Methods of fundamental solutions in solid mechanics hui wang - Download the ebook now to never miss

Page 1


https://ebookmass.com/product/methods-of-fundamentalsolutions-in-solid-mechanics-hui-wang/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Mechanics of materials in modern manufacturing methods and processing techniques Silberschmidt

https://ebookmass.com/product/mechanics-of-materials-in-modernmanufacturing-methods-and-processing-techniques-silberschmidt/

ebookmass.com

Data-driven Solutions to Transportation Problems Yinhai

Wang

https://ebookmass.com/product/data-driven-solutions-to-transportationproblems-yinhai-wang/

ebookmass.com

Solid State NMR: Principles, Methods, and Applications

Klaus Müller

https://ebookmass.com/product/solid-state-nmr-principles-methods-andapplications-klaus-muller/

ebookmass.com

The House of Sciences: The First Modern University in the Muslim World Ekmeleddin Ihsanoglu

https://ebookmass.com/product/the-house-of-sciences-the-first-modernuniversity-in-the-muslim-world-ekmeleddin-ihsanoglu/

ebookmass.com

(eTextbook PDF) for Philosophy Here and Now: Powerful Ideas in Everyday Life 3rd Edition by Lewis Vaughn

https://ebookmass.com/product/etextbook-pdf-for-philosophy-here-andnow-powerful-ideas-in-everyday-life-3rd-edition-by-lewis-vaughn/

ebookmass.com

Mathematics with Applications In the Management, Natural, and Social Sciences 11th Edition – Ebook PDF Version

https://ebookmass.com/product/mathematics-with-applications-in-themanagement-natural-and-social-sciences-11th-edition-ebook-pdf-version/

ebookmass.com

Men of Rocky Mountain: The Complete Collection Alexis Winter

https://ebookmass.com/product/men-of-rocky-mountain-the-completecollection-alexis-winter/

ebookmass.com

The Game Changer: A San Francisco Rockets Baseball Novel (Hot Streak Series Book 1) Aurora Paige

https://ebookmass.com/product/the-game-changer-a-san-franciscorockets-baseball-novel-hot-streak-series-book-1-aurora-paige-2/

ebookmass.com

(eBook PDF) Human Resource Management: People, Data, and Analytics 1st Edition

https://ebookmass.com/product/ebook-pdf-human-resource-managementpeople-data-and-analytics-1st-edition/

ebookmass.com

The Regulator 01 Ethan J. Wolfe

https://ebookmass.com/product/the-regulator-01-ethan-j-wolfe/

ebookmass.com

Methodsof FundamentalSolutions inSolidMechanics

HuiWang

Qing-HuaQin

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2019HigherEducationPress.PublishedbyElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhow toseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesand ourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-818283-3

ForinformationonallElsevierpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: GlynJones

EditorialProjectManager: NaomiRobertson

ProductionProjectManager: SruthiSatheesh

CoverDesigner: MarkRogers

TypesetbyTNQTechnologies

Toourparentsandfamilies.

Abouttheauthors

Dr.HuiWang wasborninMengjinCounty,Chinain1976.Hereceivedhis bachelor’sdegreeinTheoreticalandAppliedMechanicsfromLanzhou University,China,in1999.SubsequentlyhejoinedtheCollegeofScienceas anassistantlectureratZhongyuanUniversityofTechnology(ZYUT)and spent2yearsteachingatZYUT.Heearnedhismaster’sdegreefromDalian UniversityofTechnologyin2004anddoctoraldegreefromTianjinUniversity in2007,bothofwhichareinSolidMechanics.Since2007,hehasworkedat CollegeofCivilEngineeringandArchitecture,HenanUniversityofTechnology,asalecturer.HewaspromotedtoAssociateProfessorin2009and Professorin2015.FromAugust2014toAugust2015,heworkedatthe AustralianNationalUniversity(ANU)asavisitingscholar,andthenfrom February2016toFebruary2017,hejoinedtheANUasaResearchFellow. Hisresearchinterestsincludecomputationalmechanics,meshless methods,hybridfiniteelementmethods,andthemechanicsofcomposites. Sofar,hehasauthoredthreeacademicbooksbyCRCPressandTsinghua UniversityPress,respectively,7bookchapters,and62academicjournal papers(47indexedbySCIand8indexedbyEI).In2010,Hewasawarded theAustraliaEndeavorAward.

Dr.Qing-HuaQin wasborninYongfuCounty,Chinain1958.He receivedhisBachelorofEngineeringdegreeinmechanicalengineeringfrom ChangAnUniversity,China,in1982,earninghisMasterofSciencedegreein 1984anddoctoraldegreein1990fromHuazhongUniversityofScienceand Technology(HUST)inChina.Bothdegreesareinappliedmechanics.He joinedtheDepartmentofMechanicsasanassociatelectureratHUSTin1984 andwaspromotedtolecturerinmechanicsin1987duringhisPh.D.candidatureperiod.Afterspending10yearslecturingatHUST,hewasawarded theDAAD/K.C.Wongresearchfellowshipin1994,whichenabledhimto workattheUniversityofStuttgartinGermanyfor9months.In1995heleft HUSTtotakeupapostdoctoralresearchfellowshipatTsinghuaUniversity, China,whereheworkeduntil1997.HewasawardedaQueenElizabethII fellowshipin1997andaProfessorialfellowshipin2002attheUniversityof Sydney(wherehestayedthereuntilDecember2003),bothbytheAustralian ResearchCouncil,andheiscurrentlyworkingasaprofessorintheResearch

xii Abouttheauthors

SchoolofElectrical,EnergyandMaterialsEngineeringattheAustralian NationalUniversity,Australia.HewasappointedaguestprofessoratHUSTin 2000.Hehaspublishedmorethan300journalpapersand7booksinthefield ofappliedmechanics.

Preface

Sincethebasicconceptbehindthemethodoffundamentalsolutions(MFS) wasdevelopedprimarilybyV.D.KupradzeandM.A.Alexidzein1964,the meshlessMFShasbecomeaneffectivetoolforthesolutionofalargevarietyof physicalandengineeringproblems,suchaspotentialproblems,elasticproblems, crackproblems,fluidproblems,piezoelectricproblems,antiplaneproblems, inverseproblems,andfree-boundaryproblems.Morerecently,ithasbeen extendedtodealwithinhomogeneouspartialdifferentialequations,partial differentialequationswithvariablecoefficients,andtime-dependentproblems, byintroducingradialbasisfunctioninterpolation(RBF)forparticularsolutions causedbyinhomogeneousterms.

ThegreatadvantageoftheMFSoverothernumericalmethodsisthatit caneasilybeimplementedforphysicalandengineeringproblemsintwo-or three-dimensionalregularandirregulardomains.Thismeansthatitcanbe programmedwithsimplecodesbyusersandnoadditionalprofessionalskillsare required.Clearly,therearestillsomelimitationsintherangeofimplementation oftheMFS,aspointedoutinChapter1ofthisbook.However,theMFShas sufficientlyshownitssuccessasanexecutablenumericaltechniqueinasimple formviavariousengineeringapplications.Hence,itiswarrantedtopresentsome oftherecentsignificantdevelopmentsintheMFSforthefurtherunderstanding ofthephysicalandmathematicalcharacteristicsoftheproceduresofMFSwhich isthemainobjectiveofthisbook.

Thisbookcoversthefundamentalsofcontinuummechanics,thebasicconceptsoftheMFS,anditsmethodologiesandextensiveapplicationstovarious engineeringinhomogeneousproblems.Thisbookconsistsofeightchapters.In Chapter1,currentmeshlessmethodsarereviewed,andtheadvantagesanddisadvantagesofMFSarestressed.InChapter2,thebasicknowledgeinvolvedinthis bookisprovidedtogiveacompletedescription.InChapter3,thebasicconcepts offundamentalsolutionsandRBFarepresented.StartingfromChapter4,some engineeringproblemsincludingEuler Bernoullibeambending,thinplate bending,planeelasticity,piezoelectricity,andheatconductionaresolvedinturn bycombiningtheMFSandtheRBFinterpolation.

HuiWang Qing-HuaQin

Acknowledgments

Themotivationthatledtothedevelopmentofthisbookbasedonourextensive researchsince2001,inthecontextofthemethodoffundamentalsolutions (MFS).Someoftheresearchresultspresentedinthisbookwereobtainedbythe authorsattheDepartmentofEngineeringMechanicsofHenanUniversity ofTechnology,theResearchSchoolofEngineeringoftheAustralianNational University,theDepartmentofMechanicsofTianjinUniversity,andthe DepartmentofMechanicsofDalianUniversityofTechnology.Thus,support fromtheseuniversitiesisgratefullyacknowledged.

Additionally,manypeoplehavebeenmostgenerousintheirsupportofthis writingeffort.WewouldlikeespeciallytothankProfessorXingpeiLiangof HenanUniversityofTechnologyforhismeaningfuldiscussions.Specialthanks gotoSeniorEditorsJianboLiuandChaoWang,SeniorCopyrightManager XueyingZouofHigherEducationPressaswellasGlynJones,Naomi RobertsonandSruthiSatheeshofElsevierInc.fortheircommitmenttothe publicationofthisbook.Finally,weareverygratefultothereviewerswhomade suggestionsandcommentsforimprovingthequalityofthebook.

Listofabbreviations

AEM Analogequationmethod

BEM Boundaryelementmethod

BVP Boundaryvalueproblem

DOF Degreesoffreedom

FE Finiteelement

FEM Finiteelementmethod

FGM Functionallygradedmaterials

FS Fundamentalsolution

MFS Methodoffundamentalsolutions

MQ Multiquadric

PDE Partialdifferentialequation

PS Powerspline

PZT Leadzirconatetitanate

RBF Radialbasisfunction

TPS Thinplatespline

Chapter1

Overviewofmeshlessmethods

Chapteroutline

1.1Whyweneedmeshlessmethods 3

1.2Reviewofmeshlessmethods 6

1.3Basicideasofthemethodof fundamentalsolutions 8

1.3.1Weightedresidualmethod 8

1.3.2Methodoffundamental solutions 10

1.4ApplicationtothetwodimensionalLaplaceproblem 13

1.4.1Problemdescription 13

1.4.2MFSformulation 14

1.4.3Programstructureand sourcecode 18

1.4.3.1Inputdata 19

1.4.3.2Computationof coefficientmatrix 19

1.4.3.3Solvingthe resultingsystemof linearequations 19

1.4.3.4Sourcecode 20

1.4.4Numericalexperiments 24

1.4.4.1Circulardisk 24

1.4.4.2Interiorregion surroundedbya complexcurve 29

1.4.4.3Biased hollowcircle 33

1.5Somelimitationsfor implementingthemethodof fundamentalsolutions 34

1.5.1Dependenceof fundamentalsolutions 37

1.5.2Locationofsourcepoints 37

1.5.3Ill-conditioningtreatments 39

1.5.3.1Tikhonovregularizationmethod 39

1.5.3.2Singularvalue decomposition 39

1.5.4Inhomogeneousproblems 41

1.5.5Multipledomainproblems 41 1.6Extendedmethodoffundamental solutions 43 1.7Outlineofthebook

1.1Whyweneedmeshlessmethods

Initialand/orboundary valueproblemssuchasheattransfer,wavepropagation,elasticity,fluidflow,piezoelectricity,andelectromagneticscanbefound inalmosteveryfieldofscienceandengineeringapplicationsandaregenerally modeledbypartialdifferentialequations(PDEs)withprescribedboundary conditionsand/orinitialconditionsinagivendomain.ThusPDEsare fundamentaltothemodelingofphysicalproblems.Consequently,clear understandingofthephysicalmeaningofsolutionsoftheseequationshas becomeveryimportanttoengineersandmathematicians,sothatthesolutions

canbeusedtoexplainnaturalphenomenaortodesignanddevelopnew structuresandmaterials.

Tothisend,theoreticalandexperimentalmethodswerefirstdeveloped. However,PDEsusuallyinvolvehigher-orderpartialdifferentialstospatialor timevariables,buttheoreticalanalysisisoperableonlyforproblemswithsimple expressionsofPDEs,simpledomainshapes,andsimpleboundaryconditions. Mostengineeringproblemscannotbesolvedanalytically.Besides,dueto limitationstoexperimentalconditions,mostengineeringproblemscannotbe testedexperimentally,andeveniftheproblemcanbetested,theprocessistimeconsumingandexpensive;moreover,notalloftherelevantinformationcanbe measuredexperimentally.Hence,waystofindgoodapproximatesolutionsusing numericalmethodsshouldbeveryinterestingandhelpful.

Currently,solutionsofordinary/boundaryvalueproblemscanbecomputed directlyoriterativelyusingnumericalmethods,suchasthefiniteelement method(FEM) [1 3],thehybridfiniteelementmethod(HFEM) [4 8],the boundaryelementmethod(BEM) [9 12],thefinitedifference/volumemethod (FDM/FVM) [2,13],andthemeshlessmethod [14,15],etc.

Amongthesemethods,conventionalelement-dependentmethodssuchas theFEM,theHFEM,theBEM,andtheFVMrequiredomainorboundary elementpartitiontomodelcomplexmultiphysicsproblems.Forexample,in theclassicFEM,whichwasoriginallydevelopedbyRichardCourantin1943 forstructuraltorsionanalysis [16],acontinuumwithacomplexboundary shapecangeometricallybedividedintoafinitenumberofelements,generally termedfiniteelements.Theseindividualfiniteelementsareconnectedthrough nodestoformatopologicalmesh.Ineachindividualelement,theproper interpolatingfunctionischosentoapproximatetherealdistributionofthe physicalfield.Thenallelementsareintegratedintoaweak-formintegral functionaltoproducethesolvingsystemofequations,sothatthenodalfieldas theprimaryvariableinthefinalsolvingsystemcanbefullydetermined.Dueto suchfeaturesasversatilityofmeshingforcomplexgeometryandflexibilityof solvingstrategyforcomplexproblems,theFEMhasbecomeoneofthemost robustandwell-developedproceduresforboundary/ordinaryvalueproblems, andithasbeensuccessfullyappliedinmanyengineeringapplications [1]

Thereare,however,someinherentlimitationsforuseoftheFEM.Firstly, meshgenerationisusuallytime-consumingintheFEM,andonemustspend muchtimeandeffortforcomplexdatamanagementandtreatment.Secondly, meshgenerationinvolvescomplexalgorithms,andthisisnotalwayspossible forproblemswithcomplexdomains,especiallythree-dimensionalgeometricallycomplexdomains.Insomecases,usersmustmakepartitionstocreate relativelyregularsubdomainsforapplyingmeshgeneration.Thirdly,asa displacement-basednumericalmethod,theFEMcanrelativelyaccurately predictdisplacement,ratherthanstressthatinvolveshigher-orderderivatives ofdisplacementtospatialvariables.Moreover,stressesobtainedintheFEM areoftendiscontinuousacrossthecommoninterfaceofadjacentelements,

becauseoftheelement-wisecontinuousnatureofthedisplacementfield assumedintheFEMformulation.Specialsmoothedtreatmenttechniquesare requiredinthepostprocessingstagetorecoverstresses.Fourthly,numerical accuracyintheFEMissignificantlydependentonmeshdensity,soa remeshingoperationisusuallyrequiredtoachieveadesiredaccuracy.Multiplemeshingtrialsmaybeneededforthatpurpose.Moreimportantly,for largedeformationproblems,adaptivemeshisrequiredtoavoidelement distortionduringdeformation.Theremeshingprocessateachstepoftenleads toadditionalcomputationaltimeaswellasdegradationofaccuracyinthe solution.Finally,itisdifficultfortheFEMtoeffectivelysimulatecrack growthandmaterialfracturebecausethecontinuouselementsintheFEM cannoteasilymodeldiscontinuousfields.AlltheselimitationscanbeattributedtotheuseofelementsormeshintheFEMformulation.

AsanalternativetotheFEM,theelement-dependentBEMattemptstofind numericalsolutionsofboundaryintegralequationsbyincorporatingelement discretizationoverthedomainboundary [2,10,17,18].IntheBEM,the boundaryintegralequationmayberegardedasanexactsolutionofthegoverningpartialdifferentialequationoftheproblem,towhichthefundamental solutionshouldbeexplicitlyavailable,anditcanbederivedbyintroducing thephysicaldefinitionoffundamentalsolutiontoincludeboundaryvaluesin therepresentationformula.SuchdistinguishingfeaturesgivetheBEMthe followingadvantagesovertheFEM:(1)Onlytheboundaryofthedomain needstobediscretized;asaresult,verysimpledatainputandstorageare involved.(2)Thesolutionintheinteriorofthedomainisapproximatedwitha ratherhighconvergencerateandaccuracy.(3)Exteriorproblemswith unboundeddomainsaremoreproperlysolvedbytheBEM,becausetheremote conditioncanbeexactlysatisfied.However,theBEMalsoexperiencessome difficulties.Forexample,theBEMisgreatlydependentofthefundamental solutionofthepartialdifferentialequation.So,problemswithinhomogeneities ornonlineardifferentialequationsareingeneralnoteasilyhandledbypure BEM.Additionally,theBEMrequiresmoremathematicalfoundation, comparedtotheFEM,toobtaintheboundaryintegralequationandevaluate boundaryintegrals,becausethekernelsinboundaryintegralsareingeneral singular.AllthesedisadvantageslimitBEMapplications,sosometimes couplingofothermethodsmustbeimplemented [19]

Incontrast,meshlessmethodsbasedonboundaryand/orinteriorcollocationsinadomaincanremovelimitationssuchasintheFEMandBEM, significantlyreducingtheeffortofmodeldiscretizationpreparation.To illustratethis, Fig.1.1 displaysdomaindiscretizationbyelementsandcollocationsintheconventionalFEMandthemeshlessmethod.Ingeneral,theterm “meshlessmethod”referstotheclassofnumericaltechniquesthatdonot requireanypredefinedmeshinformationfordomaindiscretization,relying simplyoneitherglobalorlocalizedinterpolationonnonorderedspatial pointsscatteredwithintheproblemdomainaswellasonitsboundaries.

Thesescatteredpointsarenotgeometricallyconnectedtoformamesh.Thus meshlessmethodspresentgreatpotentialforengineeringapplications.

1.2Reviewofmeshlessmethods

MeshlessmethodsareusedtosolvePDEinstrongorweakformbyarbitrarily distributedcollocationsinthesolutiondomain,andthesepointscontributeto theapproximationbyassumedglobalorlocalbasisfunctions.

AsintheclassificationofFEMandBEM,meshlessmethodsmayalsobe dividedintotwocategories:domain-typemeshlessmethodsandboundary-type meshlessmethods.Domain-typemeshlessmethods,asthenameimplies, employarbitrarilydistributedinteriorandboundarycollocationstorepresentthe problemdomainanditsboundary.Thenthefieldvariable(e.g.,displacement, temperature,pressure)atanyfieldpointwithintheproblemdomainisinterpolatedusingfunctionvaluesatalocalorglobalsetofnodesaroundthefield point.Subsequently,aweak-formintegralequationsuchastheGalerkinintegral equationorastrong-formcollocationequationisintroducedtoincludethe assumedfieldvariablesinproducingasystemofequationsassociatedwiththe variables.Strong-formdomain-typemeshlessmethods,includesmoothed particlehydrodynamics(SPH) [20],thefinitepointmethod(FPM) [21], thepointcollocationmethod(PCM) [22],theKansacollocationmethod [23], andtheleast-squarescollocationmeshlessmethod [24],etc.Weak-formdomaintypemeshlessmethodsincludethediffuseelementmethod(DEM) [25],

FIGURE1.1 FEMandmeshlessdiscretizationina2Ddomain.

theelement-freeGalerkinmethod(EFGM) [26],thereproducingkernelparticle method(RKPM) [27],partitionofunityfiniteelementmethods(PUFEM) [28], theHp-meshlesscloudsmethod [29],themeshlesslocalPetrov-Galerkinmethod (MLPG) [30],andthepointinterpolationmethod(PIM) [31],etc.Incontrastto thestrong-frommeshlessmethods,themeshlessmethodsbasedontheweak formaremorerobustandsteady.However,thelattergenerallyinvolvemore complexformulations.

Unlikedomain-typemeshlessmethods,boundary-typemeshlessmethods requireonlyboundarycollocationinthecomputation.Inthatcase,the T-completefunctionbasis [5,6] orthefundamentalsolutionbasis [10] is typicallyemployedtoapproximatethefieldvariable,soitcanexactlysatisfy thegoverningequationsoftheproblem.Forexample,Zhangetal.presented thesolutionprocedureofthehybridboundarynodemethod(BNM) [32] that combinesthemodifiedvariationalfunctionalandthemovingleast-square (MLS)approximationbasedonlyonagroupofarbitrarilydistributed boundarynodes.Thismethodisaweak-formmethodandonlyinvolves integrationcomputationovertheboundary.However,MLSinterpolationslack thedeltafunctionproperty,soitisdifficulttosatisfytheboundaryconditions accuratelyintheBNM.InanimprovementovertheBNM,theboundarypoint interpolationmethod(BPIM) [33] employsshapefunctionshavingthe Kroneckerdeltafunctionproperty,soboundaryconditionscanbeenforcedas easilyasintheconventionalBEM.

Besides,somepureboundarycollocationmethodsexist,includingthe methodoffundamentalsolutions(MFS) [14,34],boundaryparticlemethod (BPM) [35,36],andTrefftzboundarycollocationmethod(TBCM) [37,38]. Amongthese,theMFSisthemostpowerfulandpopular,whenfundamental solutionsofaproblemareexplicitlydefined.Itwasinitiallyintroducedby KupradzeandAleksidzein1964 [39].Overthepast30years,MFShasbeen widelyusedforthenumericalapproximationofalargevarietyofphysical problems [34].ThegeneralconceptoftheMFSisthatthesolution(field variable)approximatedbyalinearcombinationoffundamentalsolutionswith respecttosourcepointslocatedoutsidethesolutiondomaincanexactlysatisfy thegoverningpartialdifferentialequationoftheproblem,soonlyboundary conditionsatboundarycollocationsneedtobesatisfied.TheMFSinheritsall theadvantagesoftheBEM [10];forexample,itdoesnotrequirediscretization overthedomain,unlikedomainmeshdiscretizationmethodssuchasthe FEM.Moreover,unliketheBEM,integrationsoverthedomainboundaryare avoided.Thesolutionintheinteriorofthedomainisevaluatedalsowithout anyadditionalintegrationequation.Furthermore,thederivativesofthesolutionarecalculateddirectlyfromtheMFSrepresentation.Moreimportantly, implementationoftheMFSisveryeasyanddirect,evenforproblemsin three-dimensionalandirregulardomains,andonlyalittledatapreparationis required.Besides,highnumericalaccuracyandfastconvergencehasbeen proven [40 42].Thus,itisemployedanddiscussedinthisbook.

1.3Basicideasofthemethodoffundamentalsolutions

ToillustratethebasicconceptoftheMFS,thefollowingtwo-dimensional homogeneouspartialdifferentialequationisconsidered:

where L isapartialdifferentialoperator, x ¼ (x, y)isanarbitrarypointina boundeddomain U 3 ℝ2 , ℝ2 denotestheEuclidean2-space,and u isthe unknownfieldvariable.Itisnotedthatinthebookwesometimeswrite x ¼ (x1, x2)ratherthan x ¼ (x, y)forthesakeofconvenience.

Foracompleteboundaryvalueproblem,theproperboundaryconditions shouldbecomplemented,forexample,

where G1 W G2 ¼ vU, G1 X G2 ¼ B, u and q aregivenfunctions,and n isthe unitnormaltotheboundary vU,asindicatedin Fig.1.2.

1.3.1Weightedresidualmethod

Theboundaryvalueproblem(BVP)describedinthegoverning Eq.(1.1) and theboundaryconditions (1.2) canbesolvedinanapproximatemanner,by whichthefieldvariable u isapproximatedinageneralformby

where fi(x)isthe ithbasisfunctionterm, ai istheunknowncoefficientforthe ithbasisfunctionterm,and m isthenumberofbasisfunctions.

FIGURE1.2 Schematicofboundaryvalueproblem.

Inpractice,theapproximationfunctiongivenin Eq.(1.3) cannotexactly satisfythegoverningequationandtheboundaryconditions,duetothetruncatedapproximation.Hence,substituting Eq.(1.3) into Eqs.(1.1)and(1.2),we usuallyhave

and

Ifthefollowingresidualfunctionscanbedefined,

then Eqs.(1.4)and(1.5) canberespectivelyrewrittenas

and

Theoretically,theproperapproximatefunctionshouldmaketheresiduals ateachpoint x insidethedomainorontheboundaryassmallaspossible. However,suchstrong-formsatisfactionisdifficulttoderive.Inthepractical operation,weusuallyforcetheresidualstozeroinanaveragedsenseby settingtheso-calledweightedintegralsoftheresidualstozero,i.e.,

where wi, vi,and si areasetofgivenweightfunctionscorrespondingtothe ith point,and i ¼ 1,2, ., n.

Intheweightedresidualmethod,theselectionofweightfunctionsdeterminesthetypeandperformanceofnumericalapproximations.Inthisbook, thecollocation-typemeshlessmethodisdiscussed.Inthecollocationmethod, asetofpointsthataredistributedinthedomainarechosenforapproximation, andwecantrytosatisfytheBVPatonlythesepoints,ratherthansatisfying

theBVPinanintegralform.Toobtainthecollocationsolution,weselectthe standardDiracdeltafunctionastheweightfunctionsin Eq.(1.10),i.e.,

where d(x, xi)istheDiracdeltafunctioncenteredatthepoint xi andhasthe followingproperties:

and

Thus,thecollocationmethodcanbederivedfromtheweightedresidual formulationbysubstituting Eq.(1.11) intoit:

whichresultsin

Eq.(1.15) showsthattheresidualsarezeroat n pointschoseninthe problemdomain.Specially,iftheapproximationcanexactlysatisfythegoverning Eq.(1.1),i.e.,theTrefftzapproximationandfundamentalsolution approximationtakenintoaccountinthisbook,thedomainresidual Rg should bezero.Inthatcase, Eq.(1.15) canbereducedto

whichmeansthatonlyboundarycollocationscanbechosentoforcethe boundaryresidualstozeroatthosecollocations.Thiscanberegardedasthe theoreticalbasisoftheMFSdescribednext.

1.3.2Methodoffundamentalsolutions

IntheapplicationoftheMFS,thesolutionofproblemsgovernedby Eqs.(1.1) and(1.2) isapproximatedasalinearcombinationoffundamentalsolutions:

ðxÞz X N j¼1 aj G ðx; xsj Þ¼ Ga; x ˛ U; xsj ;U (1.17) where N isthenumberofsourcepoints fxsj gN j¼1 locatedoutsidethedomain, G*(x, xsj)centeredat xsj isthefundamentalsolutionofthepartialdifferential Eq.(1.1) inthespatialcoordinate x ¼ (x, y) [43,44], aj isthecoefficientfor G*(x, xsj)thatisyettobedetermined,and G ¼½ G ðx; xs1 Þ G ðx; xsN Þ (1.18)

Obviously,theapproximation (1.17) exactlysatisfiesthepartialdifferential Eq.(1.1) duetothenonoverlappingofthesourcepoints xsj ( j ¼ 1,2, , N ) andthefieldpoint x.Therefore,theapproximation (1.17) justneedstosatisfy thespecifiedboundaryconditions (1.2).Todetermineallknowncoefficients in Eq.(1.17),wecollocatetheapproximatesolution (1.17) onafinitesetof boundarypoints{xb1, xb2, ., xbM}˛G,asshownin Fig.1.3. M isthetotal numberofboundarycollocations.If M1 and M2 representthenumberofcollocationsontheboundaries G1 and G2,respectively,and M ¼ M1 þ M2,wehave

where xbi and xbk arecollocationsontheboundarysegment G1 and G2, respectively.

Eq.(1.20) canberewritteninthefollowingmatrixform:

FIGURE1.3 CollocationsintheMFS.

Explicitly,thisleadstoan M N-dimensionalcollocationlinearsystemof equationsthatcangenerallybewrittenas

orinmatrixform

where H isthe M N-dimensionalcollocationmatrixwithelements Hij, a is the N 1vectorofunknowns,and b isthe M 1knownvector.

Toobtainauniquesolutionforthelinearsystemof Eq.(1.25),weusually require M N.If M ¼ N,thelinearsystemof Eq.(1.25) canbesolveddirectly usingtheGaussianeliminationtechniqueoraregularizationtechniquesuchas theTichonovregularizationorthetruncatedsingularvaluedecompositionif thematrix H isill-conditioned,whereasifM > Nwemustemploythelinear least-squaretechniquetoreplacetherectangular M N overdeterminedsystemof Eq.(1.25) withasquare N N determinedsystem.Forexample, minimizationoftheEuclideanerrornormof Eq.(1.25)

fromwhichweobtain

Eq.(1.28) canberewritteninmatrixformas

wherethesuperscript“T”denotesthetransposeofamatrix.

Solving Eq.(1.29) fortheunknowncoefficientvector a,weobtain

andthenthefieldvariableatarbitrarypoint x˛U canbeevaluatedby Eq.(1.17)

Oneoftheobviousadvantagesofsuchamethodisthefactthatthereisno needforanymeshgenerationatanyfunctionevaluation,andonlyboundary collocationsarerequired.Thismeansthatthecomputationiseconomicalin termsoftime.OtheradvantagesoftheMFSincludeitssimpleformulationand highprecisionthatcanbeillustratedbyitsapplicationtotwo-dimensional Laplaceproblems.

1.4Applicationtothetwo-dimensionalLaplaceproblem

ToillustratetheMFSsolutionprocedure,weconsideraLaplaceproblemgiven inatwo-dimensionalCartesiancoordinatedomain.Therelatedsourcecodeis providedtobetterunderstandtheMFSimplementation.

1.4.1Problemdescription

Weconsideraboundedsimplyormultiplyconnectedregion U intheplane xy Forthetwo-dimensionalLaplaceproblemdefinedinthedomain U,the governingpartialdifferentialequationrelatedtothepotentialfunction u canbe writtenas

where

representsthetwo-dimensionalLaplaceoperator,and x ¼ (x, y)isthearbitrary pointintheplane.

Moreover,thegoverning Eq.(1.31) shouldbecomplementedbythe followingboundaryconditionstoformawell-definedBVP: u ¼ f on G

q ¼

on G

where q ¼ vu/vn denotestheoutwardnormalderivativeof u ontheboundary vU,and f and g aregivenvaluesdefinedon G1 and G2,respectively.Here, vU ¼ G1 W G2 and G1 X G2 ¼ B.

TheMFSemploysthefundamentalsolutionofaproblemtoapproximate theunknownpotentialfield u.Therefore,thefundamentalsolutionofthe problemshouldbeexplicitlyformulated.Here,thefundamentalsolutiontothe two-dimensionalLaplaceoperatorin Eq.(1.31) canbegivenby

istheEuclideandistance, xs isasourcepointatwhichaunitsourceintensityis applied,and x isanarbitraryfieldpointinaninfinitetwo-dimensionaldomain.

Correspondingly,thefirst-orderderivativesof u*canbeobtainedas

Figs.1.4 1.6 plotthevariationsof u*anditsderivativesforthesource point xs ¼ (0,0),respectively,fromwhichitisobservedthatthefundamental solution u*anditsderivatives vu*/vx and vu*/vy showsingularityatthesource point.Fortunately,thesourcepointcannotoverlapwiththefieldpointinthe theoryofMFS,becauseitisarrangedoutsidethedomainofinterest.

1.4.2MFSformulation

Basedonthefundamentalsolutionoftheproblemgivenin Eq.(1.34),the followingschemefortheimplementationoftheMFScanbeobtained. Choosingthesetofsourcepoints fxsk gN k ¼1 outsidethecomputingdomain U,

FIGURE1.4

FIGURE1.5 Variationof vu*/vx forthetwo-dimensionalLaplaceoperatorat xs ¼ (0,0).

FIGURE1.6 Variationof vu*/vy forthetwo-dimensionalLaplaceoperatorat xs ¼ (0,0).

wecanconstructtheapproximationforthesolution u of Eqs.(1.31)and(1.33) asfollows: uðxÞ¼ X N k ¼1 ak u ðx; xsk Þ (1.37) orinmatrixform: u ¼ Ua (1.38) with

aT ¼½ a1 a2 . aN 1 N (1.40)

Further,thefirst-orderderivativesof u canbeapproximatedas qx ¼ vu vx ¼ X N k ¼1 ak vu ðx; xsk Þ vx ¼ vU vx a qy ¼ vu vy ¼ X N k ¼1

(1.41)

Then,theoutwardnormalderivativeof u on G2 canbeexpressedas

q ¼ vu vn ¼ qx nx þ qy ny ¼ X N k ¼1 ak vu ðx; xsk Þ vx nx þ vu ðx; xsk Þ vy ny

¼ X N k ¼1 ak q ðx; xsk Þ¼ Qa (1.42)

where nx and ny arecomponentsoftheoutwardnormalvector n,and q ðx; xsk Þ ¼ vu ðx; xsk Þ vx nx þ vu ðx; xsk Þ vy ny (1.43) Q ¼½ q ðx; xs1 Þ q ðx; xs2 Þ q ðx; xsN Þ 1 N (1.44)

Intheprecedingapproximations,thecoefficients fak gN k ¼1 canbedeterminedbythesatisfactionoftheseboundaryconditionsatcollocationpointson theboundary vU;thatis,ifwetake N collocations fxk gN k ¼1 on vU andthen imposethegivenboundaryconditions,wehave

uðxk Þ¼ X N k ¼1 ak u ðxk ; xsk Þ¼ f ðxk Þ; xk ˛ G1 ; k ¼ 1; 2; .; N1

qðxk Þ¼ X N k ¼1 ak q ðxk ; xsk Þ¼ gðxk Þ; xk ˛ G2 ; k ¼ 1; 2; .; N2 (1.45)

where N1 and N2 arethenumberofcollocationson G1 and G2,respectively, and N ] N1 þ N2 Eq.(1.45) canberewritteninmatrixnotationas (1.46)

or

(1.47) fromwhichtheapproximatingcoefficientscanbesolvedandthenthequantitiesatanypointinthedomaincanbeevaluatedby Eqs.(1.37)and(1.41) for furtherplottingoranalysis.

Theuniqueexistenceofapproximatesolutionsfor Eqs.(1.31)and(1.33) of theform (1.37) hasbeenestablishedtheoretically.However,thelocationsof sourcepoints fxsk gN k ¼1 outsidethecomputingdomaincannotbeexplicitly determined.Inpracticalcomputation,wecanusuallyemploythefollowing relationtogeneratethesourcepoint:

where xs, xb,and xc representthepositionsofsourcepoint,boundarypoint, andcenterpoint,respectively. g denotesthenondimensionalparameterusedto controlthedistancebetweenthesourcepointandtherealboundary.

Obviously, Eq.(1.48) canbeequallyrewrittenas

or

where l ¼ 1 þ g > 0isusuallycalledthesimilarityratiobetweenthevirtual boundarysourcepointslocatedandtherealphysicalboundary.

Eq.(1.50) meansthatthecoordinatesofthesourcepointgeneratedbythe relation (1.48) arescaledmagnificationorshrinkageofthecoordinatesofthe boundarycollocationpoint.Theoretically,forthecaseoftheinteriordomain (see Fig.1.7),thescalingfactor g > 0,whereasforthecaseoftheexterior domain(see Fig.1.8),theparameter g canbechosenintherange( 1,0).For boththeinteriorandexternaldomainproblems,itisfoundthatthecloserthe parameter g isto0,thecloserthevirtualboundaryconnectingthesource pointsistothephysicalboundary.However,fromthecomputationalpointof view,thenumericalaccuracymaydecreaseasthedistancebetweenthevirtual

FIGURE1.8 Illustrationofthelocationsofsourcepointsforexternaldomainproblems.

andphysicalboundariesbecomestoosmall,inwhichcasetheparameter g is closetozero,andtheproblembecomessingularduetothesingularityofthe fundamentalsolutions.Incontrast,asthedistanceofsourcepointsfromthe physicalboundaryincreases,theconditioningnumberofthecollocation matrixofthelinearsolvingsystemofequationsincreases,andtheround-off errorsinfloating-pointarithmeticmaybecomeaconcern.Typically,ifthe parameter g becomesverylarge,theentriesinthecollocationmatrixwillbe closetozero.Therefore,toachieveagoodbalancefortheconditioning numberandthenumericalerrorsgeneratedbytheMFSinpracticalcomputation,theparameter g isgenerallyselectedtobeintherangeof1.0 10.0for interiordomainproblemsand 0.3w 0.8forexternaldomainproblems [34,42,45,46].Inpractice,weusuallyemploy g ¼ 3fortheinteriorcaseand g ¼ 0.5fortheexteriorcase.

1.4.3Programstructureandsourcecode

BasedontheMFSformulationdescribedbefore,MATLABcodecanbe programmedforthenumericalanalysisoftwo-dimensionalLaplaceproblems. Themainsolutionproceduresoftheprogramincludethefollowing:

l Readinputdataandallocateproperarraysizes.

l For eachboundarycollocation do:

l Computecoefficients;

l Assembletoformcoefficientmatrix.

l Solvetheresultingmatrixequationfortheapproximatingcoefficients.

l Computeresultsattestpoints.

l Outputthepotentialanditsderivativesolutions.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.