Mechanics of materials in modern manufacturing methods and processing techniques silberschmidt - Ins

Page 1


Mechanicsofmaterialsinmodernmanufacturing methodsandprocessingtechniquesSilberschmidt

https://ebookmass.com/product/mechanics-of-materials-inmodern-manufacturing-methods-and-processing-techniquessilberschmidt/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Fundamentals of Modern Manufacturing, Binder Ready Version: Materials,

https://ebookmass.com/product/fundamentals-of-modern-manufacturingbinder-ready-version-materials/ ebookmass.com

Smart Materials in Additive Manufacturing, Volume 2: 4D Printing Mechanics, Modeling, and Advanced Engineering Applications Mahdi Bodaghi

https://ebookmass.com/product/smart-materials-in-additivemanufacturing-volume-2-4d-printing-mechanics-modeling-and-advancedengineering-applications-mahdi-bodaghi/

ebookmass.com

Mechanics of Materials 9th Edition

https://ebookmass.com/product/mechanics-of-materials-9th-edition/ ebookmass.com

Insurance 4.0: Benefits and Challenges of Digital Transformation 1st ed. Edition

https://ebookmass.com/product/insurance-4-0-benefits-and-challengesof-digital-transformation-1st-ed-edition-bernardo-nicoletti/

ebookmass.com

Woman, Captain, Rebel: The Extraordinary True Story of a Daring Icelandic Sea Captain Margaret Willson

https://ebookmass.com/product/woman-captain-rebel-the-extraordinarytrue-story-of-a-daring-icelandic-sea-captain-margaret-willson/

ebookmass.com

Clytemnestra Costanza Casati

https://ebookmass.com/product/clytemnestra-costanza-casati/

ebookmass.com

Managing Distributed Cloud Applications and Infrastructure: A Self-Optimising Approach 1st ed. Edition

https://ebookmass.com/product/managing-distributed-cloud-applicationsand-infrastructure-a-self-optimising-approach-1st-ed-edition-theolynn/

ebookmass.com

Database System Concepts 6th Edition, (Ebook PDF)

https://ebookmass.com/product/database-system-concepts-6th-editionebook-pdf/

ebookmass.com

The Way of the Hermit: My Incredible 40 Years Living in the Wilderness Ken Smith

https://ebookmass.com/product/the-way-of-the-hermit-myincredible-40-years-living-in-the-wilderness-ken-smith/

ebookmass.com

Corporate

https://ebookmass.com/product/corporate-finance-canadianedition-4-more-prof-stephen-a-ross-author/

ebookmass.com

MechanicsofMaterialsinModern ManufacturingMethodsand ProcessingTechniques

MechanicsofAdvancedMaterialsSeries

TheMechanicsofAdvancedMaterials bookseriesfocusesonmaterials-andmechanics-relatedissuesaroundthe behaviorofadvancedmaterials,includingthemechanicalcharacterization,mathematicalmodeling,andnumerical simulationsofmaterialresponsetomechanicalloads,variousenvironmentalfactors(temperaturechanges, electromagneticfields,etc.),aswellasnovelapplicationsofadvancedmaterialsandstructures. Volumesintheseriescoveradvancedmaterialstopicsandnumericalanalysisoftheirbehavior,bringingtogether knowledgeofmaterialbehaviorandthetoolsofmechanicsthatcanbeusedtobetterunderstand,andpredictmaterials behavior.Itpresentsnewtrendsinexperimental,theoretical,andnumericalresultsconcerningadvancedmaterialsand providesregularreviewstoaidreadersinidentifyingthemaintrendsinresearchinordertofacilitatetheadoptionof thesenewandadvancedmaterialsinabroadrangeofapplications.

Serieseditor-in-chief:VadimV.Silberschmidt

VadimV.SilberschmidtisChairofMechanicsofMaterialsandHeadoftheMechanicsofAdvancedMaterials ResearchGroup,LoughboroughUniversity,UnitedKingdom.HewasappointedtotheChairofMechanicsofMaterials attheWolfsonSchoolofMechanicalandManufacturingEngineeringatLoughboroughUniversity,UnitedKingdomin 2000.Priortothis,hewasaSeniorResearcherattheInstituteAforMechanicsatTechnischeUniversitatMunchenin Germany.EducatedintheUSSR,heworkedattheInstituteofContinuousMediaMechanicsandInstitutefor Geosciences[both—theUSSR(later—Russian)AcademyofSciences].In1993 94,heworkedasavisitingresearcher, FellowoftheAlexander-von-HumboldtFoundationatInstituteforStructureMechanicsDLR(GermanAerospace Association),Braunschweig,Germany.In2011 14,hewasAssociateDean(Research).HeisaChartedEngineer, FellowoftheInstitutionofMechanicalEngineersandInstituteofPhysics,wherehealsochairedAppliedMechanics Groupin2008 11.HeservesasEditor-in-Chief(EiC)oftheElsevierbookserieson MechanicsofAdvanced Materials.HeisalsoEiC,associateeditor,and/orservesontheboardofanumberofrenownedjournals.Hehas coauthoredfourresearchmonographsandover550peer-reviewedscientificpapersonmechanicsandmicromechanics ofdeformation,damage,andfractureinadvancedmaterialsundervariousconditions.

Serieseditor:ThomasBohlke

ThomasBohlkeisProfessorandChairofContinuumMechanicsattheKarlsruheInstituteofTechnology(KIT), Germany.HepreviouslyheldprofessorialpositionsattheUniversityofKasselandattheOtto-von-Guericke University,Magdeburg,Germany.HisresearchinterestsincludeFE-basedmultiscalemethods,homogenizationof elastic,brittle-elastic,andvisco-plasticmaterialproperties,mathematicaldescriptionofmicrostructures,and localizationandfailuremechanisms.Hehasauthoredover130peer-reviewedpapersandhasauthoredorcoauthored twomonographs.

Serieseditor:DavidL.McDowell

DavidL.McDowellisRegents’ProfessorandCarterN.Paden,Jr.DistinguishedChairinMetalsProcessingatGeorgia TechUniversity,UnitedStates.HejoinedGeorgiaTechin1983andholdsadualappointmentintheGWWSchoolof MechanicalEngineeringandtheSchoolofMaterialsScienceandEngineering.HeservedastheDirectorofthe MechanicalPropertiesResearchLaboratoryfrom1992to2012.In2012hewasnamedFoundingDirectorofthe InstituteforMaterials(IMat),oneofGeorgiaTech’sInterdisciplinaryResearchInstituteschargedwithfosteringan innovationecosystemforresearchandeducation.HehasservedasExecutiveDirectorofIMatsince2013.Hisresearch focusesonnonlinearconstitutivemodelsforengineeringmaterials,includingcellularmetallicmaterials,nonlinearand time-dependentfracturemechanics,finitestraininelasticityanddefectfieldmechanics,distributeddamageevolution, constitutiverelations,andmicrostructure-sensitivecomputationalapproachestodeformationanddamageof heterogeneousalloys,combinedcomputationalandexperimentalstrategiesformodelinghighcyclefatigueinadvanced engineeringalloys,atomisticsimulationsofdislocationnucleationandmediationatgrainboundaries,multiscale computationalmechanicsofmaterialsrangingfromatomisticstocontinuum,andsystem-basedcomputationalmaterials design.AFellowofSES,ASMInternational,ASME,andAAM,heistherecipientofthe1997ASMEMaterials DivisionNadaiAwardforcareerachievementandthe2008KhanInternationalMedalforlifelongcontributionstothe fieldofmetalplasticity.Hecurrentlyservesontheeditorialboardsofseveraljournalsandiscoeditorofthe InternationalJournalofFatigue.

Serieseditor:ZhongChen

ZhongChenisaProfessorintheSchoolofMaterialsScienceandEngineering,NanyangTechnologicalUniversity, Singapore.InMarch2000,hejoinedNanyangTechnologicalUniversity(NTU),SingaporeasanAssistantProfessor andhassincebeenpromotedtoAssociateProfessorandProfessorintheSchoolofMaterialsScienceandEngineering. SincejoiningNTU,hehasgraduated30PhDstudentsand5MEngstudents.Hehasalsosupervisedover200 undergraduateresearchprojects(FYP,URECA,etc.).Hisresearchinterestincludes(1)coatingsandengineered nanostructuresforcleanenergy,environmental,microelectronic,andotherfunctionalsurfaceapplicationsand(2) mechanicalbehaviorofmaterials,encompassingmechanicsandfracturemechanicsofbulk,compositeandthinfilm materials,materialsjoining,andexperimentalandcomputationalmechanicsofmaterials.Hehasservedasaneditor/ editorialboardmemberforeightacademicjournals.Hehasalsoservedasareviewerformorethan70journalsanda numberofresearchfundingagenciesincludingtheEuropeanResearchCouncil(ERC).Heisanauthorofover300 peer-reviewedjournalpapers.

Materials

MechanicsofMaterialsin ModernManufacturing MethodsandProcessing Techniques

Loughborough,UnitedKingdom

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-818232-1

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: DennisMcGonagle

EditorialProjectManager: CharlotteRowley

ProductionProjectManager: DebasishGhosh

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

Listofcontributorsxiii

AbouttheSerieseditorsxvii

1Modelingofmetalforming:areview1

UdayShankerDixit

1.1Introduction1

1.2Modelingissuesinvariousmetalformingprocesses2

1.2.1Forging2

1.2.2Rolling4

1.2.3Wiredrawing6

1.2.4Extrusion7

1.2.5Deepdrawing10

1.2.6Bending11

1.3Variousmodelingtechniques13

1.3.1Slabmethod13

1.3.2Slip-linefieldmethod13

1.3.3Visioplasticity14

1.3.4Upperboundmethod14

1.3.5Finitedifferencemethod15

1.3.6Finiteelementmethod15

1.3.7Meshlessmethod17

1.3.8Moleculardynamicssimulation18

1.3.9Softcomputing18

1.4Inversemodeling19

1.5Modelingofmicrostructureandsurfaceintegrity20

1.6Anoteonmultiscalemodelingofmetalforming22

1.7Challengingissues23

1.8Conclusion24 References25

2Finiteelementmethodmodelingofhydraulicandthermal autofrettageprocesses31 UdayShankerDixitandRajkumarShufen

2.1Introduction31

2.1.1Hydraulicautofrettage32

2.1.2Swageautofrettage33

2.1.3Explosiveautofrettage34

2.1.4Thermalautofrettage35

2.1.5Rotationalautofrettage35

2.2Numericalmodelingofelastic plasticproblems37

2.2.1Yieldcriteriaandhardeningbehaviorofthematerial38

2.2.2Approachesfornumericalmodelingofelastic plastic problems42

2.3FEMformulationusingupdatedLagrangianmethod44

2.3.1Derivationoftheweakformoftheequilibrium equation44

2.3.2Formulationofelementalequations46

2.3.3Solutionmethod50

2.4TypicalresultsofFEMmodelingofhydraulicandthermal autofrettage52

2.4.1Resultsofhydraulicautofrettage53

2.4.2Resultsofthermalautofrettage58 2.5Conclusion66

References67

3Mechanicsofhydroforming71 ChristophHartl

3.1Introduction71

3.2Modelingofplasticdeformationintubehydroforming74

3.2.1Rotationallysymmetricaltubeexpansion74

3.2.2Hydroformingofpolygonalcrosssections81

3.2.3Hydroformingoftubebranches85

3.3Determinationofforminglimitsintubehydroforming89

3.3.1Neckingandbursting89

3.3.2Wrinklingandbuckling95

3.4Designofloadingpaths98

3.5Conclusion101 References102

4Electromagneticpulseforming111

VerenaPsyk,MaikLinnemannandGerdSebastiani

4.1Processclassification111

4.2Processprincipleandmajorprocessvariants112

4.2.1Generalsetupandprocessprinciple112

4.2.2Majorprocessvariants113

4.3Calculationoftheprocessmechanics123

4.3.1Analyticalcalculationoftheactingloads123

4.3.2Numericalcalculationoftheprocess126

4.4Advantagesandapplicationfieldsofelectromagnetic pulseforming131

4.4.1Shaping132

4.4.2Joining136

4.4.3Cutting138

4.5Prospectsforfuturedevelopments139 References139

5Damageinadvancedprocessingtechnologies143 ZhutaoShao,JunJiangandJianguoLin

5.1Introduction143

5.1.1Conceptsofdamageanddamagevariables143

5.1.2Damagemechanisms143

5.1.3Advancedmanufacturingtechnology:hotstamping144

5.1.4Conceptandfeaturesofforminglimitdiagram145

5.2Overviewofformabilityevaluation146

5.2.1Forminglimitprediction146

5.2.2Experimentalmethodsfordeterminingforminglimits147

5.2.3Requirementsforhotstampingapplications149

5.2.4Advancedtestingsystemforhotstampingapplications150

5.3Modelingofdamageevolution151

5.3.1Constitutiveequations151

5.3.2Advanceddamagemodels153

5.3.3Asetofunifiedconstitutiveequationsforhotstamping155

5.3.4Modelingofforminglimitdiagrams156

5.4Damagecalibrationtechniques158

5.4.1Overviewofdamagecalibrationtechniques158

5.4.2Anexampleofusingthermomechanicaluniaxialtestdata159

5.4.3Examplesofusingthermomechanicalmultiaxial tensiletestdata160

5.5Applicationsofdamagemodelingtechniqueforhotstamping162

5.5.1Planestress basedcontinuumdamagemechanics materialmodel162

5.5.2Principalstrain basedcontinuumdamagemechanics materialmodel165

5.5.3Predictionofformabilityinhotforming170 5.6Conclusion171 References171

6Numericalmodelingofthemechanicsofpultrusion173

MichaelSandberg,OnurYuksel,Raphae¨lBenjaminComminal,Mads RostgaardSonne,MasoudJabbari,MartinLarsen,FilipBoSalling, IsmetBaran,JonSpangenbergandJesperH.Hattel

6.1Introduction173

6.1.1Pultrusion173

6.1.2Overviewandmotivationofthechapter175

6.2Resinimpregnation175

6.2.1Saturatedpressure-drivenflow176

6.2.2Resinviscosity177

6.2.3Permeabilityoffiberreinforcements177

6.2.4Unsaturatedimpregnationflow178

6.3Thermochemicalmodeling180

6.3.1Heattransfer180

6.3.2Curekineticsanddifferentialscanningcalorimetry181

6.3.3Modelingconsiderations:simplemodelsandstate-of-the-art182

6.4Thermochemical mechanicalmodelingandresidual stressformation183

6.4.1Theevolutionofmaterialproperties183

6.4.2Mechanicalmodelingstrategies184

6.4.3Assessmentoftheresultantresidualstressfields andtheverification186

6.5Pullingforce189

6.5.1Beforedie-entrance, A0 189

6.5.2Die-entrancetoflowfrontlocation, A1 189

6.5.3Throughliquidandgelstates, A2 190

6.5.4Solidstateanddetachmentfromdiewall, A3 191

6.6Conclusion191 References192

7Modelingofmachiningprocesses197 Ju¨rgenLeopold Nomenclature197

7.1Introduction197

7.2Closed-loopprincipleofmodeling198

7.3Modelingandsimulationtechniques199

7.3.1Slip-linemethod199

7.3.2Finiteelementmodeling(finiteelementmethod)203

7.3.3Complementarymethods209

7.4Modelingandsimulationintheindustry—selectedexamples213

7.4.1Cuttingtooloptimization213

7.4.2High-speedcuttingorhigh-performancecutting213

7.4.3Drymachining213

7.4.4Burrformationandcleanmanufacturing213

7.4.5Cryogenicmachining215

7.5Openissues216

7.5.1Hybridmodelingandclosed-loopdesign216

7.5.2Multiscalemodelinginmachining218

7.5.3Multiscalemodelingincoating-substratesimulation220

7.6Summary222 References222 Furtherreading226

8Mechanicsofultrasonicallyassisteddrilling229 AnishRoyandVadimV.Silberschmidt

8.1Introduction229

8.2Drilling:theoryandmodeling230

8.2.1Kinematicmodeling230

8.2.2Finite-elementmodeling232

8.3Ultrasonicallyassisteddrilling235

8.3.1Experimentalsetupandinstrumentation235

8.3.2Casestudy:drillingincomposites237

8.4Conclusionandoutlook240 References241

9Machininginmonocrystals243

AnishRoy,QiangLiu,KaHoPangandVadimV.Silberschmidt

9.1Introduction243

9.2Mechanicsofsingle-crystalmachining245

9.2.1Single-crystal-plasticitytheory245

9.2.2Computationalimplementation247

9.2.3Criteriaofmaterial-removalmodeling248

9.3Machiningofsingle-crystalmetal248

9.3.1Experimentalprocedure248

9.3.2Finite-elementmodelandmaterialparameters249

9.3.3Simulationandresults250

9.3.4Discussion254

9.4Machiningofsingle-crystalceramicmaterial258

9.4.1Experimentalprocedure258

9.4.2Computationalmodeling259

9.4.3Resultsanddiscussion262

9.5Concludingremarks264 References265

10Microstructuralchangesinmachining269

W.Bai,R.Sun,J.XuandVadimV.Silberschmidt

10.1Introduction269

10.2Microstructuralevolutioninmachining270

10.2.1Microstructuralevolutioninmachinedsurface270

10.2.2Microstructuralevolutioninchip273

10.3Microstructuralmodelsformachining275

10.3.1Mechanismmodelsofmicrostructuralevolution275

10.3.2Calculationofmicrostructuralevolution278

10.4Microstructuralevolutioninultrasonicallyassistedcutting279

10.4.1Microstructuralevolutioninmachinedsurfacewith ultrasonicallyassistedcutting283

10.4.2Microstructuralevolutioninchipwithultrasonically assistedcutting288

10.5Conclusion294 Acknowledgments294 References294

11Residualstressesinmachining297

J.C.Outeiro

11.1Introduction297

11.2Fundamentalsofmachiningandresidualstresses298

11.2.1Metal-cuttingdefinitionandenergyconsiderations298

11.2.2Definitionandoriginsofresidualstresses301

11.2.3Techniquesformeasuringresidualstress301

11.3Residualstressesinmachiningoperations303

11.3.1Originofresidualstressesinmetalcutting303

11.3.2Residualstressesindifficult-to-cutmaterials305

11.3.3Effectofrelativetoolsharpnessonresidualstresses319

11.3.4Controlofresidualstressesinmachining322

11.4Modelingandsimulationofresidualstresses324

11.4.1Modelingandsimulationconsiderations324

11.4.2Relevanceofconstitutiveandcontactmodelsin residual-stressprediction326

11.4.3Simulationofresidualstressesforseveral workmaterials335

11.4.4Procedureforcomparingpredictedandmeasured residualstresses341

11.4.5Optimizationofcuttingconditionsforimproved residualstressesandsurfaceroughnessinmachined components344

11.5Influenceofresidualstressonproductsustainability346

11.5.1Introduction346

11.5.2Corrosionresistance348

11.5.3Fatiguestrength352

11.6Conclusion353 References354

12Microstructuralchangesinmaterialsundershockandhigh strainrateprocesses:recentupdates361 SatyamSuwas,AnujBishtandGopalanJagadeesh

12.1Introduction361

12.2Shockwaveandparameters363

12.3Experimentalmethodsforinvestigationofshockwaves365

12.3.1Taylor’simpacttest365

12.3.2Explosiveloadingofmaterials366

12.3.3Flyerplateimpacttest366

12.3.4Split-Hopkinsonpressurebar367

12.3.5Shockimpactinashocktube367

12.3.6Laser-inducedshockgeneration368

12.4Parametersinfluencingmaterialresponsetoshockexposure369

12.4.1Typesofshock-generateddefects369

12.4.2Effectofmaterialparameters371

12.4.3Effectofshockparameters376 12.4.4Otherfactors:residualstrain378 12.5Theoryofdefectgenerationundershock:pasttheoriesand newperspectives380 12.6Conclusion384 References384

13Thermomechanicsoffrictionstirwelding393 MadsRostgaardSonneandJesperH.Hattel

13.1Introduction393

13.2Thermalbehavior396

13.3Microstructuralevolution399

13.4Residualstressesanddistortions400

13.5Materialflow403

13.6Conclusion410 References410

14Modelingoffrictioninmanufacturingprocesses415 UdayShankerDixit,V.Yadav,P.M.Pandey,AnishRoy andVadimV.Silberschmidt

14.1Introduction415 14.2Historyoffrictionmodeling416 14.3Somepopularfrictionmodels418 14.3.1Amontons Coulomb’smodel419 14.3.2Constant-frictionmodel419 14.3.3WanheimandBay’smodel420 14.3.4Asperity-basedfrictionmodel421 14.3.5Plowingmodel434

14.4Frictioninmachining435

14.5Frictionmodelsinmetalforming437

14.6Frictioninsolid-statewelding438

14.7Frictionmodelsformicromanufacturing439

14.8Challengingissuesanddirectionsforfutureresearch439 14.9Conclusion440 Acknowledgment441 References441 Furtherreading444 Index445

Thispageintentionallyleftblank

Listofcontributors

W.Bai HuazhongUniversityofScienceandTechnology,Wuhan,P.R.China

IsmetBaran FacultyofEngineeringTechnology,UniversityofTwente,Enschede, TheNetherlands

AnujBisht DepartmentofMaterialsEngineering,IndianInstituteofScience, Bangalore,India

Raphae ¨ lBenjaminComminal DepartmentofMechanicalEngineering,Sectionof ManufacturingEngineering,TechnicalUniversityofDenmark,Lyngby,Denmark

UdayShankerDixit DepartmentofMechanicalEngineering,IndianInstituteof TechnologyGuwahati,Guwahati,India

ChristophHartl THKo ¨ ln-FacultyofAutomotiveSystemsandProduction, UniversityofAppliedSciences,Cologne,Germany

JesperH.Hattel DepartmentofMechanicalEngineering,Sectionof ManufacturingEngineering,TechnicalUniversityofDenmark,Lyngby,Denmark

MasoudJabbari SchoolofMechanical,Aerospace&CivilEngineering,The UniversityofManchester,Manchester,UnitedKingdom

GopalanJagadeesh DepartmentofAerospaceEngineering,IndianInstituteof Science,Bangalore,India

JunJiang DepartmentofMechanicalEngineering,ImperialCollegeLondon, London,UnitedKingdom

MartinLarsen FiberlineCompositesA/S,Middelfart,Denmark

Ju ¨ rgenLeopold TBZ-PARIVGmbH,Chemnitz,Germany

JianguoLin DepartmentofMechanicalEngineering,ImperialCollegeLondon, London,UnitedKingdom

MaikLinnemann FraunhoferInstituteforMachineToolsandFormingTechnology, Chemnitz,Germany

QiangLiu DepartmentofMaterialsEngineering,KULeuven,Leuven,Belgium

J.C.Outeiro Arts&MetiersInstituteofTechnology,CampusofCluny,Cluny, France

P.M.Pandey DepartmentofMechanicalEngineering,IndianInstituteof TechnologyDelhi,NewDelhi,India

KaHoPang WolfsonSchoolofMechanical,ElectricalandManufacturing Engineering,LoughboroughUniversity,Loughborough,UnitedKingdom

VerenaPsyk FraunhoferInstituteforMachineToolsandFormingTechnology, Chemnitz,Germany

AnishRoy WolfsonSchoolofMechanical,ElectricalandManufacturing Engineering,LoughboroughUniversity,Loughborough,UnitedKingdom

FilipBoSalling DepartmentofMechanicalEngineering,SectionofManufacturing Engineering,TechnicalUniversityofDenmark,Lyngby,Denmark

MichaelSandberg DepartmentofMechanicalEngineering,Sectionof ManufacturingEngineering,TechnicalUniversityofDenmark,Lyngby,Denmark

GerdSebastiani imkautomotiveGmbH,Chemnitz,Germany

ZhutaoShao DepartmentofMechanicalEngineering,ImperialCollegeLondon, London,UnitedKingdom

RajkumarShufen DepartmentofMechanicalEngineering,IndianInstituteof TechnologyGuwahati,Guwahati,India

VadimV.Silberschmidt WolfsonSchoolofMechanical,Electricaland ManufacturingEngineering,LoughboroughUniversity,Loughborough,United Kingdom

MadsRostgaardSonne DepartmentofMechanicalEngineering,Sectionof ManufacturingEngineering,TechnicalUniversityofDenmark,Lyngby,Denmark

JonSpangenberg DepartmentofMechanicalEngineering,Sectionof ManufacturingEngineering,TechnicalUniversityofDenmark,Lyngby,Denmark

R.Sun HuazhongUniversityofScienceandTechnology,Wuhan,P.R.China

SatyamSuwas DepartmentofMaterialsEngineering,IndianInstituteofScience, Bangalore,India

J.Xu HuazhongUniversityofScienceandTechnology,Wuhan,P.R.China

V.Yadav DepartmentofMechanicalEngineering,MaulanaAzadNational InstituteofTechnologyBhopal,Bhopal,India

OnurYuksel FacultyofEngineeringTechnology,UniversityofTwente, Enschede,TheNetherlands

Thispageintentionallyleftblank

AbouttheSerieseditors

Editor-in-Chief

VadimV.Silberschmidt isChairofMechanicsofMaterialsandHeadofthe MechanicsofAdvancedMaterialsResearchGroup,LoughboroughUniversity, UnitedKingdom.HewasappointedtotheChairofMechanicsofMaterialsatthe WolfsonSchoolofMechanicalandManufacturingEngineeringatLoughborough University,UnitedKingdomin2000.Priortothis,hewasaSeniorResearcherat theInstituteAforMechanicsatTechnischeUniversitatMu ¨ ncheninGermany. EducatedintheUSSR,heworkedattheInstituteofContinuousMediaMechanics andInstituteforGeosciences[both—theUSSR(later—Russian)Academyof Sciences].In1993 94,heworkedasavisitingresearcher,Fellowofthe Alexander-von-HumboldtFoundationatInstituteforStructureMechanicsDLR (GermanAerospaceAssociation),Braunschweig,Germany.In2011 14,hewas AssociateDean(Research).HeisaChartedEngineer,FellowoftheInstitutionof MechanicalEngineersandInstituteofPhysics,wherehealsochairedApplied MechanicsGroupin2008 11.HeservesasEditor-in-Chief(EiC)oftheElsevier bookserieson MechanicsofAdvancedMaterials.HeisalsoEiC,associateeditor, and/orservesontheboardofanumberofrenownedjournals.Hehascoauthored fourresearchmonographsandover550peer-reviewedscientificpapersonmechanicsandmicromechanicsofdeformation,damage,andfractureinadvancedmaterials undervariousconditions.

Serieseditors

DavidL.McDowell isRegents’ProfessorandCarterN.Paden,Jr.Distinguished ChairinMetalsProcessingatGeorgiaTechUniversity,UnitedStates.Hejoined GeorgiaTechin1983andholdsadualappointmentintheGWWSchoolof MechanicalEngineeringandtheSchoolofMaterialsScienceandEngineering.He servedastheDirectoroftheMechanicalPropertiesResearchLaboratoryfrom1992 to2012.In2012hewasnamedFoundingDirectoroftheInstituteforMaterials (IMat),oneofGeorgiaTech’sInterdisciplinaryResearchInstituteschargedwith fosteringaninnovationecosystemforresearchandeducation.Hehasservedas ExecutiveDirectorofIMatsince2013.Hisresearchfocusesonnonlinearconstitutivemodelsforengineeringmaterials,includingcellularmetallicmaterials,nonlinearandtime-dependentfracturemechanics,finitestraininelasticityanddefectfield mechanics,distributeddamageevolution,constitutiverelations,andmicrostructuresensitivecomputationalapproachestodeformationanddamageofheterogeneous alloys,combinedcomputationalandexperimentalstrategiesformodelinghigh

cyclefatigueinadvancedengineeringalloys,atomisticsimulationsofdislocation nucleationandmediationatgrainboundaries,multiscalecomputationalmechanics ofmaterialsrangingfromatomisticstocontinuum,andsystem-basedcomputational materialsdesign.AFellowofSES,ASMInternational,ASME,andAAM,heisthe recipientofthe1997ASMEMaterialsDivisionNadaiAwardforcareerachievementandthe2008KhanInternationalMedalforlifelongcontributionstothefield ofmetalplasticity.Hecurrentlyservesontheeditorialboardsofseveraljournals andiscoeditorofthe InternationalJournalofFatigue.

ThomasBo ¨ hlke isProfessorandChairofContinuumMechanicsattheKarlsruhe InstituteofTechnology(KIT),Germany.Hepreviouslyheldprofessorialpositions attheUniversityofKasselandattheOtto-von-GuerickeUniversity,Magdeburg, Germany.HisresearchinterestsincludeFE-basedmultiscalemethods,homogenizationofelastic,brittle-elastic,andvisco-plasticmaterialproperties,mathematical descriptionofmicrostructures,andlocalizationandfailuremechanisms.Hehas authoredover130peer-reviewedpapersandhasauthoredorcoauthoredtwo monographs.

ZhongChen isaProfessorintheSchoolofMaterialsScienceandEngineering, NanyangTechnologicalUniversity,Singapore.InMarch2000,hejoinedNanyang TechnologicalUniversity(NTU),SingaporeasanAssistantProfessorandhassince beenpromotedtoAssociateProfessorandProfessorintheSchoolofMaterials ScienceandEngineering.SincejoiningNTU,hehasgraduated30PhDstudents and5MEngstudents.Hehasalsosupervisedover200undergraduateresearchprojects(FYP,URECA,etc.).Hisresearchinterestincludes(1)coatingsandengineerednanostructuresforcleanenergy,environmental,microelectronic,andother functionalsurfaceapplicationsand(2)mechanicalbehaviorofmaterials,encompassingmechanicsandfracturemechanicsofbulk,compositeandthinfilmmaterials,materialsjoining,andexperimentalandcomputationalmechanicsofmaterials. Hehasservedasaneditor/editorialboardmemberforeightacademicjournals.He hasalsoservedasareviewerformorethan70journalsandanumberofresearch fundingagenciesincludingtheEuropeanResearchCouncil(ERC).Heisanauthor ofover300peer-reviewedjournalpapers.

Modelingofmetalforming: areview

1.1Introduction

Manufacturingofaproductbyplasticdeformationofmetalshasbeenperformed forages.Plasticdeformationcanbeaccomplishedwithorwithoutheatingthe metal.Accordingly,twobroadcategoriesofmetalformingprocessesarehotmetalworkingandcoldmetalworking.Amorerefinedclassificationincludeswarmmetalworkinginbetweenhotandcoldmetalworking.Inmostofthemetalforming processes,deformationiscarriedoutbytheapplicationofamechanicalload;the roleofheatislimitedtoreducingtheflowstress(requiredtostarttheplasticdeformationofthemetal).However,thereareprocesses,wheretheplasticdeformation isachievedbytheheatalone;anexampleislaserbending,whereasheetisbentby laserirradiationthatcreatesasufficientamountofthermalstressestobendthe sheet [1].

Basedonrawmaterial,desiredfinalproductandmetalflowpattern,themetal formingprocessesareclassifiedintobulkandsheetmetalformingprocesses.Bulk metalformingprocessesdeformhighvolume-to-surfacearearatiorawmaterials resultinginachangeofsurfacearea.Inthesheetmetalformingprocesses,theraw materialhasalowvolume-to-surfacearearatio,andmaterialdeformationdoesnot intendtochangethesurfaceareaimplyingthatthesheetthicknessremainsmoreor lessunaltered.Recently,anothercategory,namely,sheet-bulkmetalforminghas beenintroduced [2].Insheet-bulkmetalformingprocesses,thebulkdeformationof sheetiscarriedoutthatinvariablybringsouttheintendedchangesinthethickness aswell.Someexamplesofbulkmetalformingareforging,rolling,extrusion,and wiredrawing.Sheetmetalformingprocessesincludedeepdrawing,bending,and spinning [3].Coining,flowforming,andironingareexamplesofsheet-bulkmetal forming.

Modelingofmetalformingstartedsincethebeginningofthe20thcentury [4]. Initialattemptsweredirectedtoestimatetheloadrequiredforplasticdeformation. Prominentmethodswereslip-linefieldmethod,slabmethod,andupperbound method.Thesemethodsinvolvedseveralassumptionsandwereincapableofprovidingdetailedinformationaboutstress straindistributioninthematerial.Thetechniqueofvisioplasticitywasintroducedinthelate1950stogetdetailedinformation aboutthedeformation.Inavisioplasticitymethodatime-dependentvelocityfieldis MechanicsofMaterialsinModernManufacturingMethodsandProcessingTechniques. DOI: https://doi.org/10.1016/B978-0-12-818232-1.00001-1 Copyright © 2020ElsevierLtd.Allrightsreserved.

calculatedbasedonaseriesofphotographsofagridpatternonthemetalbeingprocessed.Analyticaland/ornumericaltechniquesareusedtoestimatethestress straindistributionandotherderivativeinformation.Thedecade1950 60sawthe emergenceoffiniteelementmethod(FEM).Anumberofarticleswerepublishedin the1970sand1980sonthemodelingofmetalformingprocesses.Thesemethods wereperfectedinthe1990s,andnowadays,thereareseveralcommercialFEM packagesdedicatedtomodelingofmetalformingprocesses.Sincethelasttwodecades,therehavebeenattemptstodevelopadvancedFEMtechniquesandseveral meshlessmethods.However,therequirementofhugecomputationaltimeisahindranceinthepopularizationofthesemethods.

Somedevelopmentshavetakenplaceincarryingoutmicrostructuralmodeling ofmetalformingprocesses.Classicalplasticitytheorycouldaccountfordistinct materialbehaviorbasedonmicrostructuralfeatures.Moleculardynamicssimulations(MDSs)andcrystalplasticityaretworecentlydevelopedmethodsforrealistic simulationofmetalformingprocesses,particularlyformodelingofmicroforming. However,thesemethodsarestillatanascentstageofdevelopmentforsolving metalformingproblems,andthereareseveralcomputationaldifficultiestobe overcome.

Thischapterprovidesanoverviewofmodelingofwell-knownmetalforming processes.Capabilitiesandlimitationsofvariousmodelingtechniquesare highlighted.Finally,thedirectionsforfurtherresearchareprovided.

1.2Modelingissuesinvariousmetalformingprocesses

Whydowemodelmetalformingprocesses?Whatisexpectedoutofamodel?In general,modelingisexpectedtoimprovetheefficiencyofoverallmanufacturing systemandreducethedependenceoncostlyhitandtrialexperiments.Modeling canprovidethefollowingvaluableinformation:(1)requireddeformationload; (2)energyconsumptionintheprocess;(3)stressesonthediesandtools;(4)defects intheprocess;(5)qualityoftheproduct,particularlyintermsofdimensionalaccuracyandsurfaceintegrity;(6)propertiesoftheproduct;(7)stress,strain,strain rate,andtemperaturedistributionintheproductaswellastooling;and(8)life assessmentofthetoolingandmachine.Adequatemodelingcanhelpinthedesign andoptimizationofmetalformingprocess,machines,andtooling.Inthesequel, salientmodelingissuesofpopularmetalformingprocessesarediscussed.

1.2.1Forging

Forgingisaprocessofplasticallydeformingthemetalbypressingandhammering. Itmaybeperformedincold,warm,orhotstateofthemetal.Therearemainlytwo typesofforgingprocesses:(1)opendieorfreeforgingand(2)closeddieor impressiondieforging.Opendieforgingistheprocessofdeformingthemetal betweenmultiplediesthatdonotcompletelyenclosethematerial.Itisoften 2MechanicsofMaterialsinModernManufacturingMethodsandProcessingTechniques

employedtopreformmaterialforsubsequentmetalforming.Thereareseveraldifferenttypesofopendieforgingprocesses. Fig.1.1 showsschematicdiagramsof threetypesofopendieforging—upsetforgingorupsetting,cogging,andorbitalor rotaryforging.Inupsettingthecompleteorpartialportionoftheworkpieceiscompressedbetweenafixeddieandmovingraminordertoincreasethecrosssection ofthedesiredportion.In Fig.1.1A,arodisbeingupsetforgedtomakeahead.In Fig.1.1B,coggingprocessisbeingcarriedoutinordertomakeasteppedbar.Itis basicallyanincrementalforming;aportionoftheworkpieceiscompressedbetween thedies,diesretract,andtheworkpieceisadvancedaxiallyfornextcompression operation. Fig.1.1C depictsupsettingofaworkpiecebyorbitalforging.Herethe lowerdieisfixed.Theupperdierotatesaboutanaxisslightlyinclinedtoworkpiece-axis;hence,atatimeitcompressesonlyasmallportionoftheworkpiece. Thisisalsoanincrementalformingandloadrequirementgetsreduced.

Inthecloseddieforgingorimpressiondieforging,metaliscompressedinthe encloseddies.Inthisprocessthemetalisfullycompactedtoacquiretheshapegovernedbythediecavities.Excessmaterialcomesoutasflashandistrimmed.

4MechanicsofMaterialsinModernManufacturingMethodsandProcessingTechniques

Usually,themassofflashcanbeasmuchas20%. Fig.1.2 showsaschematicof closeddieforgingwithflashgeneration.Flash-lessforgingisalsopossiblebut requiresacarefultoolingdesign.

Inforgingprocess,strainratemaylieintherange10 3 10 2 s 1,depending onwhetheritispressforgingorhammerforging.Inthecoldforgingtheeffective Coulomb’scoefficientoffrictionrangesfrom0.05to0.15and0.1to0.5inhot forging.Inmostofthecases,Coulomb’sfrictionmodelisinappropriate.Frictional behaviormaychangefromstickingtoslidingwhilemovingoutwardlyfromcenter inadirectionnormaltotheload.

Estimationofforgingloadhasbeenthefocusofattentioninforging.Another interestistofindoutflowpatternsinordertodesigndies.Forgingprocesssuffers fromvariousdefectsthatneedtobecontrolled.Surfacecrackingmayoccurdueto thermomechanicaleffects.Poormaterialflowmaycausefoldingoroverlappingof oneregionofmetalontoanothercausingcoldshut.Itmayalsoresultinunderfillingofdiecavities.Surfacemaygetroughenedduetothedeformationofcoarse grains,whichiscalledorangepeeldefect.Althoughforgingloadestimationtechniquesaresufficientlyrefined,predictionofdefectsisstillachallengingtask.

Thesimplestopendieforging,namelyupsettingisoftenusedasabenchmarktest forstudyingthematerialandfrictionbehavior.Inatypicalcompressiontestthespecimeniscompressedbetweentwolubricatedplatenstofindoutthedeformation behaviorofmetals.Inaringcompressiontestahollowcylinderspecimeniscompressedbetweentwoplatesandfrictionisestimatedbasedonthechangeinthehole diameter.Inthecylindricalspecimenofaringcompressiontest,typicallythehole diameterishalfoftheouterdiameterandheightisone-thirdtheouterdiameter.

1.2.2Rolling

Rollingshapesmaterialsbypassingitbetweencounterrotatingrolls.Ithasbeenin wideusesincethe14thcentury.Inthisprocess,slabs,billets,blooms,orrodsare

Figure1.2 Closeddieforging.

rolledintoplates,sheets,strips,rods,andtubes.Theprofilescanalsobeproduced byrolling.Becauseofthelimitationofthemaximumpossiblereductioninone pass,usuallymultipassrollswithanumberofstandsinseriesareemployed.Thisis calledtandemrollingandisschematicallydepictedin Fig.1.3.Ithasthreestands; ineachstand,therearetwowork-rollsandtwobackuprollstopreventwork-roll deflection.Rollingcanbeemployedwithorwithoutfrontandbacktensions. Rollingprocesslooksdeceptivelysimple.However,arealisticsimulationneeds tofocusonthefollowingthreecomplextasks:

1. properelastic plasticmodelingofthematerialtobeprocessed,

2. modelingoffrictionbehaviorwithaproperassessmentofneutralzoneinwhichthedirectionoffrictionalstresseschangesfromfacilitatingthemovementofthematerialtoopposingit,and

3. applicationofelasticitytheoryforestimatingtherollflatteningandrolldeflection.

Apropermodelofrollingprocessestimatestherolltorque,rollseparatingforce, androllpressuredistributionaccurately.Thecommondefectsinrollingprocessare edgecracking,wavyedge,centralburst,andalligatoring.Edgecrackingrefersto crackingattheedgesoftherolledproductsandoccursbecauseofnonhomogeneous deformationduetowrongdesignofrollsorimpropermanagementoffriction. Wavyedgeoccursmainlybecauseofrolldeflection.Duetononuniformrollgap, edgestendtoelongatemorethanthecenter.Tomaintaincontinuity,edgesgetcompressedandproduceawavypattern.Centralburstisaductilefracturethatinitiates fromavoidatthecenter.Inalligatoringacrackformsalongthecentralplaneand splitstheends.Excessivefrontorbacktensionmaycausethetearingofthesheet. Manytimes,rollingprocessisemployedforimprovingthematerialproperties. Asymmetricsheetrolling,inwhichthesurfacespeedofrollsorfrictiondifferson thetwosidesofthesheet,hasbeenusedtoimprovethemicrostructure [5,6].In temperorskin-passrolling,0.5% 4%reductioninthesheetthicknessiscarried outtoprovideadegreeofhardeningtosheet,topreventstretcherstrainsorLu ¨ ders band,andtoimprovethesurfaceintegrityofthesheet [7].Accumulativerollbondingisaseveredeformationprocess [8].Inthisprocessasheetispassedbetween twocounterrotatingcylinderstoimpart50%reductiontoit.Elongatedsheetiscut intotwopiecesofequallengthandstackedtogethertomakeitofsamedimension

Figure1.3 Atandemrollingmill.

astheoriginalsheet.Itisfurtherpassedthroughtherolltoimpart50%reduction. Theprocedureisrepeatedseveraltimes,whichresultsinproperlybondedthin stackedsheetswithalargeaccumulatedstrain.Withthisprocedure,grainsizegets reformed,andstrengthgetsimproved.

1.2.3Wiredrawing

Wiredrawingprocesspullsawirethroughadietoreduceitscrosssection.Itcan becarriedoutinthepresenceofabacktensionthathelpsinreducingthediepressureandprovidingdimensionalstability.Theoreticallymaximumpossiblereduction inonepassis63%,butapracticallimitis45%.Hence,forgettinghigherreduction, multistagewiredrawingisemployed. Fig.1.4 depictsaschematicoftwo-stage wiredrawingprocesstoreducethecross-sectionalareaofwirefrom Ai to Af.Wire drawingisusuallycarriedoutatroomtemperature,butoccasionallywarmwire drawingisalsoperformed.

Roddrawingissimilartowiredrawing.Hereinsteadofawire(diameterless thanabout6mm),arodispulledthroughdies.Incaseoftubedrawing,atubeis drawnoveramandrel.Intube,sinkingnomandrelisusedandouterdiameter reducedwithincreaseinlength;tubethicknessmayreduceorincreasedepending ontheprocessparameters.

Diedesignisveryimportantinwireorroddrawing.Mostoftheresearchers haveoptimizedthedieshapewithanobjectiveofminimizingenergy.However,the shapeofdiehasalargebearingonthequalityoftheproduct.Certaindieshapes, althoughmayincreasetherequiredpower,reducethedefectsandimprovethe mechanicalpropertiessuchastensilestrengthandhardnessofthedrawnwire/rod. Thereareseveraltypesofdefectsinawire/roddrawingprocess.Somedefectssuch asscabs(irregularlyshapedflattenedprotrusions)occurduetodefectiverawmaterial.Somedefectsoccurduetofaultydesignofdieandprocess.Forexample,a combinationoflargedieangleandsmallreductionresultsinthenarrowingofplasticzoneinthevicinityofcenterlineandenhancesthechanceofcentralburst [9]. FrictionisundesirableinwiredrawingandusuallytheCoulomb’scoefficientof frictionrangesfrom0.01to0.1withproperlubrication.Inthedrywiredrawingthe

lubricantiscoatedonthewirebeforeenteringthedie.Inthewetdrawing,dieand wirearesubmergedinthelubricants.Itisalsoimportanttocontroltheresidual stressesinthewirebyproperdesignofthedieandprocess.Recentlydielessdrawingofwiresandtubesisalsogainingimportance [10].

1.2.4Extrusion

Inextrusionprocesstherawmaterialiscompressedthroughadietoreducethe cross-sectionalareaofthematerialortogeneratespecialprofileofthecrosssection.Theoretically,thereisnolimittothemaximumpossiblereductioninextrusion.Theextrusioncanbeperformedincold,warm,orhotstateofthemetal. Therearealotofvariantsoftheextrusionprocess.Intheforwardordirect extrusionthemetalflowsinthedirectionoframmotion. Fig.1.5 showsaschematicdiagramoftheprocess.Toavoidstickingoframwithrawmaterial,adummy blockisinsertedinbetween.Movementofmaterialthroughthecontainercausesa lotoffrictionbetweenthecontainerwallandrawmaterial.Toalleviatethisproblem,backwardorindirectextrusionisused,inwhichtheramandextrudedmaterial moveindifferentdirectionsasshownin Fig.1.6;however,theramneedstobehollow,whichweakensit.Inlateralextrusion,materialflowssideways,usuallyperpendiculartorammotion;ithelpstoreducethefrictionallosses.Aschematic diagramisshownin Fig.1.7,wherelateralextrusionistakingplacefromboth sides,butitcantakeplacefromonesideaswell.Inimpactextrusion,materialis extrudedwiththeimpactforceoftheram. Fig.1.8 showsaschematicofimpact extrusionusedtomakeathin-walledtubeopenatoneend.Inhydrostaticextrusion (Fig.1.9)therawmaterialisplacedinasealedchambercontainingliquidanda movingrampressurizestheliquid;therawmaterialisforwardextrudedbythepressureoftheliquid.Hydrostaticextrusionreducesthefrictionandalsoenhancesthe ductilityoftherawmaterial.Inthemulti-holeextrusion(Fig.1.10)thediehas morethanoneopening,causingmorethanoneproducttobeextruded

Extruded rod

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.