Medical image recognition, segmentation and parsing : machine learning and multiple object approache

Page 1


Medicalimagerecognition,segmentationand parsing:machinelearningandmultipleobject approaches1stEditionZhou

https://ebookmass.com/product/medical-image-recognitionsegmentation-and-parsing-machine-learning-and-multipleobject-approaches-1st-edition-zhou/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Deep Learning for Medical Image Analysis 1st Edition S. Kevin Zhou

https://ebookmass.com/product/deep-learning-for-medical-imageanalysis-1st-edition-s-kevin-zhou/

ebookmass.com

Image Segmentation: Principles, Techniques, and Applications Tao Lei

https://ebookmass.com/product/image-segmentation-principlestechniques-and-applications-tao-lei/

ebookmass.com

Machine Learning Algorithms for Signal and Image Processing Suman Lata Tripathi

https://ebookmass.com/product/machine-learning-algorithms-for-signaland-image-processing-suman-lata-tripathi/

ebookmass.com

Orbital Mechanics for Engineering Students Fourth Edition. Edition Howard D. Curtis

https://ebookmass.com/product/orbital-mechanics-for-engineeringstudents-fourth-edition-edition-howard-d-curtis/

ebookmass.com

Identifying and Interpreting Incongruent Film Music 1st ed. Edition David Ireland

https://ebookmass.com/product/identifying-and-interpretingincongruent-film-music-1st-ed-edition-david-ireland/

ebookmass.com

(eBook PDF) Principles of Marketing 3rd Edition 3.0 by Jeff Tanner

https://ebookmass.com/product/ebook-pdf-principles-of-marketing-3rdedition-3-0-by-jeff-tanner/

ebookmass.com

Algorithms for Emergency Medicine 1st Edition Mark Harrison (Editor)

https://ebookmass.com/product/algorithms-for-emergency-medicine-1stedition-mark-harrison-editor/

ebookmass.com

Future politics : living together in a world transformed by tech First Edition. Edition Susskind

https://ebookmass.com/product/future-politics-living-together-in-aworld-transformed-by-tech-first-edition-edition-susskind/

ebookmass.com

New Directions in Linguistic Geography: Exploring Articulations of Space Greg Niedt

https://ebookmass.com/product/new-directions-in-linguistic-geographyexploring-articulations-of-space-greg-niedt/

ebookmass.com

Medical Office Procedures 10th Edition Nenna L. Bayes

https://ebookmass.com/product/medical-office-procedures-10th-editionnenna-l-bayes/

ebookmass.com

MedicalImage Recognition,Segmentation andParsing

MachineLearningandMultiple ObjectApproaches

TheElsevierandMICCAISociety BookSeries

Advisoryboard

StephenAylward (Kitware,USA)

DavidHawkes (UniversityCollegeLondon,UnitedKingdom)

KensakuMori (UniversityofNagoya,Japan)

AlisonNoble (UniversityofOxford,UnitedKingdom)

SoniaPujol (HarvardUniversity,USA)

DanielRueckert (ImperialCollege,UnitedKingdom)

XavierPennec (INRIASophia-Antipolis,France)

MedicalImage Recognition,Segmentation andParsing

MachineLearningandMultiple ObjectApproaches

AcademicPressisanimprintofElsevier

125LondonWall,London,EC2Y5AS,UK

525BStreet,Suite1800,SanDiego,CA92101-4495,USA

225WymanStreet,Waltham,MA02451,USA

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK

Copyright©2016ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguinginPublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-802581-9

ForinformationonallAcademicPresspublications visitourwebsiteathttp://store.elsevier.com/

Publisher :JoeHayton

AcquisitionEditor :TimPitts

EditorialProjectManager :CharlotteKent

ProductionProjectManager :MelissaRead

Designer :MatthewLimbert

PrintedandboundintheUSA

Foreword

Solvingtheproblemsofmedicalimagesegmentation,alongwithimageregistration,havelongbeen thoughtofasthetwobasictouchstonesofresearchinmedicalimageanalysis.Theearlyworkinthese areasthatbeganseveraldecadesagooftenadaptedtechniquesandstrategiesdevelopedinthecomputer visionandpatternrecognitioncommunitiestoproblemsinmedicalimaging.However,overthepast 20yearsorso,researchersdedicatedtoworkingspecificallyintheareaofmedicalimageanalysis havebeenabletoarticulateandidentifymanyoftheissuesuniquetothisfieldingeneral,andmedical imagesegmentationinparticular.Theseideasincludenotingthedeformablenatureoftheunderlying structuresorregionstobesegmented,thenaturalstatisticalvariationofthesestructures/regions themselvesandanyparametersthatmightbederivedfromthem(perhapsforuseasbiomarkers)and thenotionthatthetypicalmedicalimagesegmentationproblemofteninvolvesknowledgeofmultiple structures/regions(sometimesthoughtofasobjects)and/orthecontextualinformationsurroundingthe segmentationproblemathand.

Fromanapplication’sstandpoint,theneedforrobustandaccuratemedicalimagesegmentation runsthroughasignificantrange ofproblemsthatincludetheidentificationofmultipleorgansin thebodyforuseinthedevelopmentofpatientatlasesforrapidlabelingofCTorMRI-derived information;findingbrainneuroanatomyforguidinginterventionalprocedures;parsingoutthelungs andsurroundingairwaystomonitorandtreatlungdisease;andisolatingvessels,valvesandchambers inthecardiovascularsystemforquantifyingtheextentofdiseaseandpolypsegmentationfromCT colonoscopiestoguidetreatmentprocedures.Thislistisobviouslymuchlonger,andincludesproblems overavarietyofimagingscalesallthewaytovisualizingandcapturingthesignatureofindividual cells.

In MedicalImageRecognition,SegmentationandParsing:MachineLearningandMultipleObjects Perspectives,Dr.S.KevinZhoufromSiemensHealthcareTechnologyCenterhasnicelycapturedthe state-of-the-artintermsofcurrentthinkinginthemedicalimagesegmentationarenain2015that addressesmanyoftheproblemsnotedinthelastparagraph.Thebookislogicallydividedintothree sections,eachcapturingacurrentlineofthinkingin thefield:(I)AutomaticRecognitionandDetection Algorithms,(II)AutomaticSegmentationandParsingAlgorithms,and(III)Recognition,Segmentation andParsingofSpecificObjects.Withinthesegeneralareas,asetof21chapters,writtenbymanyofthe topresearchersinthisfield,discussstrategiesthatnicelycapturethekeyissuesthatarecommoneither toasingleapplication/problemorasetofmedicalimageanalysisproblemsandthendevelopmodeling anddecision-makingapproachesthatcapitalizeonthe latestthinkingintheareasofmachinelearningto addressthem.Theneedfororiginalthinkingwithregardtothecomputationalstrategiesusedtoaddress theseproblemsbecomesclearasonereadsthroughthetext.Someofthemostcurrentstate-of-the-art ideasinthefieldarereportedandoffersometimesimmediateandoftenverypromisingsolutions, incorporatingworkbasedondiscriminativelearning,informationtheoreticscheduling,randomforests, unsuperviseddeeplearning,graph-basedstrategies,sparserepresentation/dictionarylearning,marginal

spacelearningandthelatestthinkingondeformablemodelrepresentations.Forpractitionersand researchersworkinginthisexcitingfield,whichcontinuestobechallenging,thistextwillbecome a“go-to”standardreferenceintheyearsaheadthatcanserveasaroadmapandaguideforfurther efforts.

Acknowledgments

Iamindebtedtonumerouspeoplewhomadethisbookpossible.

First,Ithankallchapterauthorswhodiligentlyfinishedtheirchaptersandprovidedreviewsontime andwithquality,andDr.MingqingChenof Siemenswhoreviewedachapter.

MyspecialthanksgotoProf.JamesDuncanfromYaleUniversity,whowrotetheforewordforthe book.

Further,Iextendmygratitudetothebest-everElsevierpublisherteam,especiallymyeditor,Tim Pitts,editorialprojectmanager,CharlotteKent,andproductionprojectmanager,MelissaReadwho providedeveryhelpwhenneededandkeptthebookproductiononschedule.

IamgratefultoallmypastandcurrentcolleaguesatSiemensCorporateTechnology,including Dr.DorinComaniciu,Dr.BogdanGeorgescu,Dr.ZhuowenTu,Dr.JingdanZhang,Dr.Yefeng Zheng,Dr.MichalSofka,Dr.ShaoleiFeng,Dr.HaibinLing,Dr.NeilBirkbeck,Dr.TimoKohlberger, Dr.DirkBreitenreicher,Dr.DavidLiu,Dr.Jin-HyeongPark,Dr.DijiaWu,Dr.NathanLay,Dr.LeLu, Dr.AdrianBarbu,Dr.DaguangXu,etc.,forthegreatteamworkandstimulatingbrainstorming.Ialso thanksmanySiemenscolleaguesandclinicalcollaboratorsfortheirsupport.

Finally,Ithankmywife,son,andparentsfortheirendlesslove!

Contributors

M.D.Abràmoff

IowaInstituteforBiomedicalImaging,UniversityofIowa,IowaCity,IA,USA

M.A.GonzálezBallester

DepartmentofInformationandCommunicationTechnologies,PompeuFabraUniversity,and CatalanInstitutionforResearchandAdvancedStudies,Barcelona,Spain

A.Barbu

DepartmentofStatistics,FloridaStateUniversity,Tallahassee,FL,USA

N.Birkbeck

Google,MountainView,CA,USA

H.Bogunovi ´ c

IowaInstituteforBiomedicalImaging,UniversityofIowa,IowaCity,IA,USA

A.Carass

DepartmentofElectricalandComputerEngineering,TheJohnsHopkinsUniversity,Baltimore, MD,USA

M.Chen

ComputerEngineeringDepartment,StateUniversityofNewYork,Albany,NY,USA

D.J.Collins

CancerResearchUKCancerImagingCentre,InstituteofCancerResearchandRoyalMarsden Hospital,London,UnitedKingdom

D.Comaniciu

ImagingandComputerVision,SiemensCorporateTechnology,Princeton,NJ,USA

S.Doran

CancerResearchUKCancerImagingCentre,InstituteofCancerResearchandRoyalMarsden Hospital,London,UnitedKingdom

B.Georgescu

ImagingandComputerVision,SiemensCorporateTechnology,Princeton,NJ,USA

B.Glocker

BiomedicalImageAnalysisGroup,ImperialCollegeLondon,London,UnitedKingdom

S.Grbic

ImagingandComputerVision,SiemensCorporateTechnology,Princeton,NJ,USA

J.Feulner

Giesecke&DevrientGmbH,Munich,Germany

D.R.Haynor

DepartmentofRadiology,UniversityofWashington,Seattle,WA,USA

G.Hermosillo

SiemensMedicalSolutionsUSA,Inc.,Malvern,PA,USA

R.Ionasec

SiemensHealthcare,Forchheim,Germany

T.Kanade

RoboticsInstitute,CarnegieMellonUniversity,Pittsburgh,PA,USA

S.Kashyap

IowaInstituteforBiomedicalImaging,UniversityofIowa,IowaCity,IA,USA

B.M.Kelm

SiemensHealthcareGmbH,Forchheim/Erlangen,Germany

M.Kim

DepartmentofRadiologyandBRIC,UniversityofNorthCarolinaatChapelHill,ChapelHill, NC,USA

A.P.Kiraly

SiemensCorporateTechnology,Princeton,NJ,USA

E.Konukoglu

MartinosCenterforBiomedicalImaging,MGH,HarvardMedicalSchool,Boston,MA,USA

N.Lay

SiemensCorporateTechnology,Princeton,NJ,USA

M.O.Leach

CancerResearchUKCancerImagingCentre,InstituteofCancerResearchandRoyalMarsden Hospital,London,UnitedKingdom

C.Ledig

DepartmentofComputing,BiomedicalImageAnalysisGroup,ImperialCollegeLondon,London, UnitedKingdom

D.Liu

SiemensCorporateTechnology,Princeton,NJ,USA

T.Mansi

ImagingandComputerVision,SiemensCorporateTechnology,Princeton,NJ,USA

D.N.Metaxas

DepartmentofComputerScience,RutgersUniversity,Piscataway,NJ,USA

C.L.Novak

SiemensCorporateTechnology,Princeton,NJ,USA

B.L.Odry

SiemensCorporateTechnology,Princeton,NJ,USA

I.Oguz

IowaInstituteforBiomedicalImaging,UniversityofIowa,IowaCity,IA,USA

M.Orton

CancerResearchUKCancerImagingCentre,InstituteofCancerResearchandRoyalMarsden Hospital,London,UnitedKingdom

Z.Peng

SiemensMedicalSolutionsUSA,Inc.,Malvern,PA,USA

J.L.Prince

DepartmentofElectricalandComputerEngineering,TheJohnsHopkinsUniversity,Baltimore, MD,USA

D.Rueckert

DepartmentofComputing,BiomedicalImageAnalysisGroup,ImperialCollegeLondon,London, UnitedKingdom

G.Sanroma

DepartmentofRadiologyandBRIC,UniversityofNorthCarolinaatChapelHill,ChapelHill,NC, USA,andDepartmentofInformationandCommunicationTechnologies,PompeuFabraUniversity, Barcelona,Spain

D.Shen

DepartmentofRadiologyandBRIC,UniversityofNorthCarolinaatChapelHill,ChapelHill, NC,USA

H.-C.Shin

NationalInstitutesofHealth,Bethesda,MD,USA

M.Sofka

SecurityBusinessGroup,CiscoSystems,andDepartmentofComputerScience,CzechTechnical University,Prague,CzechRepublic

M.Sonka

IowaInstituteforBiomedicalImaging,UniversityofIowa,IowaCity,IA,USA

R.M.Summers

ImagingBiomarkersandComputer-AidedDiagnosisLaboratoryandClinicalImageProcessing Service,RadiologyandImagingSciencesDepartment,ClinicalCenter,NationalInstitutesofHealth, Bethesda,MD,USA

I.Voigt

ImagingandComputerVision,SiemensCorporateTechnology,Princeton,NJ,USA

A.Wimmer

SiemensHealthcareGmbH,Forchheim/Erlangen,Germany

G.Wu

DepartmentofRadiologyandBRIC,UniversityofNorthCarolinaatChapelHill,ChapelHill, NC,USA

X.Wu

IowaInstituteforBiomedicalImaging,UniversityofIowa,IowaCity,IA,USA

D.Xu

MedicalImagingTechnologies,SiemensHealthcareTechnologyCenter,Princeton,NJ,USA

D.Yang

Rutgers,NewBrunswick,NJ,USA

J.Yao

ImagingBiomarkersandComputer-AidedDiagnosisLaboratoryandClinicalImageProcessing Service,RadiologyandImagingSciencesDepartment,ClinicalCenter,NationalInstitutesofHealth, Bethesda,MD,USA

Y.Zhan

Computer-AidedDiagnosisandTherapyResearchandDevelopment,SiemensHealthcare,and SiemensMedicalSolutionsUSA,Inc.,Malvern,PA,USA

S.Zhang

DepartmentofComputerScience,UniversityofNorthCarolinaatCharlotte,Charlotte,NC,USA

Y.Zheng

ImagingandComputerVision,SiemensCorporateTechnology,Princeton,NJ,USA

S.KevinZhou

MedicalImagingTechnologies,SiemensHealthcareTechnologyCenter,andSiemensCorporate Technology,Princeton,NJ,USA

X.S.Zhou

SiemensMedicalSolutionsUSA,Inc.,Malvern,PA,USA

1.1 INTRODUCTION

Medicalimagerecognition,segmentation,andparsingareessentialtopicsofmedicalimageanalysis. Medicalimagerecognitionisaboutrecognizingwhich objectsareinsideamedicalimage.Inprinciple, itisnotnecessarytodetectorlocalizetheobjectsforobjectrecognition;butinpractice,oftenit S.KevinZhou(Ed):MedicalImageRecognition,SegmentationandParsing. http://dx.doi.org/10.1016/B978-0-12-802581-9.00001-9 Copyright©2016ElsevierInc.Allrightsreserved.

isbeneficialtoassociateobjectrecognitionwithobjectdetectionorlocalization.Oncetheobject isrecognizedordetectedusing,say,aboundingbox,medicalimagesegmentationfurtherconcerns findingtheexactboundaryoftheobjectinamedicalimage.Whentherearemultipleobjectsinthe images,segmentationofmultipleobjectsbecomesmedicalimageparsingthat,inthemostgeneral form,assignssemanticlabelstopixelsina2Dimageorvoxelsina3Dvolume.Bygroupingthepixels orvoxelswiththesamelabel,segmentationisrealized.

Effectiveandefficientmethodsformedicalimagerecognition,segmentation,andparsingbringa multitudeofimportantclinicalbenefits.Below,wehighlightthebenefitstoimagingscanner,image reading,andadvancedquantificationandmodeling.

• Scanner. Becausethecomputertomography(CT)ormagneticresonanceimaging(MRI)scanneris equippedwithmanyconfiguration possibilitiesorimagingprotocols,itischallengingtoproduce consistentandreproducibleimagesofhighquality acrosspatientsandthisisonlypossibleifthe scanningispersonalizedwithrespecttoapatient.Highscanningthroughputisalsoofinterestfor costsaving.ProtectingpatientsfromunnecessaryradiationfromtheCTscannerisofmajor concern.AnidealdiagnosticCTscanshouldbepersonalizedtoimageonlythetargetregionofa givenpatient,nomore(toreducedose)ornoless (toavoidmissinginformation).Therefore, efficientdetectionoforgansfromascoutimageenablespersonalizedscanningatareduceddose, savesexamtimeandcost,andincreasesconsistencyandreproducibilityoftheexam.

• Imagereadingfordiagnosis,therapy,andsurgeryplanning. Duringimagereading,when searchingfordiseaseinaspecificorganorbodyregion,aradiologistneedstonavigatethevolume totherightlocation.Further,aftercertaindiseaseisfound,heorsheneedstoreportthefinding. Medicalimageparsingenablesstructuredreadingandreportingforastreamlinedworkflow, therebyimprovingimagereadingoutcomeintermsofaccuracy,reproducibility,andefficiency. Finally,inradiationtherapy,interventionprocedures,andorthopedicsurgery,medicalimage parsingisprerequisiteintheplanningphase.

• Advancedquantificationandmodeling. Clinicalmeasurementssuchasorganvolumesare importantforquantitativediseasediagnosis.But itistime-consumingforaphysiciantoidentify thetargetobjectespeciallyin3Dandperformquantitativemeasurementswithouttheaidofan intelligentpostprocessingsoftwaresystem.Automaticimageparsingalsoovercomesthedifficulty inreproducingthemeasurementevenwhenreadingthesameimageforthesecondtime.Finally, with3Dobjectssegmentedas boundaryconditions,moreadvancedmodelingthatsimulates biomechanicalorhemodynamicalprocessesisfeasible.

Theholygrailofamedicalimageparsingsystemisthatitsparsingcomplexitymatchesthatof FoundationalModelofAnatomy(FMA)ontology,a whichisconcernedwiththerepresentationof classesortypesandrelationshipsnecessaryforthesymbolicrepresentationofthephenotypicstructure ofthehumanbodyinaformthatisunderstandabletohumansandisalsonavigable,parsable,and interpretablebymachine-basedsystems.Asoneofthelargestcomputer-basedknowledgesourcesin thebiomedicalsciences,itcontainsapproximately75,000classesandover120,000terms,andover 2.1millionrelationshipinstancesfromover168relationshiptypesthatlinktheFMAclassesinto acoherentsymbolicmodel.AlesscomplexrepresentationisTerminologicaAnatomica,b whichis theinternationalstandardofhumananatomicterminologyforabout7500humangross(macroscopic) anatomicalstructures.

Currentmedicalimagerecognition,segmentation,andparsingmethodsarefarbehindtheholygrail, concerningmostlythefollowingsemanticobjects:

• Anatomicallandmarks. Ananatomicallandmarkisadistinctpointinabodyscanthatcoincides withanatomicalstructures,suchaslivertop,aorticarch,pubissymphysis,tonameafew.

• Majororgans. Examplesofmajororgansincludeliver,lungs,kidneys,spleen,prostate,bladder, rectum,etc.

• Majorbones. Examplesofmajorbonesincluderibs,vertebrae,pelvis,femur,tibia,fibula,skull, mandible,handandfootbones,etc.

• Lesions,nodules,andnodes. Examplesincludeliverandkidneylesions,lungnodules,lymph nodes,etc.

1.2 CHALLENGESANDOPPORTUNITIES

Medicalimagerecognition,segmentation,andparsingconfrontalotofchallengestoobtainresultsthat canbeusedinclinicalapplications.Themainchallengeisthatanatomicalobjectsexhibit significant shapeandappearancevariations causedbyamultitudeoffactors:

• Sensornoise/artifact. Asinanysensor,medicalequipmentgeneratesnoise/artifactinherenttoits ownphysicalsensorandimageformationprocess.Theextentoftheartifactdependsonimage modalityandimagingconfiguration.Forexample,whilehigh-doseCTproducesimageswith fewerartifacts,low-doseCTisquitenoisy.Also,metalobjects(suchasimplants)cangeneratea lotofartifactsinCT.InMRIscans,artifactsaregeneratedduetoinhomogeneousmagneticfield, gradientnonlinearity,etc.

• Patientdifferenceandmotion. Differentpatientsexhibitdifferentbuildforms:fatorslim,tallor short,adultorchild,etc.Asaresult,theanatomicalstructuresalsoexhibitdifferentshapes.Also, patientsundergomotionsfromrespiration,cardiaccycle,bloodandcerebrospinalfluidflow, peristalsisandswallowing,andvoluntarymovement,allcontributingtothecreationofdifferent images,causinganatomicalshapedeformation.

• Pathology,surgery,andcontrastagents. Pathologycangiverisetohighlydeformedanatomical structuresorevenmissingoneswithvaryingappearancesandshapes.Thismakesstatistical modelingverydifficult.Tobetterunderstandthepathologicalconditions,contrastagentsare utilizedtobettervisualizetheanatomicalmorphology.Imageappearancesunderdifferentcontrast phasesaredifferent.Finally,asurgicalresectioncompletelychangestheshapeandimage appearanceofanatomicalobject(s)inanunexpectedmanner.

• Partialscanandfieldofview.DoseradiationisamajorconcerninCT.Inanefforttominimizethe doseradiation,onlythenecessarypartofthehumanisimaged.Thiscreatespartialscansand narrowfieldofview,inwhichtheanatomicalcontextishighlyweakenedortotallygone.Asa result,thelandmarksororgansaremissingorpartiallyvisible.InMRI,thescanrangeisoften minimizedforfastacquisition.

• Softtissue.Anatomicalstructuressuchasinternalorgansaresofttissueswithsimilarproperties. They(suchasliverandkidney)mighteven toucheachother,formingaveryweakboundary betweenthem.But,itisamustthatthesegmentedorgansbenonoverlapping.

Figure1.1(a)shows3DCTscanswithdifferentsourcesofappearancevariationand Figure1.1(b) displaysCTexamplesofvariouspathologiesandconditionsassociatedwithakneejoint.

Anotherchallengeliesinstringent accuracy,robustness,andspeed requirementsarisingfromreal clinicalapplications.Imagereadinganddiagnosisallowalmostnoroomformistakes.Despitethehigh accuracyandrobustnessrequirements,thedemandforspeedyprocessingdoesnotdiminish.Aspeedy workflowiscrucialtoanyradiologylabthatstrivesforhighthroughput.Fewradiologistsorphysicians canwaitforhoursorevenminutestoobtaintheanalysisresults.

Tobuildeffectiveandefficientalgorithmstotacklethesechallenges,onehastoexploitthe opportunitieswithleverage.Therearetwomainopportunities:

• Largedatabase. Thereisadelugeofmedicalscans.TakeCTscans,forexample.In2005, approximately57millionindividualsintheUSAreceivedCTexams.By2012,thenumberof annualCTexamsrosetoover85million.c Thehypothesisthatalargedatabaseexhibitsthe appearancevariationscommonlyfoundinpatientsisstatisticallysignificant.

• Anatomicalcontext. Unlikenaturalsceneimages,medical imagesmanifeststrongcontextual information,suchasalimitednumberofanatomicalobjects(sayonlyoneleftventricle), constrainedandstructuredbackground,therelationshipbetweendifferentanatomies,strongprior informationabouttheposeparameter,etc.

Inlightoftheseopportunities,statisticalmachinelearningmethodsthatexploitsuchcontextual informationexemplifiedbyalargenumberofdatasetsarehighlydesired.Thiswholebookis dedicatedtoapproachesbasedonmachinelearning.Italsocoversapproachesthatcopewithmultiple objects.

1.3 ROUGH-TO-EXACTOBJECTREPRESENTATION

Anyintelligentsystemstartsfromasensibleknowledgerepresentation(KR).Themostfundamental rolethataKRplays(Davisetal., 1993)isthat“itisasurrogate,asubstituteforthethingitself.This leadstotheso-calledfidelityquestion:howcloseisthesurrogatetotherealthing?Theonlycompletely accuraterepresentationofanobjectistheobjectitself.Allotherrepresentationsareinaccurate;they inevitablycontainsimplifyingassumptionsandpossiblyartifacts.”

Intheliterature,therearemanyrepresentationsthatapproximateamedicalobjectoranatomical structureusingdifferentsimplifyingassumptions. Figure1.2 showsavarietyofshaperepresentations commonlyusedintheliterature.d

• Rigidrepresentation. Thesimplestrepresentationistotranslateatemplatetotheobjectcenter t =[tx , ty , tz ] asshownin Figure1.2(a).Inotherwords,onlytheobjectcenterisconsidered.A completerigidrepresentationin Figure1.2(b)consistsoftranslation,rotation,andscale parameters θ =[t, r, s].Whenthescaleparameterisisotropic,thisreducestoasimilarity transformation.Anextensionofrigidrepresentationisaffinerepresentation.

• Free-formrepresentation. Commonfree-formrepresentations,shownin Figure1.2(c-e),include point-basedpresentation(2Dcurve S or3Dmesh M),maskfunction φ (x, y, z),levelsetfunction φ (x, y, z),etc.

(a)ExampleofCTimageswithdifferentbodyregions,severepathologies,contrastagents,weakcontrast,etc.

(b)ExampleofCTimageswithvariouskneepathologiesandconditions.Fromlefttoright,toptobottom:Touch betweenfemurandtibia,metallicimplantinsidefemur,femurwithmajordefects,osteoporosis,osteoporosis withminorfemurdefects,andtouchbetweenfemurandpatella.

(a)
(b)
FIGURE1.1

FIGURE1.2

Agraphicalillustrationofdifferentshaperepresentationsusing2Dshapeasanexample.(a)Rigid representation:translationonly t =[tx , ty ].(b)Rigidrepresentation: θ =[tx , ty , r , sx , sy ].(c)Free-form representation: S =[x1 , y1 , , xn , yn ].(d)Free-formrepresentation:a2Dbinarymaskfunction φ (x , y ).

(e)Free-formrepresentation:a2Dreal-valuedlevelsetfunction φ (x , y )(onlytheinteriorpartisdisplayed).

(f)Low-dimensionalparametricrepresentation:PCAprojection S = S0 + M m =1 λm Sm

• Low-dimensionalparametricrepresentation. Theso-calledstatisticalshapemodel(SSM) (HeimannandMeinzer, 2009)shownin Figure1.2(f)isacommonlow-dimensionalparametric representationbasedonprincipalcomponentanalysis(PCA)ofapoint-basedfree-formshape.

Otherlow-dimensionalparametricrepresentationsincludeM-rep(Pizeretal., 2003),spherical harmonics(SPHARM)(Shenetal., 2009),sphericalwavelets(Nainetal., 2006),etc.

AKRalsoisamediumforpragmaticallyefficientcomputation(Davisetal., 1993).Therefore, itisbeneficialtoadoptahierarchical, rough-to-exact representationthatgraduallyapproximatesthe objectitselfwithincreasingprecision,whichalsomakescomputationalreasoningmoreamenableand efficientasshownlater.

Acommonrough-to-exact3Dobjectrepresentation(Zhengetal., 2008; Zhou, 2010; Kohlberger etal., 2011; Wuetal., 2014)consistsofarigidpartfullyspecifiedbytranslation,rotation,andscale

parameters θ =[t, r, s],alow-dimensionalparametricpartsuchasfromthePCAshapespacespecified bythetopPCAcoefficients λ =[λ1:m ] andafree-formnonrigidpartsuchasa3Dshape S ,a3Dmesh M,ora3Dmaskorlevelsetfunction φ .

ThePCAshapespacecharacterizesashapebyalinearprojection:

where S0 isthemeanshapeand Sm isthe mthtopeigenshape.ThisPCAshapemodelingformsthe basisofthefamousactiveshapemodel(ASM)(Cootesetal., 1995).Inthishierarchicalrepresentation, thefree-formpartcanberough-to-exacttoo.Fora3Dmesh,themeshvertexdensitycanbeacontrol parameter,fromsparsetodense.Foralevelsetfunction,itdependsontheimageresolution,from coarsetofine.

1.4 SIMPLE-TO-COMPLEXPROBABILISTICMODELING

Tohandleasingleobject O froma3Dvolume V,theposteriordistribution P(O|V) offersthecomplete characterizationoftheobject O giventhevolume V.Once P(O|V) isknown,inferringtheobjectcanbe donebytakingtheconditionalmean,whichistheminimummeansquareerrorestimator,orconditional mode,whichisthemaximumaposterioriestimator,orafunctionoftheposterior.Bythesametoken, theposteriordistribution P(O1:n |V) completelycharacterizesthemultipleobjects O1:n inastatistical sense.

1.4.1CHAINRULE

Whentherough-to-exactrepresentationforasingleobject O isused,jointmodelingofthefullobjectis challengingandoftenlesseffective.Totacklethis challenge,acommonstrategyistoperformsimpleto-complexmodelingbybreakinga complextaskintoafewsimpletasks.Foreachsimpletask,effective modelingismorefeasible.

Onewayistoutilizethechainrulethatpermitsthecalculationofajointprobabilityusing conditionalprobabilities.

Thisbreakstheoveralltaskintothreesimplertasks.Thefirsttaskistoinfertherigidobject,also knownasobjectdetectionorrecognition,using P(θ |V);thesecondtaskistoinferboththerigidand low-dimensionalshapemodelparametersusing P(λ|V, θ );andthelastisfullobjectinferenceusing P(S |V, θ , λ),solvingthesegmentationproblem.

Infact,forasingleobject O,effectivemodelingofits3Dposepartalone θ =[t, r, s] isdifficult. Thesimple-to-complexmodelingisappliedheretoo.

Marginalspacelearning(MSL)(Zhengetal., 2008)leveragessuchastrategy. Whendealingwithmultipleobjects O1:n ,thechainrulealsoapplies.

InEq.(1.5),eachconditionalprobabilityspellsasimpler task,whichcanbefurtherdecomposedusing Eqs.(1.3)and(1.4).IntegratingEqs.(1.3)–(1.5)endowsageneral-purposecomputationalpipelineas shownin Figure1.3(a),inwhichaseriesofsimpletasksareconnected.

1.4.2BAYES’RULEANDTHEEQUIVALENCEOFPROBABILISTICMODELING ANDENERGY-BASEDMETHOD

AccordingtotheBayes’rule,theposteriorprobability P(O|V) isproportionaltotheproductofthe likelihood P(V|O) andtheprior P(O),

Energy-basedmethods(MumfordandShah, 1989; ChanandVese, 2001)oftenminimizeanenergy function E (O; V),consistingoftwoparts.Thefirstenergyfunction E1 (O; V) relatestheimage V with theobject O andthesecondenergyfunction E2 (O) representsthepriorbeliefabouttheobject.

Byletting

thentheprobabilisticmodelisequivalenttotheenergy-basedmethod.Inthepreviousdiscussion,we usethewholeobject O forillustration,butthederivationsholdevenwhenapartialobjectrepresentation isused.

WhenthisBayes’ruleisintegratedintothechainrule,completemodelingofobjectappearancesand priorbeliefsabouttheobjectatdifferentrepresentationlevelsandusingdifferentmodelsisprovided.

1.4.3PRACTICALMEDICALIMAGERECOGNITION,SEGMENTATION,ANDPARSING ALGORITHMS

Ingeneral,practicalalgorithmsformedicalimagerecognition,segmentation,andparsingarespecial examplesofthiscomputationalpipeline.They,however,differdependingontheirspecializationinthe followingtwoaspects:

• Thechangestothecomputationalarchitecture. Dependingonindependenceassumptionsthey makeortherepresentationtheychoose,practicalalgorithmsmodifyorsimplifythearchitecture accordingly.Forexample,ifdetectingonlyoneobjectisconcerned, thepipelinereducestotheone shownin Figure1.3(b). Figure1.3(c)showstheMSLpipeline(Zhengetal., 2008)for3Drigid objectdetection.In Figure1.3(d),acompletepipelineforsegmentingasingleobjectispresented, goingfromdetectingorrecognizingtherigidpart,todeformableshapesegmentation,tothe freeformshapesegmentation. Figure1.3(e)presentsanarchitecturethatdealswithmultiple

Rigid object detection/recognition using P (q1|V)

Parameterized object segmentation using P(l1|V, q1)

Freeform object segmentation using P (S1|V, q1,l1)

FIGURE1.3

Rigid object detection/recognition using P(q |V)

Rigid object detection/recognition using P (q2|V, O1)

Parameterized object segmentation using P (l2|V, q2, O1)

Freeform object segmentation using P (S2|V, q2, l2, O1)

Rigid object detection/recognition using P (q n|V, O1:n–1)

Parameterized object segmentation using P (l2|V, q n, O1:n–1)

Freeform object segmentation using P (Sn|V, q n, l n, O1:n–1)

Object translation detection using P(t |V )

Object translation and rotation detection using P (r |V, t )

Object translation, rotation, and scale detection using P (s |V, t, r )

Rigid object detection/recognition using P (q1|V )

Rigid object detection/recognition using P (q2|V )

Parameterized object segmentation using P (l1|V, q1)

Parameterized object segmentation using P (l2|V, q2)

Rigid object detection/recognition using P (q |V )

Parameterized object segmentation using P (l|V,q )

Freeform object segmentation using P (S|V, q, l) q n, l

Rigid object detection/recognition using P (q n|V )

Parameterized object segmentation using P (λn|V, q n)

Freeform joint object segmentation using P (S1:N|V, q1:n, l1:n)

(a)Ageneral-purposecomputationalpipelineformedicalimagerecognition,segmentation,andparsingbased onrough-to-exactobjectrepresentationandsimple-to-complexmodeling.(b-e)Specialrealizationsofthe computationalpipeline.

objects,whichisusedin Kohlbergeretal. (2011), Luetal. (2012),and Wuetal. (2014).Here,the conditionaldependencyamongdifferentobjectsisassumedfortherigidandlow-dimensional parametricparts;henceeachobjectisprocessedindependently.Finally,thejointfreeform segmentationisappliedforsegmentingmultipleshapestogether.

• Themodelingchoicesoftheconditional probabilities. Goodalgorithmperformanceneeds effectivemodelingoftheconditionalprobabilities.Formedical imagerecognitionordetection, machinelearningmethodsareprevalenttoleverageanatomiccontextembeddedinthemedical images. Section1.5 definestheconceptofanatomiccontextandbrieflyreviewsseveralmachine learningmethodsthatmodeltheanatomiccontext.Afterobjectdetection,objectsegmentation follows. Section1.6 listsafewclassicalimagesegmentationmethods,eachhavingitsown modelingchoicebasedonitsparticularobjectrepresentation.Throughoutthewholebook,each bookchapterwilldiscussitsownchoicesofmodeling,eitherfromageneraltheoreticperspective orinaparticularapplicationsetting.

1.5 MEDICALIMAGERECOGNITIONUSINGMACHINELEARNINGMETHODS

1.5.1OBJECTDETECTIONANDCONTEXT

Considerthetaskofdetectinghumaneyesfromthethreeimagesin Figure1.4.Todetectthehuman eye(s)in Figure1.4(a)inwhichalldifferentobjectsarejuxtaposedrandomly,oneislikelytoscrutinize theimagepixelsrowbyrow,columnbycolumntilltheeyeislocated.However,todetecttheeye(s) in Figure1.4(c)inwhichaperfecthumanfaceispresented,itiseffortlessbecausetheimageisso structuredorfullofcontext.Amedicalimageisthekindofimagewithcontextualinformationwith respecttoanatomies.Suchcontextisreferredtoas anatomicalcontext.Todetectthetwoeyesin Figure 1.4(b),therelationshipbetweenthem canbeuseful.Once,say,thelefteyeisdetected,thedetectionof therighteyebecomeslesscomplicated.

Asshownin Figure1.4,thecontextcanberoughlycategorizedintothreetypes,namely unitaryor local, pairwiseorhigher-order,and holisticorglobal context.

•The unitaryorlocalcontext referstothelocalregularitysurroundingasingleobject.

•The pairwiseorhigher-ordercontext referstothejointregularitiesbetweentwoobjectsoramong multipleobjects.

•The holisticorglobalcontext goesbeyondtherelationshipsamongacohortofobjectsandrefers tothewholerelationshipbetweenallpixels/voxelsandtheobjects:inotherwords,regardingthe imageasawhole.

Differentdetectionmethodsbasicallyoperatewithdifferenttrade-offsbetweenofflinemodel learningcomplexityandonlinecomputationalcomplexity,dependingon howtoleveragewhich context(s).Forexample,abinaryclassifierthatseparatestheobjectinstancesfromnonobjectinstances islearnedtomodelthelocalcontext.Givenatestimagelike Figure1.4(a),exhaustivescanningofthe imageusingthelearnedclassifierisneededtolocalizetheobject(eye).Toleveragetheglobalcontext, aregressionfunctioncanbelearnedtopredicttheobjectlocationdirectlyfromanypixel.Givenatest imagelike Figure1.4(c),theregressionfunctionisusedforafewsparselysampledpixellocationsto reachaconsensuspredictiondecisionabouttheobject location.Learningabinaryclassifieriseasier

FIGURE1.4

Threetypesofcontext:(a)unitaryorlocalcontext;(b)pairwiseorhigher-ordercontext;and(c)holistic orglobalcontext.

thanaregressionfunction,butexhaustivescanningismorecomputationallyintensivethantestinga fewlocations.Below,wereviewseveralmodernmachinelearningmethodsforbinaryclassification, multi-classclassification,andregression.Thesubsequentbookchapterspresentdifferentrecognition methodsthatemploymachinelearning.

1.5.2MACHINELEARNINGMETHODS

Statisticalmachinelearningmodelsthestatisticaldependenceofanunobservedvariable y onan observedvariable x viatheposteriorprobabilitydistribution P(y|x).Suchadistributioncanbeusedto predicttheunobservedvariable y.Modeling P(y|x) canbedoneintwoways,namelydiscriminative learningandgenerativelearning.Whilegenerativelearningmodels P(y|x) indirectlyviathejoint

(a)
(b)
(c)

distribution P(x, y),discriminativelearninginsteaddirectlymodelstheposterior.Discriminativemodels areeffectiveforsupervisedlearningtaskssuchasclassificationandregressionthatdonotnecessarily requirethejointdistribution.

1.5.2.1Classification

Thegoalofbinaryclassificationistolearnafunction F (x) thatminimizesthemisclassification probability P{yF (x) < 0},where y istheclasslabelwith +1forpositiveand 1fornegative.Thereare manyinfluentialbinaryclassificationmethodssuchaskernelmethods( Hofmannetal., 2008),ensemble methods(Polikar, 2006),anddeeplearningmethods(Bengio, 2009).Supportvectormachine(SVM) (Vapnik, 1999)isaclassicalkernelmethod.Ensemblemethodsincludeboosting(FreundandSchapire, 1997; Friedmanetal., 2000)andrandomforest(RF)(Breiman, 2001).Deeplearningmethodsarebased onartificialneuralnetworks(ANNs)(Bishopandetal., 1995).

SVMseeksaseparatinghyperplanewithamaximummargin.Asshownin Figure1.5(a),the hyperplaneisdefinedas w · x + b,where x istheinputvector, w istheslopevector,“·”meansthe dotproduct,and b istheintercept.Themax-marginplaneisobtainedbysolvingthefollowingtask:

Thesolutionis F (x) = j αj yj (xj · x) + b,where xj saresupportvectors.Oftenthenumberofsupport vectorsismuchsmallerthanthatofinputtrainingdata.Thekerneltrick K (xj , x) = φ (xi ) · φ (x) iswidely usedtomodeldatanonlinearity,hencethename kernelmethod. Anensemblemethodcombinesmultiplelearnersintoacommitteeforfinaldecision.Inboosting (FreundandSchapire, 1997; Friedmanetal., 2000),insteadofminimizing themisclassification probability,itminimizesitsupperbound E {exp(yF (x))} as

FIGURE1.5

Binaryclassificationmethods:(a)supportvectormachine,(b)AdaBoosting,(c)randomforest,and(d)neural network.ImagecourtesyofWikifor(a,d)andofICCV2009tutorialentitled“Boostingandrandomforest”for (b,c).

Theclassificationfunction F (x) inboostingtakesanadditiveformasin Figure1.5(b):

where Fn (x) isastronglearnerthatiswellcorrelatedwiththetrueclassificationand hm (x) isaweak learnerthatisonlyslightlycorrelatedwiththetrueclassification(betterthanrandomguessing).This minimizationisdoneiteratively.Atthe nthiteration,itselectstheminimizingweaklearner hn (x) and thenadjuststheweightsfortrainingexamples,weighingmoreonmisclassifiedexamples.Theposterior P(+1|x) isapproximatedas

TheRF(Breiman, 2001)classifierconsistsofacollectionofbinaryclassifiersasin Figure1.5(c), eachbeingadecisiontreecastingaunitvoteforthemostpopularclasslabel.Tolearna“random” decisiontree,eitherthetrainingexamplesforeachdecisiontreeareindependent,identicallydistributed (i.i.d.)sampledfromthefulltrainingsetorthefeaturesusedinthetreenodesarei.i.d.sampledfrom thefullfeaturesetorboth.Itisshownin Breiman (2001)thattheRFaccuracyiscomparableto boostingwiththeaddedbenefitsofbeingrelativelyrobusttooutliersandnoiseandamenabletoparallel implementation.

Whentheseensemblemethodsareappliedtoimageapplications,theweaklearnersinboostingare associatedwithimagefeatures(ViolaandJones, 2001; Tu, 2005)andthedecisiontreeinRF(Criminisi etal., 2009)usesanimagefeatureinatreenode.Oftenahighlyredundantfeaturepoolisformedto coverlargeappearancevariationintheobject.Learningtheweaklearnerorthedecisiontreehence becomesa featureselection process.

AnANNconsistsofaninterconnectedgroupofnodesasshownin Figure1.5(d),eachcircular noderepresentinganeuronandanarrowrepresentingaconnectionfromtheoutputofoneneuronto theinputofanother.AdeeplearningmethodconcernsanANNwithmultiplehiddenlayers.Often aneurontakesthefollowingform σ (w · x + b),where x istheinputvectortotheneuron, y isthe outputoftheneuron, w istheweightvector, b isthebiasterm,and σ isanonlinearfunctionsuchasa sigmoidfunction.ThefinaloutputfromtheANN(saywithonehiddenlayerandonenodeintheoutput layer)is

where wh istheweightvectorfortheinputvectortothenode h inthehiddenlayer, αh istheweight coefficientfromthehiddennode h totheoutputnode.Typically,theweightsforallneuronsarelearned

usingstochasticgradientdescent.Sincecombiningtheinputusingweightedlinearcoefficientsamounts tofeaturecomputation,ANNtrainingperformsfeaturelearning.

Thegoalofmulti-classclassificationistoclassifyaninput x intooneof J > 2classlabels. TheLogitBoostalgorithm(Friedmanetal., 2000)fitsanadditivesymmetriclogisticmodelvia themaximum-likelihoodprinciple.Thisfittingproceedsiteratively byselectingweaklearnersand combiningthemintoastrongclassifier.TheoutputoftheLogitBoostalgorithmisasetof J response functions {F j (x); j = 1, ... , J },whereeach F j (x) isalinearcombinationofasubsetofweaklearners:

where f j m (x) isaweaklearnerand n isthenumberofweaklearners.“LogitBoost”providesanatural waytocalculatetheposteriordistributionofclasslabel:

TousetheLogitBoostforimageclassification,theweakclassifiersareassociatedwithimagefeatures. Referto Zhouetal. (2006)formoredetails.

1.5.2.2Regression

Regression(Hastieetal., 2001)findsthesolutiontothefollowingminimizingproblem:

where {(xn , yn )}N n=1 aretrainingexamples, L(◦, ◦) isthelossfunctionthatpenalizesthedeviationofthe regressoroutput g(x) fromthetrueoutput y, λ> 0isthe regularizationcoefficient thatcontrolsthe degreeofregularization,and K (g) istheregularizationtermthatcombatsoverfitting.Regularization oftenimposesacertainsmoothnessconstraintontheoutputfunctionorreflectssomepriorbeliefabout theoutput.Therearemanyregressionapproaches(Hastieetal., 2001)intheliterature;herewebriefly reviewboostingregressionandregressionforest,whichareoftenusedforobjectdetection.

Asinanyboostingprocedure(FreundandSchapire, 1997; Friedmanetal., 2000),boosting regressionassumesthattheregressionoutputfunction g(x) takesanadditiveform: gt (x) = gt 1 (x) + ht (x).Boostingisaniterativealgorithmthatleveragestheadditivenatureof g(x).Atthe tthiteration, onemoreweakfunction ht (x) isaddedtothetargetfunction g(x) tomaximallyreducethecostfunction asfollows:

1

FIGURE1.6

Graphicalillustrationsofregressionforestproposedin Criminisietal. (2013).Reprintedwithpermission, ©2013Elsevier. where rt (xn ) = yn gt 1 (xn ) istheresidualandthe L2 lossfunctionisused.ToderiveEq.(1.16),the regularizationterm K (g) ischosentotakeanadditiveform: K (gt ) = K ( t i=1 hi ) = t i=1 Ki (hi ).In Zhou (2010),theridgeregressionprinciple(alsoknownasTikhonovregularization)isincorporated intoaboostingframeworktopenalizeoverlycomplexmodelsandtheimagefeaturesareconnected withweaklearners.Thisleadstotheimage-basedboostingridgeregressionframework.

SimilartoRFforclassification,regressionforest(Breiman, 2001; Criminisietal., 2013)isa collectionofregressiontreesthatjointlypredictcontinuousoutput(s).Tolearna“random”regression tree,eitherthetrainingexamplesforeachregressiontreearei.i.d.sampledfromthefulltrainingsetor thefeaturesusedinthetreenodesarei.i.d.sampledfromthefullfeaturesetorboth.Trainingthenode ofaregressiontreeistypicallydonebymaximizinganinformationgainmeasure,variancereduction, oroptimizingothersplittingcriteria.Unliketheboostingregressionthatisablackboxtopredictthe output,theregressionforestcarriesaprobabilisticnaturethatprovidesaconfidencemeasurewiththe predictedoutput. Figure1.6 showsagraphicalillustrationofregressionforest.

1.6 MEDICALIMAGESEGMENTATIONMETHODS

Assumingtheobjectisrecognizedorlocalized,thenextstepistoperformpreciseimagesegmentation againusingthelocalcontextbetweentheshapeandappearance.Medicalimagesegmentationisabout partitioningamedicalimageintomultiplesegmentsorregions,eachsegmentationorregioncomposed ofasetofpixelsorvoxels.Often,segmentscorrespondtosemanticallymeaningfulanatomicalobjects. Herewereviewafewimagesegmentationmethodsforsegmentingasingleobject.Theremaining

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Medical image recognition, segmentation and parsing : machine learning and multiple object approache by Education Libraries - Issuu