Mathematical techniques of fractional order systems azar a.t. et al. (eds.) - The ebook with rich c

Page 1


https://ebookmass.com/product/mathematical-techniques-of-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Fractional-order Design: Devices, Circuits, And Systems

Ahmed G. Radwan

https://ebookmass.com/product/fractional-order-design-devicescircuits-and-systems-ahmed-g-radwan/

ebookmass.com

Understanding Biology Kenneth Mason Et Al.

https://ebookmass.com/product/understanding-biology-kenneth-mason-etal/

ebookmass.com

Anesthesiology 3rd Edition David Longnecker Et Al.

https://ebookmass.com/product/anesthesiology-3rd-edition-davidlongnecker-et-al/

ebookmass.com

Media/Society: Technology, Industries, Content, and Users 6th Edition, (Ebook PDF)

https://ebookmass.com/product/media-society-technology-industriescontent-and-users-6th-edition-ebook-pdf/

ebookmass.com

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright r 2018ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformation aboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesfor whomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligence orotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedin thematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-813592-1

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionEditor: SonniniR.Yura

EditorialProjectManager: PeterJardim

ProductionProjectManager: VijayarajPurushothaman

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

ListofContributors

AmrM.AbdelAty EngineeringMathematicsandPhysicsDepartment,Facultyof Engineering,FayoumUniversity,ElFayoum,Egypt

SalwaK.Abd-El-Hafiz FacultyofEngineering,CairoUniversity,Giza,Egypt

NorelysAguila-Camacho UniversityofChile,Santiago,Chile

MohsenAlimi UniversityofKairouan,Kairouan,Tunisia

DaliaAllam FayoumUniversity,Fayoum,Egypt

AhmadTaherAzar FacultyofComputersandInformation,BenhaUniversity, Benha,Egypt;SchoolofEngineeringandAppliedSciences,NileUniversity, Giza,Egypt

PagavathigounderBalasubramaniam GandhigramRuralInstitute(Deemedtobe University),Dindigul,TamilNadu,India

YassineBensafia MohandOulhadjUniversityofBouira,Bouira10000,Algeria

MuzaffarA.Bhat JamiaMilliaIslamia,NewDelhi,India

Y.Boukal Universite ´ deLorraine,CosnesetRomain,France;Universite ´ HassanII, Casablanca,Maroc;Universite ´ deValenciennesetduHainaut-Cambre ´ sis, Famars,France

BachirBourouba UniversityofSe ´ tif,Se ´ tif19000,Algeria

DanieleCasagrande UniversityofUdine,Udine,Italy

M.Darouach Universite ´ deLorraine,CosnesetRomain,France

SubirDas IndianInstituteofTechnology(BHU),Varanasi,UttarPradesh,India

ManuelA.Duarte-Mermoud UniversityofChile,Santiago,Chile

MagdyEteiba FayoumUniversity,Fayoum,Egypt

IbiyinkaA.Fuwape FederalUniversityofTechnology,Akure,Nigeria;Michael andCeciliaIbruUniversity,Ughelli,Nigeria

GokulP.M. LodzUniversityofTechnology,Lodz,Poland

HanyN.Hassan BenhaFacultyofEngineering,BenhaUniversity,Benha, Egypt;ImamAbdulrahmanBinFaisalUniversity,Dammam,SaudiArabia

SamarM.Ismail FacultyofInformationEngineeringandTechnology(IET), GermanUniversityinCairo(GUC),Cairo,Egypt

TomaszKapitaniak LodzUniversityofTechnology,Lodz,Poland

KhatirKhettab MohamedBoudiafUniversityofM’sila,M’sila28000,Algeria

xviii ListofContributors

WiesławKrajewski SystemsResearchInstitute,PolishAcademyofSciences, Warsaw,Poland

JitendraKumar InstrumentationandControlEngineeringDivision,Dwarka,New Delhi,India

VineetKumar InstrumentationandControlEngineeringDivision,Dwarka,New Delhi,India

Matı´asG.Mayol-Sua ´ rez UniversityofChile,Santiago,Chile

JoanaP.Neto UniversidadedeLisboa,Lisbon,Portugal

SamuelT.Ogunjo FederalUniversityofTechnology,Akure,Nigeria

KayodeS.Ojo UniversityofLagos,Lagos,Nigeria

AdelOuannas UniversityofLarbiTebessi,Tebessa,Algeria

AdelOunnas UniversityofLarbiTebessi,Tebessa,Algeria

Viet ThanhPham HanoiUniversityofScienceandTechnology,Hanoi, Vietnam;LodzUniversityofTechnology,Lodz,Poland

N.E.Radhy Universite ´ HassanII,Casablanca,Maroc

AhmedG.Radwan FacultyofEngineering,CairoUniversity,Egypt;Nanoelectronics IntegratedSystemsCenter(NISC),NileUniversity,Cairo,Egypt

KamalPalSinghRana InstrumentationandControlEngineeringDivision,Dwarka, NewDelhi,India

AbdelwahebRebai UniversityofSfax,Sfax,Tunisia

AhmedRhif UniversityofCarthage,LaMarsa,Tunisia

LobnaA.Said Nano-ElectronicsIntegratedSystemsCenter(NISC),NileUniversity, Giza,Egypt

T.Sathiyaraj GandhigramRuralInstitute(DeemedtobeUniversity),Dindigul, TamilNadu,India

WafaaS.Sayed FacultyofEngineering,CairoUniversity,Giza,Egypt

MouradS.Semary BenhaFacultyofEngineering,BenhaUniversity,Benha,Egypt

FernandoE.Serranot CentralAmericanTechnicalUniversity(UNITEC), Tegucigalpa,Honduras

BharatB.Sharma NationalInstituteofTechnology,Hamirpur,HimachalPradesh, India

ManojK.Shukla NationalInstituteofTechnology,Hamirpur,HimachalPradesh, India;LovelyProfessionalUniversity,Punjab,India

ShikhaSingh JamiaMilliaIslamia,NewDelhi,India

MayankSrivastava IndianInstituteofTechnology(BHU),Varanasi,UttarPradesh, India

HamedTaghavian SharifUniversityofTechnology,Tehran,Iran

methods,fractionalorderdiscretemaps,multiswitchingsynchronization, metaheuristicalgorithms,backsteppingcontrol,etc.

ABOUTTHEBOOK

ThenewElsevierbook, MathematicalTechniquesofFractionalOrder Systems,consistsof21contributedchaptersbysubjectexpertswhoarespecializedinthevarioustopicsaddressedinthisbook.Thespecialchapters havebeenbroughtoutinthisbookafterarigorousreviewprocessinthe broadareasofmathematicaltechniquesoffractionalordersystems.Special importancewasgiventochaptersofferingpracticalsolutionsandnovel methodsfortherecentresearchproblemsinthemathematicalmodelingand controlapplicationsoffractionalordersystems.Thisbookdiscussestrends andapplicationsofmathematicalmodelsoffractionalordersystemsin engineering.

OBJECTIVESOFTHEBOOK

Thisvolumepresentsaselectedcollectionofcontributionsonafocused treatmentofmathematicaltechniquesforfractionalordersystems.Thebook alsodiscussesmultidisciplinaryapplicationsinelectricalengineering,control engineering,mechanicalengineering,andcomputerscience.Bothnoviceand expertreadersshouldfindthisbookausefulreferenceinthefieldoffractionalordersystems.

ORGANIZATIONOFTHEBOOK

Thiswell-structuredbookconsistsof21fullchapters.

BOOKFEATURES

● Thebookchaptersdealwiththerecentresearchproblemsintheareasof fractionalordersystems.

● Thebookchapterspresentvariousmathematicaltechniquesforfractional ordersystemssuchasactivecontrol,adaptivecontrol,backsteppingcontrol,nonlinearcontrol,fuzzylogiccontrol,metaheuristicalgorithms,etc.

● Thebookchapterscontainagoodliteraturesurveywithalonglistof references.

● Thebookchaptersarewell-writtenwithagoodexpositionoftheresearch problem,methodology,blockdiagrams,andmathematicaltechniques.

● Thebookchaptersarelucidlyillustratedwithnumericalexamplesand simulations.

● Thebookchaptersdiscussdetailsofengineeringapplicationsandfuture researchareas.

2 MathematicalTechniquesofFractionalOrderSystems

fractionalcalculushasseenarapidgrowthinitsapplications.Asitcanbe saidthatrealobjectsaregenerallyfractional,evenifthat fractionality is verylow(Petra ´ s,2009),fractionalcalculusisparticularlywellsuitedto describethenonlinearrelationshipwithtimeofanomalousdiffusion (Margin,2006).Indeed,nonintegerderivativesoccurmostfrequently,and naturally,inphysicalproblemswheretheessentialmechanisms,reactions,or interactionsaregovernedbydiffusionprocesses.Ofcourse,seeingthat manybiologicalprocessesoftenpresentanomalousdiffusion,fractionalcalculusisaneligibleandpowerfultooltodescribethesephenomena(e.g.,subthresholdnerveconduction,viscoelasticity,bioelectrodes)(Magin,2006). Butdiffusion,beingoneofthemostrelevantapplicationsoffractionalcalculus,isfarfrombeingtheonlyone.Fractionalderivativesareusedtoformulateandsolvedifferentphysicalmodelsallowingacontinuoustransition fromrelaxationtooscillationphenomena;topredictthenonlinearsurvival andgrowthcurvesoffood-bornepathogens;toadapttheviscoelasticity equations(Hooke’sLawandtheNewtonianfluidsLaw)(Rahimy,2010; Petra ´ s,2009);fractionalcontrolplaysanimportantroleingeneralphysics, thermodynamics,electricalcircuitstheoryandfractances,mechatronicsystems,signalprocessing,chemicalmixing,chaostheory,andmanyothers (Petra ´ s,2009).Andtherearemanypossibleapplicationsoffractionalderivativesincontrol(Vale ´ rioandSa ´ daCosta,2006,2011a,2012;Azaretal., 2017).

Manyphysicalprocesses,however,alsoappeartoexhibitafractional orderbehaviorthatvarieswithtimeorspace(LorenzoandHartley, 2002b).Inwhatconcernsthefieldofvisc oelasticityofcertainmaterials, thetemperatureeffectinsmallamplitudestrainsisknowntoinduce changesfromanelastictoviscoelastic/viscousbehavior,whererealapplicationsmayrequireatimevaryingtemperaturetobeanalyzed.Therelaxationprocessesand reactionkineticsofprotein s,whicharedescribedby fractionaldifferentialequations,havebeenfoundtohaveanorderwitha temperaturedependence.Thebehaviorofsomediffusionprocessesin responsetotemperaturechangescanbebetterdescribedusingvariable orderelementsratherthantime-vary ingcoefficients,amongothercases (LorenzoandHartley,2002b).Thesearenaturalapplicationswherevariableorderoperatorsasafunctionoftime(t )orsomeothervariable( x) canbeintroducedwithprofitandinaverynaturalway(Lorenzoand Hartley,2002b;Vale ´ rioandSa ´ daCosta,2013)

Thischapterpresentsonesuchapplicationofvariableorderderivatives: thedevelopmentofsimplermathematicalmodelsofboneremodeling,both forhealthybone,andforbonetissueaffectedbycancer.Thereareseveral modelspublishedintheliterature,butthenoveltywhichistheuseofvariableorderderivativeswillresultinsimplermodelsthatareeasierto understand.

Remodeling

Boneisconstantlybeingrenewed,beingdestroyed,andformed,duetocells termedosteoclastsandosteoblasts,respectively.Intheadultskeleton,both processesareinbalanceandtightlycoupledthroughautocrineandparacrine factorsbetweenbonecellsthatallowforaconstantbonedensitytobemaintained.Asthisspecificmicroenvironmentprovidesthenecessaryconditions forthegrowthandproliferationoftumorcells,boneisacommonsitefor thedevelopmentofmetastases,mainlyfromprimarybreastandprostate cancer.

Mathematicalandcomputationalmodels,withdifferentialequationsthat representthecontrolmechanismsinvolved,canreplicatethisremodeling process(Komarovaetal.,2003).Thesemodelshavebeenextendedto includetheeffectsoftumordisruptivepathologiesinthebonedynamics,as metastasescontributetothedecouplingbetweenboneresorptionandformationandtotheself-perpetuatingtumorgrowthcycle(Ayatietal.,2010). Counteractioneffectsofcurrentlyusedtherapieswerealsocontemplated (Ayatietal.,2010),throughthepharmocokinetic(PK)andpharmacodynamic(PD)combinationofanticancer(chemotherapy)withantiresorptive treatments(bisphosphonatesormonoclonalantibodies)(Christetal.,2018; Coelhoetal.,2016,2015).

Fractionalandvariableorderderivativescanbesuccessfullyusedin modelingthedynamicsofboneremodeling. Christetal.(2018) implemented fractionalderivativesinthedifferentialequationsofboneremodelingpresentedin Ayatietal.(2010),andanalyzeditsdynamicbehaviorinthe absenceandpresenceoftumorandPK/PDappliedtreatment,foradiscretizedsinglepointandaone-dimensionalbone. Vale ´ rioetal.(2016) applied thesamemethodologytothemoreaccuratebiochemicalmodelof Coelho etal.(2016).Variableorderderivativeshavealsobeenintroducedin Neto etal.(2017),asasimplificationtechnique,inthemodelsof Ayatietal. (2010) and Coelhoetal.(2015),inanefforttoreplicatethesamebone microenvironmentresponsebutrecurringtolessparameterstoimposethe knownbonebehavior.Itisthelatterthatishererevisitedandfurther analyzed.

1.1.3ChapterOrganization

Theremainingsectionsofthischapterareorganizedasfollows.Variable orderconceptsanddefinitionsareaddressedin Section1.2.Boneremodeling physiology,PK/PDconcepts,andpublishedintegermathematicalmodelsare presentedin Section1.3.Variableorderbonemodelsareaddressin Section1.4.Finally,conclusionsarepresentedin Section1.5.

memoryofpastvaluesof f ðt Þ (Vale ´ rioandSa ´ daCosta,2013).Recallthat,for constantdifferentiationorders,theGru ¨ nwald Letnikoff(GL)definitionis givenby Eq.(1.8a),andtheRiemann Liouville(RL)definitionisgivenby Eq.(1.8c).

Thefractionalorderofintegralsandderivativescanbeafunctionoftime orsomeothervariable(LorenzoandHartley,2002b).Herewewillexpress itafunctionoftime;theothercaseisastraightforwardgeneralization.Ifno memoryofpastvaluesoftheorderisintended,thedefinitionmustonly includeitscurrentvalue:

TheseGLandRLformulationswithoutmemoryof α areequivalent(if thefunctioniswell-behavedenoughsothatbothformulationscanbe applied).Theyarecalledtype-1variableorderderivativesin Lorenzoand Hartley(2002a); Vale ´ rioandSa ´ daCosta(2011b); Vale ´ rioandSa ´ daCosta (2013),andtype-A variableorderderivativesin Sierociuketal.(2015a,b)

FIGURE1.3 Testingtheeffectsofaccumulatedvaluesoforder α.Obtainedresultsfor α 5 0 5 integratoroutputwithinitialconditions c 5 0 5anddifferentvaluesof T (thelengthofinitial conditionsfunction).

essentialfortheapplicationoftype-D variableorderdefinitiontothebone remodelingmodelspresentednext.

1.3BONEREMODELING

Thissectionbeginsbyintroducingbonephysiologyconcepts,in Section1.3.1. PKandPDmodelsfollow,in Section1.3.2.Finally,aroad-mapthroughpublishedintegermodels,thatreflectbonedynamic,ispresentedin Section1.3.3. Allmodelspresentedhereusedimensionlessvariablesandparameters, includingthecellpopulations,exceptwhenexplicitlysaidotherwisein Table1.1 D1 referstothefirstorderderivativeintime, d dt ,and Dαðt Þ or Dαðt ;xÞ referstotheGrunwald Letnikofftype-D variableorderderivative, D N Dαðt Þ t or D N Dαðt ;xÞ t ,respectively.

1.3.1IntroducingBonePhysiology

Theskeletonisanactivemetabolictissue,besidesprovidingsupportand protectiontothevitalorgans(Chenetal.,2010).Itisnot,however,static,as itconstantlyundergoesremodeling.Thisprocessisspatiallyheterogeneous, withregularbutasynchronouscyclesthatcantakeplacein5% 25%ofthe totalbonesurfaceavailable(Crockettetal.,2011).Itisestimatedthatabout 10%oftheboneisrenewedeachyear(Lerner,2006).Corticalboneprovides strengthandprotectionwhiletrabecularisthemostmetabolicallyactive. Consequently,itiswithinthetrabecularbonethatmostofboneturnover occurs,undernormalconditionsandindiseasesofbonelossorformation. ThisreconstructionoccurswithinaBasicMulticellularUnit(BMU),a temporaryanatomicalstructurewhereboneisresorbedbycellstermed osteoclasts andsequentiallyformedduetocellscalled osteoblasts (Parfitt, 1994).Thisprocessisremarkablywellbalanced,asatightlycontrolled

10 MathematicalTechniquesofFractionalOrderSystems

TABLE1.1 SummaryandDescriptionoftheVariablesandParametersof theModelsofEqs.(1.19) (1.22)(inthecaseofnon-integermodels,units ofDay-1 arereplacedbypseudo-unitsDay-α)

Variables Description

t TimeDay x Distance x A½0; 1

C ðt ; x Þ

B ðt ; x Þ

Osteoclastpopulation

Osteoblastpopulation

z ðt ; x Þ Bonemassdensity %

T ðt ; x Þ Bonemetastasesdensity %

αðt Þ=αðt ; x Þ

Variableorderexpression

d1 ðt Þ Effectofdenosumab—

d2 ðt Þ Effectofzoledronicacid—

d3 ðt Þ Effectofpaclitaxel—

Parameters Description Units

αC OCactivationrate Day 1

αB OBactivationrate Day 1

β C OCapoptosisrate Day 1

β B

gCC

gBC

gCB

gBB

OBapoptosisrate Day 1

OCautocrineregulator

OCparacrineregulator

OBparacrineregulator

OBautocrineregulator

κC Boneresorptionrate Day 1

κB Boneformationrate Day 1

σ C

DiffusioncoefficientforOC Day 1

σ B DiffusioncoefficientforOB Day 1

σ z

σ T

rCC

rBC

rCB

DiffusioncoefficientforbonemassDay 1

DiffusioncoefficientformetastasesDay 1

OCtumorousautocrineregulation—

OCtumorousparacrineregulation—

OBtumorousparacrineregulation— (Continued )

VariableOrderFractionalDerivativesandBoneRemodeling Chapter|1 13

Thepresenceofmetastaticcancercells(breast,prostate,lung,renal,and myelomaamongothers)acceleratestheremodelingprocessanddisturbsthe balancebetweenbonecellsbydisruptingitsbiochemicalregulation(Lerner, 2006).Boneintegrityisconsequentlylost.Thesesitesofcancermetastasis areusuallythosewhereboneremodelingratesarehigh,suchasthepelvis, theaxialskeleton,orboneswithabundantbonemarrow(Boyce,2012; Schneideretal.,2005).

Bonemetastasescanbeosteolytic(increasedboneresorption),orosteoblastic(boneformationisstimulatedinanunstructuredway).However,both arestillpresentinanycase,althoughoutofbalance,resultinginlossof boneresistanceandintegrity.Breastcancermetastasesarepronetodevelop osteolyticmetastasisandprostatecanceronesareusuallyosteoblastic(Suva etal.,2011).

For osteolytic metastases,tumorcellsstimulateosteoclastactivityand receive,inreturn,positivefeedbackfromfactorsreleasedbythebonemicroenvironmentduringbonedestruction(Casimiroetal.,2016;Chenetal., 2010).AsTGF-β isreleasedfromthebonematrixduringresorption,itstimulatestumorgrowthandparathyroidhormone-relatedprotein(PTHrP)productioninmetastaticcells.BybindingtoPTHreceptorsoncellsof osteoblasticlineage,RANKLlevelsarethenenhanced.Subsequently,osteoclastsareactivated,leadingtoincreasedboneresorption(Casimiroetal., 2016).Osteoclastsactivity,inturn,willresultinthereleaseofTGF-β from thedegradedbone,whichfurtherstimulatestumorgrowthandPTHrPsecretion,givingrisetotheviciouscycle.

In osteoblastic metastases,tumorouscellsgrowasboneexpresses endothelin-1(ET-1).ET-1stimulatesosteoblaststhroughtheendothelinA receptor(ETR),activatingWnt-signaling.Tumor-derivedproteasescontributetothereleaseofosteoblasticfactorsfromtheextracellularmatrix,includingTGF-β andIGF-I.RANKLisincreasedduetotumor-inducedosteoblast activity,leadingtothereleaseofPTHandpromotingosteoclastactivity (Casimiroetal.,2016).Thus,tumormicroenvironmentleadstotheaccumulationofnewformedbone.

Severalapproaches,thattreatprimaryandmetastaticbonetumors,have thepotentialtoaffectbothtumoraffectedandhealthycells.However,strategiescanbeorientedtoeffectivelyinhibittumorgrowthbytargetingthebone anditsmicroenvironmentratherthanthetumoralone.Antiresorptivetherapy targetsosteoclasts,whenanosteolyticmetastaticbonediseaseispresent. Bisphosphonates suchasalendronateorzoledronicacid(ZometasZoledronicAcidforInjection,2017; Chenetal.,2002),and monoclonal antibodies likedenosumab(Sohnetal.,2014;Gibianskyetal.,2012),are effectivetreatmentscurrentlybeingadministrated.Whilebisphosphonates lodgeinboneandpoisonosteoclastsastheydegradebone,monoclonalantibodiesinturnbindexclusivelytoRANKL,increasingtheOPG/RANKL ratioandinhibitingosteoclastformation.Forotherdiseases,suchasmultiple

1.3.3ModelingBoneRemodelingCycles—IntegerModels

Modelsbasedondifferentialequationshavebeenappliedtoanalyzeand simulatebiochemicalandbiomechani calinteractionsbe tweenthetumor cellswiththebonemicroenvironment.Theycanbedividedintolocalor nonlocalconstructions(mainlyone- dimensionalmodels)and,withineach category,threestagesofbonebehaviorareencompassed:healthy bonemicroenvironment,tumordisruptedbonedynamics,andtherapy counteraction.

Thesimplestmodelforboneremodelingwasproposedin Komarova etal.(2003),takinganS-systemformdescribedbyEq.(1.17)(Savageau, 1988).Couplingofosteoclasts, C ðt Þ,andosteoblasts, Bðt Þ,behaviorisdone throughbiochemicalautocrine ðgCC ; gBB Þ andparacrine ðgBC ; gCB Þ factors expressedimplicitlyinthesystem’sexponents.Bonemassdensity, zðt Þ,is determinedthroughtheextentwhichvaluesof C ðt Þ and Bðt Þ populations exceedtheirnontrivialsteadystate, CSS and BSS ,respectively.Consequently, bonemassisbutthereflectionofthebonecellsactivities.Productionand deathrateofthebonecellsareencompassedin αC ;B and β C ;B ,respectively, andconstants κC and κB representtheboneresorptionandformationactivity,respectively.

Thismodeliscapableofrepresentingsingleorperiodicalremodeling cyclesbysettingtheautocrineandparacrineparameterstotheappropriate values,speciallytheosteoblast-derivedosteoclastparacrineregulator gBC . TheRANK/RANKL/OPGpathwayisalsoimplicitlyencodedinthisparameter.Responseamplitudeandfrequencydependontheinitialconditions,triggeredbyadeviationfromthesteadystate,asseenin Fig.1.5 forperiodical cyclesonly.Parametervaluesaregivenin Table1.2.

Disruptivepathologiestothebonemicroenvironmentwerealsoadded.In Ayatietal.(2010) thepreviousmodelwasextendedtoincorporatetheeffect ofMMinthebonedynamics,aspresentedinEq.(1.18). T ðt Þ representsthe tumorcellsdensityattime t ,withaGompertzformofconstantgrowth γ T . 0,andactsthroughtheautocrineandparacrineregulationspathwaysin theformof rij parameters.Thetumoractionisconsideredindependentofthe bonemass,withapossiblemaximumtumorsizeof LT .Periodicremodeling cyclesarederegulatedandbonemassdensitydecreases.Thebonemass equationisthesameasthatof Eq.(1.17c),remainingasaconsequenceof

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.