Materials and processes for next generation lithography 1st edition alex robinson and richard lawson

Page 1


MaterialsandProcessesforNextGeneration Lithography1stEditionAlexRobinsonAndRichard Lawson(Eds.)

https://ebookmass.com/product/materials-and-processes-fornext-generation-lithography-1st-edition-alex-robinson-andrichard-lawson-eds/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Next-Generation Solar Cells: Principles and Materials Yoon-Bong Hahn

https://ebookmass.com/product/next-generation-solar-cells-principlesand-materials-yoon-bong-hahn/

ebookmass.com

Dynamic Intentions: DCMC Next Generation (DreamCatcher MC

Next Generation Book 1) Liberty Parker

https://ebookmass.com/product/dynamic-intentions-dcmc-next-generationdreamcatcher-mc-next-generation-book-1-liberty-parker/

ebookmass.com

Next Generation Compliance: Environmental Regulation for the Modern Era Cynthia Giles

https://ebookmass.com/product/next-generation-complianceenvironmental-regulation-for-the-modern-era-cynthia-giles/

ebookmass.com

Soil Mechanics and Foundation Engineering 2nd Edition P Purushothama Raj

https://ebookmass.com/product/soil-mechanics-and-foundationengineering-2nd-edition-p-purushothama-raj/

ebookmass.com

How to Make Your Money Work: Decide what you want, plan to get there Eoin Mcgee

https://ebookmass.com/product/how-to-make-your-money-work-decide-whatyou-want-plan-to-get-there-eoin-mcgee/

ebookmass.com

Cicero's Academici libri and Lucullus: A Commentary with Introduction and Translations Tobias Reinhardt

https://ebookmass.com/product/ciceros-academici-libri-and-lucullus-acommentary-with-introduction-and-translations-tobias-reinhardt/

ebookmass.com

Surgical Critical Care And Emergency Surgery: Clinical Questions And Answers 3rd Edition Forrest "Dell" Moore (Editor)

https://ebookmass.com/product/surgical-critical-care-and-emergencysurgery-clinical-questions-and-answers-3rd-edition-forrest-dell-mooreeditor/

ebookmass.com

Diagnostic Imaging : Oral And Maxillofacial. 2nd Edition Lisa J. Koenig

https://ebookmass.com/product/diagnostic-imaging-oral-andmaxillofacial-2nd-edition-lisa-j-koenig/

ebookmass.com

Blackouts: A Novel Justin Torres

https://ebookmass.com/product/blackouts-a-novel-justin-torres/

ebookmass.com

https://ebookmass.com/product/advanced-nanostructures-forenvironmental-health-lucian-baia/

ebookmass.com

FrontiersofNanoscience

SeriesEditor:RichardE.Palmer

TheNanoscalePhysicsResearchLaboratory, TheSchoolofPhysicsandAstronomy, TheUniversityofBirmingham,UK

Vol.1 NanostructuredMaterials editedby GerhardWilde

Vol.2 AtomicandMolecularManipulation editedby AndrewJ.MayneandGe ´ raldDujardin

Vol.3 MetalNanoparticlesandNanoalloys editedby RoyL.JohnstonandJ.P.Wilcoxon

Vol.4 Nanobiotechnology editedby JesusM.delaFuenteandV.Grazu

Vol.5 Nanomedicine editedby HuwSummers

Vol.6 Nanomagnetism:FundamentalsandApplications editedby ChrisBinns

Vol.7 NanoscienceandtheEnvironment editedby JamieR.LeadandEugeniaValsami-Jones

Vol.8 CharacterizationofNanomaterialsinComplexEnvironmental andBiologicalMedia editedby MohammedBaaloushaandJamieR.Lead

Vol.9 ProtectedMetalClusters:FromFundamentalstoApplications editedby TatsuyaTsukudaandHannuHakkinen

Vol.10 StructureandPropertiesofNanoalloys editedby RiccardoFerrando

Frontiersof Nanoscience MaterialsandProcessesfor NextGenerationLithography

Volume11

UniversityofBirmingham,Birmingham, UnitedKingdom

Milliken&Company,Spartanburg,SC, UnitedStates

AlexRobinson
RichardLawson

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2016ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguinginPublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-08-100354-1

ISSN:1876-2778

ForinformationonallElsevierpublicationsvisit ourwebsiteat https://www.elsevier.com

Publisher: JoeHayton

AcquisitionEditor: SimonHolt

EditorialProjectManager: SabrinaWebber

ProductionProjectManager: MohanambalNatarajan

CoverDesigner: AlanStudholme

TypesetbyTNQBooksandJournals

Contributors

PanagiotisArgitis

InstituteofNanoscienceandNanotechnology,NationalCenterforScientific Research“Demokritos”,Athens,Greece

StuartA.Boden

ElectronicsandComputerScience,FacultyofPhysicalSciencesand Engineering,UniversityofSouthampton,Southampton,UnitedKingdom

ElizabethBuitrago

PaulScherrerInstitute,VilligenPSI,Switzerland

BrianCardineau

InpriaCorporation,Corvallis,OR,UnitedStates

GuyA.DeRose

KavliNanoscienceInstitute,CaliforniaInstituteofTechnology,Pasadena,CA, UnitedStates

YasinEkinci

PaulScherrerInstitute,VilligenPSI,Switzerland

RobertoFallica

PaulScherrerInstitute,VilligenPSI,Switzerland

AndreasFrommhold

SchoolofChemicalEngineering,UniversityofBirmingham,Birmingham, UnitedKingdom

MarcusKaestner

DepartmentofMicro-andNanoelectronicSystems,InstituteofMicro-and Nanoelectronics,FacultyofElectricalEngineeringandInformationTechnology, IlmenauUniversityofTechnology,Ilmenau,Germany

DouglasA.Keszler

DepartmentofChemistry,OregonStateUniversity,Corvallis,OR,UnitedStates; InpriaCorporation,Corvallis,OR,UnitedStates

YanaKrivoshapkina

DepartmentofMicro-andNanoelectronicSystems,InstituteofMicro-and Nanoelectronics,FacultyofElectricalEngineeringandInformationTechnology, IlmenauUniversityofTechnology,Ilmenau,Germany

TeroS.Kulmala

SwissLithoAG,Zurich,Switzerland

RichardA.Lawson

ResearchDivision,Milliken&Company,Spartanburg,SC,UnitedStates

ScottM.Lewis

SchoolofChemistry,TheUniversityofManchester,Manchester,UnitedKingdom

PatrickNaulleau

CenterforX-rayOptics,LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates

DimitraNiakoula

HeliospheraS.A.,Tripolis,Greece

D.FrankOgletree

MolecularFoundry,LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates

DeirdreOlynick

MolecularFoundry,LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates

PhilipC.Paul SwissLithoAG,Zurich,Switzerland

IvoW.Rangelow

DepartmentofMicro-andNanoelectronicSystems,InstituteofMicro-and Nanoelectronics,FacultyofElectricalEngineeringandInformationTechnology, IlmenauUniversityofTechnology,Ilmenau,Germany

AlexP.G.Robinson

SchoolofChemicalEngineering,UniversityofBirmingham,Birmingham, UnitedKingdom

AdamSchwartzberg

MolecularFoundry,LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates

XiaoqingShi

ElectronicsandComputerScience,FacultyofPhysicalSciencesand Engineering,UniversityofSouthampton,Southampton,UnitedKingdom

JamesW.Thackeray

DowElectronicMaterials,Marlborough,MA,UnitedStates

WillemF.vanDorp

DepartmentofImagingPhysics,DelftUniversityofTechnology,Delft, TheNetherlands

VeronikiP.Vidali

InstituteofNanoscienceandNanotechnology,NationalCenterforScientific Research“Demokritos”,Athens,Greece

AndrewK.Whittaker

AustralianInstituteforBioengineeringandNanotechnology,Universityof Queensland,StLucia,QLD,Australia

DongxuYang

SchoolofPhysicsandAstronomy,UniversityofBirmingham,Birmingham, UnitedKingdom

Preface

Themodernworldisthoroughlypopulatedwithintegratedcircuits(ICs)andother microelectronicdevices.Theubiquityofthesedeviceshascomeaboutbecausetheir computingpowerhasincreasedexponentiallyovertime,whileatthesametimethe costpercomputingpowerhasdroppedduetoshrinkingthesizesofthetransistors. Theshrinkinfeaturesizeshasbeenenabledinalargemeasurebyadvancementsin lithography,whichisthetechniqueusedtoprintthecircuitfeaturesonsiliconwafers duringICfabrication.Thecriticalpiecesrequiredforscalingareboththematerials andtheprocessesusedforlithography.

Currentlythereissignificantworldwideresearcheffortbothindustriallyandin academiaintonext-generationlithographyprocessessuchasEUV,advanced e-beam,nanoimprint,scanningprobe,andionbeamlithography.Thereislikewise similareffortinbotharenasintonext-generationmaterialsforlithographyincluding numerousnovelapproachestoresistchemistryandingeniousextensionsoftraditionalphotopolymers.Thisbookthereforeaimstobringtogethersomeofthe world’sforemostlithographicdevelopmentscientistsfromthevariouscommunities toproduceinoneplaceacompletedescriptionofthemanyapproachestolithographicmaterialsandprocessdesign,development,andcharacterization.

Resistchemistryfornext-generationlithographyislikelytobequitedistinctfrom thewell-knownprocessofphotochemistryincurrentuse.Fornoncontactmethodsthe actinicradiationunderconsiderationistypicallyfarmoreenergetic.Thisisdiscussed in Chapter1 togetherwithabriefintroductiontoresistchemistryinEUVandelectronbeamlithography,alongsideareviewofcurrentresistprocesses.In Chapter2, newinsightsintothemechanismsofEUVresistradiationchemistryarepresented fromtheperspectiveofanexaminationofthefundamentalinteractionsofsoft X-rayswithmatter,photoionization,andmolecularrelaxationprocesses.In Chapter 3,theexaminationoftheEUVresistmechanismisextendedfurtherviaadetailed analysisoftheinteractionsoflowenergyelectronsintheresistfilm,identifyingthe manyproductive(andnonproductive)reactionpathwaysavailable.

Chapters4and5investigatetheprocessandpatterningchallengesfacingEUV lithography themostlikelynext-generationcontender.In Chapter4,readersare introducedtothetechniqueofEUVinterferometriclithography,whichhasbeen usedtogeneratemanyoftheexperimentalresultsseeninlaterchapters.General resistmaterialchallengesarethenexaminedandpotentialstrategiesdiscussed. Chapter5 introducesEUVopticallithography usingamaskratherthanagrating forpatterngeneration andadetailedanalysisofthetoolchallengesfacedbyindustry.OneofthemostsignificantproblemsinEUVlithographyrelatestostochastic variations,andthischapterintroducesanewmodeltosimulatetheseeffectsand identifyareasofmostconcern.Finallytheprogressincommercialandresearch resistsexposedonamask-basedEUVtoolisreviewed.

Chapters6 13addressresistchemistry. Chapter6 presentsprogressinresists thatoperateviaamechanismofchainscission.Thesearetypicallyknownas

nonchemicallyamplifiedresists.Whilesuchsystemsaretypicallyconsideredtobe quiteinsensitive,newworkonhigh-speedvariantsispresented.ChemicallyamplifiedsystemsforEUVlithographyarereviewedin Chapter7.Whilemanychemicallyamplifiedsystemsareproprietary,andresultsintheliteratureoften presentedwithoutsignificantchemicaldetail,thischapterseekstoidentifythemajor recenttrendsinchemicallyamplifiedsystems.

Todatethemajorityofresistsystemshavebeenbasedonpolymericmaterials. However,inthelasttwodecadesasignificantamountofresearchintomolecularresist systemshasbeenundertaken. Chapter8 examinesawidevarietyofnegativetone molecularresistsystems,primarilybutnotexclusivelyoperatingviacross-linking mechanisms,while Chapter9 looksatpositivetonemolecularresistsystems,via, forinstance,solubilityswitchmechanisms.Anotherrecentalternativetopolymeric resistsareinorganicresists. Chapter10 introducestothemostwidelyusedofthe inorganicsystems,hydrogensilsesquioxane(HSQ).Theexposuremechanismis radicallydifferenttothatoforganicsystemsandisexplainedindepth,together withareviewofprocessing. Chapter10 alsoaddressesanexcitingnewmaterial class high-Znanoclusterresists,examinedviatheprototypicalhafniumperoxide sulfate.Thesedepartinalmosteverywayfromthetraditionalparadigmofaphotoresist,butnonethelesshavedemonstratedoutstandingperformance.Anothernovel approachthatutilizesorganometalliccomplexesispresentedin Chapter11.By selectingmetalatomsofhighEUVabsorbancetogetherwithappropriateligandsto enablespincoating,anddevelopment,anumberofhigh-speedEUVresistshave beendemonstrated.

Chapter12 takesafundamentallydifferentapproachtoresistdevelopment. AmaterialinitiallydevelopedtodemonstratehighopacityintheUV,soastoallow itsuseasanelectron-beamwritablephotomaskispresented.Goodresultsasa photomaskareindeeddemonstrated,buttheresisthasalsobeenfoundtoenable astonishinglyhigh-aspectratioelectronbeampatterning,primarilyduetothevery low-densitynatureofthefilm.Filmdensityissomethingthatisrevisitedin Chapter 13,aspartofanexaminationofaselectionoftheothernovelapproachesthathave beenundertakenrecently.

Thelastsectionofthebookaddressesseveralnewapproachestonext-generation lithography.WhileEUViscoveredextensivelyacrossthefirst13chapters,various otherapproachesarealsounderdevelopment. Chapter14 presentsashortreviewof thechallengesandpotentialsolutionsofnext-generationlithography.In Chapter 15,thetopicofscanningprobelithographyisexaminedingreatdepth,before focusingonelectricalfieldinteractionsofananoprobewithresist,andapproaches toscanningprobelithographythroughputenhancement. Chapter16 dealswith thermalscanningprobelithographyandintroducesthenewcommercialthermal probetooltheNanoFrazor,fromSwisslitho.Finallyin Chapter17,therecentdevelopmentoftheScanningHeliumIonBeamLithographytoolanditsapplicationto nanolithographyisdiscussed.

Acknowledgments

WewouldliketothankProfessorRichardPalmer,theserieseditorof Frontiersin Nanoscience,fortheopportunitytoworkonthisprojectthatseekstocompileathoroughdescriptionofthemanycurrentapproachestolithographicmaterialsandprocessdesign.Wewouldalsoliketothankallourcolleagueswhosehardworkwriting thechaptersmadethisbookpossible.AgreatdealofthanksgoestoSabrinaWebber, theeditorialprojectmanageratElsevier,whowascriticallyhelpfulthroughtheend oftheprocessandwasexceedinglypatientasweslowlydeliveredallthevarious partsofthebook.InadditiontoSabrina,HannahColfordandDerekColeman wereofgreathelpaseditorialprojectmanagersinvariousearlierstagesoftheprocessandwereparticularlyhelpfulaswegottheprojectofftheground.Additional thanksalsogotootherpeopleatElsevier,includingSimonHolt,SusanDennis, MohanambalNatarajan,andmanymoreworkingbehindthescenes.Finally,we wouldespeciallyliketothankourfamilieswhowereexceptionallypatientwith allthelonghoursputintowritingandeditingandwithoutwhosesupporttheproject wouldnothavebeencompleted.

Listofabbreviations

AAAcidamplifier

ADAdamantylester

AEVEAdamantylethylvinylether

AFMAtomicforcemicroscopy

AILAchromaticinterferencelithography

ASITPA4,40 ,400 -tris(Allylsuccinimido)triphenylamine

ATLAchromaticTalbotlithography

BCMTPB1,3,5-tris[4-(Tert-butoxycarbonylmethoxy)phenyl] benzene

BCPsBlockcopolymers

BEBindingenergy

BEsBackscatteredelectrons

BPY2,20 -Bipyridine

BZABenzoicacid

CAChemicalamplification

CARsChemicallyamplifiedresists

CDCriticaldimension

b-CD

b-Cyclodextrins

CMC(n)AOMep-Chloromethylmethoxycalyx[n]arenemolecule

CVDChemicalvapordeposition

DBU1,8-Diazabicycloundec-7-ene

DCTDoseCalibrationTool

DDRMDrydeveloprinsematerial

DDRPDrydevelopmentrinseprocess

DEADissociativeelectronattachment

DIDissociativeionization;Dissolutioninhibitor

DNQDiazonaphthoquinone

DOFDepthoffocus

DPI-TsDiphenyliodoniumtosylate

DPNDip-pennanolithography

DSADirectedself-assembly

DUVDeepultraviolet

E-beamElectronbeam

EBLElectronbeamlithography

EMAX Doseformaximumfilmthicknessretention

ENEthylenediamine

ESIZE Sizingdose

ESRspectroscopyElectronspinresonancespectroscopy

ETMDElectrontransferemediateddecay

EUVExtremeultraviolet

EUVresistExtremeultravioletresist

EUV-ILExtremeultravioletinterferencelithography

EUVLExtremeultravioletlithography

FBMPoly(hexafluorobutylmethacrylate)

fccFace-centered-cubic

FEFieldevaporation

FE-SPLFieldemissionSPL

FEBIDFocusedelectronbeam-induceddeposition

FEBIPFocusedelectronbeam-inducedprocessing

FIBlithographyFocusedionbeamlithography

FTIRFourier-transforminfrared

GFISGasfieldionsource

GPCGelpermeationchromatography

HFHydrofluoricacid

HIBLHeliumionbeamlithography

HIMHeliumionmicroscope

HMDSHexamethyldisilazane

HOMOHighestoccupiedmolecularorbital

HPlinesHalf-pitchlines

HPVEHyperlactylvinylether(1-vinyloxy-4-oxatricyclo [4.1.13.8]undecane-5-on)

HSQHydrogensilsesquioxane

HVMHigh-volumemanufacturing

IBLIon-beamlithography

ICDIntercoulombicdecay

ICsIntegratedcircuits

ILInterferencelithography

ILSImagelogslope

IMFPInelasticmeanfreepath

IPAIsopropanol

ITRSInternationalTechnologyRoadmapforSemiconductors

KOHPotassiumhydroxide

LAOLocalanodicoxidation

LELELitho-Etch-Litho-Etch

LERLine-edgeroughness

LUMOLowestunoccupiedmolecularorbital

LWRLine-widthroughness

MAAMethacrylicacid

MCBMonochlorobenzene

MCNMethacrylonitrile

MFSMinimumfeaturesize

MGMolecularglass

MIBKMethylisobutylketone

ML2Masklesslithography

MOREMolecularorganometallicresists

MPPMMultivariatePoissonpropagationmodel

NANumericalaperture

NCAresistsNonchemicallyamplifiedinorganicresists

NDNeutraldissociation

NGLNext-generationlithography

NILNanoimprintlithography

NILmethodNanoimprintmethod

NILSNormalizedILS

NMRNuclearmagneticresonance

NRTNormalizedremainingthickness

NTDNegative-tonedevelopment

ODOpticaldensity

OOBradiationOut-of-bandradiation

PABPost-applicationbake

PAGPhotoacidgenerator

PBMSPly(butylmethylsilane)

PBPresistsPolymer-boundPAGresists

PBSPoly(1-butenesulfone)

PDAPhotodestructiveanion;Photodestructiveacid

PDBsPhotodecomposablebases

PDMSPoly(dimethylsiloxane)

PDNPhotodecomposablenucleophile

PEBPost-exposurebake

PECProximityeffectcorrection

PGMEPropyleneglycolmethylether;Propyleneglycol monomethylether

PGMEAPropyleneglycolmethyletheracetate

PHEMAPoly(2-hydroxyethylmethacrylate)

PHOSTPolyhydroxystyrene

PHSPolyhydroxystyrene

D,L-PLAPoly(D,L-lacticacid)

L-PLAPoly(L-lacticacid)

PMGIPolymethylglutarimide

PMMAPolymethylmethacrylate

PMPSPoly(methylphenylsilane)

POSSPolyhedraloligomericsilsesquioxane

PPAPolyphthalaldehyde

PS-b-PDMSPolystyrene-block-polydimethylsiloxane

CHAPTER

Overviewofmaterialsand processesforlithography 1

RichardA.Lawson*, 1,AlexP.G.Robinsonx *ResearchDivision,Milliken&Company,Spartanburg,SC,UnitedStates xSchoolofChemicalEngineering,UniversityofBirmingham,Birmingham,UnitedKingdom 1Correspondingauthor:E-mail:richard.lawson@milliken.com

CHAPTEROUTLINE

1.1Introduction.........................................................................................................2

1.2OverviewofLithographyProcess...........................................................................5

1.3LithographicExposureSourcesandProcesses.......................................................7

1.3.1UltravioletLithography........................................................................7

1.3.2DUVLithography 248nmand193nm,Immersion,andMultiple Patterning..........................................................................................8

1.3.3ExtremeUltravioletLithography.........................................................12

1.3.4E-BeamLithography.........................................................................13

1.3.5OtherLithographyProcesses IonBeam,ScanningProbe,and Nanoimprint....................................................................................15

1.4CharacterizationandFiguresofMeritforResists.................................................18

1.5ResistMaterialsandChemistry...........................................................................26

1.5.1NonchemicallyAmplifiedResists.......................................................26

1.5.2ChemicallyAmplifiedResists............................................................28

1.5.3ResistPhysicalPropertiesandEtchResistance..................................31

1.5.4PhotoacidGeneratorChemistryandPhysics........................................33

1.5.5MolecularResistsandInorganicResists.............................................38

1.6ChallengesinModernResistDesign....................................................................44

1.6.1ExposureStatisticsandShotNoise....................................................45

1.6.2PhotoacidDiffusion..........................................................................46

1.6.3Resolution,LineEdgeRoughness,andSensitivityTrade-off.................51

1.6.4PatternCollapse...............................................................................54

1.7Conclusions.......................................................................................................60 References...............................................................................................................61

1.1 INTRODUCTION

Themodernworldisthoroughlypopulatedwithintegratedcircuits(ICs)andother microelectronicdevices.Thesedevicesarepresentinallaspectsofsocietyandare integraltotherunningofgovernment,business,healthcare,transportation,security, andevendomestictasks.Oncefoundprimarilyincomputers,ICsarenowpervasive inalmosteverythingoneinteractswith,includingcellphones,automobiles,televisions,toys,evenappliancessuchasrefrigeratorsandcoffeemakers.Theyhave changedthewaypeoplework,play,andcommunicate.Theubiquityofthesedevices hascomeaboutbecausetheircomputingpowerhasincreasedexponentiallyover time,whileatthesametimethecostpercomputingpowerhasdropped.ThisperformanceandcosthasbeenenabledbytheabilityoftheICmanufacturerstodoublethe numberoftransistorsperchiproughlyeverytwoyears.1 Thistrendiscommonly referredtoasMoore’sLaw.2,3 GordonMooreobservedthistrendin1965,andhe predictedthisscalingwouldcontinueforanotherdecade.Itcontinuednotonly foranotherdecade,butithascontinuedforover50years.Itstartedasanobservation onscaling,butthenbecameanindustrymandate.

Thedoublingofthenumberoftransistorsperchiphasbeendonebyshrinking thesizesofthetransistors.Theshrinkinfeaturesizeshasbeenenabledinalarge measurebyadvancementsinlithography,whichisthetechniqueusedtoprintthe circuitfeaturesonsiliconwafersduringICfabrication.4 Avisualexampleofthe scaleofshrinkisshownin Fig.1,whichshowsthetransistordimensionrequired tomaintainMoore’slawalongwithacrosssectionofthephotoresistpattern

FIGURE1

TransistordimensionrequiredtomaintainMoore’slaw.The darkrectangles showthescaling ofthephotoresistpatternheightandwidthrequiredtoproducethesetransistordimensions. ReproducedfromLawsonRA,2011. Molecularresistsforadvancedlithography design,synthesis, characterization,andsimulation [Ph.D.dissertation].Atlanta,GA:GeorgiaInstituteofTechnology. http://hdl.handle.net/1853/39601

requiredtoproducethesedimensions.5 Photoresistsaretheradiation-sensitivematerialsusedforformingthereliefpatternsrequiredtobuildupICdevices.Asshown in Fig.1,transistorshavecontinuedtoshrinktowherecurrentfeaturesizesaresub20-nm,andsub-10-nmfeaturesareonlyafewyearsaway.Asfeaturesrapidly approachmolecularandevenatomiclengthscales,anumberoftechnologicalchallengeshavearisenthatthreatentohaltthissteadyprogress,andthustheentireIC industry.

Thecriticalpiecesrequiredforscalingareboththematerialsandtheprocesses usedforlithography.Currentlythereissignificantworldwideresearcheffortboth industriallyandinacademiaintonext-generationlithographyprocessessuchas extremeultraviolet(EUV),advancede-beam,nanoimprint,scanningprobe,and ionbeamlithography.Thereislikewisesimilareffortinboththeindustrialand theacademiclithographyarenasintonextgenerationmaterialsforlithography includingnumerousnovelapproachestoresistchemistryandingeniousextensions oftraditionalphotopolymers.Thisbookthereforeaimstobringtogethersomeofthe world’sforemostlithographicdevelopmentscientistsfromthevariouscommunities toproduceinoneplaceacompletedescriptionofthemanyapproachestolithographicmaterialsandprocessdesign,development,andcharacterization.Resist chemistryfornext-generationlithographyislikelytobequitedistinctfromthe well-knownprocessofphotochemistryincurrentuse.Fornoncontactmethods, theactinicradiationunderconsiderationistypicallyfarmoreenergetic.Thiswill bediscussedin Section1.3 ofthischapter,togetherwithabriefintroductiontoresist chemistryinEUVandelectronbeamlithography,alongsideareviewofcurrentresist processes.InChapter2,newinsightsintothemechanismsofEUVresistradiation chemistryarepresentedfromtheperspectiveofanexaminationofthefundamental interactionsofsoftX-rayswithmatter,photoionization,andmolecularrelaxation processes.Theseprocessescanleaddirectlytochemistrynotpresentatlongerwavelengths,butalsototheproductionoflowenergyelectronswhichareimportantfor EUVresists.InChapter3theexaminationoftheEUVresistmechanismisextended furtherviaadetailedanalysisoftheinteractionsoflowenergyelectronsintheresist film,identifyingthemanyproductive(andnonproductive)reactionpathways available.

Chapters4and5investigatetheprocessandpatterningchallengesfacingEUV lithography themostlikelynextgenerationcontender.Chapter4introducesthe techniqueofEUVinterferometriclithography,whichhasbeenusedtogenerate manyoftheexperimentalresultsseeninlaterchapters.Generalresistmaterialchallengesarethenexaminedandpotentialstrategiesarediscussed.Chapter5introduces EUVlithographywhichusesmoreconventionaloptics,i.e.,usingamaskandprojectionopticsratherthanagratingforpatterngeneration,andadetailedanalysisof thetoolchallengesfacedbyindustry.OneofthemostsignificantproblemsinEUV lithographyrelatestostochasticvariations,bothduetothehighenergyperphoton, andthuslowphotonnumberperdose,butalsothevariabilityofmulticomponent resistmaterialspushedtothelimitsoftheirperformance.Chapter5introducesa newmodeltosimulatetheseeffectsandidentifyareasofmostconcern.Finally

theprogressincommercialandresearchresistsexposedonamask-basedEUVtool isreviewed.

FromChapter6onward,thebookaddressesresistchemistry.Thefirstofthese chapterspresentsprogressinresiststhatoperateviaamechanismofchainscission. Thesearetypicallyknownasnonchemicallyamplifiedresists,asoneexposureevent leadstoasinglechemicaleventintheresist.Whilesuchsystemsaretypically consideredtobequiteinsensitive,newworkonhigh-speedvariantsispresented. ChemicallyamplifiedsystemsforEUVlithographyarereviewedinChapter7. Whilemanychemicallyamplifiedsystemsareproprietary,andresultsintheliteratureoftenpresentedwithoutsignificantchemicaldetail,thischapterseekstoidentify themajorrecenttrendsinchemicallyamplifiedsystems.

Todatethemajorityofresistsystemshavebeenbasedonpolymericmaterials. However,inthelasttwodecadesasignificantamountofresearchintomolecular resistsystemshasbeenundertaken.Chapter8examinesawidevarietyofnegativetonemolecularresistsystems,primarilybutnotexclusivelyoperatingviacrosslinkingmechanisms,whileChapter9looksatpositive-tonemolecularresistsystems, via,forinstance,solubilityswitchmechanism(see Section1.2 ofthischapterfora discussionofresisttone).Anotherrecentalternativetopolymericresistsareinorganic resists.Chapter10introducesthemostwidelyusedoftheinorganicsystems, hydrogensilsesquioxane(HSQ).Theexposuremechanismisradicallydifferentto thatoforganicsystemsandisexplainedindepth,togetherwithareviewofprocessing.Chapter10alsoaddressesanexcitingnewmaterialclass:high-Z nanoclusterresists,examinedviatheprototypicalhafniumperoxidesulfate(HafSOx).Thesedepart inalmosteverywayfromthetraditionalparadigmofaphotoresist,butnonetheless havedemonstratedoutstandingperformance.Anothernovelapproachutilizing organometalliccomplexesispresentedinChapter11.Byselectingmetalatomsof highEUVabsorbancetogetherwithappropriateligandstoenablespincoatingand development,anumberofhigh-speedEUVresistshavebeendemonstrated.

Chapter12takesafundamentallydifferentapproachtoresistdevelopment.A materialinitiallydevelopedtodemonstratehighopacityintheUV,soastoallow itsuseasanelectronbeamwritablephotomaskispresented.Goodresultsasaphotomaskareindeeddemonstrated,butserendipitouslytheresisthasalsobeenfoundto enableastonishinglyhighaspectratioelectronbeampatterning,primarilyduetothe verylow-densitynatureofthefilm.Electronbeampatterningresistfeatureswith aspectratiosfarbeyondanythingthatcouldbeachievedinotherresistsareshown. FilmdensityissomethingthatwillberevisitedinChapter13,aspartofanexaminationofaselectionoftheothernovelapproachesthathavebeenundertaken recently.ThechapteraddressesnovelapproachestoEUVlithography,including lowandhighabsorbancyfilmsandnovelnanoparticle-basedresists.

Thelastsectionofthebookaddressesseveralnewapproachestonext-generation lithography.WhileEUViscoveredextensivelyacrossthefirst13chapters,various otherapproachesarealsounderdevelopment.Chapter14presentsashortreviewof thechallengesandpotentialsolutionsofnext-generationlithography.InChapter15, thetopicofscanningprobelithographyisexaminedingreatdepth,beforefocusing

onelectricalfieldinteractionsofananoprobewithresist,andapproachestoscanning probelithographythroughputenhancement.Chapter16dealswiththermalscanning probelithographyandintroducesthenewcommercialthermalprobetooltheNanoFrazorfromSwisslitho.FinallyinChapter17,therecentdevelopmentofthescanning heliumionbeamlithographytoolanditsapplicationtonanolithographyisdiscussed.

1.2 OVERVIEWOFLITHOGRAPHYPROCESS

Lithographyistheartandscienceofproducingapatternonasubstrate.Thetermis usedmostoftentodayinconnectionwithsemiconductorprocessing.Additionaladjectivesareoftenusedtomorespecificallydefinethetechniquesuchasoptical lithographyorphotolithography(usingUVlighttogeneratethepatterns),imprint lithography(amoldispressedorimprintedintoamaterialtogeneratethepatterns), e-beamlithography(electronbeamsareusedtogeneratethepattern),orEUVlithography.Themostcommonlyusedformoflithographyinhighvolumemanufacturing isopticallithographyandageneralizedoverviewoftheprocessisshownin Fig.2.

Ahighlysimplifieddescriptionoftheprocessisasfollows.Thesubstrate(usuallyasiliconwafer)isusuallycoatedwithathinfilmofafunctionalmaterialora multilayerstackofmaterialsthatcouldserveanynumberofrolessuchaslow-kor high-kdielectric,etch-resistanthardmask,orconductinglayer.Photoresist,whichis aphotosensitivematerialthatistypicallycomposedmostlyofanorganicpolymer,is thenspincoatedontothefilmstack.Thetermphotoresistisoftenshortenedsimply toresistwhichisalsoamoregeneraltermforthesetypesofmaterials;especially sinceresistsformanyalternativeandfutureexposuresourceswouldnotbeexposed tophotonsbutratherelectrons,ions,orotherphysicalsourcesofapattern.

UVlightisthenshonethroughamask,whichselectivelyallowslightthrough certainregionstogenerateapatternontheresist.Themaskhashistoricallybeen madeofquartzwithchromepatternsontopthatcontrolwherethelightshinesthrough themask.TheradiationpatternfromtheUVlightinduceschemicalchangesinthe resist,whichselectivelymodifiesthesolubilityoftheexposedregionsinaliquid calleddeveloper.Thewaferiscommonlybakedafterthisexposurestep[calledapostexposurebake(PEB)]tofurtherinducechemicalchangeintheexposedregions.

Thedevelopmentstepisnext,andiswheredeveloperispouredorsprayedonto theresistandcertainregionsoftheresistaredissolved,whileotherregionsremain onthewafer.Theexposedregionswilleitherbedissolvedorremaindependingon thetoneoftheresist.Positive-toneresistsarethosewheretheexposedareasaredissolvedduringdevelopment;thesolubilitychangeisoftenduetochemistrythatoccursduringexposureorinthePEBwhichchangesthepolarityorfunctionalgroups oftheresist.Negative-toneresistsarethosewheretheexposedregionsarenotdissolvedduringdevelopmentandtheexposedareasaredissolvedinstead.Solubility changeinthesematerialscanlikewiseoccurbymanydifferentmethods,although twoofthemostcommonarecross-linkingtoformhighmolecularweightnetwork structuresandchangesinfunctionalgroupsoftheresistwhichaffectpolarity.

Generalizeddiagramoftheopticallithographyprocess.Theprocessstartsinupperleftand goestop-to-bottomandthentherightsidetop-to-bottom.Resistisspincoatedontoa substrateconsistingofasiliconwaferandotherdepositedfilms.Theresistispatterned throughamasktoselectivelyexposeareasontheresistandthenthewaferiscommonly bakedonahotplate.Developmentgeneratesthethree-dimensionalreliefpatterninthe resistandthatpatternistransferredintothesubstratethroughanetchprocess.

Finally,theremainingpatterninthedevelopedresististransferredintotheunderlyingfilmstackusinganetchprocess.Thisetchprocesscouldbeawetorchemicaletchwhereliquidchemicalsselectivelyremovetheunderlayer(UL)while havingaminimaleffectontheremainingphotoresist.However,itismorecommon thattheetchingisdoneusingplasmaetchingwherehighenergyparticlesselectively etchtheULcomparedtotheremainingresist.Plasmaetchingallowsahighlevelof controlandselectivityatboththenanoscaleandwafersizescalebychangingthe variousparametersintheetchchambersuchasetchgasesandspecies,voltage, biasonthewafer,pressure,andlocalwafertemperature,amongmanyothers.By controllingthetimeandtypeofgasesused,plasmaetchingcangofromisotropic tohighlyanisotropicetchingprofiles.Recentadvanceshaveevenshownthepossibilityofatomiclevelcontrolwiththeintroductionofatomiclayeretching.6 8

Afterallthedesiredmodificationsarecompletedintheunderlyingfilmstack, anyremainingphotoresistisremovedthroughaplasmaorchemicalstrippingprocess.Thislithographicprocessisthenrepeated(sometimesmultipletimes)for eachlayerofthedevicetoallowforfabricationofcompleteICs.

FIGURE2

1.3 LITHOGRAPHICEXPOSURESOURCESANDPROCESSES

Whendiscussinglithographicimaging,itisimportanttospecifytheradiationsource usedtoexposetheresistandtransferthepattern.Althoughmuchofthelithography processissimilarorthesamewithdifferingsources,itisimportanttounderstandthe differencesbetweeneachtypeofcommonlyusedexposuresourceandhowthe choiceofexposuresourceaffectsthechoiceandoptimizationofresistmaterial. ThemostcommonlyusedexposuresourcesareUVanddeepUV(DUV)lightgeneratedbyamercurylamporlaser.ModificationsinDUVlithographyat193-nmwavelengthhaveledtoatechniquethatiscalledimmersionlithography.Thisexposure wavelengthhasbeenextendedevenfurthertosmallerfeaturesizesthroughthe useofdoubleandmultiplepatterningaswillbediscussedlater.Intenseresearch anddevelopmenthasbeencarriedoutontheapplicationofEUVlithographyfor futuregenerationsofICmanufacturing.9 11 Electronbeam(e-beam)asasource ofexposingradiationhasbeenusedindustriallyformaskproductionformanyyears andisusedcommonlyinresearchanddevelopmentapplicationsduetoitsveryhigh resolutionandabilitytorapidlyproduceawidevarietyofpatterns.Workhasalso beencarriedoutonuseofionbeamlithographywhichusesfocusedbeamsof ionstopatterntheresist.12,13 Therehavealsobeenextensivedevelopmentsinlithographicprocesseswheretheresistisnotexposedtoaradiationsource,butinstead isphysicallymodifiedinsomeotherway.Someexamplesofthisincludenanoimprintlithography14 18 wheretheresistpatternismadebypressingamoldinto theresisttoreplicatethemoldpatternorscanningprobelithography19 22 where thepatternismadebyselectivelyscanningananoscaleprobesuchasanatomic forcemicroscope(AFM)tipoverthesurfaceoftheresistandmodifyingtheresist throughthermal,chemical,orelectricalchanges.Eachoftheseexposuresources andprocessestypicallyhasitsownspecifictypeofresistswithuniqueproperties thatallowthemtoworkwellforthatsource,althoughsomeresistscanbeused acrossmultipleplatforms.Thissectionwillfocusonthesourcesandtechniques andamorethoroughdiscussionofresistswillbegivenin Section1.5.

1.3.1 ULTRAVIOLETLITHOGRAPHY

UVlithographyhasbeenthemostusedexposuresourceinthesemiconductorindustryfordecadesandiscommonlyusedinmanyotherindustriesthatrequire patterningsuchasflatscreentelevisions.Althoughithasbeenreplacedbyother techniquesandexposuresourcesforthehighestresolutionfeatures,itisstill commonlyusedformultiplelevelsofpatterningatfeaturesizesof0.3 mmand larger.23 TheoriginoftheUVlightiscommonlyamercuryarclamp,whichhas itsownuniquespectralemissioncharacteristics.Threeofthestrongestemission wavelengthsintheUVareat436,405,and365nm,whicharecommonlyreferred toasg-line,h-line,andi-linerespectively.

TherearethreedifferentsetupsthatarecommonlyusedtopatternwithUV lithography:contactprinting,proximityprinting,andprojectionprinting.Incontact

printing,themaskisplacedindirectcontactwiththewaferandphotoresist.Proximityprintingissimilarexceptthatasmallgapisleftbetweenthewaferand mask.Projectionprintingcollectslightfromthelampusingaseriesoflensesand focusesitontothemask.Thelightfromtheopenareasofthemaskarethencollected byanotherlens,whichprojectsthepatternontothewafer.Contactandproximity printingtoolsarelessexpensivethanprojectiontoolsbecauseofthesimplersetup thatrequiresmuchlesssophisticatedopticsandsoarecommonlyusedinresearch anddevelopmentlabs;however,projectionlithographyisbyfarthedominant methodinhighvolumemanufacturingbecauseithasseveraladvantagesoverthe othertwotechniques.

Resolutionforalithographicprocessisthesmallestfeaturethatcanbesuccessfullyprintedwithacceptablequalityandcontrol.24 Proximityprintingworksinthe near-field(Fresnel)diffractionregimeandisresolutionlimitedbythewavelengthof light(l)andthegapbetweentheresistandthemask(L)to z lL p ,about2 4 mmin practice.Contactprintingimprovesresolutiontoabouttheorderofthewavelength ofthelight(andpotentially,ifnotpractically,higher),butputsthemaskandresistat highriskofdamageanddefectivityduetothedirectcontact.Contactandproximity printingbothrequiremasksthatarethesamesizeasthewafers,andmaskfeatures thesamesizeasthefeaturestobeprintedintheresist.Projectionprintingovercomes thedefectivityissuesbecausethemaskisfurtherawayfromthewaferandisprotectedbyapellicle,25 27 whichpreventsparticlesfromlandingonthemask.Projectionprintingcanalsousemaskswithfeatureslargerthantheopticalpatternsatthe waferlevelbecausetheprocessallowsforthereductionofthemaskimage,typically a4 reductioninthemaskfeatures;thisallowsforeasiermaskproduction.Finally, projectionprintinghasthebigadvantageofhigherintrinsicresolution.Theoptical resolutionlimitforfarfield(Fraunhoffer)diffractionlimitedprojectionlithography isgivenbytheRaleighcriterionshownin Eq.(1) where l iswavelengthofradiation used, NA isthenumericalapertureofthelensintheexposuresystem,and k1 isa processdependentfactorthatdependsonavarietyoffactorsandtoolissues.For manyprojectiontools, k1 isbelow0.5and NA isnear1(orevengreaterforimmersionlithography),soresolutionisactuallysmallerthanthewavelengthoflight (comparedtoseveraltimesgreaterthanthewavelengthforproximityprinting).

1.3.2

DUVLITHOGRAPHY 248nmAND193nm,IMMERSION,AND MULTIPLEPATTERNING

Asfeaturesizesshrink,tooloptimizationgenerallyreachesalimitmeaningthat k1 cannotshrinkmuchmoreand NA cannotincreasefurther.Thismeansthatresolution cannotbereducedunlessthewavelengthoflightisreducedasshownin Eq.(1).This wasamajordriverfortheinvestigationofDUVexposuretoolsinthe1980s 1990s becausethelowerwavelengthsallowforbetterresolution.Thefirstmajor

commercialproductionofwafersusingDUVexposuretoolswasin1990toproduce waferswithacriticaldimension(CD)of0.9 mm. 28 Mercurylampshaveaweakpeak around254nm(around10%orlesstheintensityoftheg-,h-,andi-linepeaks),and theuseofHg-Xelampsextendstheusablerangedownto220nmwithastronger peakataround248nm.However,industrialapplicationofDUVisalmostentirely doneusingexcimerlaserstoproducethelightusedforexposures.Theearliest DUVexposuretoolsusedawavelengthof248nm,whichisproducedbyaKrFexcimerlaser.Asthesetoolswerefurtheroptimized,therewasatransitiontoalower DUVwavelengthof193nmproducedbyanArFexcimerlasertofurtherimprove theultimateresolutionoftheprintingsystem.Thesetoolsuseaseriesofquartz lensesandamasksimilartoUVlithographytogeneratetheaerialimage,which istranslatedbythephotoresistintoareliefimage.Significantresearchanddevelopmentwentintoanevenlowerwavelengthof157nmwhichusedF2 excimerlasers, butitwasultimatelyabandonedduetodifficultiesfindingasuitablereplacementfor quartzasalensmaterial.29

Giventhelackofaneasilyaccessiblelowerwavelengthexposuretoolatthe time,analternativeapproachwasdevelopedtofurtherimprovetheresolutionof 193-nmlithographyandcontinuefeatureshrink.Ithaslongbeenknownthatthe resolvingpowerofanopticalmicroscopecanbeimprovediftheairgapbetween theobjectivelensandthesampleisfilledwithahighrefractiveindexoil.Asimilar approachwastakentoimplementso-calledimmersionlithography,andconsistsof introducingafluidbetweenthefinallensandwafer.30 Thisfluid,whichhasahigher refractiveindexthantheairthatistypicallybetweenthelensandwafer,changesthe opticalpathsofexposurelightandeffectivelyresultsinahigher NA in Eq.(1).The NA ishigherbecause NA ¼ ni sin q,where ni isrefractiveindexand q isthepropagationangleoflight.31 TheNAofa“dry”exposuresystemdoesnotgobeyond1.0; otherwise,theexposurelightwillbetotallyreflectedbackatthelens/airinterface.32

Useofultrapurewaterasanimmersionfluid(index ¼ 1.44at193nm)hasallowed productionoftoolswith1.35 NA capabilityandaresolutiondownto45-nmhalfpitch.33 This45-nmhalf-pitchisapproximatelythecurrentresolutionlimitforsingle opticalpatterninginproductiontoday.Therewassignificantinvestigationinto higherrefractiveindexfluidsthanwater,whichwouldimproveresolutioneven further,butthesewereneverimplementedbecauseatechniquecalledmultiple patterning,whichcouldprovidesuperiorresolution,wasrapidlydevelopedand employedfirst.33

Multiplepatterningisamethodthatallowsprintingofpatternsthataresmaller thanthesingleexposurelithographicresolutionlimitthroughtheuseofmultiple processstepstoprintasinglelayer.Multiplepatterningisthemostgeneraldescriptionoftheprocess,butitwasfirstusedintheformofdoublepatterning(equivalent totwosingleexposures)andthenlaterquadruplepatterningwasdevelopedand implemented(equivalenttofoursingleexposures).Thestrictdefinitionoftheresolution,definedbytheRayleighcriterionin Eq.(1),relatestotheseparation,rather thanthefeaturesize,oftwoobjectsandthuswhenthepitchbetweenobjectsis relaxedthefeaturesizecanbereducedfurther,forinstancebyaggressiveresist

processing,exposuredosebias,etc.Bypatterninginmultiplesteps,closelyspaced featurescanbeseparatedintodifferentpatterningsteps effectivelyrelaxingthe pitch.Onewaytodescribemultiplepatterningisthatitprovidesawaytocontinue scalingthroughtheuseofaddedprocesscomplexity(byrequiringmultiplerepeats ofanexistingprocess)ratherthanaddedtoolortechnologycomplexity(suchasby modifyingoptics,changingwavelength,etc.).Thisdescriptionisobviouslyoversimplifiedbecausespeciallydesignedtoolswillimprovetheprocess,butitillustratesthatthemethodcould,intheory,beappliedwithexistingequipment.The applicationofmultiplepatterningasanindustrialproductionprocesswasinmany waysachangeintheparadigmofscalingthathaddriventhesemiconductorindustry formostofitslifetime.

Althoughtherearemanydifferentpotentialwaystoimplementdoubleandmultiplepatterning,34 onlyafewwillbebrieflyreviewedhere.Onemethodisknownas Litho-Etch-Litho-Etch(LELE)anditinvolvestwolithographicexposureandetch stepstocreateasinglelayer.Themethodinvolvesfirstdepositingafilmstackconsistingofoneormorehardmasksontothewafer.Oneexposureisdoneneartheresolutionlimitofthetoolandthispatternisetchedintotheunderlyingfilmstack.A secondexposurepatternthatisoffsetfromthefirstpatternisthencarriedoutand transferredintotheUL.Thecombinedpatternfromthetwodifferentexposuresis atdoublethepitchofeachindividualpattern.Theprocessisdemonstratedin Fig.3.Thisprocesshasanadvantageinthatitcan,intheory,beappliedtoanygeneralpattern,butitishighlysensitivetooverlayerror,whichistheerrorbetweenthe alignmentofeachmasktotheunderlyingpattern.

Anothercommonlyusedmethodofdoublepatterningiscalledself-aligneddoublepatterning.35 Itinvolvesthedepositionofaconformalcoatingofafilmontoa singleresistpattern.Thefilmcanthenberemovedbyaselectiveetcheverywhere butonthesidewallsoftheoriginalresist.Theresististhenremovedandtheremainingsidewallpatternwillbeatasmallerpitchandresolutionthantheoriginalresist. Transferofthisremainingsidewallpatternintothesubstratecompletestheprocess. Thismethodisillustratedin Fig.4.ThisprocessisslightlysimplerthanLELEand haslessstringentoverlayerrorrequirements,butisgenerallylimitedtoamore restrictivesetofpatternssuchasalternatinglines.Thisprocesscanalsoberepeated asecondtimeonthefirstsidewallpatternstoeffectivelyquadrupletheoriginalresist pitchinaprocessknownasself-alignedquadruplepatterning.

Multiplepatterningtechniq uesusingdirectedself-assembly(DSA)oforganic materialssuchasblockcopolymers(BCPs)havereceivedmuchinterest.35 43 BCPsarepolymerscomposedoftwoormorediscreteblocksofhomopolymers thatarecovalentlyjoinedtogether;someexamplesofBCPsinclude polystyrene-block-polymethylmethacry late(PS-b-PMMA)orpolystyrene-blockpolydimethylsiloxane(PS-b-PDMS).BCPsareofinterestbecausetheycanphase separatetolengthscalesthatarecommensuratewithdesiredlithographicpatterns. DSAisthemethodwherebytheself-assemblyisspatiallycuedorcontrolledto producelithographicallyusefulphase-se paratedstructuresthatareatasmaller pitchthanisaccessiblefromasingleexposurestep.

FIGURE3

DiagramofLitho-Etch-Litho-Etchprocess.

FIGURE4

Diagramofself-aligneddoublepatterning(SADP)process.

SeveraldifferentwaystocontrolDSAofBCPshavebeeninvestigated44 suchas graphoepitaxy,45 chemoepitaxy,46,47 orvariouscombinationmethods.Achemoepitaxyprocessisillustratedin Fig.5.Conventionallithographyisusedtopatternan ULtoproduceareaswithdifferentchemicalaffinityforeachblockoftheBCP. ThedifferentareascanbeproducedbychemicalmodificationoftheULthrough plasmatreatmentorbyselectiveremovalofareasinthefirstULandadeposition ofanothermaterialsuchasabrushpolymer.Finally,theBCPiscoatedontothe patternedULandannealed.Becauseeachblockhasdifferentaffinityforeach areaoftheUL,specificblocksarealignedtocreatethedirectedself-assembled pattern.MuchprogresshasbeenmadeonevaluatingDSAasapotentialmethod forpitchmultiplication48 andimprovingdefectivity,37,49 however,ithasnotyet beenimplementedindustriallyforcommercialsemiconductorproduction.

Chemoepitaxyprocessflowfordirectedself-assembly(DSA)ofblockcopolymers(BCPs).

1.3.3 EXTREMEULTRAVIOLETLITHOGRAPHY

EUVlithographyhasreceivedsubstantialattentioninthelast10þ yearsasa“next wavelength”replacementfor193-nmDUVlithography.11 Overthistime,ithasbeen predictedtobeonlya“few”yearsfromcommercialimplementationmultipletimes, buthasnotyetbeenusedinhighvolumemanufacturing.Partofthisdelayisdueto concernsovertheproductionreadinessofvariousaspectsofthetoolandprocess whichwillbediscussedlater,butalsoduetocontinuedadvancesinmultiple patterningwhichhavekeptpacewiththetechnologyroadmapsuntilnow,although ataveryhigh,andincreasing,cost.

EUVradiationcoversthewavelengthrangefrom10nmuptoabout120nmand alsocanoverlapwitharegionconsideredsoftX-rays.Thewavelengthsthatarethe mostlithographicallyinterestingareintherangeof11 14nm.Consideringthe Raleighcriterionshownin Eq.(1),thiswavelengthrangewouldpotentiallyrepresentasubstantialimprovementinresolutionover193-nmDUV;however,there aremanyimportantdifferencesinthephysicsandtooldesignwhenthewavelength isdroppedintotheEUV.Sinceallmaterialsabsorbatthesewavelengths,thesystem mustberuninavacuumratherthaninairandtransparentopticscannotbeusedin thewayquartzcanbeusedintheDUV.Fortunately,theuseofmultilayerfilmstacks ofalternatingmaterialscanproducereflectingopticswithreasonableefficiency.50 ThemostcommonlyusedEUVreflectorstackconsistsofmultiplealternatinglayers ofmolybdenumandsilicon,whichshowsaround70%reflectionefficiencywitha peakwavelengthof13.5nm.51

EUVexposuretoolsformanufacturingwillrequiremultiplemirrors(6to12þ)to projectasufficientlyhighfidelityimage.Giventhereflectivityof70%foreach mirror,only1 5%ofthegeneratedphotonswillactuallyreachthewafer.This lossmeansthatEUVlightsourcesneedsufficientlyhighpowertoprovidethe requiredwaferthroughputtomakeEUVeconomicallyviable.ProgressinEUV sourcepowerhasbeenslowandhasbeenamongthetop,ifnotthetopconcern/roadblockforimplementationofEUVcommercially.Currentestimatessuggestasource powerof250Wwillbeneededwithlong-termreliableoperation.Asofspring2016, alabdemonstratedpowerof200Whadbeenreported,butsourcesinactualfield demonstrationunitswerearound80W.52 Thelowsourcepoweralsomeansthat EUVresistsneedverygoodsensitivitywhichwillbediscussedlater.

EUVmaskshavealsorequiredsignificantwork.Inadditiontoreflectiveoptics, EUVusesamaskcomposedofareflectivemultilayer.Thereflectivemaskrequires off-axisilluminationandthiscombineswiththeeffectofthethicknessofthemask

FIGURE5

absorbertocreateshadowingeffects,53 whichdegradepatternqualityandmustbe accountedforinmaskandsystemdesign.TheEUVlightthatisreflectedfroma multilayerissomecumulativedistributionofthereflectionsatinterfacesbetween allthelayers.Thisisimportantbecauseitimpliesthatanydefectsburiedinthe multilayercanhaveaneffectontheprojectedpattern.54,55 Thesedefectswillbe difficulttofindusingconventionaldefectanalysisbecausetheywillbeverysmall scaleandpotentiallyinvisibletomanyinspectionmethodsastheyareburied.As aresult,aspecializedtechniquehadtobedevelopedeventoinspectEUVmasks fordefectsbasedonactinicinspection.56 58

AlthoughEUVcanbeconsideredaformofopticallithography,theinteractions ofanEUVphotonwitharesistaresignificantlydifferentthanaDUVphoton,dueto themuchhigherenergyatEUVandthetypicallyhigherabsorbanceatEUV.Anincident13.5-nmEUVphotonhasabout92eVofenergycomparedto5.0and6.4eVfor theDUVwavelengthsof248and193nm,respectively.Thisenergydifference meansthereisasignificantlydifferentphotonfluxontotheresistatequivalentdoses. Thereareapproximately10photons/nm2 atEUVforadoseof15mJ/cm2,while thereare146photons/nm2 attheequivalentdoseat193nm.AtDUV,thephoton isabsorbedbytheresistandittemporarilyexcitesanelectroninamoleculetoan excitedstatebeforereturningtothegroundstate.Whenthe92-eVEUVphotonis absorbedbytheresist,aphotoelectronofabout80eV(onaverage)isgenerated.59 Thephotoelectronwillscatterthroughtheresistandgeneratemoresecondaryelectrons(aroundtwotofivetotalsecondaryelectronsfortypicalorganicresists)ina mannersimilartothecascadeofsecondaryelectronsgeneratedbyscanningelectron microscope(SEM)ore-beamlithographyinteractions.Thechemistryandphysics thatoccurinaresistduringEUVexposurearethereforeasmuchrelatedto e-beamexposureastheyarerelatedtoDUVexposure,althoughitisultimatelya combinationofthetwo.

1.3.4 E-BEAMLITHOGRAPHY

E-beamlithographyusesafocusedbeamofelectronstodirectlyexposearesist.The electrongunisoftenatungstenthermionicemissioncathode.23 Thebeamisfocused ontoaverysmallspotsizethatcanbelessthan10nmusingaseriesofcondenser lensesandbeamdeflectioncoils.ComparedtoUV,DUV,andEUVlithography, e-beamlithographyisamasklessformoflithographyinthatitrequiresnomask becausethedeflectorsandcoilsallowarbitrarydeflectionofthefinelyfocused beam.Indeed,e-beamlithographyisthetechniquethatismostcommonlyusedto patternthemasksusedinotherformsoflithography.Theflexibilityofe-beamallowsalmostanyarbitrarygeometrytobeprogrammedandpatterned,although certainapplicationsthatrequirehighfidelityandalignmentincircularpatterns suchasbit-patternedmediawillusemorespecializedtoolsthatallowforacircular rotatingstage.60,61

Amongthemanydifferenttypesofcommonlyusedlithography,e-beamis widelyconsideredtohavethehighestresolution,especiallywhenusing50to 1.3

100þ keVprimaryelectrons.Featuresassmallas5nmandbelowhavebeenfabricatedusinge-beamlithography.62 Althoughe-beamlithographyhasresolutioncapabilitythatfarexceedscurrentproductionDUVtools,ithassignificantlyslower throughput,whichlimitsitsuseinhighvolumecommercialmanufacturing. Throughputforamodernopticallithographyscannerexceedswelloverahundred wafersperhour.Astandardsinglebeame-beamtoolcantakeseveralhoursto exposeasinglewaferanduptoseveraldaysforsomecomplexmasksortemplates. Thistimewillbelongerasthedesiredspotsizeisdecreasedtoimproveresolution. Patterningine-beamcanalsotakemoretimebecausethehighestresolutionresists areoftennonchemicallyamplifiedresistswhichrequiremuchhigherdosesthanthe chemicallyamplifiedresists(CARs)commonlyusedinopticallithography.Thelow throughputhashistoricallylimitede-beamlithographytomaskmakingandresearch anddevelopmentpurposes;however,workhasbeencarriedoutandcontinueson methodsandtooldesignswhichcouldimprovethroughputsuchasprojection e-beam,63 66 multiple-beam,67,68 shape-variablebeam,69 andreflectivebeam.70

Multiple-beame-beamlithographyispotentiallythemostadvancedoptionatthis time,andimprovesthroughputbymassivelyparallelizingthebeamsthatpattern thewafer.71

Themostimportantradiation materialinteractioninopticallithographyatUV andDUVwavelengthsisdirectphotonabsorptiontotemporarilyexciteamolecule toanexcitedstateasdiscussedearlier.Ine-beamlithography,theradiation materialinteractionisverydifferentandisinmanywayssignificantlymorecomplex.72 Highenergyprimaryelectrons(typically50 100keV)enterthetopsurfaceand scatterthroughtheresistbyaseriesofelasticandinelasticcollisions.Theinelastic collisionscausealossofenergyandgeneratemultiplesecondaryelectrons.Thesecondaryelectronscanlikewisescatterthroughtheresistwithsimilarphysicsand generateevenmoreadditionalfreeelectrons.Inthismanner,asingleincidentelectroncangeneratealargecloudofelectrons.Thiscloudofelectronsoftenhasa teardrop-shapedinteractionvolumewiththeresistasshownin Fig.6.Theelectron trajectoriesandsecondaryelectrongenerationcanbesimulatedusingMonteCarlo techniques.73,74

Theelectronswhichscatterthroughtheresistasdescribedearlierandshownin Fig.6 canbeconsideredforwardscatteringoftheelectronsbecausemostoftheelectronsarescatteredatsmallanglesforwardintotheresist.Thereisanotherscattering phenomenonthatisimportantine-beamlithographycalledbackwardscattering. Thisoccurswhenelectronsarescatteredatmuchhigheranglesfromthesubstrate backwardintotheresist.Backwardscatteringismorelikelywhenelectrons encounterhigher Z elementsasarecommonlyfoundintheinorganicsubstrates.It isaconcernbecauseitseffectsarefeltoveramuchlargerdimensionalrange,up tomicronsawayfromtheincidentbeamratherthanthenanometerlengthscale forforwardscattering.Backwardscatteringtendstocausedensefeaturestoreceive ahighereffectivedosethansparsefeaturesbecausethebackwardscatteredelectrons fromneighboringfeaturescontributetothetotaldosewhilethesparsefeatureshave fewneighbors.Thisisknownastheproximityeffect75 andproximityeffect

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Materials and processes for next generation lithography 1st edition alex robinson and richard lawson by Education Libraries - Issuu