Metal oxides for non-volatile memory: materials, technology and applications panagiotis dimitrakis -

Page 1


MetalOxidesforNon-volatileMemory:Materials, TechnologyandApplicationsPanagiotisDimitrakis

https://ebookmass.com/product/metal-oxides-for-non-volatilememory-materials-technology-and-applications-panagiotis-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Advances in Non-Volatile Memory and Storage Technology 2nd Edition Magyari-Kope

https://ebookmass.com/product/advances-in-non-volatile-memory-andstorage-technology-2nd-edition-magyari-kope/

ebookmass.com

Gallium Oxide: Technology, Devices and Applications (Metal Oxides) Stephen Pearton (Editor)

https://ebookmass.com/product/gallium-oxide-technology-devices-andapplications-metal-oxides-stephen-pearton-editor/

ebookmass.com

Metal Oxides for Optoelectronics and Optics-Based Medical Applications Suresh Sagadevan

https://ebookmass.com/product/metal-oxides-for-optoelectronics-andoptics-based-medical-applications-suresh-sagadevan/

ebookmass.com

Financial Reporting & Analysis 8th Edition Lawrence Revsine

https://ebookmass.com/product/financial-reporting-analysis-8thedition-lawrence-revsine/

ebookmass.com

Armadillos to Ziziphus: A Naturalist in the Texas Hill

Country David M. Hillis

https://ebookmass.com/product/armadillos-to-ziziphus-a-naturalist-inthe-texas-hill-country-david-m-hillis/

ebookmass.com

Reaching Net Zero: What It Takes to Solve the Global Climate Crisis 1st Edition William

https://ebookmass.com/product/reaching-net-zero-what-it-takes-tosolve-the-global-climate-crisis-1st-edition-william-d-fletcher/

ebookmass.com

The Excellent Mind: Intellectual Virtues for Everyday Life Nathan L. King

https://ebookmass.com/product/the-excellent-mind-intellectual-virtuesfor-everyday-life-nathan-l-king/

ebookmass.com

China, Taiwan, the UK and the CPTPP: Global Partnership or Regional Stand-off? Chun-Yi Lee

https://ebookmass.com/product/china-taiwan-the-uk-and-the-cptppglobal-partnership-or-regional-stand-off-chun-yi-lee/

ebookmass.com

Security Awareness For Dummies (For Dummies (Computer/Tech)) 1st Edition Winkler

https://ebookmass.com/product/security-awareness-for-dummies-fordummies-computer-tech-1st-edition-winkler/

ebookmass.com

Thinking Like a Physical Organic Chemist

https://ebookmass.com/product/thinking-like-a-physical-organicchemist-bachrach-s-m/

ebookmass.com

METALOXIDESFOR NON-VOLATILEMEMORY

ForthcomingTitles

• PalladiumOxidesMaterialProperties,SynthesisandProcessingMethods,andApplications, AlexanderM.Samoylov,VasilyN.Popov,9780128192238

• MetalOxidesforNon-volatileMemory,PanagiotisDimitrakis,IliaValov,StefanTappertzhofen, 9780128146293

• MetalOxideNanostructuredPhosphors,H.Nagabhushana,DarukaPrasad,S.C.Sharma, 9780128118528

• NanostructuredZincOxide,KamlendraAwasthi,9780128189009

• MultifunctionalPiezoelectricOxideNanostructures,Sang-JaeKim,NagamalleswaraRaoAlluri, YuvasreePurusothaman,9780128193327

• TransparentConductiveOxides,MirelaPetrutaSuchea,PetronelaPascariu,EmmanouelKoudoumas, 9780128206317

• Metaloxide-basednanofibersandtheirapplications,VincenzoEsposito,DeboraMarani, 9780128206294

• Metal-oxidesforBiomedicalandBiosensorApplications,KunalMondal,9780128230336

• MetalOxide-CarbonHybridMaterials,MuhammadAkram,RafaqatHussain,FaheemKButt, 9780128226940

• MetalOxide-basedheterostructures,NaveenKumar,BernabeMariSoucase,9780323852418

• MetalOxidesandRelatedSolidsforElectrocatalyticWaterSplitting,JunleiQi,9780323857352

• AdvancesinMetalOxidesandTheirCompositesforEmergingApplications,SagarDelekar, 9780323857055

• MetallicGlassesandTheirOxidation,XinyunWang,MaoZhang,9780323909976

• SolutionMethodsforMetalOxideNanostructures,RajaramS.Mane,VijaykumarJadhav,Abdullah M.Al-Enizi,9780128243534

• MetalOxideDefects,VijayKumar,SudiptaSom,VishalSharma,HendrikSwart,9780323855884

• RenewablePolymersandPolymer-MetalOxideComposites,SajjadHaider,AdnanHaider, 9780323851558

• MetalOxidesforOptoelectronicsandOptics-basedMedicalApplications,SureshSagadevan,Jiban Podder,FaruqMohammad,9780323858243

• GrapheneOxide-MetalOxideandOtherGrapheneOxide-BasedCompositesinPhotocatalysisand Electrocatalysis,JiaguoYu,LiuyangZhang,PanyongKuang,9780128245262

PublishedTitles

• MetalOxidesinNanocomposite-BasedElectrochemicalSensorsforToxicChemicals,Alagarsamy Pandikumar,PerumalRameshkumar,9780128207277

• MetalOxide-BasedNanostructuredElectrocatalystsforFuelCells,Electrolyzers,andMetal-Air Batteries,TekoNapporn,YaoviHolade,9780128184967

• TitaniumDioxide(TiO2)anditsapplications,LeonardoPalmisano,FrancescoParrino,9780128199602

• SolutionProcessedMetalOxideThinFilmsforElectronicApplications,ZhengCui,9780128149300

• MetalOxidePowderTechnologies,YarubAl-Douri,9780128175057

• ColloidalMetalOxideNanoparticles,SabuThomas,AnuTresaSunny,PrajithaV,9780128133576

• CeriumOxide,SalvatoreScire,LeonardoPalmisano,9780128156612

• TinOxideMaterials,MarceloOrnaghiOrlandi,9780128159248

• MetalOxideGlassNanocomposites,SanjibBhattacharya,9780128174586

• GasSensorsBasedonConductingMetalOxides,NicolaeBarsan,KlausSchierbaum,9780128112243

• MetalOxidesinEnergyTechnologies,YupingWu,9780128111673

• MetalOxideNanostructures,DanielaNunes,LidiaSantos,AnaPimentel,PedroBarquinha,Luis Pereira,ElviraFortunato,RodrigoMartins,9780128115121

• GalliumOxide,StephenPearton,FanRen,MichaelMastro,9780128145210

• MetalOxide-BasedPhotocatalysis,AdrianaZaleska-Medynska,9780128116340

• MetalOxidesinHeterogeneousCatalysis,JacquesC.Vedrine,9780128116319

• Magnetic,Ferroelectric,andMultiferroicMetalOxides,BiljanaStojanovic,9780128111802

• IronOxideNanoparticlesforBiomedicalApplications,SophieLaurent,MortezaMahmoudi, 9780081019252

• TheFutureofSemiconductorOxidesinNext-GenerationSolarCells,MonicaLira-Cantu, 9780128111659

• MetalOxide-BasedThinFilmStructures,NiniPryds,VincenzoEsposito,9780128111666

• MetalOxidesinSupercapacitors,DeepakDubal,PedroGomez-Romero,9780128111697

• TransitionMetalOxideThinFilm-BasedChromogenicsandDevices,PandurangAshrit, 9780081018996

METALOXIDES FOR NON-VOLATILE MEMORY

Materials,Technology andApplications

Editedby

PANAGIOTIS DIMITRAKIS

InstituteofNanoscienceandNanotechnology,NCSR“Demokritos”,Athens,Greece

ILIA VALOV

PeterGr € unbergInstitute7,J € ulichResearchCentre,J € ulich,Germany

STEFAN TAPPERTZHOFEN

ChairforMicro-andNanoelectronics,DepartmentofElectricalEngineeringandInformation Technology,TUDortmundUniversity,Dortmund,Germany

SeriesEditor

GHENADII KOROTCENKOV

DepartmentofPhysicsandEngineering,MoldovaStateUniversity,Chisinau, RepublicofMoldova

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission, furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbe foundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,or ideascontainedinthematerialherein.

ISBN:978-0-12-814629-3

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: KaylaDosSantos

EditorialProjectManager: RafaelGuilhermeTrombaco

ProductionProjectManager: StalinViswanathan

CoverDesigner: MilesHitchen

TypesetbySTRAIVE,India

Contributorsix

Serieseditorbiographyxiii

Prefacetotheseriesxv

1.Introductiontonon-volatilememory

StefanTappertzhofen

1.1Introductionandhistory1

1.2Flashnon-volatilememory4

1.3Novelconceptsfornon-volatilememories13 Acknowledgements26 References26

2.Resistiveswitchinginmetal-oxidememristivematerials anddevices

A.N.Mikhaylov,M.N.Koryazhkina,D.S.Korolev,A.I.Belov,E.V.Okulich, V.I.Okulich,I.N.Antonov,R.A.Shuisky,D.V.Guseinov,K.V.Sidorenko, M.E.Shenina,E.G.Gryaznov,S.V.Tikhov,D.O.Filatov,D.A.Pavlov, D.I.Tetelbaum,O.N.Gorshkov,andB.Spagnolo

2.1Mechanismsofresistiveswitchinginmetal-oxidememristivematerials anddevices33

2.2Localanalysisofresistiveswitchingofanionictype43

2.3Multiscalesimulationofresistiveswitchinginmetal-oxidememristive devices56

2.4Conclusions72 Acknowledgments73 References73

3.ChargetrappingNVMswithmetaloxidesinthememorystack KrishnaswamyRamkumar

3.1Introduction79

3.2Historyofchargetrapmemorydevices79

3.3SONOSmemorydevices80

3.4CTmemorycellreliability84

3.5Newmaterialsforchargetrapmemorystack—Metaloxides86 References106

4.Technologyandneuromorphicfunctionalityof magnetron-sputteredmemristivedevices

A.N.Mikhaylov,M.N.Koryazhkina,D.S.Korolev,A.I.Belov,E.V.Okulich, V.I.Okulich,I.N.Antonov,R.A.Shuisky,D.V.Guseinov,K.V.Sidorenko, M.E.Shenina,E.G.Gryaznov,S.V.Tikhov,D.O.Filatov,D.A.Pavlov, D.I.Tetelbaum,O.N.Gorshkov,A.V.Emelyanov,K.E.Nikiruy,V.V.Rylkov, V.A.Demin,andB.Spagnolo

4.1Featuresofmagnetronsputtering109

4.2Performancesandreproducibilityofmemristivedevices110

4.3Functionalityofmemristorsaselementsforneuromorphic systems119

4.4Conclusions128 Acknowledgments129 References129

5.Metalorganicchemicalvapordepositionofaluminumoxides: Aparadigmontheprocess-structure-propertiesrelationship ConstantinVahlasandBrigitteCaussat

5.1Introduction133

5.2ProcesskineticmodelingandsimulationoftheMOCVDofmetaloxides: ThecaseofAl2O3 films135

5.3Localcoordinationaffectsproperties:ThecaseofamorphousAl2O3 barriercoatings147

5.4Concludingremarks163 Acknowledgements164 References164

6.MOxmaterialsbyALDmethod

ElenaCianciandSabinaSpiga

6.1Introduction169

6.2ALDfundamentals170

6.3ALDofoxidesformemorydevices174

6.4Conclusions190 References190

7.Nano-compositeMOxmaterialsforNVMs

C.Bonafos,L.Khomenkhova,F.Gourbilleau,E.Talbot,A.Slaoui,M.Carrada, S.Schamm-Chardon,P.Dimitrakis,andP.Normand

7.1Introduction201

7.2Experimental205

7.3Conclusion237 Acknowledgments239 References239

8.MOxinferroelectricmemories

StefanSlesazeck,HalidMulaosmanovic,MichaelHoffmann,UweSchroeder, ThomasMikolajick,andBenjaminMax

8.1Introduction245

8.2Ferroelectricity—Amaterialproperty246

8.3Negativecapacitanceinferroelectrics248

8.4Ferroelectricityinhafniumoxide250

8.5Ferroelectricmemories264

8.6Summaryandfutureprospects273 References273

9.“Metaloxidesinmagneticmemories”:Currentstatusand futureperspectives

AndreasKaidatzis,GeorgiosGiannopoulos,andDimitrisNiarchos

9.1Introduction281

9.2Magneticrandomaccessmemory(MRAM)286

9.3MetaloxidesinMRAMs293

9.4Perspectives301 References302

10.CorrelatedtransitionmetaloxidesandchalcogenidesforMott memoriesandneuromorphicapplications

LaurentCario,JulienTranchant,BenoitCorraze,andEtienneJanod

10.1Introduction307

10.2MottinsulatorsandMotttransitions308

10.3ElectricMotttransitions321

10.4ElectricMotttransitionbydielectricbreakdown:Detailed mechanism324

10.5MicroelectronicapplicationsofMottinsulators:Toward Mottronics336 10.6Conclusion350 References351

11.Theeffectofexternalstimuliontheperformance ofmemristiveoxides

YangLi,DennisValbjørnChristensen,SimoneSanna,VincenzoEsposito, andNiniPryds

11.1Introduction362 11.2Electricalfield364 11.3Magneticfield369

11.4Thermochemicaltreatments371 11.5Strain373

11.6Radiation378 11.7Outlook386 References386

12.NonvolatileMOX RRAMassistedbygrapheneand2D materials

QiLiuandXiaolongZhao

12.1MOX RRAMwithgraphene-basedelectrodes400

12.2ModulatingionmigrationinMOX RRAMby2Dmaterials411

12.3MOX RRAMassistedbyadditional2Dintercalationlayer426

12.4Conclusion435 References437

13.Ubiquitousmemristorson-chipinmulti-levelmemory, in-memorycomputing,dataconverters,clockgeneration andsignaltransmission

IoannisVourkas,ManuelEscudero,GeorgiosCh.Sirakoulis,andAntonioRubio

13.1Introduction445

13.2Multi-levelmemoryandin-memoryarithmeticstructures447

13.3ADCandDACin-memorydataconverters451

13.4Memristor-basedclocksignalgenerators455

13.5Metastablememristivetransmissionlines457

13.6Conclusions460 Acknowledgment460 References460

14.NeuromorphicapplicationsusingMOX-basedmemristors

S.BrivioandE.Vianello

14.1Introductiononneuromorphiccomputing465

14.2RecapofMOX-basedmemristortechnology467

14.3Advancedmemristorfunctionalitiesusefulforneuromorphic applications474

14.4Overviewofneuromorphicconceptsandsystemprototypes484

14.5Conclusionsandoutlook496 References497 Index509

Contributors

I.N.Antonov LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

A.I.Belov LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

C.Bonafos CEMES-CNRS,UniversityofToulouse,CNRS,Toulouse,France

S.Brivio CNR—IMM,UnitofAgrateBrianza,AgrateBrianza,Italy

LaurentCario InstitutdesMateriauxJeanRouxel(IMN),Nantes,France

M.Carrada CEMES-CNRS,UniversityofToulouse,CNRS,Toulouse,France

BrigitteCaussat LGC-CNRS,Toulouse,France

GeorgiosCh.Sirakoulis DepartmentofElectricalandComputerEngineering, DemocritusUniversityofThrace,Xanthi,Greece

DennisValbjørnChristensen DepartmentofEnergyConversionandStorage, TechnicalUniversityofDenmark(DTU),Fysikvej,KongensLyngby,Denmark

ElenaCianci CNR-IMM,UnitofAgrateBrianza,AgrateBrianza(MB),Italy

BenoitCorraze InstitutdesMateriauxJeanRouxel(IMN),Nantes,France

V.A.Demin NationalResearchCenter“KurchatovInstitute”,Moscow,Russia

P.Dimitrakis NationalCenterforScientificResearch“Demokritos”,Instituteof NanoscienceandNanotechnology,Attiki,Greece

A.V.Emelyanov NationalResearchCenter“KurchatovInstitute”,Moscow, Russia

ManuelEscudero DepartmentofElectronicEngineering,UniversitatPolite ` cnica deCatalunya,Barcelona,Spain

VincenzoEsposito DepartmentofEnergyConversionandStorage,Technical UniversityofDenmark(DTU),Fysikvej,KongensLyngby,Denmark

D.O.Filatov LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

GeorgiosGiannopoulos InstituteofNanoscienceandNanotechnology,NCSR “Demokritos”,Athens,Greece;DepartmentofPhysicsandAstronomy, UniversityCollegeLondon,London,UnitedKingdom

O.N.Gorshkov LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

F.Gourbilleau CIMAPNormandieUniversity,ENSICAEN,UNICAEN,CEA, CNRS,Caen,France

E.G.Gryaznov LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

D.V.Guseinov LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

MichaelHoffmann NaMLabgGmbh,Dresden,Germany

EtienneJanod InstitutdesMateriauxJeanRouxel(IMN),Nantes,France

AndreasKaidatzis InstituteofNanoscienceandNanotechnology,NCSR “Demokritos”,Athens,Greece

L.Khomenkhova CIMAPNormandieUniversity,ENSICAEN,UNICAEN, CEA,CNRS,Caen,France;V.LashkaryovInstituteofSemiconductorPhysics ofNationalAcademyofSciencesofUkraine,UkraineandNationalUniversity “Kyiv-MohylaAcademy”,Kyiv,Ukraine

D.S.Korolev LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

M.N.Koryazhkina LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

YangLi DepartmentofEnergyConversionandStorage,TechnicalUniversityof Denmark(DTU),Fysikvej,KongensLyngby,Denmark

QiLiu FrontierInstituteofChipandSystem,FudanUniversity,Shanghai,China

BenjaminMax TUDresden,IHM,Dresden,Germany

A.N.Mikhaylov LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

ThomasMikolajick NaMLabgGmbh;TUDresden,IHM,Dresden,Germany

HalidMulaosmanovic NaMLabgGmbH,Dresden,Germany

DimitrisNiarchos InstituteofNanoscienceandNanotechnology,NCSR “Demokritos”,Athens,Greece

K.E.Nikiruy NationalResearchCenter“KurchatovInstitute”,Moscow,Russia

P.Normand NationalCenterforScientificResearch“Demokritos”,Instituteof NanoscienceandNanotechnology,Attiki,Greece

E.V.Okulich LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

V.I.Okulich LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

D.A.Pavlov LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

NiniPryds DepartmentofEnergyConversionandStorage,TechnicalUniversity ofDenmark(DTU),Fysikvej,KongensLyngby,Denmark

KrishnaswamyRamkumar InfineonTechnologies,SanJose,CA,UnitedStates

AntonioRubio DepartmentofElectronicEngineering,UniversitatPolite ` cnica deCatalunya,Barcelona,Spain

V.V.Rylkov NationalResearchCenter“KurchatovInstitute”,Moscow,Russia

SimoneSanna DepartmentofEnergyConversionandStorage,Technical UniversityofDenmark(DTU),Fysikvej,KongensLyngby,Denmark

S.Schamm-Chardon CEMES-CNRS,UniversityofToulouse,CNRS,Toulouse, France

UweSchroeder NaMLabgGmbH,Dresden,Germany

M.E.Shenina LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

R.A.Shuisky LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

K.V.Sidorenko LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

A.Slaoui ICube,CNRSandUniversityofStrasbourg,Strasbourg,France

StefanSlesazeck NaMLabgGmbH,Dresden,Germany

B.Spagnolo LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia;UniversityofPalermoandTheNationalInteruniversity ConsortiumforthePhysicalSciencesofMatter,Palermo,Italy

SabinaSpiga CNR-IMM,UnitofAgrateBrianza,AgrateBrianza(MB),Italy

E.Talbot NormandieUniv,UNIROUEN,INSARouen,CNRS,GroupedePhysiquedesMateriaux,Rouen,France

StefanTappertzhofen ChairforMicro-andNanoelectronics,Departmentof ElectricalEngineeringandInformationTechnology,TUDortmundUniversity, Dortmund,Germany

D.I.Tetelbaum LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

S.V.Tikhov LobachevskyStateUniversityofNizhnyNovgorod,Nizhny Novgorod,Russia

JulienTranchant InstitutdesMateriauxJeanRouxel(IMN),Nantes,France

ConstantinVahlas CIRIMAT-CNRS,Toulouse,France

E.Vianello CEA-LETI,UniversiteGrenobleAlpes,Grenoble,France

IoannisVourkas DepartmentofElectronicEngineering,UniversidadTecnica FedericoSantaMarı´a,Valparaı´so,Chile

XiaolongZhao SchoolofMicroelectronics,UniversityofScienceandTechnology ofChina,Hefei,China

Serieseditorbiography

GhenadiiKorotcenkov receivedhis PhDinphysicsandtechnologyofsemiconductormaterialsanddevicesin1976and hisDoctorofSciencedegree(Doc.Hab.) inphysicsofsemiconductorsanddielectricsin1990.Hehasmorethan45yearsof experienceasateacherandscientific researcher.Longatimehewasaleaderof gassensorgroupandthemanagerofvariousnationalandinternationalscientific andengineeringprojectscarriedoutinthe LaboratoryofMicro-andOptoelectronics, TechnicalUniversityofMoldova,Chisinau, Moldova.In2007–08hewasaninvited scientistatKoreaInstituteofEnergy Research(Daejeon).Afterthat,until2017,Dr.G.Korotcenkovwasa researchprofessorintheSchoolofMaterialsScienceandEngineeringat GwangjuInstituteofScienceandTechnology(GIST),Korea.Currently, G.KorotcenkovisachiefscientificresearcheratMoldovaStateUniversity, Chisinau,Moldova.Hispresentscientificinterestsstartingfrom1995 includematerialsciences,focusingonmetaloxidefilmdepositionand characterization,surfacescience,thermoelectricconversion,anddesign ofphysicalandchemicalsensors,includingthin-filmgassensors.

G.Korotcenkovistheauthororeditorof39booksandspecialissues, including11-volume ChemicalSensors seriespublishedbyMomentum Press;15-volume ChemicalSensors seriespublishedbyHarbinInstitute ofTechnologyPress,China;3-volume PorousSilicon:FromFormationto Application issuepublishedbyCRCPress;2volumes HandbookofGas SensorMaterials publishedbySpringer;and3-volume HandbookofHumidityMeasurements publishedbyCRCPress.Currently,heisthebookseries editorof MetalOxides publishedbyElsevier.

G.Korotcenkovistheauthorandcoauthorofmorethan650scientific publications,including31reviewpapers,38bookchapters,andmorethan 200peer-reviewedarticlespublishedinscientificjournals(h-factor ¼ 41 (WebofScience), h ¼ 42(Scopus),and h ¼ 56(Googlescholarcitation)). Heholds18patentstohiscredit.Hehaspresentedmorethan250reports inbothnationalandinternationalconferences,including17invitedtalks.

G.Korotcenkov,asacochairoramemberofprogram,scientificandsteeringcommittees,participatedintheorganizationofmorethan30internationalscientificconferences.Heisamemberofeditorialboardsinfive scientificinternationaljournals.Hisnameandactivitieshavebeenlisted bymanybiographicalpublicationsincluding Who’sWho.Hisresearch activitiesarehonoredbytheHonoraryDiplomaoftheGovernmentof theRepublicofMoldova(2020);AwardoftheAcademyofSciencesof Moldova(2019);AwardoftheSupremeCouncilofScienceandAdvanced TechnologyoftheRepublicofMoldova(2004);thePrizeofthePresidents oftheUkrainian,Belarus,andMoldovanAcademiesofSciences(2003); SeniorResearchExcellenceAwardofTechnicalUniversityofMoldova (2001,2003,2005);andtheNationalYouthPrizeoftheRepublicofMoldovainthefieldofscienceandtechnology(1980);amongothers.

G.KorotcenkovalsoreceivedafellowshipfromtheInternationalResearch ExchangeBoard(IREX,USA,1998),BrainKorea21Program(2008–12), andBrainPoolProgram(Korea,2015–17).

Prefacetotheseries

Synthesis,study,andapplicationofmetaloxidesarethemostrapidly progressingareasofscienceandtechnology.Metaloxidesareoneofthe mostubiquitouscompoundgroupsonEarthandareavailableinalarge varietyofchemicalcompositions,atomicstructures,andcrystalline shapes.Inaddition,theyareknowntopossessuniquefunctionalitiesthat areabsentorinferiorinothersolidmaterials.Inparticular,metaloxides representanassortedandappealingclassofmaterials,exhibitingafull spectrumofelectronicproperties—frominsulatingtosemiconducting, metallic,andsuperconducting.Moreover,almostalltheknowneffects, includingsuperconductivity,thermoelectriceffects,photoelectrical effects,luminescence,andmagnetism,canbeobservedinmetaloxides. Therefore,metaloxideshaveemergedasanimportantclassofmultifunctionalmaterialswitharichcollectionofproperties,whichhavegreat potentialfornumerousdeviceapplications.Availabilityofawidevariety ofmetaloxideswithdifferentelectrophysical,optical,andchemicalcharacteristics;theirhighthermalandtemporalstabilities;andtheirabilityto functioninharshenvironmentsmakethemhighlysuitablematerialsfor designingtransparentelectrodes,high-mobilitytransistors,gassensors, actuators,acousticaltransducers,photovoltaicandphotonicdevices, photocatalystsandheterogeneouscatalysts,solid-statecoolers,highfrequencyandmicromechanicaldevices,energyharvestingandstorage devices,andnonvolatilememories,amongmanyothersintheelectronics, energy,andhealthsectors.Inthesedevices,metaloxidescanbesuccessfullyusedassensingoractivelayers,substrates,electrodes,promoters, structuremodifiers,membranes,orfibers,i.e.,theycanbeusedasboth activeandpassivecomponents.

Amongotheradvantagesofmetaloxidesaretheirlowfabricationcost androbustnessinpracticalapplications.Furthermore,metaloxidescanbe preparedinvariousformssuchasceramics,thickfilms,andthinfilms.At thatforthinfilmdepositioncanbeuseddepositiontechniquesthatare compatiblewithstandardmicroelectronictechnology.Thisfactoris extremelyimportantforlarge-scaleproductionbecausethemicroelectronicapproachensureslowcostformassproduction,offersthepossibilityofmanufacturingdevicesonachip,andguaranteesgood reproducibility.Variousmetaloxidenanostructuresincludingnanowires, nanotubes,nanofibers,core–shellstructures,andhollownanostructures

canalsobesynthesized.Assuch,thefieldofmetaloxide-nanostructured morphologies(e.g.,nanowires,nanorods,andnanotubes)hasbecomeone ofthemostactiveresearchareaswithinthenanosciencecommunity.

Theabilitytobothcreateavarietyofmetaloxide-basedcompositesand synthesizevariousmulticomponentcompoundssignificantlyexpandsthe rangeofpropertiesthatmetaloxide-basedmaterialscanoffer,making thematrulyversatilemultifunctionalmaterialforwidespreaduse.As itisknown,smallchangesintheirchemicalcompositionandatomicstructureresultinaspectacularvariationinthepropertiesandbehaviorof metaloxides.Currentadvancesinsynthesizingandcharacterizingtechniquesrevealnumerousnewfunctionsofmetaloxides.

Takingintoaccounttheimportanceofmetaloxidesintheprogressof microelectronics,optoelectronics,photonics,energyconversion,sensors, andcatalysis,alargenumberofbooksdevotedtothisclassofmaterials havebeenpublished.However,oneshouldnotethatsomebooksfromthis listaretoogeneral,somearecollectionsofvariousoriginalworkswithout anygeneralizations,andyetotherswerepublishedmanyyearsago.However,duringthepastdecade,greatprogresshasbeenmadeinthesynthesisaswellasinthestructural,physical,andchemicalcharacterizationand applicationofmetaloxidesinvariousdevices,andalargenumberof papershavebeenpublishedonmetaloxides.Inaddition,tillnow,many importanttopicsrelatedtothestudyandapplicationofmetaloxideshave notbeendiscussed.Toremedythissituation,wedecidedtogeneralize andsystematizetheresultsofresearchinthisdirectionandtopublisha seriesofbooksdevotedtometaloxides.

Theproposedbookseries“MetalOxides”isthefirstofitskinddevoted exclusivelytometaloxides.Webelievethatcombiningbooksonmetal oxidesinaseriescouldhelpreaderssearchfortherequiredinformation onthesubject.Inparticular,wehopethatthebooksfromourseries,with itsclearspecializationbycontent,willprovideinterdisciplinarydiscussionforvariousoxidematerialswithawiderangeoftopics,frommaterial synthesisanddepositiontocharacterization,processing,andthento devicefabricationsandapplications.Thisbookserieswaspreparedby ateamofhighlyqualifiedexperts,whichguaranteesitshighquality.

Ihopethatourbookswillbeusefulandeasytonavigate.Ialsohope thatreaderswillconsiderthis“MetalOxides”bookseriesanencyclopedia ofmetaloxidesthatwillhelpthemunderstandthepresentstatusofmetal oxides,toestimatetheroleofmultifunctionalmetaloxidesinthedesignof advanceddevices,andthen,basedonobservedknowledge,toformulate newgoalsforfurtherresearch.

Thisbookseriesisintendedforscientistsandresearchers,workingor planningtoworkinthefieldofmaterialsrelatedtometaloxides,i.e., scientistsandresearcherswhoseactivitiesarerelatedtoelectronics,optoelectronics,energy,catalysis,sensors,electricalengineering,ceramics,

biomedicaldesigns,etc.Ibelievethatthebookserieswillalsobeinterestingforpracticingengineersorprojectmanagersinindustriesandnational laboratoriesinvolvedindesigningmetaloxide-baseddevices,helping themwiththeprocessandinselectingoptimalmetaloxideforspecific applications.Withmanyreferencestothevastresourceofrecentlypublishedliteratureonthesubject,thisbookserieswillserveasasignificant andinsightfulsourceofvaluableinformation,providingscientistsand engineerswithnewinsightsforunderstandingandimprovingexisting metaloxide-baseddevicesandfordesigningnewmetaloxide-based materialswithnewandunexpectedproperties.

Ibelievethatthebookserieswouldbeextremelyhelpfulforuniversity students,postdocs,andprofessors.Thestructureofthesebooksoffersa basisforcoursesinthefieldofmaterialsscience,chemicalengineering, electronics,electricalengineering,optoelectronics,energytechnologies, environmentalcontrol,andmanyothers.Graduatestudentswouldalso findthebookseriesextremelyusefulintheirresearchandunderstanding thesynthesisofmetaloxidesandthestudyandapplicationsofthese multifunctionalmaterialsinvariousdevices.Wearesurethateachof theseaudienceswillfindinformationusefulfortheiractivity.

Finally,Ithankallcontributingauthorsandbookeditorsinvolvedin thecreationofthesebooks.Iamthankfulthattheyagreedtoparticipate inthisprojectandfortheireffortsinthepreparationofthesebooks. Withouttheirparticipation,thisprojectwouldnothavebeenpossible. IalsoexpressmygratitudetoElsevierforgivingustheopportunityto publishthisseries.Iespeciallythankalltheteamsoftheeditorialoffice atElsevierfortheirpatienceduringthedevelopmentofthisprojectand forencouragingusduringthevariousstagesofpreparation.

Introductiontonon-volatile memory

StefanTappertzhofen

ChairforMicro-andNanoelectronics,DepartmentofElectricalEngineering andInformationTechnology,TUDortmundUniversity,Dortmund,Germany

1.1Introductionandhistory

Incomputersbasedonthe vonNeumann architecture,logicinformation isstoredinmemorycellsandseparatelyprocessedinlogicgates(Fig.1.1). Onecancategorizebetweenvolatileandnon-volatilememories(NVM).In volatilememories,informationiskeptaslongaspowerissupplied, whereasnon-volatilememoriescanstoreinformationwithoutbeingpowered.Thetypeofaccessisanotherwayformemoryclassification.Sequentialaccessinrotatingmagneticdisks,ormorehistorically,magnetictape memories,usuallyallowsforstoringinformationwithhighdensity,while randomaccessmemories(RAMs)typicallyallowforfastreadandwrite access.Whilethisbookfocussesonmetaloxidesfornon-volatile memories,themostimportantvolatileRAMs,namelystaticRAM (SRAM)anddynamicRAM(DRAM)arealsobrieflyintroduced [1]. Afterwards,anoverviewofFlashasthedominatingstate-of-the-art non-volatilememorytechnologyisgiven.Novelconceptsfornon-volatile memorieswithparticularfocusonthosebasedonmetaloxidesarefinally summarized.

TheadventoffirstintegratedcircuitsinbyJackKilby [2],RobertNoyce [3] andKurtLehovec [4] in1957–1959,respectively,andadvancesin microelectronicsinthebeginningofthe1960swerenotonlyimportant milestonesforearlyinformationtechnologybutalsopavedthewayto oneofthemostventuresomejourneysinhumanmankind:theraceto themoon.TheApolloGuidanceComputer [5] (AGC)consistedofa RAMwithnotmorethan4kBcapacityand74kBread-only-memory (ROM)space.Today’smobilephoneshaveaRAMcapacitythatismore

than10-milliontimeslargerthantheAGC-RAM.Bythattime,inthe1960s and1970s,non-volatilemagnetic-corememories [6] werethedominating RAMtechnologyandhadtobewiredbyhand.Disadvantagesof magnetic-corememoriesweretheirdestructiveandpower-inefficient read-accessandintegrationlimitations.Therefore,solid-statememory concepts,includingNb2O5-basedresistiveswitches [7],werestudiedin the1960sand1970.Nevertheless,theseearlydemonstrationsdidnot reachthestabilityandoperationperformanceofmagnetic-corememories, and—moreimportantly—forspace-flightsanddefence(asarguablythe mostimportantdrivingforcesforinnovation).Thebenefitofmagneticcorememorywastheirhighradiationtolerancecomparedtochargebasedsolid-statememories.

Whencomputerbecameaffordableasmass-marketconsumerproducts,charge-basedvolatilememoriesaswellasmagneticdisksandtape memoriesasnon-volatilememoriesbegantobedominating.Animportantmilestonewasthediscoveryofthemagnetoresistanceeffectswith largeresistanceresponsethatisnowusedinmagneticdiskmemories [8,9].Thegeneralmemory-organizationincomputersbasedon vonNeuman architecturesdidnotchangemuchinthelastfewdecades.Forfast read-andwrite-accessSRAM-cellsarearrangedascloseaspossibleto logicgatesinformofcache-memories.SRAMisfasterandmoreexpansive thandenseDRAM,whichisusedasmainmemory.Magneticdisksand tapesareusedformassstoragewithcapacitiesreachingsomeTBand moretoday.WiththeadventofFlashnon-volatilememories(NANDFlashwasinventedbyF.Masuoka [10]),charge-basedsolid-statememoriesarebecomingthedominatingmemorytechnologymass-storage. Whilemagneticdisksstillofferahighermemorydensity,Flashallows forrandomaccesswithshorteraccesstimes(especiallyforfragmented data)andultra-lowpowerconsumption [11,12] (<fJ/bit,withcircuitoverhead 100pJ/bit),whichmakesFlashattractiveformobileapplications, mobilephones,tabletsandlaptops.DuetotheadvancesofFlashtechnologyinthe1990sto2000s,researchonresistiveswitchesstepped outofsight.However,inthe2000sscalingofFlashwasconsideredto

FIG.1.1 VonNeumann architectureinwhichmemory-andlogic-operationareseparated.

TABLE1.1 Comparisonofstate-of-the-artmemorytechnologyfortoday’scomputer andtypicalperformancedataforresistiveswitches [11,18].

SRAMDRAMNAND-Flash Magnetic disks Resistive switches

Energy/bit(fJ)0.550.02–10109 1–103 [19] Read/write access(ns)

<ns [20] to 100ns [21]

Density(F2)1406–121–42/34

RetentionAslongas voltageis applied 60ms, refresh required YearsYearsYears

Endurance >1016 >1016 >104 >104 1012 [22]

Note,multilevelstorage,circuitoverheadanddatatransferisnotconsideredanditisdifficulttocompare betweendifferentdevicetechnologies. F isthefeaturesize,thatisthelength/distanceofthesmallest featurethatcanbepreparedwithagiventechnologynode.

becomeatechnicalproblemandrediscoveryandresearchonalternative technologies,includingresistiveswitching [13–15] andingeneral memristivedevices [16] aswellasmagneticmemories [17] started.

Anoverviewofstate-of-the-artmemorytechnologycomparedtometaloxideresistiveswitchesasoneexampleofanemergingmemorydeviceis listedin Table1.1.WhileSRAMandDRAMarefastbutvolatile,nonvolatileFlashisaboutfourtimesofmagnitudeintimeslower.ThedifferentaccesstimesofDRAMandFlashresultinalatency-gapthatlimitsthe performanceofmoderncomputersforapplicationswherehugeamounts ofdataareprocesses,includingsimulation,databases,deeplearningand artificialintelligence [23].Anewtypeofnon-volatilememories,so-called storageclassmemories(SCM) [24–26],hasbeensuggestedtofillthis latency-gap(Fig.1.2).SCMslikeIntel® Optane™ arealsoknownasData CenterPersistentMemoryModules(DCPMMs) [27–30].SCMscanstore relativelylargeamountofdatabufferedbetweenmainmemoryandmass storagememorieslikeFlashandmagneticdisks.Theymayallowfor relativelyfastaccessfordatabeingfrequencyreadandprogrammed. Severalrequirementsmustbefulfilledbyanon-volatilememory deviceforSCM-operation,inparti cular:theread/writeaccessmay befasterthan1 μs,ideallyasfastas100–300nsorbelow,andtheendurancemustbe108 cyclesormore [31] .Obviouslyfrom Table1.1,NANDFlashdoesnotfulfilltheserequirementsandevenNOR-Flash,whichis faster( μs)butmorepower-consuming( 100pJ/bit)isnotfast enough,andbothFlashtopologiesshowalowendurance.Incontrast, resistiveswitchesandmagneticRAMshavebeenconsideredaspotentialcandidatesforstorageclassmemorieswithaccess-timesintheorder

FIG.1.2 MemoryhierarchyincludingvolatileSRAMandDRAM,andnon-volatile storageclassmemoriesandNAND-Flash.

of 100nsormuchlower,highenduranceandrelativelylowpowerconsumption(comparedtoNOR-Flash).

1.1.1Outlineofthiswork

Fabricationmethodsandmaterialsformetal-oxidememoriesareintroducedinChapters4(magnetron-sputtering),5(chemicalvapordeposition),6(atomiclayerdeposition),7(nanocomposites),12(2D-materials). Importantphenomenathatareexploitedformemoryoperationarediscussedin Chapters2and11 (resistiveswitching),3(chargetrapping),8 (ferroelectricmemories),9(magnetoresistivememories),and10(Mottmemories).Anoverviewofimportantapplications,includingthose beyondtraditionalmemoryoperationisgivenin Chapters13 (logicapplications)and14(neuromorphics).Thefollowingsectionintroducesinto state-of-the-artFlashnon-volatilememoriesandlaternovelconceptsfor non-volatilememorieswithparticularfocusonmetal-oxidebased systemsarebrieflydiscussed.

1.2Flashnon-volatilememory

Flashistodaytheby-fardominatingnon-volatilerandomaccessmemorytechnology.Thecore-elementofFlashisthefloating-gatetransistor [32],whichisalsousedinerasableprogrammableread-onlymemory (EPROM)andelectricallyerasableprogrammableread-onlymemory (EEPROM).Theterm“read-onlymemory”maybeconfusinginthiscase. BothEPROMsandEEPROMscanbeelectricallyprogrammed.Incaseof EPROMs,ultra-violetlightisrequiredforerase,whileEEPROMscanbe electricallyerased.Atfirstglance,FlashissimilartoEEPROMoptimized

FIG.1.3 (A)Schematicofacross-sectionalviewofafloating-gatetransistorfabricatedin LOCOS-technology [33].(B)Transfercharacteristics(control-gatevoltage VCG vs.draincurrent ID)ofafloating-gatetransistorforaprogrammed(negativechargeonFG)anderased (FGuncharged)state.

forhigh-speedanddensity.Across-sectionalviewofafloating-gatetransistorisshownin Fig.1.3A.

Byapplyingappropriatevoltagesbetweenthecontrolgate(CG),bulk, sourceanddrain,electronsareinjectedfromthechannelintothefloating gate(FG).Thisprocessiscalledprogrammingorwrite-operation.AccumulationofchargeintheFGresultsinashiftofthetransfercharacteristics (Fig.1.3B).Whenasensevoltage VCG ¼ VCG,Sense isappliedtoCGarelativelyloworrelativelyhighdraincurrentisdetecteddependingonthe drain-source-voltage VDS andthechargeonthefloating-gate.Thatallows toencodeatleasttwodifferentlogicstates,0and1,respectively.

Inadditiontoa1-bit-storagecapacity,bycontrolofthechargeonthe FG,intermediatestatescanbeprogrammed,whichenablestoencode multiplebitinonefloating-gatetransistor(multilevelcell,MLC) [34]. State-of-the-artarenowadays4-bitFlashcells.Thatmeans,bykeeping thefootprint F2 ofamemorycellconstant(withthefeaturesize F)the information-densitycouldbeincreasedbyafactorof4usingMLCtechnology.A4-bitMLCencodes24 ¼ 16differentlogiclevels.Further increaseoftheinformationdensityissophisticatedduetonoisemargins andchargefluctuationsmustbealsoconsidered.Today,thesizeofFlash memorycellsresultsinaneffectivechargestoredonaFGintheorderof onlysome102–103 electrons [35].Thus,onlylimitedfreedomisavailable forfurtherintermediatelogiclevels.

1.2.1Programming-anderase-mechanism

ProgramminganderaseinFlashisachievedbyhot-carrierinjectionand Fowler-Nordheimtunneling(FN,alsoknownasfieldelectronemission) dependingonthetopology(NOR-vs.NAND-Flash).Simplifiedcrosssectionalband-diagramsforhot-electroninjectionandFowler-Nordheim tunnelingareshownin Fig.1.4AandB,respectively.Thetunneloxide

FIG.1.4 Programmingsequenceforfloating-gatetransistorsandcorrespondingenergy (W )diagrams:(A)hot-electroninjectionand(B)Fowler-Nordheimtunneling.CGandFG denotethecontrol-andfloating-gate,OXistheoxidebetweenCGandFG,TOXthetunnel oxide, p-Siis p-dopedsilicon,andthe n+-regionsarethe n-dopedsourceanddrainregionsof thetransistor,respectively. VD,VS, VB,and VGC arethedrain-,source-,bulk-andgate-control voltages,respectively.

(TOX)withthickness a (intheorderofsomenanometer)formsanenergy barrier(Wb 2 4eV)betweentheFGandchannel/substrate.Forhotelectroninjection,electronsinthechannelbetweensourceanddrain areacceleratedbyapplyingasufficientlyhighdrain-source-voltage VDS ¼ VD – VS.Thehot-carrierinjectioncurrentdensity J canbecalculated bythebarrier-dependentcurrentdensity J0 andinjectionprobability P:

Atrelativelyhighdraincurrents(ID 0.1mA)someelectronsgainenough kineticenergytoovercometheenergybarrier.Asufficientlyhigh CG-voltage VCG ¼ 6–12Vformsatrapezoidenergy-barrier(Fig.1.4A) andattractstheseelectrons,whicheventuallychargethefloating-gate. HigherCG-voltages(VCG 15 20V)leadtoatriangularshapeofthe energy-barrierandtheeffectivedistanceisshorterthanthebarrierthickness a (see Fig.1.4B).Now,electronshavearelativelyhigh probabilitytotunnelthroughtheenergybarrierintothefloating-gate byFowler-Nordheimtunneling.Note,incontrasttohot-electroninjection,

alargedrain-currentisnotneededforFowler-Nordheimtunneling.The FN-tunnelingcurrentdensity J reads:

Here, Vb isthevoltagedropbetweenthetransistor-channelandthe floating-gate,and m theeffectivemassofthechargecarriers. AtunnelingprocessbasedonFowler-Nordheimtunnelingcanbeidentifiedbyplottinglog J =V ðÞ¼ f Vp .IncomparisonforSchottky-emission onefindslog J ðÞ¼ fV 1 4 and J T2 .

Hot-electroninjectionallowsforrelativelyfastprogrammingofthe floating-gatetransistorwithinsometensof μsandbelow.However, hot-electroninjectionisanenergy /power-inefficientprogramming method(typ.100–1000pJ/bit)sinceahighdrain-currentisrequiredand theinjectionefficiencyisonlyabout1:105–1:106 (i.e.1outof η ¼ 105 to 106 electronsisinjectedintotheFG).For N ¼ 1000electronsthatwillbe storedontheFGandadrain-voltageof VD]6Vawriteenergyofapproximately1nJisrequired:

Wwrite ηeNV D 10 9 J(1.3)

Moreover,thisprocessonlyallowstobeusedforprogrammingand cannotbeusedtoerasethefloating-gate,sinceelectronsontheFGcannot gainsufficientlyhighkineticenergies.Incontrast,Fowler-Nordheim tunnelingcanbeusedbothforprogramminganderase.Theprocessis extremelyenergy-efficient( 10fJ/bitorevenless)butslowercompared tohot-electroninjection( 100 μsvs.10 μs).Bothprogrammingmethods resultinsignificanttunneloxidedegradationovertimewhichlimitsthe programming-endurancetosome104 to105 cycles.

1.2.2NOR-andNAND-Flash

TwotypesofFlash-topologiesaremainlyused:NOR-andNAND-flash. Fig.1.5 depictstheNOR-topology.Withregardtothehorizontal middle-electrodeline(i.e.theconnectionofalldrain-contacts)thecircuitry correspondstoaparallel(thusNOR-)connectionoffloating-gatecells. Eachfloating-gatecellcanbeindividuallyselectedforread-(Fig.1.5A) andwrite-(Fig.1.5B)operation.IncontrasttoEEPROMs,allcellsinan arrayareusuallyerasedsimultaneously(Fig.1.5B),hencethename

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Metal oxides for non-volatile memory: materials, technology and applications panagiotis dimitrakis - by Education Libraries - Issuu