundwater,Microb.Biotechnol.11(1)(2018)112 118.

[56]C.Ampelli,S.Perathoner,G.Centi,CO2 utilization:anenablingelementtomovetoaresource-andenergyefficientchemicalandfuelproduction,Philos.Trans.AMathPhys.Eng.Sci.373(2037)(2015)20140177.

[57]S.Srikanth,D.Singh,K.Vanbroekhoven,D.Pant,M.Kumar,S.K.Puri,S.S.V.Ramakumar,Electro-biocatalytic conversionofcarbondioxidetoalcoholsusinggasdiffusionelectrode,Bioresour.Technol.(2018), https:// doi.org/10.1016/j.biortech.2018.02.058.

[58]E.V.Kondratenko,G.Mul,J.Baltrusaitis,G.O.Larrazábal,J.Pérez-Ramírez,StatusandperspectivesofCO2 conversionintofuelsandchemicalsbycatalytic,photocatalyticandelectrocatalyticprocesses,EnergyEnviron. Sci.6(11)(2013)3112 3135.

[59]C.Santoro,C.Arbizzani,B.Erable,I.Ieropoulos,Microbialfuelcells:fromfundamentalstoapplications.A review,J.PowerSources356(2017)225 244.

[60]P.S.Goh,A.F.Ismail,T.Matsuura,Perspectiveandroadmapofenergy-efficientdesalinationintegratedwith nanomaterials,Separ.Purif.Rev.47(2)(2018)124 141.

[61]B.R.Ringeisen,E.Henderson,P.K.Wu,J.Pietron,R.Ray,B.Little,J.C.Biffinger,J.M.Jones-Meehan,Highpower densityfromaminiaturemicrobialfuelcellusing Shewanellaoneidensis DSP10,Environ.Sci.Technol.40(8) (2006)2629 2634.

[62]M.Baca,S.Singh,M.Gebinoga,F.Weise,G.Schlingloff,A.Schober,Microbialelectrochemicalsystemswith futureperspectivesusingadvancednanomaterialsandmicrofluidics,Adv.EnergyMater.6(2016)23.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Microbial electrochemical technology s. venkata mohan - Download the ebook now for an unlimited read by Education Libraries - Issuu