Metal-organic frameworks for chemical reactions: from organic transformations to energy applications

Page 1


Metal-OrganicFrameworksforChemicalReactions: FromOrganicTransformationstoEnergy Applications1stEditionAnishKhan(Editor)

https://ebookmass.com/product/metal-organic-frameworks-forchemical-reactions-from-organic-transformations-to-energyapplications-1st-edition-anish-khan-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Metal-Organic Frameworks (MOFs) for Environmental Applications Sujit K. Ghosh

https://ebookmass.com/product/metal-organic-frameworks-mofs-forenvironmental-applications-sujit-k-ghosh/

ebookmass.com

Metal-Organic Frameworks with Heterogeneous Structures Ali Morsali

https://ebookmass.com/product/metal-organic-frameworks-withheterogeneous-structures-ali-morsali/

ebookmass.com

Metal-free synthetic organic dyes Kruger

https://ebookmass.com/product/metal-free-synthetic-organic-dyeskruger/

ebookmass.com

Eisenhower and American Public Opinion on China Mara Oliva

https://ebookmass.com/product/eisenhower-and-american-public-opinionon-china-mara-oliva/

ebookmass.com

Contemporary Retail Marketing in Emerging Economies: The Case of Ghana’s Supermarket Chains David Eshun Yawson

https://ebookmass.com/product/contemporary-retail-marketing-inemerging-economies-the-case-of-ghanas-supermarket-chains-david-eshunyawson/ ebookmass.com

Kierkegaard'u Nas■l Okumal■y■z? 1st Edition John Caputo

https://ebookmass.com/product/kierkegaardu-nasil-okumaliyiz-1stedition-john-caputo/

ebookmass.com

Jacob Schiff and the Art of Risk 1st ed. Edition Adam Gower

https://ebookmass.com/product/jacob-schiff-and-the-art-of-risk-1st-ededition-adam-gower/

ebookmass.com

The Oxford History of Life-Writing, Volume 2: Early Modern Alan Stewart

https://ebookmass.com/product/the-oxford-history-of-life-writingvolume-2-early-modern-alan-stewart/

ebookmass.com

Oxford Studies in Agency and Responsibility, Volume 5: Themes from the Philosophy of Gary Watson D. Justin Coates (Editor)

https://ebookmass.com/product/oxford-studies-in-agency-andresponsibility-volume-5-themes-from-the-philosophy-of-gary-watson-djustin-coates-editor/

ebookmass.com

Groups Process and Practice 10th Edition Marianne Schneider Corey

https://ebookmass.com/product/groups-process-and-practice-10thedition-marianne-schneider-corey/

ebookmass.com

Metal-OrganicFrameworksfor

ChemicalReactions

FromOrganicTransformationstoEnergyApplications

Metal-Organic Frameworksfor ChemicalReactions

FromOrganicTransformationstoEnergy Applications

Editedby

AnishKhan

CenterofExcellenceforAdvancedMaterialsResearch, KingAbdulazizUniversity,Jeddah,SaudiArabia

FrancisVerpoort

StateKeyLaboratoryofAdvancedTechnologyforMaterialsSynthesis andProcessing,WuhanUniversityofTechnology,Wuhan,China; GhentUniversity–GlobalCampus,Ywonsu-Gu,Incheon, RepublicofKorea

AbdullahM.Asiri

ChemistryDepartment,FacultyofScience,KingAbdulazizUniversity, Jeddah,SaudiArabia;CenterofExcellenceforAdvancedMaterials Research,KingAbdulazizUniversity,Jeddah,SaudiArabia

MdEnamulHoque

DepartmentofBiomedicalEngineeringattheMilitaryInstituteof ScienceandTechnology(MIST),Dhaka,Bangladesh

AnwarL.Bilgrami

DepartmentofEntomology,RutgersUniversity,NewJersey,United States;DeanshipofScientificResearch,KingAbdulazizUniversity, Jeddah,SaudiArabia

MohammadAzam

AssociateProfessorofChemistry,KingSaudUniversity,Riyadh,Saudi Arabia

K.ChandraBabuNaidu

GITAMSchoolofScience(GSS),GITAMDeemed-to-BeUniversity, Bangalore,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-822099-3

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: EmilyM.McCloskey

EditorialProjectManager: LenaSparks

ProductionProjectManager: DebasishGhosh

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

1.Metal-organicframeworksandtheircomposites

M.RameshandC.Deepa

2.Metal-organicframeworkforbatteriesand

M.Ramesh,N.KuppuswamyandS.Praveen

3.Titanium-basedmetal-organicframeworksfor

A.Ratnamala,G.DeepthiReddy,M.Noorjahaan,H.Manjunatha, S.Janardan,N.SureshKumar,K.ChandraBabuNaidu,AnishKhan andAbdullahM.Asiri 3.1Introduction

4.Electrochemicalaspectsofmetal-organicframeworks

H.Manjunatha,S.Janardan,A.Ratnamala,K.VenkataRatnam, L.VaikuntaRao,S.Ramesh,K.ChandraBabuNaidu, N.SureshKumar,AnishKhanandAbdullahM.Asiri

4.1Introduction

5.Permeablemetal-organicframeworksforfuel(gas) storageapplications

S.Janardan,PC.V.V.EswaraRao,H.Manjunatha,K.VenkataRatnam, A.Ratnamala,K.ChandraBabuNaidu,A.Sivarmakrishna, AnishKhanandAbdullahM.Asiri

5.1Introduction

5.3Permeablemetal-organicframeworksforH2

5.4Permeablemetal-organicframeworksforCH4

5.5Permeablemetal-organicframeworksforC2H2 storage applications

5.6Permeablemetal-organicframeworksforCO2

6.Excessivelyparamagneticmetalorganicframework nanocomposites

B.VenkataShivaReddy,N.SureshKumar,K.ChandraBabuNaidu, K.Srinivas,H.Manjunatha,A.Ratnamala,AnishKhanand AbdullahM.Asiri

6.1Introduction

7.Expandingenergyprospectsofmetal-organic frameworks

K.RamaKrishnaReddy,D.PrakashBabu,N.SureshKumar, G.RanjithKumar,K.ChandraBabuNaiduandAnishKhan

7.1Introduction

7.2Metal-organicframeworksinLi-ionbatteries

7.3Applicationsofmetal-organicframeworksaselectrode materialforlithium-ionbatteries

7.4Applicationsofhighconductivemetal-organicframeworks

7.5Utilizationofmetal-organicframeworksaselectric double-layercapacitors(supercapacitors)

7.6Utilizationoflithium oxygenasseparators

7.7Utilizationofsolid-stateelectrolytes

7.8Applicationsofelectrode electrolytealliances

7.9Fuelcellapplications

7.10Electrocatalyticapplications

7.11Conclusion

8.Metal-organicframework

PrasunBanerjee,AdolfoFrancoJr,K.ChandraBabuNaidu, AnishKhan,AbdullahM.AsiriandSrinivasanNatarajan

8.31D-metal-organicframework

8.42D-metal-organicframework

8.53D-metal-organicframework

9.Applicationsofmetal-organicframeworksin analyticalchemistry

RuthRodr´ıguez-Ramos,A ´ lvaroSantana-Mayor, B ´ arbaraSocasRodr´ıguez,AntonioV.Herrera-Herrera andMiguelA ´ ngelRodr´ıguezDelgado

9.1Introduction

9.2DesirablecharacteristicsofMOFsforanalyticalchemistry

9.3Recentapplications

10.Modifiedmetal-organicframeworksasphotocatalysts 231

WeiNiandAnishKhan

11.Thesensingapplicationsofmetal-organicframeworks andtheirbasicfeaturesaffectingthefateofdetection

TolgaZorlu,LucaGuerriniandRamonA.Alvarez-Puebla

12.Thermomechanicalandanticorrosioncharacteristics ofmetal-organicframeworks

MohammadRamezanzadehandBahramRamezanzadeh

13.Metal-organicframeworks:preparationand applicationinelectrocatalyticCO2

RajasekaranElakkiyaandGovindhanMaduraiveeran

14.Metal-organicframeworksasdiversechemical applications

ShahidPervezAnsari,AhmadHusain,MohdUroojShariq andAnishKhan 14.1Introduction

14.2Electrochemicalapplications

14.3Metal-organicframeworksinsupercapacitorapplications

14.4Wastewatertreatment

14.5Drugdelivery

15.Metal-organicframeworksaschemicalreactionflask

RakeshKumarAmetaandParthMalik

15.1Introductiontometal-organicframeworks

15.4Utilityofmetal-organicframeworkaschemical reactionflask

16.Uniqueattributesofmetal-organicframeworks indrugdelivery 389

ParthMalik,RachnaGuptaandRakeshKumarAmeta 16.1Introduction

16.2Synthesisofmetal-organicframeworks

16.3Aspiringfeaturesformetal-organicframeworks’application indrugdelivery:toxicologicalcompatibility,stability,and biodegradation

16.4Surfacemodificationofmetal-organicframeworks

16.5Synthesisofnanoscalemetal-organicframeworks

16.6Therapeuticefficacyofmetal-organicframeworks

16.7Howmetal-organicframeworkscanadvancethepresent successofdrugdelivery?

16.8Drugreleasemechanismsofmetal-organicframeworks

16.9Conclusionandfuturedirections

17.Metal-organicframeworksandpermeablenatural polymersforreasonablecarbondioxidefixation

M.Ramesh,M.MuthukrishnanandAnishKhan

18.Nanomaterialsderivedfrommetal-organicframeworks forenergystoragesupercapacitorapplication

LakshmananGurusamy,SambandamAnandanandJerryJ.Wu

Listofcontributors

RamonA.Alvarez-Puebla DepartmentofPhysicalandInorganicChemistryand EMaS,UniversitatRoviraIVirgili,Tarragona,Spain;ICREA,Barcelona,Spain

RakeshKumarAmeta SchoolofChemicalSciences,CentralUniversityofGujarat, Gandhinagar,India;DepartmentofChemistry,SriMMPatelInstituteof SciencesandResearch,KadiSarvaVishwavidhyalaya,Gandhinagar,Gujarat, India

SambandamAnandan DepartmentofChemistry,NationalInstituteofTechnology, Trichy,India

ShahidPervezAnsari DepartmentofAppliedChemistry,ZakirHusainCollegeof EngineeringandTechnology,AligarhMuslimUniversity,Aligarh,India

AbdullahM.Asiri ChemistryDepartment,FacultyofScience,KingAbdulaziz University,Jeddah,SaudiArabia;CenterofExcellenceforAdvancedMaterials Research,KingAbdulazizUniversity,Jeddah,SaudiArabia

D.PrakashBabu SchoolofAppliedSciences,REVAUniversity,Bangalore,India

PrasunBanerjee DepartmentofPhysics,GITAM(DeemedtobeUniversity), Bangalore,India;InstitutodeFisica,UniversidadeFederaldeGoias,Goiania, Brazil

K.ChandraBabuNaidu DepartmentofPhysics,GITAM(Deemedtobe University),Bangalore,India

C.Deepa DepartmentofComputerScienceandEngineering,KITKalaignarkarunanidhiInstituteofTechnology,Coimbatore,India

RajasekaranElakkiya MaterialsElectrochemistryLaboratory,Departmentof Chemistry,SRMInstituteofScienceandTechnology,Kattankulathur,Chennai, India

PC.V.V.EswaraRao DepartmentofChemistry,GITAMSchoolofScience, GITAM(DeemedtobeUniversity),Bangalore,India

AdolfoFranco,Jr InstitutodeFisica,UniversidadeFederaldeGoias,Goiania, Brazil

LucaGuerrini DepartmentofPhysicalandInorganicChemistryandEMaS, UniversitatRoviraIVirgili,Tarragona,Spain

RachnaGupta SchoolofChemicalSciences,CentralUniversityofGujarat, Gandhinagar,India;DepartmentofBiotechnology,Visva-Bharati,Santiniketan, Bolpur,India

LakshmananGurusamy DepartmentofEnvironmentalEngineeringandScience, FengChiaUniversity,Taichung,Taiwan

AntonioV.Herrera-Herrera InstitutoUniversitariodeBio-Org ´ anicaAntonio Gonz ´ alez,UniversidaddeLaLaguna(ULL),SanCristo ´ baldeLaLaguna,Espan ˜ a

AhmadHusain DepartmentofAppliedChemistry,ZakirHusainCollegeof EngineeringandTechnology,AligarhMuslimUniversity,Aligarh,India

S.Janardan DepartmentofChemistry,GITAMSchoolofScience,GITAM (DeemedtobeUniversity),Bangalore,India

AnishKhan ChemistryDepartment,FacultyofScience,KingAbdulazizUniversity, Jeddah,SaudiArabia;CenterofExcellenceforAdvancedMaterialsResearch, KingAbdulazizUniversity,Jeddah,SaudiArabia

G.RanjithKumar SchoolofAppliedSciences,REVAUniversity,Bangalore,India

N.SureshKumar DepartmentofPhysics,JNTUA,Anantapuramu,India

N.Kuppuswamy DepartmentofAeronauticalEngineering,KITKalaignarkarunanidhiInstituteofTechnology,Coimbatore,India

GovindhanMaduraiveeran MaterialsElectrochemistryLaboratory,Departmentof Chemistry,SRMInstituteofScienceandTechnology,Kattankulathur,Chennai, India

ParthMalik SchoolofChemicalSciences,CentralUniversityofGujarat, Gandhinagar,India

H.Manjunatha DepartmentofChemistry,GITAMSchoolofScience,GITAM (DeemedtobeUniversity),Bangalore,India

M.Muthukrishnan DepartmentofMechanicalEngineering,KITKalaignarkarunanidhiInstituteofTechnology,Coimbatore,India

SrinivasanNatarajan SolidStateandStructuralChemistryUnit,IndianInstituteof Science,Bangalore,India

WeiNi VanadiumandTitaniumResourceComprehensiveUtilizationKey LaboratoryofSichuanProvince,PanzhihuaUniversity,Panzhihua,P.R.China; InstituteforAdvancedStudy,ChengduUniversity,Chengdu,P.R.China; MaterialCorrosionandProtectionKeyLaboratoryofSichuanProvince,Sichuan UniversityofScienceandEngineering,Zigong,P.R.China

M.Noorjahaan DepartmentofChemistry,PalamuruUniversity,Mahbubnagar,India

S.Praveen DepartmentofMechanicalEngineering,KIT-Kalaignarkarunanidhi InstituteofTechnology,Coimbatore,India

M.Ramesh DepartmentofMechanicalEngineering,KIT-Kalaignarkarunanidhi InstituteofTechnology,Coimbatore,India

S.Ramesh DepartmentofPhysics,GITAM(DeemedtobeUniversity),Bangalore, India

BahramRamezanzadeh DepartmentofSurfaceCoatingsandCorrosion,Institute forColorScienceandTechnology,Tehran,Iran

MohammadRamezanzadeh DepartmentofSurfaceCoatingsandCorrosion, InstituteforColorScienceandTechnology,Tehran,Iran

Listofcontributors xiii

L.VaikuntaRao DepartmentofChemistry,GITAMSchoolofScience,GITAM (DeemedtobeUniversity),Visakhapatnam,India

K.VenkataRatnam DepartmentofChemistry,GITAMSchoolofScience,GITAM (DeemedtobeUniversity),Bangalore,India

A.Ratnamala DepartmentofChemistry,GITAMSchoolofScience,GITAM (DeemedtobeUniversity),Bangalore,India

G.DeepthiReddy DepartmentofChemistry,PalamuruUniversity,Mahbubnagar, India

K.RamaKrishnaReddy SchoolofAppliedSciences,REVAUniversity, Bangalore,India

MiguelA ´ ngelRodr´ıguezDelgado DepartamentodeQu´ımica,Unidad DepartamentaldeQu´ımicaAnal´ıtica,FacultaddeCiencias,UniversidaddeLa Laguna(ULL),SanCristo ´ baldeLaLaguna,Espan ˜ a

RuthRodr´ıguez-Ramos DepartamentodeQu´ımica,UnidadDepartamentalde Qu´ımicaAnal´ıtica,FacultaddeCiencias,UniversidaddeLaLaguna(ULL),San Cristo ´ baldeLaLaguna,Espan ˜ a

A ´ lvaroSantana-Mayor DepartamentodeQu´ımica,UnidadDepartamentalde Qu´ımicaAnal´ıtica,FacultaddeCiencias,UniversidaddeLaLaguna(ULL),San Cristo ´ baldeLaLaguna,Espana

MohdUroojShariq DepartmentofChemistry,AligarhMuslimUniversity,Aligarh, India

A.Sivarmakrishna DepartmentofChemistry,SchoolofAdvancedSciences,VIT University,Vellore,India

B ´ arbaraSocasRodr´ıguez DepartmentofChemistry,CentreforAnalysisand Synthesis,LundUniversity,Lund,Sweden

K.Srinivas DepartmentofPhysics,GITAM(DeemedtobeUniversity),Bangalore, India

N.SureshKumar DepartmentofPhysics,JNTUA,Anantapuramu,India

B.VenkataShivaReddy DepartmentofPhysics,GITAM(Deemedtobe University),Bangalore,India

JerryJ.Wu DepartmentofEnvironmentalEngineeringandScience,FengChia University,Taichung,Taiwan

TolgaZorlu DepartmentofPhysicalandInorganicChemistryandEMaS, UniversitatRoviraIVirgili,Tarragona,Spain

Chapter1

Metal-organicframeworksand theircomposites

M.Ramesh1 andC.Deepa2

1DepartmentofMechanicalEngineering,KIT-KalaignarkarunanidhiInstituteofTechnology, Coimbatore,India, 2DepartmentofComputerScienceandEngineering,KITKalaignarkarunanidhiInstituteofTechnology,Coimbatore,India

1.1Introduction

Metal-organicframeworks(MOFs),alsocalledasporouspolymers,created frominorganicionswithorganicconnectors,haveemergedasapromising classofmaterialswithmanypeculiarproperties,suchashighporosity, diversecomposition,versatileporestructure,andflexiblefunctionality [1 3].Suchareevolvingadsorbentmaterialscomposedofmetalionsor clustersofmetalionsboundbyorganiclinkers [4].TheMOFsattractalot ofinterestbecauseoftheirhighcrystallinity,porosity,andmodularity [5] Thebenefitsofstructuraltuningandotherphysicalorchemicalproperties, obtainedbyastuteselectionandvariationintheshapeoflinkers,theirscale andarrangement,andpre-andpost-syntheticmodification,havedriveneverexpandingresearchintotheuseofMOFsinvariousfieldsandapplications [6].Throughtheadventofmetalnanoparticles,metaloxides,graphene,carbonnanotubes(CNTs),quantumdots(QDs),biomolecules,polymers,polyoxometalates,organicchemicals,proteins,silicaandpolymers,etc.,avariety ofMOFcompositeshavenowbeensuccessfullysynthesized [7 9].The MOFcompositesareconstructedofoneormoreMOFmaterialsshownin Fig.1.1[1].AnanalysisofTangandTanase’ssyntheticapproaches [10] is fortheproductionofMOFsandtheircomposites.Theyobservedthatwhen comparedtotheperformanceofpurepolymermembranes,MOFsembedded inpolymermatricesincreasedmixtureefficiencyandpermeability.

1.2Metal-organicframeworkcomposites

MOFsthemselvesarepartofthemajorcompositematerialclass.MOFcompositesarecomparativelyrecentmaterials,usedindiverseapplications.Itis,

https://doi.org/10.1016/B978-0-12-822099-3.00001-0

2 Metal-OrganicFrameworksforChemicalReactions

however,necessarytofindsuitablecomplementarymaterialsandadaptive pathwaystoformcompositesbasedonMOF.Itsflexiblecrystallinearchitecturesandcompactunitsofmetalionsandorganicligandsareidealforthe furtherdevelopmentofcomposites [11,12].Thecompositearchitectureof MOFmaterialswithinthespecialporousstructureoffersthegreatpractical abilitytoconstructcompositematerialsbasedonMOF [13 16].Overthe lastdecade,MOFsformedthroughtheself-assemblyphaseofmetalcations ormetalclustersandsmoothorganicligandsreceivedsignificantattention [17,18].MOF-basedcompositesareprovidedwithhighstrengthandgood catalyticactivitybyintegratingthefunctionalizednanoparticlesintoMOF structuresthatprocesstheadvantagesoversingle-componentMOFs [19].

1.2.1Processingofmetal-organicframeworkcomposites

ForthepreparationofMOFcomposites,threeexcellentlydevelopedtechniquesexist,suchasship-in-bottle,bottle-around-ship,andone-potsynthesis [1].Theship-in-bottlemethodentailsapplyingmetalprecursorstoanMOF usingvariousmethodssuchaschemicalvapordeposition,solventimpregnation,firmgrinding,andmicrowaveirradiation,followedbyareductionin metalprecursorstoformnanoparticlesofmetal.Thebottle-around-ship methodologyreferstotheassemblyaroundthemetalofnanoparticlesfrom MOFs.Thetricktoacquiringthecore shellstructureistoprevent

FIGURE1.1 MOFsandotherfunctionalmaterialsincorporatedatMOFcomposites [1]. MOFs,Metal-organicframeworks.

aggregatingmetalnanoparticlesandself-nucleatingMOFshells.Dueto reducedproductioncosts,shorterprocessingtimes,andeasyscaling,the one-potmethod,throughthedirectmixingofthemetalprecursorsandMOF precursorsintoonepot,hasrecentlyattractedmuchinterest.Activatedcarbon@MIL-101(Cr)nanocompositewaspreparedbyMIL-101(Cr)insitu synthesisataconversionrateofabout96%.TheprecursorMOFwastreated with25mgactivatedcarbonandautoclavedfor12hoursat473K.The resultingstockwascentrifugedandsoakedat353Kfor60minutes,toeliminateimpurities.Thepowder,obtainedthroughcentrifugation,wasdissolved inethanolandheatedat353Kfor12hours.Finally,thesynthesizedgreen powderwascentrifugedanddriedat373Kinavacuumovenfor12hours. Aschematicrepresentationofthesynthesisisshownin Fig.1.2[19].

1.2.2Typesofmetal-organicframeworkcomposites

1.2.2.1Metal-organicframework polymercomposites

Polymersareexceptionalintheirrangeofpropertiesthatincludethermal, chemical,andsoftnessstability.AsynthesisofMOFsandpolymerswillgenerateinnovativeandversatilematerialsthatshowjointpropertiesfor framestabilityandactionenhancement [21].Roweetal. [22] preparedthe gadolinium(Gd)MOFcompositesbasedonmulti-functionalpolymer.Poly (N-isopropylacrylamide)-co-poly(N-acryloxysuccinimide)-co-poly(fluorescein O-methacrylate)copolymerswereconstructedthroughreversibleadditional fragmentationchaintransfer(RAFT)polymerization.Tobindatherapeutic agentsuchasmethotrexateandatargetingligandsuchas H-glycine-arginine-glycine-aspartate-serine-NH(2)peptide,succinimide’sfunctionalitywas usedasascaffold.TheuseofatrithiocarbonateRAFTagentallowedthe reductionofpolymerendgroupstothiolatesandprovidedameansofcopolymerattachmentonthesurfaceofGdMOFparticlesthroughvacantorbitals ontheGd(3 1 )ions.Theseversatile,nanoscalescaffoldshavebeendemonstratedtobebiocompatibleandarecapableofkillingcancercells,biomedicalimaging,andtreatingdiseases.Thisrevolutionaryapproachoffereda simplebutversatilepathfortheproductionofpolymernanoparticlesthe agnosticmaterialswithanunparalleleddegreeofflexibilityindesign,theoreticallyenablingcustomizableloadingcapacitiesandspatialloadingoftargetingortreatmentagents,therebycombiningbimodalimagingcapabilities viabothmagneticresonanceandfluorescencemicroscopy.

1.2.2.2Metal-organicframework quantumdotcomposites

Thecombinationofhighsurfacearea,microporosity,andflexibleMOFcompositionswithQDsenablesthepreparationofcompositematerialswith improvedpropertiesformanyapplicationssuchasphotocatalysis,energy storage,andgasstorageandsensing [23].Despitetheirunusualelectronic

4 Metal-OrganicFrameworksforChemicalReactions

Synthesisprocedureofactivatedcarbon basedMOFcomposites [20] MOF, Metal-organicframework.

andopticalpropertiesdependingondimension,QDswithasizerangeof 2 10nmhavereceivedconsiderableattention.Theencapsulationof QDswithinMOFswillimprovetheirstabilityandmodulateratesof electron holepartrecombination.DifferentformsofQDssuchasnitride-, oxide-,carbon-,andchalcogenide-basedcompoundshavebeenintegrated intoMOFs,andtheresultantcompositematerialshaveenhancedtheir propertiesandapplications [7]

1.2.2.3Metal-organicframework metalnanoparticle composites

Metalnanoparticleshaveacquiredalotofinterestbecauseoftheirhigh chemicalprocessesandspecificities.Nevertheless,theseparticleshavea highsurface-to-volumeratioandhighsurfaceenergy,andhencetendtocollectandignite.Forexample,arrangingnanoparticlesofmetalintoporous materialssuchasmetaloxides,zeolites,mesoporoussilicates,andcarbon willeffectivelylimittheaccumulationofmetalnanoparticlesinrestricted cavities.Asanewclassofporousmaterials [1,24 26],MOFswithlargesurfacesandporosityaresuitableassupportsformetalnanoparticles.MIL-100 (Fe)MOFcompositesandmagneticnanoparticleshavealsobeenshownto bequicklyandeasilyabsorbentforextractingaciddyes [27,28].Shustova etal. [29] observedfluorescenceinanotherwisenonemissivezinc-MOF sample.Theseresearchersincorporatedtetraphenylethylenecoresintothe MOF,andtheresultingstructurewasobservedtoobtainfluorescence becauseofthematrixcoordination’sinducedemissioneffect.

ThesemiconductingbehaviorofstrontiumMOF(Sr-MOF)hasbeen demonstratedexperimentallyandbytheoreticalcalculations [30]. Temperature-dependentcurrent voltagetestsfoundtheMOFhadan

FIGURE1.2

electricalconductivityvalueontheorderon106Scm 1.Achangeinthe temperatureattheannealingcausedtheMOFtoexponentiallyincreaseits conductivity.Insteadofthethermallymediatedcarriersandvariablehopping,theArrheniusconductivityplotshowedSr-MOF’ssemiconducting transportactions.Forthedevelopmentofadirectwhitelight-emittingdiode forsolid-statelighting,anSr-MOFcompositeformedwithasemiconductive organicligand(1,4,5,8-naphthalenetetracarboxylicacidhydrate)wasdocumented [31].Thephotoluminescencespectraoftheaboveelectroluminescent Sr-MOFconfirmedtheexistenceofuniqueemissionpeaksleadingtointermetallicelectronictransitionsinstrontium,transitionsbetweenmetallic energystates,andmetal-to-ligandconversionofcharges.

1.2.2.4Metal-organicframework grapheneoxidecomposites

TheproductsbettersuitedforMOFcompositesynthesisaregrapheneoxide (GO).Owingtoitssuperiorpropertiessuchaswidesurfacearea,mechanical stability,robustelectrical,andopticalproperties,GO,afunctionaloxygencontaininggraphenewithchemicalgroups,recentlyattractedresurgentinterests [32].Theflexible,freestanding,andthree-dimensionalcobalt-based MOFs/reducedGO(CoMOF/rGO)compositewaspreparedwithasimple electrochemicaldepositionofCoMOFonthesurfaceoftherGOelectrode [33].Musyokaetal. [34] preparedacompositeusinginsituapproachusing zirconium-basedMOFandrGO.Thiscompositewasusedinstorageapplicationsandshowedgreaterhydrogenstorageefficiencycomparedwith ZrMOF.Zhangetal. [35] synthesizedGOnano-sheetswithtwo-stepcobasedMOFusinganinsitugrowthandcalcinationprocess.Thismaterial wasusedasamediumforelectromagneticabsorptionanddemonstratedelectromagneticdissipationathighefficiency.Fangetal. [36] preparedandconstructeduniform,highperformance,andflexiblenanofiltrationmembrane MOFcompositesbasedonZr.Twophaseswereusedtobuildthesubstratum:(1)dopingGOsheetsintoapolyacrylonitrile(PAN)membranecasting solutionandforming2D 3Dbindingporesbyphaseimmersionprocessand (2)immersingoftheGO@PANsubstratumintoadopaminesolutionfor self-polymerizationintomacromolecularchainsobtainingahighlystableand flexiblesubstratum.Linetal. [37] showedthattheinclusionofrGOonZrbasedMOFincreasesbothadsorptiveandphotocatalyticefficiencybyeliminatingacidcolors.

1.2.2.5Metal-organicframework polyoxometalatecomposites

Polyoxometalatesareaclassofanionicmetal oxygenclusterswithawide rangeofadditives,flexibleshapesandproportions,solubility,redoxpotential,andhighacidity.Suchpropertiesprovidegreatopportunitiesinavariety ofcatalytictransformations,particularlyinacidandoxidationreactions. However,theirimplementationisconstrainedbyitslowspecificareaand

lowstability.TheimmobilizationofpolyoxometalatesintoMOFsisapromisingapproachforthestabilizationandrefiningofpolyoxometalatestoboost theircatalyticproperties.Becauseoftheircompositionalstabilityandstructuralstrength,polyoxometalatescanbeusedasversatilebuildingblocks (nodesorbases,orprototypesinsidethecages)fortheconstructionof polyoxometalate-basedMOF.Inaddition,polyoxometalatescanbeencapsulatedinMOFporesbyhost guestinteractionstoformMOFpolyoxometalatecomposites [38,39].

1.2.2.6Metal-organicframework

enzymecomposites

Enzymesareaclassofextremelyefficientbiocatalystswithhighactivity andmildchemo-,enantio-,andareaselectivity,whichareveryeffectivein catalyzingvariousreactions.However,theirextensivecatalyticusesare greatlyhinderedbythedelicateexistenceofenzymes,suchaspoorthermal stability,limitedoptimumpHranges,andlowresistancetoorganicsolvents anddenaturants.Inaddition,lengthypurificationandisolationstepsare requiredtocontaminatetheenzymesinthetargetproducts.MOFshave provedtobeeffectiveenzymeimmobilizationmechanismstoshieldthem fromdeactivatingreactionconditions,improvingtheirrecyclability,and reducingproductdegradation.Preciseregulationofporedepth,form,and compositionofMOFsenablesenzymeconfinementwithmatchedthickness, therebyreducingself-aggregationandenzymeleaching.Inaddition,MOF’s inorganicnodesandfunctionallinkerswillcreatethoseenzymeinteractions bycoordination,covalentbonding,hydrogenbonding,andvanderWaalsto stabilizeleachingenzymes [40 44].Theencapsulationofrhodaminewas obtainedinabio-MOFbasedonadenine [45].Theresultingcompositeprovidedhighquantumefficiencyincolortuningtoshowthepossibleapplicabilityoflight-emittingdevicesandvisiblelightcommunication.Several scholarshavestudiedthedifferentMOFcompositeswithdifferingrhodamineratiosrelativetospecificationssuchascolortenability,emissionefficiencies,andlifetimeofemissions.

1.2.2.7Metal-organicframework cellulosecomposites

Cellulosehasgreatpotentialassubstratesbecauseofitshighstrength,lightweight,lowcost,waterresilience,flexibility,nontoxicity,andexcellentprocessability [46 49].MOFdispersiononthecellulosesurfacesisbeing successfullypreparedtoproducecompositeMOF cellulosefabricswith newpracticalefficiency [50].TheMOFandcelluloseaerogelcomposite materialswereprocessedusingtheinsitugrowthtechniqueatroomtemperature.Suchmaterialshavebeendescribedbyastudyofscanningelectron microscopy(SEM),X-raydiffractionanalysis(XRD),atomicabsorption spectrometer,andthermogravimetry.Theamountofadsorbedmetalionsis equivalenttothenumberofMOFsandcelluloseaerogels,indicatingthatthe

MOFsarenotblockedandthereforeadsorbentafterthedevelopmentofcelluloseaerogels.CompositeplasticMOF celluloseaerogelshavebeenshown toberecyclableinwatertoadsorbPb21 andCu21 afterquickwashing.This resultshowsthatthesecompositematerialscouldadsorbheavymetalionsin waterbypreventingsecondarycontaminationanddemonstrategreatpotential inwatertreatment [51].ThecompositeMOF celluloseaerogelswerepreparedatroomtemperaturebysimpleinsituproduction.Inthemetalionprecursor,thepre-syntheticaerogelofcelluloseissoaked,andthentheorganic ligandisaddedtoallowtheMOFstobuildonthecelluloseaerogel.The effectivenessofadsorbingheavymetalionsinwaterbycelluloseaerogelhas beeninvestigated.TheMOFswerestillworking,andthechannelswerenot obstructedbycomparingtheadsorptionequilibriumofheavymetalionswith celluloseaerogel,MOFs,andcompositeMOF celluloseaerogel.

1.2.2.8Metal-organicframework silicacomposites

Silicaparticlesandnanostructureshaveefficientmechanismsthathave drawnsignificantinterestincatalyticapplicationsforperformingvarious nanoscalefunctionssuchasporosity,stabilization,andhydrophilicity.The synthesisofsilicawithMOFsincorporatestheessentialpropertiesofall materialsandcontributestoinnovativeapplications.Thereareactuallytwo maintypesofMOF silicacomposites:SiO2@MOFsandMOFs@SiO2.The formerincludestheinjectionofdispersedsilicaparticlesintoMOFpores/ channelsorthegrowthofanMOFshellintoapreformedsilicasphere,while thelatterusessilicaasacoatinglayerproducedontheMOFsurfaceorasan aidtothegrowthofMOFparticles [52 54].

1.2.2.9Metal-organicframework activatedcarboncomposites

MOFfibers,weresynthesizedformethanerecoveryandcarbondioxidecapturebyKayaletal. [55].Nevertheless,theeffectivenessofMOF activated carboncompositesinaqueousconditionswasnotinvestigatedforthe removalofchemicalspecies.Thesecompositesweresynthesizedbyasimple hydrothermalcycleandusedastheadsorbentorganicdye.Throughtesting theadsorptionkineticsundervariousconditions,suchasadsorbentthickness, contacttime,anddyeconcentration,theadsorptionpotentialofthecompositeparticlesisshowntobesuperiortobothactivatedcarbonandMOF.The surfacereactiontechniquedependingonthecorecompositeconceptwas usedtodeterminethemosteffectiveconditionsfortherapidandproductive removalofdye.Apotentialorganicdyestructureandadsorptionmechanism isgivenoncarbonnanocompositeenabledwithMIL-101(Cr).Mahmoodi etal. [56] synthesizedthegreenMOFnanocompositewith2,5,and10wt.% activatedcarbonratiosbasedoncucumberpeelactivatedcarbon and chromium-basedMOF[MIL-101(Cr)].Characterizationofcompoundswas performedusingTGA,Brunauer Emmet Teller(BET),XRD,SEM,and

Fourier-transforminfraredspectroscopy(FTIR).Thefindingsrevealedoctahedralcrystalform,andcompositematerialsexhibitedthesamemorphology asMIL-101(Cr)crystalsonanactivatedcarbonsurface.Thefindings revealedthatthemethodsofthesurfacereactionmodelestimatedthereal datawithhighprecision.

Hasanzadehetal. [20] preparedthecompositesoftheactivatedcarbon / chromium-basedMOF[MIL-101(Cr)]withhighlysolubleadsorbents.The polymerhasahighsurfaceareaandagrossvolumeofaround1.3cm3 g 1 inpore.Toillustratetheefficacyofthecompositeasanadsorbent,the removalkineticsofanionicdyesfromaqueoussolutionsareexhibitedbased onthevolumeofcomposite,adsorptiontime,dyeconcentration,andpH. MIL-101(Cr)-activatedcarboncompositekineticswasshowntobequicker thanMIL-101(Cr)undernear-neutralpHconditions.Halftheprocessing timeisroughly3minutes,andafter5minutes85%ofthecolorislost.

1.2.2.10Metal-organicframework aluminumcomposites

Aluminumtris(8-hydroxyquinoline)(Alq3)waswidelyusedasasolventin metalchelates.Alq3 thinfilmsaselectroluminescentmaterialshavebeen reportedtodemonstratehigheffectivenessandstability.Theiruseincommerciallight-emittingsystemshasalsodrawninterestinthinfilmfeatures. MOFshavebeenproposedasahostmatrixformodulatingtheluminescence propertiesofAlq3 molecules.TheincorporationofAlq3 moleculesintoMOF poresornanochannelsisveryeffectiveinavoidingtheiraggregation,which inturnhelpstoeffectivelyincreasethelifespanandtheyieldofthechromophore.FortheMOF Alq3 composite,therewasanincreaseinthelifetime ofexcitedstateemissionsofasmuchas65%relativetoAlq3 alone.Inadditiontothis,aconstantblueemissionshiftcouldbeachievedbyincreasing theAlq3 loadinthecomposite.Thisactivitywasexplainedbecauseof molecularinteractionswiththeMOFinAlq3.Assuch,thelatterstudycan beconsideredoneofthemostimportantstudiesforunderstandingthetuning ofemissionpropertiesofchromophoresfollowingtheirencapsulationin MOFs [57 59].

1.2.2.11Metal-organicframework molecularspecies composites

Astoolsforstudyingandimitatingthefunctionalitiesofbiologicalstructures,homogeneousmolecularspeciessuchasdyemolecules,salinecomplexes,porphyrins,andmetalloporphyrinswereextensivelyresearched. However,thelifetimeofthesemoleculesisshortenedduetointeractions betweentheactivesitesandoxidativeself-degradationduetoselfaggregation.TheimmobilizationofmolecularspeciesinMOFs,wherethe activesitescanbeseparatedandprotected,isaviablealternativetotheheterogenizationofhomogeneousmolecularcatalysts,combiningthebenefitsof

allcatalystgroupsandreducingthedrawbacks.Molecularspeciescanbe incorporatedinanMOFbackboneviacovalentbondingorencapsulatedvia noncovalentinteractionwithinMOFpores.Directencapsulationdoesnot disturbthesphereofinteractionbetweenmolecularspeciesandthusretains thestabilityandpropertiesofthemolecularspecies.Furthermore,direct encapsulationcanmaintainthemobilityofmolecularmoleculestosome degree,enablingthemtocooperatewiththeMOFbackbone.ThreedimensionalMOFswithwidecavitiesinterconnectedbysmallwindowsare especiallyidealforstabilizingmolecularspecies,giventhatthewidecavities canhandlemolecularspecies,andthesmallporouswindowsavoidleaching andaggregationofmolecularspecies [60 64].

1.2.2.12Metal-organicframework hybridcomposites

Monamaetal. [65] producedanovelhybridcompositedependingon4tetranitrocopper(II)phthalocyanin(TNCuPc)producedfromMOFasanoble, hydrogen-freecatalyst.Thecomposition,surfacearea,andmorphologyof thecompositebareMOF,TNCuPc,andTNCuPc/MOFarecharacterizedby XRD,FTIRspectroscopy,ultraviolet visiblespectroscopy,BET,SEM, transmissionelectronmicroscopy(TEM),andsimultaneousthermalanalysis. Thecompositedevelopedexhibitedhighbehavioragainsthydrogenreaction evolution,strongthermalstability,andexcellentresistance.Thusthenonnobleelectro-catalystTNCuPc/MOFmaybeapromisingelectrochemical catalystfortheproductionofelectrochemicalhydrogentoreplaceplatinumbasedcatalysts.ThespectroscopicstudyindicatedastrongcompositesynthesisofTNCuPc.Themorphologicalfindingsshowedthatrod-likeTNCuPc structureswerebeingformedontheMOFsheet.Thegreensolvothermal processforthepreparationofthecompositeMOF(Cu-BTC)andMOF/graphenehybridistobeusedasanefficientadsorbentoftheproductfuels.The formulatedadsorbentsaredistinguishedbytheapplicationofvariousanalyticaltechniquessuchasXRD,FTIR,BET,andTEM.Laboratoryadsorption resultsrevealedthat,underoptimalexperimentalconditions,theMOF/Gr compositecontentexhibitsexceptionallystrongadsorptionofdibenzothiopheneatanadsorptionrateof46.2mgSg 1 [66].

1.3Characterizationofmetal-organicframeworkcomposites

ToadvancethecharacterizationofMOFparticlesforreal-worldapplications, thewiderangeofmaterialssuchasactivatedcarbons,rGO/GO,multiwalled CNTs,biomaterials,andnano-fibrousmembraneshavebeenregardedassupportbedsforstabilizingandcreatingbetterandbetterMOFnanocrystals.To date,MOFcompositeshavebeensynthesizedasthinfilmsusingaseeding andgrowthprocessorlayer-by-layergrowthofMOFsondifferentsubstrates,includingporousoxidesupports,graphite,CNT,andactivatedcarbon

[67 72].ThischapteraddressedthemostimportantcharacterizationtechniquesusedbytheseMOFcomposites,suchasXRD,X-rayphotoelectron spectroscopy(XPS),FTIR,andSEManalytics.

1.3.1X-raydiffractionanalysis

UsingtheXRDprocess,therGO,CoMOF/rGOcomposites,andCoMOF powdercrystalstructuresweredetermined(Fig.1.3).IntherGOpaper,XRD spectrumthepeakat25.4degreeswasobserved,referringtothetypicalcrystaldiffractionofthegraphenestructure(002).InCoMOF,XRDresults fromthepeaksatroughly35.4,42.5,61.7,and73.4degreescorrespondto the(111),(220),(400),and(511),respectively,Coform.TheXRDpatternoftheCoMOF/rGOpapershowsdiffractionpeaksofbothrGOand CoMOFcomposition,suggestingthegoodpreparationoftheCoMOF/rGO composites [33].

1.3.2X-rayphotoelectronspectroscopy

TheXPSexperimentswereconductedonastandardsourcespectrometer withAlX-ray.TheCoMOF/rGOchemicalcompositeelectrodestructurewas calculatedusingXPStechnique,asshownin Fig.1.4.CoMOF/rGO’scompositeelectrodeconsistsof46.432%C,46.445%O,4.721%Co,and2.402% I.TheCoMOF/rGOcompositespectrumofC1s(Fig.1.4B)canbedeconvertedtothreemajorpeaksof283.7,285.5,and287.6eVbindingenergies, respectively.In Fig.1.4C,O1srangecanbegroupedintothreepeaks, respectively,at530.4,531.4,and532.2eV.Thepeakscorrespondtovarious oxidationstructuresofCo,asshownin Fig.1.4D,areCo21 2p3/2(780eV), Co21 2p1/2(784eV),andCo31 2p3/2satellite(796eV).ThehighforIis duetoHIusedduringthechemicalreductionprocesswhenpreparingthe rGOfilmelectrode.SincetheCoMOFisformedonthesurfaceoftherGO electrodeusingtheelectrochemicaloxidationcycle,therGOXPSspectrum showedrelativelygreateroxygencontent.Inevaluatingtheseresults,itwas establishedthattheCoMOF/rGOcompositeelectrodewassuccessfullyprepared [33]

1.3.3Fourier-transforminfraredspectroscopy

FTIRspectrumofactivatedcarbonstrengthenedMOFcompositesisseenin Fig.1.5[19].Thebroadbandaround3430cm 1 isrelatedtotheO H stretchingvibrationfromwateradsorbedbytheair.Thebandappearedat 1400cm 1 isduetotheO C Osymmetricvibrationofthecarboxylicacid groupthatindicatesthepresenceof1,4-benzenedicarboxylicacid(H2BDC) ligandwithinthematerialstructure.Thelowpointat1506cm 1 isdueto C 5 Cofthebenzenechain.Theothermotionsat1108,1017,888,and

FIGURE1.3 XRDpatternsofrGO,CoMOF/rGO,andCoMOFcomposites [33]. XRD,X-ray diffractionanalysis.

FIGURE1.4 XPSspectraofCoMOF/rGOcomposite:(A)survey,(B)C1s,(C)O1s,and(D) Co2p [33]. XPS,X-rayphotoelectronspectroscopy.

749cm 1 areduetoC Hdeformationofthebenzenering [55].Reduction ofthebandstrengthat1610cm 1 (carboxylicacidC Ogroup)incombinationwiththeformationofanew1716cm 1 absorptionband(estercarbonyl group)foractivatedcarbon MOFcompositeenablesthepotentialreaction ofH2BDCligandtoactivatedcarbon.Tomappotentialreactionsbetween

FIGURE1.5 FTIRspectrumofactivatedcarbon reinforcedMOFcomposites [20]. FTIR, Fourier-transforminfraredspectroscopy, MOF,metal-organicframework.

FIGURE1.6 SEMimagesof(A)rGO,(B)CoMOF/rGOcomposite,and(CandD)lowand highmagnificationsofCoMOFnanorods [33] SEM,Scanningelectronmicroscopy.

theactivatedcarbonandH2BDCligand,theFTIRspectrumofactivatedcarbonfunctionalizedwithH2BDCmoleculeswasmeasured.Thepeaksaround 3430and1685cm 1 correspondtotheactivatedcarbonstretchinghydroxyl

FIGURE1.7 SEMimagesoftheMOFcomposites(AandB)MIL-101(Cr)and(CandD)activatedcarbon/MIL-101(Cr) [56] MOF,Metal-organicframework; SEM,scanningelectron microscopy.

vibration,respectively,andtheH2BDCcarbonylgroup.Accordingtothe reactionbetweentheactivatedcarbonandH2BDC,itwasexpectedthatan estercarbonylgroupwillformaround1716cm 1.FTIRspectroscopyhas notshownsuchapeakthatmaybeattributedtothehighH2BDCcarbonyl grouppeakpresentinthislevel.

1.3.4Scanningelectronmicroscopyanalysis

SEMphotographsweregatheredtoanalyzethemorphologyofthematerials. ThemorphologyofCoMOF/rGOcompositeswasstudiedbySEM. Fig.1.6 displaystheSEMimagesoffreestandingandrobustcompositesrGOand CoMOF/rGOformorphologicalcharacterization.Thecharacteristicwrinkled appearanceofthegraphenesystem’smetallicgraysurfacewasobservedon theSEMpictureoftherGO(Fig.1.6A). Fig.1.6B revealsthatfinger-like CoMOFnanorodsshapedontherGOsurfaceandthatthesefinger-like CoMOFstructurescoatedtheelectrodesurfacehomogeneously(Fig.1.6C andD).A3Dsurfacewasformed,aswellasthesurface’sactivesurface areaisincreasedbysynthesizedfinger-likeCoMOFstructuresontherGO. Such3DCoMOFstructuresarepredictedtoexhibithighefficiencyonthe rGOsurfaceinelectro-catalyticstudies [33].

Fig.1.7 revealedtheSEMimagesofAC/MIL-101(Cr)2%andAC/MIL101(Cr)10%.Asfor Fig.1.7AandB,MIL-101(Cr)SEMphotosrevealeda

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Metal-organic frameworks for chemical reactions: from organic transformations to energy applications by Education Libraries - Issuu