Mechanics of flow-induced sound and vibration volume 2_ complex flow-structure interactions 2nd edit

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Flow-Induced Vibration Handbook for Nuclear and Process Equipment Michel J. Pettigrew

https://ebookmass.com/product/flow-induced-vibration-handbook-fornuclear-and-process-equipment-michel-j-pettigrew/

ebookmass.com

Free-surface flow: environmental fluid mechanics Katopodes

https://ebookmass.com/product/free-surface-flow-environmental-fluidmechanics-katopodes/

ebookmass.com

Flow Assurance. Volume II Qiwei Wang

https://ebookmass.com/product/flow-assurance-volume-ii-qiwei-wang/

ebookmass.com

Oxford IB Diploma Programme: IB Prepared: Chemistry Sergey Bylikin

https://ebookmass.com/product/oxford-ib-diploma-programme-ib-preparedchemistry-sergey-bylikin/

ebookmass.com

MechanicsofFlow-Induced SoundandVibration,Volume2

Dedication

Tomywife,Donna

PrefacetotheSecondEdition

Ithasbeen31yearssincethepublicationofthefirsteditionofthisbookand Ibelievethatthefoundationsandfundamentalsofthecombinedsubjectof aero-hydroacousticswerewell-establishedatthetimeofthefirstedition. However,inthetimesincethenwhiletherehavebeendevelopmentsinthose fundamentalstherehasalsobeenanextensivegrowthinapplicationsand methodsofapplications.Thisgrowthhasbeenmadepossiblebythedevelopmentofcomputationaltools,personalcomputers,dataacquisitionhardwareandsoftware,andsensors.Thesewerenotavailableatthetimeof edition1.Infactpersonaltoolssuchas, Matlab, Mathematica, Mathcad,and Labview,nowwidelyusedinacademicandcommercialapplicationswere notavailabletothereadereither.Thescienceofaero-hydroacousticphenomenahasreallybenefittedfromtheuseofsimultaneously-collectedmultichannelsensorarraysaswell.Finally,therangeofapplicationshasgrownunder thecombinedpullsofconsumerawarenessandintoleranceofnoiseand vibration,publiclegislationrequiringnoisecontrol,andmilitaryneeds.

Computationaltoolshavemadepossiblebothdirectnumericalsimulations forresearchanddetaileddesignengineeringapplications.Ihaveattemptedto selectivelyextendthecoverageofedition1intothesenewgrowthareaswhile atthesametimemaintainingthestructureandphilosophyofthebookandnot substantiallyincreasingitssize.Insomeareasthenewlydevelopednumerical technologieshavemadeitpossibletoconduct“numericalexperiments”that parallelandcomplementphysicalexperiments,therebyleveragingthecapabilitiesofboth.Ihaveusedsomeoftheseintheareasofjetnoise,boundary layernoise,androtornoiseasexamplestoaddresstheapplicationofnumericaltechniques.Ihaveavoidedgoingintonumericalmethods,however,since therearenownumerousbooksonthetechniquesofcomputationalfluid mechanics,largeeddysimulations,andfiniteelementmethodsmakingit duplicativetoaddressthesetechniques,themselves.

Theformalismsdevelopedherearesuitableforevaluationonapersonal computer,butclosed-formasymptoticsolutionsarealsogivenforimmediate interpretationforunderstandingtrendsindata.Thebookiswrittenprincipallyasareferencework,althoughitmaybeusedasateachingaid.The readerwillalwaysfindtheoreticalresultssupportedbystep-by-stepderivationsthatidentifyanyassumptionsmade.Forasmanysourcesofsoundas possible,eachchapterisillustratedwithcomparisonsofleading-orderformulas,measureddata,andresultsofnumericalsimulations.

InwritingthefirsteditionIprovidedacomprehensivelistofreferences ineachfocusarea.EachoftheseIreadandintegratedintothetext.Thiswas intendedinedition2,butIsoonfacedtherealitythatthenumberofpapers publishedinanyareaisnowtoolargetotreatinthismanner.Onejournal hasasearchenginethatprovidestheuserwithayear-by-yeardistributionof paperspublishedinaselectedarea.Theannualpublicationrateinonearea increasedinthatjournalbyafactorof10beginningin1999 2000. Accordinglyinthiseditionthelistofreferenceshasbeenexpanded,but admittedlylessexhaustivelythaninthefirst.

Asnotedabovethepresentationphilosophyandorganizationofthefirst editionhasbeenmaintainedinthissecondeditionwithfundamentalscentral toVolume1andmorecomplexgeometryandfluid-structureinteractionthe subjectsofVolume2.ConsideringVolume1,anareaofadditionandchange isinChapter3ofVolume1wherethediscussionofturbulencestatistics andjetnoisehavebeenchangedandexpanded;thisrequiredanadditionalsectioninChapter2ofVolume1ontheeffectsofsourceconvectionand theDopplereffect.Chapters4and5ofVolume1havebeenupdatedtomeet theneedsoftheotherchaptersforwhichtheyprovidefundamentals. Chapter6ofVolume1hasbeenrevisedtopresentthelatestviewsonbubble dynamics,cavitationinception,andacoustictransmissioninbubblymedia. RegardingVolume2,wehavechangedchapternumbering,butnotthechapter subjects.Accordingly,Chapter1,ofthisvolume,HydrodynamicallyInduced CavitationandBubbleNoise,nowaddressesthephenomenarelatedtohull pressurefluctuationsonshipsduetoextensivepropellercavitation.Chapter2, EssentialsofTurbulentWallPressureFluctuations,andChapter3,Response ofArraysandStructurestoTurbulentWallFlowandRandomSound,have beenextensivelyreworked.Thesectionontheuseofsensorsandarrayshas beenmovedfromChapter2,EssentialsofTurbulentWallPressure Fluctuations,toChapter3,ResponseofArraysandStructurestoTurbulent WallFlowandRandomSound;Chapter2,EssentialsofTurbulentWall PressureFluctuations,nowdealsexclusivelywiththescienceofboundary layerpressureandChapter3,ResponseofArraysandStructurestoTurbulent WallFlowandRandomSound,dealswithresponseofsensors,sensorarrays, andelasticstructures.Together,thesechaptersnowpresentthemodernviews ofturbulentboundarylayerwallpressurefluctuationsatlowwavenumber, radiatedsound,roughwallboundarylayers,andtheeffectsofstepsandgaps onsound.Chapter4,SoundRadiationFromPipeandDuctSystems,presents amorecomprehensivetreatmentofflow-excitationandradiatedsoundfrom elasticcylinders,bothductsandshells.Thiscoveragerecognizesthecapabilityofobtainingmodalsolutionsonpersonalcomputers.Chapter5, NoncavitatingLiftingSections,andChapter6,NoiseFromRotating Machinery,havealsobeenrevised,althoughlessextensivelyso.Turbulence ingestionnoisewasnotwellunderstoodwhenedition1waswritten;edition2 providesanexpandedtreatmentforliftingsurfacesandpropellerfans.

PrefacetotheFirstEdition

Flow-inducedvibrationandsoundoccurinmanyengineeringapplications, yetitisoneoftheleastwellknownofalltheengineeringsciences.Thissubjectareaisalsooneofthemostdiverse,incorporatingmanyothernarrower disciplines:fluidmechanics,structuraldynamics,vibration,acoustics,and statistics.Paradoxically,itisalsothisdiversenaturethatcausesthissubject tobewidelyregardedasonereservedforexpertsandspecialists.Amain purposeofthisbook,therefore,istoclassifyandexamineeachoftheleadingsourcesofvibrationandsoundinducedbyvarioustypesoffluidmotion andunifythedisciplinesessentialtodescribingeachsource.

Thisbooktreatsabroadselectionofflowsourcesthatarewidelyencounteredinmanyapplicationsofsubsonicflowengineeringandprovidescombinedphysicalandmathematicalanalysesofeachofthesesources.The sourcesconsideredincludejetnoise,flow-inducedtonesandself-excited vibration,dipolesoundfromrigidandflexibleacousticallycompactsurfaces, randomvibrationofflow-excitedplatesandcylindricalshells,cavitation noise,acoustictransmissioncharacteristicsandsoundradiationfrombubbly liquids,splashnoise,throttlingandventilationsystemnoises,liftingsurface flownoiseandvibration,andtonalandbroadbandsoundsfromrotating machinery.Theformalismsdevelopedaresuitableforcomputermodeling, butclosed-formasymptoticsolutionsareemphasized.Manyfeaturesofthis bookhaveevolved,inpart,fromtheauthor’sownrequirementsforintegratingthefundamentalsofthesubjectwiththemanypracticalitiesofthedesign ofquietvibration-freemachinery.

Toachievetheobjectiveofthebooktounifythesubject,thesecond chapterprovidescomprehensiveanalyticaldevelopmentsoftheclassicaltheoriesofaeroacousticsandhydroacoustics.Thesedevelopmentsbeginwith theequationsofmotion,progressthroughderivationsofvariousformsofthe waveequation,andendwiththesettingdownoftheformalismofintegral solutionsthatarevalidforsourcesnearboundaries.Theformaltreatmentis thenbroadenedandappliedtovariouspracticalsourcetypesthroughoutthe remainderofthisbook.Animportantfeatureofthetreatmentofrealsources istherandomnatureoftheexcitingflowsinbothspaceandtime.Thusstatisticalmethodsareintroducedinthesechapterstodescribethesoundand vibrationgenerationprocessinsuchcases.Insummary,thisbooktreatsthe essentialsofhowflowdisturbancesgeneratesoundintheabsenceoflocal

surfaces,howflowsofpracticalimportanceexcitebodiesintovibration,and thenhowtheseexcitedsurfacesradiatesound.

Onceamathematicaldescriptionoftheflow-inducedsurfacemotion exists,itisastraightforwardmatterfordesignengineerstoextendthe modelingofthisbooktoaddressotherproblemssuchasflow-inducedstress andfatigueinstructures.Ineverycasepresented,thederivedrelationshipsin thisbookaretestedagainstwhateverempiricaldataweremadeavailableto theauthor,fromeitherlaboratoryorfieldtestresults,inordertoexamine thelimitationstothetheory.Theresultsarealsoexaminedtoelucidateeffectivemethodsforsoundandvibrationcontrol,byconsideringboththenature oftheflowaswellastheclassicalnoisecontrolmethods.Theresultsofthis bookmaythusalsobeusedtogiveinsightsintohowentireprocessesmay bedesignedforfundamentallyquietoperation.

Thisbookiswrittenprincipallyasareferencework,althoughitmaybe usedasateachingaid.Thereaderwillalwaysfindreasonablysophisticated resultssupportedbystep-by-stepderivationsthatclearlyidentifyany assumptionsmade.Eachchapterisillustratedwithcomparisonsofleading formulasandmeasureddata.Thereferencelists,thoughnotmeanttobe exhaustive,areextensiveandareintendedtosupportallphasesofthisbook withup-to-datebackgroundandadditionalinformation.Becausethephysical sourcesofsoundandvibrationaredevelopedfromfundamentalprinciples, readerswhoarealsowellversedinmachinedesignorinanyoftherelated engineeringsciencesshouldbeabletoapplytheprinciplesinthisbookin theirwork.Anattempthasbeenmadetousemathematicalnotationthatis standardinotherfieldsofengineering.

Thefirstsixchapters(thecontentsofVolumeI)havebeenwrittenwith emphasisontheelementsoffluidmechanics,vibration,andacoustics.These chaptersdealwiththemorefundamentalsourcesofflownoise.Thusthis volumemightfitintoacurriculumthatofferscoursesinappliedmathematics,acoustics,vibration,andstrengthofmaterialsandlacksarelativelygeneralizedcourseinthephysicalprinciplesofvibrationandsoundabatement. VolumeII,ontheotherhand,dealswithmoreadvancedandpracticalsubjectareas.Bothvolumescouldserveasreferencebooksforgraduatecourses invibration,noisecontrol,acoustics,andprocessdesignengineering.Draft versionsofpartsofthisbookhavebeenusedbytheauthorinagraduate courseinspecialtopicsinacousticsattheCatholicUniversityofAmerica andinshortcourses.

Duetotheinterdisciplinarynatureofthesubjectofflow-inducedvibrationandsoundastreatedinthisbook,itisunlikelythattheaveragereader willbeequallywellversedinallthecomponentdisciplines:appliedmathematics,fluidmechanics,vibrations,strengthofmaterials,acoustics,andstatisticalmethods.Accordingly,readersofthisbookshouldbeaccomplished insenior-levelappliedmathematicsaswellasinstrengthofmaterialsandin atleastoneoftheremainingdisciplineslisted.Anattempthasbeenmadeto

ListofSymbols

ARaspectratio

Ap areaofapanel,orhydrofoil

B numberofbladesinarotororpropeller

b gapopening(Chapter3ofVolume1)

C bladechord

CD, CL, Cf, Cp drag,lift,friction,andpressurecoefficients,respectively

c wavespeed,subscripted:0,acoustic;b,flexuralbending;g,group (Chapter5ofVolume1),gas(Chapter6ofVolume1andChapter1: HydrodynamicallyInducedCavitationandBubbleNoise);L,bar; l longitudinal;m,membrane(Chapter5ofVolume1),mixture (Chapters3,5,and6ofVolume1)

D steadydrag

D diameter(jet;propeller,rotorinChapter3ofVolume1;Chapter1: HydrodynamicallyInducedCavitationandBubbleNoise;Chapter6: NoisefromRotatingMachinery)

d cylinderdiameter,crosssection

E(x)expectedvalueof xð 5 xÞ

f frequency

Fi(t)forceinthe ithdirection

F } i ; F }0 i forceperunitarea,volume

Fr Froudenumber

G(x,y),

G(x,y, ω )

Green’sfunctions.Subscriptedmformonopole, di fordipoleoriented alongthe i axis.

Hn(ξ )cylindricalHankelfunction, nthorder

h thicknessofplate,oroftrailingedge,hydrofoil,propellerblade hm maximumthicknessofanairfoilsection

I acousticintensity

J propelleradvancecoefficient

Jn (ξ )Bessel’sfunction,firstkind, nthorder

K cavitationindex ðPN Pv Þ=qN

k,ki wavenumber; i,ithdirection; k13,inthe1,3plane

kg geometricroughnessheight

kn,kmn wavenumbersof nthor m,n modes

kp platebendingwavenumber, kp 5 ω /cb

ks equivalenthydrodynamicsandroughnessheight

kT, k thrustandtorquecoefficientsforpropellersandrotors,Eqs.(6.20)and (6.21).

k0 acousticwavenumber ω /c0

xxii ListofSymbols

L steadylift

L,L’unsteadyliftandliftperunitspan,Chapter6,NoisefromRotating Machinery,usuallysubscripted

L,L3 lengthacrossthestream,span

Li geometriclengthinthe ithdirection

lc, lf spanwisecorrelationlength,eddyformationlength

l0 lengthscalepertainingtofluidmotionwithoutspecification

M, Mc, MT, MN Machnumbers:convection(c),tip(T),andfreestream(N)

M mass

mm,mmn fluidaddedmassperunitareafor m or mn vibrationmode

Ms structuralplatingmassperunitarea

N numberofbubblesperunitfluidvolume

n(k), n(ω )modenumberdensities

n, ni unitnormalvector

ns shaftspeed,revolutionspersecond

n(R)bubbledistributiondensitynumberofbubblesperfluidvolumeper radiusincrement

ℙ, ℙ(ω , Δω )power,totalandinbandwidth Δω ,respectively

ℙrad radiatedsoundpower

P averagepressure

Pi rotorpitch

PN upstreampressure

p fluctuatingpressure;occasionallysubscriptedforclarity:a,acoustic; b,boundarylayer,h,hydrodynamic

L torque

q rateofmassinjectionperunitvolume

qN, qT dynamicpressuresbasedon UN and UT

RL or RL Reynoldsnumberbasedonanygivenlengthscale L, 5 UN L/υ;selection ofscriptdeterminedtoavoidconfusionwithalternativeusesof“R”.

R radius;usedinChapter1,HydrodynamicallyInducedCavitationand BubbleNoise,andChapter2,EssentialsofTurbulentWall-Pressure Fluctuations,forgeneralbubbleradiusandinChapter6,Noisefrom RotatingMachinery,forpropellerradiuscoordinate

Rb bubbleradius

Rij normalizedcorrelationfunctionofvelocityfluctuations ui and uj

Rpp normalizedcorrelationfunctionofpressure

^ R nonnormalizedcorrelationfunctionSection2.6.2ofVolume1

RT, RH fantipandhubradii

r, ri correlationpointseparation,thedistinctionfrom r isclearinthetext

r acousticrange,occasionallysubscriptedtoclarifyspecialsource point-fieldidentification

S Strouhalnumber fsl0/U where l0 and U dependonthesheddingbody

Se, S2d one-andtwo-dimensionalSear’sfunctions

Smn(k)modalspectrumfunction

Sp(r, ω )spectrumfunctionusedinChapter6ofVolume1definedin Section6.4.1

T averagingtime

T,T(t)thrust,steadyandunsteady

Tij Lighthill’sstresstensorEq.(2.47)ofVolume1

t time

U averagevelocity,subscripted:a,advance,c,convection;s,shedding ð 5 UN 1 Cpb p Þ;T,tip, τ ,hydrodynamicfriction ð 5 τ w =ρ0 p Þ; N; freestream

u, ui fluctuatingvelocities

V statorvanenumberinChapter6,NoisefromRotatingMachinery

υ volumefluctuation

υ(t)transversevelocityofvibratingplate,beam,hydrofoil

We Webernumber,Chapter1,HydrodynamicallyInducedCavitationand BubbleNoise

x, xi acousticfieldpointcoordinate

y adiabaticgasconstant(Chapter6ofVolume1),rotorbladepitchangle (Chapter6:NoisefromRotatingMachinery)

y, yi acousticsourcepointcoordinate

yi cross-wakeshearlayerthicknessatpointofmaximumstreamwise velocityfluctuationinwake,Figs.5.1and5.18

α complexwavenumber,usedinstabilityanalysesandasdummy variable

αs staggerangle

β volumetricconcentration(Chapter3ofVolume1andChapter1: HydrodynamicallyInducedCavitationandBubbleNoise),fluidloading factor ρ0c0/ρp hω (Chapters1and5ofVolume1,Chapter3:Response ofArraysandStructurestoTurbulentWallFlowandRandomSound, andChapter5:NoncavitatingLiftingSections),hydrodynamicpitch angle(Chapter6:NoisefromRotatingMachinery)

εm (1/2)form 5 0; 5 1form ¼ 0

δ boundarylayerorshearlayerthickness,also δ (0.99)and δ (0.995)

δ (x)eitheroftwodeltafunctions,seep.41

δ boundary(shear)layerdisplacementthickness

ηi, ηp poweringefficiencies;i,ideal;p,propeller

ηT, ηrad, ηm,

ηv, ηh lossfactors:T,total;rad,radiation;m,mechanical;v,viscous; h,hydrodynamic

Γ, Γ0 vortexcirculation(0),rootmeansquarevortexstrengthinChapter5, NoncavitatingLiftingSections

κ vonKarmanconstant(Chapter2:EssentialsofTurbulentWall-Pressure Fluctuations),radiusofgyrationofvibratingplate h= 12; p ,beam, hydrofoil(Chapter3:ResponseofArraysandStructurestoTurbulent WallFlowandRandomSound,Chapter4:SoundRadiationfromPipe andDuctSystems,andChapter5:NoncavitatingLiftingSections)

κ, κ13 dummywavenumbervariables

Λ integralcorrelationlength;forspatialseparationsinthe ithdirection Λi

λ wavelength(alsoturbulentmicroscaleinChapter5:Noncavitating LiftingSections)

μ viscosity

μp Poisson’sratio,usedinterchangeablywith μ whendistinctionwith viscosityisclear

2 MechanicsofFlow-InducedSoundandVibration,Volume2

Suction

FIGURE1.1 Illustrationofacavitatinghydrofoil,itssurfacepressuredistribution,andits regionofcavitation.

sothatapressurecoefficient Cp maybedefined:

Ps Þmin # Pv Region of

where PN and UN aretheupstreamambientpressureandvelocity,respectively.Theincreasedvelocityonthecurvedpartofthehydrofoilcauses thesurfacepressuretobelessthantheambientpressureandthestatic pressurevariesdifferentlyoneithersideofthefoil.Ononeside,hereshown astheupperside,thestaticpressuresaregenerallymuchlessthanonthe oppositeside.Thelowpressuresideisreferredtoasthe“suctionside”and therelativelyhighpressuresideasthe“pressure”side.Thesepressuredistributionsaredeterminedbythethicknessdistributingthecamber,andtheangle ofattackofthefoil.ToreviewthediscussioninChapter6ofVolume1, cavitationoccurswhenthepressureintherarefiedliquid,whichislowestnear thesurface,isreducedtosomecriticalpressure,say,thevaporpressure Pv. Notethatthecriticalpressureofundersaturatedwaterisequalto Pv whenthe free-streamcontainscavitationnucleiinexcessof10 3 cmradius.Seealso Fig.6.8ofVolume1and Section1.2.2.2.So,forlargeenoughnuclei.Thus whentheminimumpressureonthehydrofoilislessthan Pv,cavitationoccurs; i.e.,intheabsenceofanyeffectsofunsteadinessintheflow

or

Anincipientconditionoccurswhenthereisinequality,sincethis conditionmarksthecavitationthreshold.Thereforethecavitationindex

expressestherelationshipbetweenpressureandvelocitythatdetermines similarity.Accordingtoinequality (1.3),cavitationoccurswhen

or,usingthedefinitionofthecavitationindex,whenever

Thethresholdorincipientconditionexistswhen

Inmorecomplicatedgeometries,e.g.,apumporpropeller,theparameters ofundisturbedflowintothecavitatingsurfacemaynotbeknownornotbe ofengineeringinterest.Inthesecasesthereissteadyflow,buttheremay beavelocity-dependentpressuredifference, ΔP,betweenthereference pressure Pref andthesurfacepressure PN:

Furthermore,ratherthantheactualvelocityatthesurface(say,theresultant tangentialtipvelocityinthecaseofpropeller),someotherreferencevelocity, Uref,isoftenused,sothataparameter,say, Ka,

isappropriate.Thisparameterisrelatedtothepreviouslydefinedindexby

Aslongasdynamicalsimilitudeexistsbetweenonescalesizeandthe next,sothatfixedproportionalitiesaremaintainedbetween UN and Uref and between ΔP and1=2ρ0 U 2 N , Ka isadimensionlesscavitationnumberthat describesrelativecavitationperformance.Asbeforewhen Ka islessthan somethreshold(orincipient)value,say,(Ka)i,thencavitationoccursinthe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.