Micro and nanofluid convection with magnetic field effects for heat and mass transfer applications u

Page 1


MicroandNanofluidConvectionwithMagneticField EffectsforHeatandMassTransferApplications usingMATLAB®ChakravarthulaRaju

https://ebookmass.com/product/micro-and-nanofluidconvection-with-magnetic-field-effects-for-heat-and-masstransfer-applications-using-matlab-chakravarthula-raju/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Heat and mass transfer : fundamentals and applications 6th Edition Yunus A Çengel

https://ebookmass.com/product/heat-and-mass-transfer-fundamentals-andapplications-6th-edition-yunus-a-cengel/

ebookmass.com

Heat and Mass Transfer for Chemical Engineers: Principles and Applications Giorgio Carta

https://ebookmass.com/product/heat-and-mass-transfer-for-chemicalengineers-principles-and-applications-giorgio-carta/

ebookmass.com

Nanofluids for Heat and Mass Transfer Fundamentals, Sustainable Manufacturing and Applications Bharat Bhanvase

https://ebookmass.com/product/nanofluids-for-heat-and-mass-transferfundamentals-sustainable-manufacturing-and-applications-bharatbhanvase/ ebookmass.com

Webs of Kinship: Family in Northern Cheyenne Nationhood

https://ebookmass.com/product/webs-of-kinship-family-in-northerncheyenne-nationhood-christina-gish-hill/

ebookmass.com

https://ebookmass.com/product/mckeachies-teaching-tips-14th-editionebook-pdf-version/

ebookmass.com

(eBook PDF) Financial Accounting Theory 8th Edition

https://ebookmass.com/product/ebook-pdf-financial-accountingtheory-8th-edition/

ebookmass.com

New Directions in Contemporary Australian Poetry 1st Edition Dan Disney

https://ebookmass.com/product/new-directions-in-contemporaryaustralian-poetry-1st-edition-dan-disney/

ebookmass.com

Crime And Punishment In Islamic Law: A Fresh Interpretation Mohammad Hashim Kamali

https://ebookmass.com/product/crime-and-punishment-in-islamic-law-afresh-interpretation-mohammad-hashim-kamali/

ebookmass.com

Youmans and Winn Neurological Surgery: 4 - Volume Set, 8th Edition H. Richard Winn

https://ebookmass.com/product/youmans-and-winn-neurologicalsurgery-4-volume-set-8th-edition-h-richard-winn/

ebookmass.com

ENGLISH LANGUAGE TEACHING

S P Dhanavel

https://ebookmass.com/product/english-language-teaching-in-india-theshifting-paradigms-s-p-dhanavel/

ebookmass.com

Thispageintentionallyleftblank

MicroandNanofluid ConvectionwithMagnetic FieldEffectsforHeatand MassTransferApplications

UsingMATLABs

CHAKRAVARTHULAS.K.RAJU

DepartmentofMathematics,GITAMUniversity,Visakhapatnam,India

ILYASKHAN

BasicEngineeringSciencesDepartment,CollegeofEngineering MajmaahUniversity,AlMajma'ah,SaudiArabia

SURESHKUMARRAJUS.

DepartmentofMathematicsandStatistics,KingFaisalUniversity, Hofuf,SaudiArabia

MAMATHAS.UPADHYA

DepartmentofMathematics,KristuJayantiCollege(Autonomous), Bangalore,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

MATLABs isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorks doesnotwarranttheaccuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussion ofMATLABs softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipby TheMathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLABs software.

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-823140-1

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: EdwardPayne

EditorialProjectManager: VeronicaIISantos

ProductionProjectManager: PrasannaKalyanaraman

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

Listofcontributors ix

Abouttheeditors xi

Preface xiii

1.Backgroundtomicro-andnanofluids1

MamathaS.UpadhyaandC.S.K.Raju

References 5

2.Mathematicalmodelingofequationsofcouplestressfluidin respectivecoordinates7

C.S.K.Raju,MamathaS.UpadhyaandIlyasKhan

2.1 Basicflowequations7

2.2 Equationsofmotion8

2.3 Equationsofmotionbystresstensor9

2.3.1 IntheCartesiancoordinatessystem9

2.3.2 Inthecylindricalcoordinatessystem13

2.3.3 Inthesphericalcoordinatessystem16

2.4 Equationsofmotionbyvectorcalculus21

2.4.1 IntheCartesiancoordinatessystem21

2.4.2 Inthecylindricalcoordinatessystem24

2.4.3 Inthesphericalcoordinatessystem26

References 30

3.Mathematicalmodelofsteadyincompressiblenanofluidfor heattransferapplicationsusingMATLABs 31

SathySureshandS.R.Shanthi

3.1 Introduction31

3.2 Problemdescription33

3.3 Methodofsolution36

3.4 AlgorithmandimplementationofMATLABs 38

3.5 Resultsanddiscussion41

3.6 Conclusion 57 References 58

4.Mathematicalmodelforanincompressibleunsteadynanofluidflowwith heattransferapplication59

S.Rajamani,G.Venkatesan,A.SubramanyamReddy,A.K.Shukla,K.Jagadeshkumar andS.Srinivas

4.1 Introduction59

4.2 Formulationoftheproblem61

4.3 Resultsanddiscussion64

5.Mathematicalmodelforincompressibleunsteadynanofluidfluidflowwith heatandmasstransferapplication75 G.P.Ashwinkumar

6.Stefanblowingeffectonnanofluidflowoverastretchingsheet inthepresenceofamagneticdipole91

R.NaveenKumar,R.J.PunithGowda,B.C.PrasannakumaraandC.S.K.Raju

6.1 Introduction

6.2 Mathematicalformulation94

6.2.1 Conditionsandassumptionsofthemodel95

6.2.2 Geometryoffluidflow95

6.2.3 Modelequations95

6.2.4 Nonuniformheatsource/sink96

6.2.5 Magneticdipole96

6.3 Thesolutiontotheproblem97

6.3.1 Expressionofparameters98

6.3.2 Physicalquantitiesofinterest98

6.4 Numericalmethod98

6.4.1 Convergenceanderrortolerance100

6.5 Resultsanddiscussion100

6.5.1 Velocityandthermalprofile100

6.5.2 Concentrationprofile104

6.5.3 Physicalquantitiesofpracticalinterest106

6.6 Conclusions109 References 109

7.Nonlinearunsteadyconvectiononmicroandnanofluidswith Cattaneo-Christovheatflux113 MamathaS.UpadhyaandC.S.K.Raju

Nomenclature 113

7.1 Introduction114

7.2 Problemdevelopments116

7.3 Graphicaloutcomesanddiscussion120

7.4 Conclusions129 References 130

8.Comparisonofsteadyincompressiblemicropolarandnanofluidflow withheatandmasstransferapplications133 SathySuresh,S.R.ShanthiandMamathaS.Upadhya

8.1 Introduction133

8.2 Formulation135

8.3 Entropygeneration139

8.4 Numericalprocedure140

8.5 Resultsanddiscussion141

8.6 Concludingremarks149 References 149

9.Comparisonofunsteadyincompressiblemicropolarandnanofluid flowwithheattransferapplications153

D.Rajkumar,K.Govindarajulu,T.Thamizharasan,A.SubramanyamReddy, K.Jagadeshkumar,S.SrinivasandA.K.Shukla

9.1 Introduction153

9.2 Formulationoftheproblem156

9.3 Resultsanddiscussion160

9.3.1 Velocitydistribution161

9.3.2 Angularmomentumdistribution163

9.3.3 Temperaturedistribution164

9.3.4 Nusseltdistribution164

9.4 Conclusion166 References 166

10.ImplementationofboundaryvalueproblemsinusingMATLAB s 169

10.1 IntroductiontoMATLABs 169

10.1.1 Plottingofcurvesandsurfaces169

10.2 Vectorfieldandgradient176

10.2.1 Aim176

10.3 Limitsandcontinuity180

10.3.1 Aim180

10.4 Definiteintegralsandtheirapplications185

10.4.1 Aim185

10.5 Localmaximaandlocalminima189

10.5.1 Aim189

10.6 Lagrange’smultipliersmethod194

10.6.1 Aim194

10.7 Multipleintegrals199

10.7.1 Aim199

10.7.2 Volumeofasolidregion199

10.7.3 Changeofvariables:polarcoordinates199

10.8 Applicationsofderivatives205

10.8.1 Aim205

10.8.2 Maximumandminimumforasinglevariable207

10.9 Casestudy212

10.9.1 Introduction212

10.9.2 Methodology213

10.9.3 MATLABs implementation214

10.9.4 Resultsanddiscussion216

10.9.5 Conclusion220

10.10 Navier StokesequationsolvingusinganODEsolver221

10.11 Solvingtheinitialvalueproblem223

10.12 Solvingtwocouplednonlinearequations224

10.13 Interpretingtheresults228 Furtherreading

Listofcontributors

G.P.Ashwinkumar

DepartmentofMathematics,VijayanagaraSriKrishnadevarayaUniversity,Bellary,Karnataka, India

K.Govindarajulu

DepartmentofMathematics,SchoolofAdvancedSciences,VelloreInstituteofTechnology, Vellore,TamilNadu,India

K.Jagadeshkumar

DepartmentofMathematics,SchoolofAdvancedSciences,VelloreInstituteofTechnology, Vellore,TamilNadu,India

IlyasKhan

DepartmentofMathematics,MajmaahUniversity,AlMajma'ah,MajmaahCity,SaudiArabia

R.NaveenKumar

DepartmentofStudiesandResearchinMathematics,DavangereUniversity,Davangere, Karnataka,India

B.C.Prasannakumara

DepartmentofStudiesandResearchinMathematics,DavangereUniversity,Davangere, Karnataka,India

R.J.PunithGowda

DepartmentofStudiesandResearchinMathematics,DavangereUniversity,Davangere, Karnataka,India

S.Rajamani

DepartmentofMathematics,SchoolofAdvancedSciences,VelloreInstituteofTechnology, Vellore,TamilNadu,India

D.Rajkumar

DepartmentofMathematics,SchoolofAdvancedSciences,VelloreInstituteofTechnology, Vellore,TamilNadu,India

C.S.K.Raju

DepartmentofMathematics,GITAMSchoolofScience,GITAMDeemedtobeUniversity, Bengaluru,Karnataka,India

A.SubramanyamReddy

DepartmentofMathematics,SchoolofAdvancedSciences,VelloreInstituteofTechnology, Vellore,TamilNadu,India

S.R.Shanthi

DepartmentofMathematics,CambridgeInstituteofTechnology,Bengaluru,Karnataka,India

A.K.Shukla

DepartmentofMathematics,SchoolofAdvancedSciencesandLanguages,VIT-Bhopal University,Bhopal,MadhyaPradesh,India

x Listofcontributors

S.Srinivas

DepartmentofMathematics,SchoolofAdvancedSciences,VIT-APUniversity,Amaravati, AndhraPradesh,India

SathySuresh

DepartmentofMathematics,VemanaInstituteofTechnology,Bengaluru,Karnataka,India; DepartmentofMathematics,CambridgeInstituteofTechnology,Bengaluru,Karnataka,India

T.Thamizharasan

DepartmentofMathematics,SchoolofAdvancedSciences,VelloreInstituteofTechnology, Vellore,TamilNadu,India

MamathaS.Upadhya

DepartmentofComputerScience,KristuJayantiCollege(Autonomous),Bengaluru, Karnataka,India

G.Venkatesan

DepartmentofMathematics,SchoolofAdvancedSciences,VelloreInstituteofTechnology, Vellore,TamilNadu,India

Abouttheeditors

Dr.ChakravarthulaS.K.Raju, GITAMSchoolofScience, GITAMUniversity,Bengaluru-Campus,Karnataka,India

Dr.C.S.K.Raju worksatGITAMUniversityinIndia.Dr. Raju’sareasofinterestincludemathematicalmodeling,nanoandmicrofluidmodeling,statisticalmechanics,Newtonianand non-Newtonianliquids,andmachinelearningtechniques.He istheauthorofseveralbooksandbookchapters.Healsoacts asaneditorialboardmemberandreviewerforvariousISIand Scopus-indexedpublisherssuchastheAmericanSocietyof MechanicalEngineering,Elsevier,TaylorandFrancis,Wiley,andSpringer.Dr.Raju haspublishedmorethan150researcharticlesandhasaGooglescholarcitationcount of3000andScopuscitationcountof2500.HehasreceivedtheBestResearcher AwardasatokenofappreciationfromtheVITUniversityandIJRULAAssociation. Hehasattended/presentedvariousnational/internationalconferencesasapresenter/ invitedspeakerorresourceperson.Hewaslistedinthetop2%scientist’sdatabaseby theStanfordUniversity,UnitedStates(2020)andalsoin2021aspertheScopusdatabase.Heisaneditorofthisbookandhasalsocontributedsomeofthechapters.

Dr.IlyasKhan receivedhisPhDdegreeinappliedmathematicsfromtheUniversitiTeknologiMalaysia,oneofthe world’sleadinguniversities.Hehasover15yearsofacademic experienceindifferentreputedinstitutionsaroundtheworld. HeiscurrentlyanassociateprofessorwiththeDepartmentof Mathematics,CollegeofScience,Zulfi,MajmaahUniversity, SaudiArabia.Hehaspublishedmorethan700researcharticles indifferentwell-reputedinternationaljournals.Dr.Khanis alsoeditorofanumberofjournalsandarefereeinmorethan 100journals.Dr.Khan’sareasofresearchinterestinclude mathematicalmodeling,analyticalandcomputationalfluiddynamics,biomathematics,andnumericalcomputing.

Dr.SureshKumarRajuS. isoriginallyfromIndiaandcurrentlyworksasanassistantprofessorintheDepartmentof MathematicsandStatistics,CollegeofScience,atKingFaisal University,SaudiArabia.HecompletedhisPhDatUniversiti TeknologiPETRONAS,Malaysia.Hehas13yearsofteaching and8yearsofresearchexperienceatlocalandinternational educationalinstitutions.Hisresearchfocusesontheareasof fluiddynamics,heatandmasstransfer,nanofluids,multiphase flow,mathematicalmodeling,andnumericalanalysis.Hehas publishedresearcharticlesinreputedISIindexedjournalsandpresentedresearcharticlesatinternationalconferencesinvariouscountries.Hehasin-depthknowledgeof theprogramminglanguagesMATLABs andFORTRAN.Inadditiontoteaching andresearch,hewasbeenappointedtosomeadministrativeresponsibilitiessuchasa teamleadforaKeyPerformanceIndicator(KPI)report,curriculumcommitteemember,studentadvisor,examinationcoordinator,andProgrammeOfficerforthe NationalServiceScheme(NSS)Unit.Heisaneditorofthisbookandhascontributed someofthechapters.

Dr.MamathaS.Upadhya has21yearsofteachingexperience,combiningacademicandpragmaticapproaches.Sheis presentlyassistantprofessorattheDepartmentofMathematics, KristuJayantiCollege,Bengaluru,India.Shehas45publicationsthatareSCI-indexed,withreputedpublishersincluding theAmericanSocietyofMechanicalEngineering,Elsevier, TaylorandFrancis,Wiley,andSpringer.Sheisactivein researchasareviewerinmanyinternationalandnationalpeerreviewedjournals.Herresearchinterestsincludeareassuchas dustyfluid,nanofluids,non-Newtonianfluids,hybridnanofluids,andfuzzylogic.Shehasgiveninvitedtalksinvariousfacultydevelopmentprogrammes(FDPs)andseminars.Herexpertiseincludesafairknowledgeinsoftware suchasSPSSR,MATLABs ,andMaxima.Sheisaneditortothisbookandhasalso contributedsomeofthechapters.

Preface

Thisbookprovidesreaderswithdetailsonthevariousapplicationsofmicro-and nanofluidflowandheatandmasstransfer.Differentnumericalmethodshavebeen employedtofindthesolutionstogoverningequationsandtheresultssimulatedusing MATLABs .SolvingtheboundarylayerequationsinMATLABs isdiscussedin detail.

ThefirstchaptergivesdetailedexplanationsregardingNewtonianandnonNewtonianfluid,micropolarfluid,andnanofluid,alongwiththeirapplications.In Chapter2,thebasicgoverningequationsofmotionforcouplestressfluidin Cartesian,cylindrical,andsphericalcoordinatesareexplainedindetail.

In Chapter3,theflowandheattransferofnanofluidsoverastretchingrotating diskarediscussed.Theflow-governingequationsaresolvednumericallyusingthe Runge Kutta-basedshootingmethodandimplementationinMATLABs is describedindetail.Theinfluenceofuniformmagneticfields;stretchingstrengthparameters;thermalbuoyancy;thermalradiationonaxial,tangential,andradialvelocities; andheattransferisalsodiscussed.

Chapter4 drawinsightsintothemathematicalmodelingforanincompressible unsteadynanofluidflowoveraninclinedplane.Heatandmasstransferapplicationsare discussed.Inthischapter,theconceptofhybridnanofluidisexplainedalso.Amathematicalmodelfortwo-dimensionalincompressibleMHD,unsteadynanofluidflow alonganelongatedsheetwithheatandmasstransfer,anditsapplicationsarereported in Chapter5.Theinfluenceofamagneticfield,chemicalreaction,viscousdissipation, andnonuniformheatsource/sinkparametersonthermal,concentration,andvelocity fieldsofthenanofluidaredescribed.

Chapter6 elaboratesontheStefanblowingeffectonnanofluidflowoverastretchingsheetinthepresenceofamagneticdipole.Theflow-governingequationsare numericallysolvedusingtheRunge Kutta Fehlberg(RKF-45)technique,along withtheshootingmethodandtheinfluenceofdimensionlessparametersonconcentration,thermal,andvelocitygradientsisportrayed. Chapter7 dealswithacomparativestudyofunsteadymicro-andnanofluidflowandheattransferconsidering nonlinearflowandCattaneo Christovheatfluxoverastretchingsheet.Nonlinear densityvariationandthepurposeofintroducingCattaneo Christovheatfluxare elaboratedon.

Chapter8 providesacomparativediscussiononheatandmasstransferinmicropolarandnanofluidflowonacurvedstretchingsheet,withdetailspresentedonentropy generation.Velocityandthermalslipareintroducedin Chapter9,andacomparative

studyonunsteadyincompressiblemicropolarandnanofluidflowandheattransfer overpermeableinclinedstretchingsheetispresentedalso.

Chapter10 providesadetailexplanationoftheimplementationofboundaryvalue problemsusingMATLABs .Severalexamplesarepresentedinthebookwhichhelp thereadertounderstandflowproblemsandtheirapplications.Numericalsolutionsare obtainedbythemimplementinginMATLABs .Theuser(Bachelor’s,Master’s,and PhDstudents;universityteachers;andalsoresearchcentersinanumberoffields)will thusbeabletoencountersuchsystemsinconfidence.

Inthedifferentchaptersofthebook,notonlyarethebasicideasofthemethods broadlydiscussed,butalsotheyarepracticallysolvedusingtheproposed methodology.

Backgroundtomicro-andnanofluids

1DepartmentofComputerScience,KristuJayantiCollege(Autonomous),Bengaluru,Karnataka,India

2DepartmentofMathematics,GITAMSchoolofScience,GITAMDeemedtobeUniversity,Bengaluru,Karnataka,India

Today’sresearchersarefascinatedbybreakthroughsintechnologies,andthistrendwill continueinthefuture.Asfluidsareasubstantialconstituentoftheuniverse,theyhave drawnsignificantattentionfromengineersandresearcherstomodifytheirvarious properties.Numerousfluidsencounteredinengineeringandindustrialprocessespossessnon-Newtonianfluidcharacteristics,forexample,moltenplastics,pulps,polymers, liquidmetals,nuclearfuelslurries,mercuryamalgams,lubricationbyheavyoil,etc. Fluidflowinthemicroscalebehavesdifferentlyfromthatinthemacroscale.Thereare situationswheretheNavier Stokesequation,whichisderivedfromtheclassicalcontinuum,isincapableofexploringthemicroscalefluidtransportphenomena.Thisis because,whenthechannelsizeiscomparedtothemolecularsize,thespinningof moleculeswhichisobservedinmoleculardynamicssimulationsisfoundtoinfluence significantlytheflowfield.Thiseffectofmolecularspinisnotconsideredinthe Navier Stokesequations.Thecomplexnatureofthesefluidshasforcedresearchersto inventconstitutivemodels.Inrecentyears,studiesrelatedtomicropolarfluidhave receivedgreatlyincreasedattention.Eringen(Eringen,1972;Eringen,1966)wasfirst toestablishedmicrocontinuumtheoryconsideringmicropolar,microstretch,and micromorphic(3M)theory.In3Mtheory,eachparticlehasafinitesizeandmicrostructurethatcanrotateanddeformindependently,regardlessofthemotionofthe centroidoftheparticle.Theformulationofmicropolarfluidtheoryhasadditional degreesoffreedom,gyration,todeterminetherotationofthemicrostructure.Thus, thebalancelawofangularmomentumisprovidedforsolvinggyration.Thisequation introducesthemechanismtotakeintoaccounttheeffectofmolecularspin.Thus, micropolartheoryisaverygoodalternativeapproachtosolvingmicroscalefluid dynamicsandismuchmorecomputationallyefficientthanmoleculardynamicssimulations.Underamicroscopicview,onecanseethatthemicromotionofrigidfluid elementsisrandomlyoriented(orspherical)withtheirpeculiarspinsandmicrorotationsinmicropolarfluid.Amicropolarfluidmodelhasbeenfoundusefulinthestudy offlowsofpaints,ferrofluids,exoticlubricants,colloidalsuspensions,liquidcrystals, polymericfluids,additivesuspensions,bodyfluids,bloodflows,flowsincapillaries, microchannels,andturbulentshearflows.Thepresenceofsmokeordust,particularly

inagas,couldalsobemodeledusingmicropolarfluiddynamics.Physically,micropolarfluidrepresentsafluidcontainingrandomlyorientedparticlessuspendedinaviscousmedium.MicropolarfluidandNewtonianfluiddifferoverthenumberof viscositycoefficients.Theformerhavingsixcoefficientsof3viscosity,namely α, β , γ , λ, μ,and κ,whilethelatterhasonlyonecoefficientofviscosity,forexample, μ Thegoverningequationsinthevectorfieldsareasfollows(AbdEl-Aziz,2013):

where D Dt isthematerialtimederivative, D representsthedeformationtensor with D 5 1 2 Vk;l 1 Vl ;k , Φ isthedissipationfunctionofmechanicalenergypermass unit, E thespecificinternalenergy, q theheatflux, V thevelocityvector, ρ thedensityofthefluid, μ thedynamicviscosity, ω themicrorotationvector, f thebodyforce vector, p thethermodynamicpressure, j themicroinertiadensity, l thebodycouple vector, λ thesecond-orderviscositycoefficient, κ thevortexviscosity(orthemicrorotationviscosity)coefficientand αv, β v,and γ arethespingradientcoefficients, respectively.

Theconstitutiveequations,givingthestresstensor τ kl andthecouplestresstensor Mkl,aregivenby:

where δ kl and εklm arethemetrictensorandcovariant ε symbol.

Thematerialconstantsmustsatisfythefollowinginequalities,derivedfromthe Clausius Duheminequality:

Eqs.(1.1) (1.4) representtheconservationofmass,linearmomentum,angular momentum,andenergy.For κ 5 αv 5 β v 5 γ 5 0andvanishing l and f,microrotation ω becomeszero,and Eq.(1.2) reducestotheclassicalNavier Stokesequations.Also, wenotethatfor κ 5 0,thevelocity V andmicrorotation ω arenotcoupledandthe microrotationdoesnotaffecttheglobalmotion.

Abbas,Malik,andNadeem(2020) studiedmicropolarhybridnanomaterialflow overRigasurface. Nawaz,Elmoasry,andAlebraheem(2020),usingthe Cattaneo Christovmodel,studiedthethermalnatureofmicropolarfluids.They noticedthatheatdissipatedinamono-nanofluidislowerthanforahybridnanofluid. Al-Hanaya,Sajid,Abbas,andNadeem(2020) studiedtheinfluenceofmultiwalled carbonnanotubes(MWCNTs)andsingle-walledcarbonnanotubes(SWCNTs)on micropolarhybridnanofluidflowonacurvedsurfaceandnotedthatmicrorotation improveswithvolumetricfraction. ReddyandFerdows(2021) investigatedthethermalandspeciesradiationinfluenceinmicropolaranddustyfluidflowacrossaparaboloidrevolution. NabweyandMahdy(2021) investigatednumericallythenatural convectionofmicropolaranddustparticlesduetopermeableconeconsideringthe nonlineartemperature. Kaneez,Alebraheem,Elmoasry,Saif,andNawaz(2020) numericallyinvestigatedthetransportofenergyandmomentainmicropolarfluid withsuspendeddustandnanoparticles. Abdelmalek,Nawaz,andElmasry(2020) studiedtheimpactofdustparticlesandnanoparticlesinheattransferinafluidwithmicrorotationandthermalmemoryeffects.

The21stcenturyhasbeenaccompaniedbyasignificantincreaseinenergyconsumptionbecauseofrapidgrowthofindustriesandmassivegrowthofthepopulation. Theeffectivedeploymentofenergyisnecessarytopreserveandbettermanageenergy resources.Intensifyingheattransferperformanceandreducingenergylosseshas becomeanincrediblygreatchallengetothehigh-technologyindustrialsectors. Nanoscienceandnanotechnologyareanticipatedtoplayamajorroleinrevitalizing theconventionalandemergingrenewableenergyindustries.Nanofluidisacolloidal defermentofnano-sized(diameterlessthan100nm)solidparticlesinbasefluidthat hasbroughtarevolutionarychangeinheattransferproperty.Experimentalresults (Keblinski,Eastman,&Cahill,2005)haveprovedthatnanofluidexhibitshigherthermalconductivitycomparedtothebasefluid.Nanofluidhasseveraladvantages,suchas higherstabilityofcolloidalsuspension,lowerpumpingpowerthatisessentialto

achievethecorrespondingheattransfer,andasuperiorlevelofcontrolforthermodynamicsandtransferpropertiesbyalteringtheparticlematerial,size,shape,andconcentration(Choi&Eastman,1995;Saidur,Leong,&Mohammad,2011).Experimental studiesby BuongiornoandHu(2005) illustratedthatforeffectiveheatenhancement, nanofluidrequiresonly5%volumetricfractionofnanoparticles.Nanoparticlesare madefromseveralmaterials,suchascarbonnanotubes,metals(Cu,Ag,Au)oxide ceramics(Al2O3,CuO),carbideceramics(SiC,TiC),nitrideceramics(AlN,SiN), semiconductors(TiO2,SiC),andcompositematerialssuchasnanoparticle core polymershellcompositesoralloyednanoparticles.Nanofluidsincludenumerous practicalapplications,withexamplesincludingprocessindustries(foodanddrink, materialsandchemicals,oilandgas,detergency,paperandprinting,textiles),nanofluid coolant(vehiclecooling,electronicscooling,etc.),medicalapplications(safersurgery bycooling,cancertherapy,anddrugdelivery),etc.

Theyear2020hasseentremendousaccelerationtowardtheadoptionandresearch intonanofluids.Numerousresearchers(Ahmed,Saleem,Nadeem,&Khan,2020; Anwar,Rafique,Misiran,Shehzad,&Ramesh,2020;Dogonchi,Waqas,Seyyedi, Hashemi-Tilehnoee,&Ganji,2020;Gopal,Naik,Kishan,&Raju,2020;Kumar, Sood,Raju,&Shehzad,2019;Rashid,Hayat,&Alsaedi,2019;Rostami,Dinarvand, &Pop,2018;Saleem,Nadeem,Rashidi,&Raju,2019;Shehzad,Reddy, VIjayakumari,&Tlili,2020;Sheikholeslami,Arabkoohsar,&Jafaryar,2020;Tariq, Hussain,Sheikh,Afaq,&Ali,2020;Turkyilmazoglu,2020a;Turkyilmazoglu,2019; Turkyilmazoglu,2020b;Waqas,Shehzad,Hayat,Khan,&Alsaedi,2019)havedemonstratedthatnanofluidshavebetterthermalperformance.Attractiveandpromising thermophysicalpropertiesofsolidnanoparticlesinbasefluid(nanofluid)haveencouragedresearcherstoanalyzetheirinfluenceinseveralareas.Themainapplicationof nanofluidsisasaheatexchanger,insolarcells,electronics,food,medicine,etc. Advantagesofnanofluidsandacceleratingresearchtowardflow,heat,andmasstransportphenomenahavemotivatedresearcherstowarddevelopinghybridanddihybrid nanofluids.Ifthemixtureiscomprisedofmorethanonetypeofnanoparticleitis knownasa “hybridnanofluid.” Ifthemixturecomprisesmorethanonetypeofnanoparticleandmorethanonefluiditisdescribedas “dihybridnanofluid.” Lietal. (2020) indicatedthatthemainadvantageofahybridnanofluidisgreaterconservation ofenergy,moreefficiency,andincreasedenergysaving. WainiandIshak(2020) studiedtheoutcomeoftranspirationonhybridnanofluidflowforuniformshearflow overastretchingsheetandobservedthatanimprovementinvolumefractionsofcoppernanoparticlescausesanenhancementinheattransfer. Raju,Upadhya,andSeth (2020) observedthatAl2O3 andgraphene-basedhybridnanofluidloweredthewall frictionrate. Kumar,Sandeep,Sugunamma,andAnimasaun(2020) observedthatthe proportionofheattransferisgreaterinahybridferrofluidthaninferrofluid. Shehzad (2020) investigatedthethermalperformanceofhybridnanofluidbyconsidering

sphericalparticles. HuminicandHuminic(2020) foundthattheemploymentof hybridnanofluidinminichannels,microchannels,andcavitieswasabetteralternative thantraditionalthermalsystems.

Thisstudyinvestigatedthenumericalsolutionstoanumberofproblemsforsteady, unsteady,laminar,andincompressibleflowofbothmicropolarfluidsandnanofluids. Thebodycouplesareneglectedinthecaseofmicropolarfluidflow.Similaritytransformationsareusedtohandlethegoverningpartialdifferentialofmotiontotransform themintoordinarydifferentialequations.Further,theresultingboundaryvalueproblemissolvedbyusingappropriatenumericaltechniqueswhicharestraightforward, easytoprogram,andeconomical.

References

Abbas,N.,Malik,M.Y.,&Nadeem,S.(2020).TransportationofmagnetizedmicropolarhybridnanomaterialfluidflowoveraRigasurfacesurface. ComputerMethodsandProgramsinBiomedicine, 185, 105136.

AbdEl-Aziz,M.(2013).Mixedconvectionflowofamicropolarfluidfromanunsteadystretchingsurface withviscousdissipation. JournaloftheEgyptianMathematicalSociety, 21(3),385 394.

Abdelmalek,Z.,Nawaz,M.,&Elmasry,Y.(2020).Simultaneousimpactofhybridnanoanddustparticlesonenhancementofheattransferinfluidwithmicro-rotationandthermalmemoryeffects. InternationalCommunicationsinHeatandMassTransfer, 118,104871.

Ahmed,Z.,Saleem,S.,Nadeem,S.,&Khan,A.U.(2020).Squeezingflowofcarbonnanotubes-based nanofluidinchannelconsideringtemperature-dependentviscosity:Anumericalapproach. Arabian JournalforScienceandEngineering,1 7.

Al-Hanaya,A.M.,Sajid,F.,Abbas,N.,&Nadeem,S.(2020).EffectofSWCNTandMWCNTonthe flowofmicropolarhybridnanofluidoveracurvedstretchingsurfacewithinducedmagneticfield. ScientificReports, 10(1),1 18.

Anwar,M.I.,Rafique,K.,Misiran,M.,Shehzad,S.A.,&Ramesh,G.K.(2020).Keller-boxanalysisof inclinationflowofmagnetizedWilliamsonnanofluid. SNAppliedSciences, 2(3),377. Buongiorno,J.,&Hu,L.W.(2005).Nanofluidcoolantsforadvancednuclearpowerplants. Proceedingsof ICAPP, 5,15 19.

Choi,S.U.,&Eastman,J.A.(1995). Enhancingthermalconductivityoffluidswithnanoparticles(No.ANL/ MSD/CP-84938;CONF-951135-29).Argonne,IL(UnitedStates:ArgonneNationalLab.(ANL). Dogonchi,A.S.,Waqas,M.,Seyyedi,S.M.,Hashemi-Tilehnoee,M.,&Ganji,D.D.(2020).AmodifiedFourierapproachforanalysisofnanofluidheatgenerationwithinasemi-circularenclosuresubjectedtoMFDviscosity. InternationalCommunicationsinHeatandMassTransfer, 111,104430. Eringen,A.C.(1972).Theoryofthermomicropolarfluids. JournalofMathematicalAnalysisandApplications, 38,480 496.

Eringen,A.C.(1966).Theoryofmicropolarfluids. JournalofMathematicsandMechanics,1 18. Gopal,D.,Naik,S.H.S.,Kishan,N.,&Raju,C.S.K.(2020).Theimpactofthermalstratificationand heatgeneration/absorptiononMHDcarreaunanofluidflowoverapermeablecylinder. SNApplied Sciences, 2(4),1 10.

Huminic,G.,&Huminic,A.(2020).Entropygenerationofnanofluidandhybridnanofluidflowinthermalsystems:Areview. JournalofMolecularLiquids,112533.

Kaneez,H.,Alebraheem,J.,Elmoasry,A.,Saif,R.S.,&Nawaz,M.(2020).Numericalinvestigationon transportofmomentaandenergyinmicropolarfluidsuspendedwithdusty,monoandhybridnanostructures. AIPAdvances, 10(4),045120.

Keblinski,P.,Eastman,J.A.,&Cahill,D.G.(2005).Nanofluidsforthermaltransport. MaterialsToday, 8, 36 44.

Kumar,K.A.,Sandeep,N.,Sugunamma,V.,&Animasaun,I.L.(2020).Effectofirregularheatsource/ sinkontheradiativethinfilmflowofMHDhybridferrofluid. JournalofThermalAnalysisand Calorimetry, 139(3),2145 2153.

Kumar,R.,Sood,S.,Raju,C.S.K.,&Shehzad,S.A.(2019).Hydromagneticunsteadyslipstagnationflow ofnanofluidwithsuspensionofmixedbio-convection. PropulsionandPowerResearch, 8(4),362 372. Li,Y.,Moradi,I.,Kalantar,M.,Babadi,E.,Malekahmadi,O.,&Mosavi,A.(2020).Synthesisofnew dihybridnanofluidofTiO2/MWCNTinwater ethyleneglycoltoimprovemixturethermalperformance:Preparation,characterization,andanovelcorrelationviaANNbasedonorthogonaldistance regressionalgorithm. JournalofThermalAnalysisandCalorimetry,1 17.

Nabwey,H.A.,&Mahdy,A.(2021).Numericalapproachofmicropolardust-particlesnaturalconvectionfluidflowduetoapermeableconewithnonlineartemperature. AlexandriaEngineeringJournal, 60(1),1739 1749.

Nawaz,M.,Elmoasry,A.,&Alebraheem,J.(2020).Impactofmonocityandhybridityofnano-structures onthermalperformanceofmicropolarfluidwithnovelheatfluxtheory:TheCattaneo Christov heatfluxtheory. JournalofMaterialsResearchandTechnology, 9(4),8618 8626.

Raju,C.S.K.,Upadhya,S.M.,&Seth,D.(2020).ThermalconvectiveconditionsonMHDradiated flowwithsuspendedhybridnanoparticles. MicrosystemTechnologies,1 10.

Rashid,M.,Hayat,T.,&Alsaedi,A.(2019).EntropygenerationinDarcy-Forchheimerflowofnanofluid withfivenanoparticlesduetostretchingcylinder. AppliedNanoscience, 9(8),1649 1659. Reddy,M.G.,&Ferdows,M.(2021).Speciesandthermalradiationonmicropolarhydromagneticdusty fluidflowacrossaparaboloidrevolution. JournalofThermalAnalysisandCalorimetry, 143(5), 3699 3717.

Rostami,M.N.,Dinarvand,S.,&Pop,I.(2018).Dualsolutionsformixedconvectivestagnation-point flowofanaqueoussilica aluminahybridnanofluid. ChineseJournalofPhysics, 56(5),2465 2478. Saidur,R.,Leong,K.Y.,&Mohammad,H.(2011).Areviewonapplicationsandchallengesofnanofluids. RenewableandSustainableEnergyReviews, 15,1646 1668.

Saleem,S.,Nadeem,S.,Rashidi,M.M.,&Raju,C.S.K.(2019).Anoptimalanalysisofradiatednanomaterialflowwithviscousdissipationandheatsource. MicrosystemTechnologies, 25(2),683 689.

Shehzad,S.A.(2020).Aleastsquarestudyonflowandradiativeheattransferofhybridnanofluidovera movingframebyconsideringasphericalshapeparticle. RevistaMexicanadeFísica, 66(2),162 170.

Shehzad,S.A.,Reddy,M.G.,VIjayakumari,P.,&Tlili,I.(2020).BehaviorofferromagneticFe2SO4 andtitaniumalloyTi6Al4vnanoparticlesinmicropolarfluidflow. InternationalCommunicationsinHeat andMassTransfer, 117,104769.

Sheikholeslami,M.,Arabkoohsar,A.,&Jafaryar,M.(2020).Impactofahelical-twistingdeviceonthe thermal hydraulicperformanceofananofluidflowthroughatube. JournalofThermalAnalysisand Calorimetry, 139(5),3317 3329.

Tariq,R.,Hussain,Y.,Sheikh,N.A.,Afaq,K.,&Ali,H.M.(2020).Regression-basedempiricalmodelingofthermalconductivityofCuO-waternanofluidusingdata-driventechniques. International JournalofThermophysics, 41(4),1 28.

Turkyilmazoglu,M.(2019).Fullydevelopedslipflowinaconcentricannulusviasingleanddualphase nanofluidsmodels. ComputerMethodsandProgramsinBiomedicine, 179,104997.

Turkyilmazoglu,M.(2020a).Singlephasenanofluidsinfluidmechanicsandtheirhydrodynamiclinear stabilityanalysis. ComputerMethodsandProgramsinBiomedicine, 187,105171. Turkyilmazoglu,M.(2020b).Nanoliquidfilmflowduetoamovingsubstrateandheattransfer. The EuropeanPhysicalJournalPlus, 135(10),1 13.

Waini,A.,&Ishak,I.(2020).Pop,Transpirationeffectsonhybridnanofluidflowandheattransferovera stretching/shrinkingsheetwithuniformshearflow. AlexandriaEngineeringJournal, 59(1),91 99.

Waqas,M.,Shehzad,S.A.,Hayat,T.,Khan,M.I.,&Alsaedi,A.(2019).SimulationofmagnetohydrodynamicsandradiativeheattransportationinconvectivelyheatedstratifiedflowofJeffreynanomaterial. JournalofPhysicsandChemistryofSolids, 133,45 51.

Mathematicalmodelingofequations ofcouplestressfluidinrespective coordinates

C.S.K.Raju1,MamathaS.Upadhya2 andIlyasKhan3

1DepartmentofMathematics,GITAMSchoolofScience,GITAMDeemedtobeUniversity,Bengaluru,Karnataka,India

2DepartmentofComputerScience,KristuJayantiCollege(Autonomous),Bengaluru,Karnataka,India

3DepartmentofMathematics,MajmaahUniversity,AlMajma'ah,MajmaahCity,SaudiArabia

2.1Basicflowequations

Thetheoryofcouplestressesdoesnotcontainthemicrostructureinthefluidasthe intrinsicangularmomentumandthekineticenergyofspindensityarenotconsidered. Theforemostconcernofcouplestressesistointroducethelength-dependenteffect, whichisnotpresentinclassicaltheoriesforNewtonianornonpolarfluids.Thebasic flowequationsrepresentingthecouplestresseshavebeenpresentedin Chang-Jianand Chen(2008), MurthyandNagaraju(2009), RamanaiahandSarkar(1979), Soundalgekar(1971),and Stokes(1966,1984) andareasfollows:

Thecontinuityequation

Cauchy’sfirstlawofmotion,

Cauchy’ssecondlawofmotion

where ρ isthefluiddensity, Vi arethevelocitycomponent, aj isthecomponentsof acceleration, Tij isthesecond-orderstresstensor, mij isthesecond-ordercouplestress tensor, f j representsthebodyforceperunitvolume, lj representsthebodymoment perunitvolume,and ejik isthethird-orderalternatingpseudotensor. Also,theconstitutiveequationforthepolarfluidisassumedtohavetheform

Thequantities ψ and μ aretheviscositycoefficients, ξ and ξ 0 arethecouplestress viscositycoefficients,and dij and kij arekinematicvariables.

2.2Equationsofmotion

Tofindtheequationsofmotionforthecouplestressfluid,theconstitutiveequationhas beenutilizedtotransformCauchy’slawofmotionintermsofvelocityandtoobtain thejointformofthesymmetricandantisymmetricpartofthetensor,whichisgivenby:

Inwhichthefirsttermsignifiesthesymmetricpartofthestresstensorthatistransformedfrom Eq.(2.4) into:

FromCauchy’ssecondlaw

Bysimplification,itbecomes

Using m 5 mii , Eq.(2.5) transformsto mqk 5

qk ,alongwith kik 5 ω k;i ,whichreduces Eq.(2.9) into

as ω q;q 5 0.

However ω 5 1 2 r 3 V, ω i;j isthespintensor, m isthetrace. Usingthefollowingexpressions

itconverts Eq.(2.10) into

Sothat TA ij

;i sincetheterm eijk m ;ki mustbezero.Finally, since

Substitutionfrom Eq.(2.7) and Eq.(2.12) inCauchy’sfirstlawofmotion,

InGibbsnotation(GB),itcanbemodifiedas:

Forincompressiblefluids r V 5 0.Andifthebodyforce f andthebodymoment l areabsent,theequationsofmotionreduceto

Howeverby Eqs.(2.4)and(2.12),thestresstensortakestheform

Inthisthesis,thefluidisdeliberatedtobeincompressibleandalsothebodyforce andthebodymomentarenotconsidered. drr representsthedivergenceofvelocity thatcanbereservedastheequationofcontinuityandcanbeequatedtozero,forsimplicity.Also,theterm eijk m ;ki mustbezero, Eq.(2.17) reducesto

2.3Equationsofmotionbystresstensor

Thissectionisdevotedtoevaluatingthestresstensorforthecouplestressfluidinthe Cartesian,cylindrical,andsphericalcoordinatessystems.

2.3.1IntheCartesiancoordinatessystem

Atfirst,allthecomponentsofthe “rateofstraintensor,” dij ,and “rateofspintensor” ω k aredeterminedwith V 5 ut ; x; y; z ðÞ; vt ; x; y; z ðÞ; wt ; x; y; z ðÞ ðÞ and i; j 5 1; 2; 3

where1; 2; 3denotesthe x; y; z componentsofvelocityanddifferentiationwith respectto x; y; z.

Since, dij 5 1 2 Vj ;i 1 Vi;j

dij 5

:

Þ And ω ij 5 eijk ω k 5 1 2 vj ;i vi;j

ω ij 5 eijk

TheKroneckerdeltaisdefinedas

Andthealternatingpseudotensorisdefinedas

eijk 5

8 < :

1 ; if i; j ; k isacyclicpermutationof1; 2; 3

1 ; if i; j ; k isananticyclicpermutationof1; 2; 3 0 ; ifanytwoof i; j ; k areequal

Thestresstensormatrixcanbegivenby:

Eq.(2.18) istransformedtogivetheshearcomponent

Bysettingthevaluesfrom Eqs.(2.20) and (2.23) in Eq.(2.25),theshearstress componentsareasfollows:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.