Malware diffusion models for wireless complex networks. theory and applications 1st edition karyotis

Page 1


https://ebookmass.com/product/malware-diffusion-models-for-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Deploying Wireless Sensor Networks. Theory and Practice 1st Edition Mustapha Reda Senouci

https://ebookmass.com/product/deploying-wireless-sensor-networkstheory-and-practice-1st-edition-mustapha-reda-senouci/

ebookmass.com

Hidden Semi-Markov models : theory, algorithms and applications 1st Edition Yu

https://ebookmass.com/product/hidden-semi-markov-models-theoryalgorithms-and-applications-1st-edition-yu/

ebookmass.com

Boolean Networks as Predictive Models of Emergent Biological Behaviors (Elements in the Structure and Dynamics of Complex Networks) Rozum

https://ebookmass.com/product/boolean-networks-as-predictive-modelsof-emergent-biological-behaviors-elements-in-the-structure-anddynamics-of-complex-networks-rozum/ ebookmass.com

Freedom of Speech and Expression: Its History, Its Value, Its Good Use, and Its Misuse Richard Sorabji

https://ebookmass.com/product/freedom-of-speech-and-expression-itshistory-its-value-its-good-use-and-its-misuse-richard-sorabji/ ebookmass.com

Maxi's Moment: An MM Age Play, Age Gap Romance (The Littles Of Cape Daddy Book 6) Zack Wish & Lana Kyle

https://ebookmass.com/product/maxis-moment-an-mm-age-play-age-gapromance-the-littles-of-cape-daddy-book-6-zack-wish-lana-kyle/

ebookmass.com

Outlaws Jen Calonita

https://ebookmass.com/product/outlaws-jen-calonita/

ebookmass.com

Penetration Tester's Open Source Toolkit 4th edition Edition Faircloth

https://ebookmass.com/product/penetration-testers-open-sourcetoolkit-4th-edition-edition-faircloth/

ebookmass.com

Database Systems: A Practical Approach to Design, Implementation, and Management 6th Edition Thomas M. Connolly

https://ebookmass.com/product/database-systems-a-practical-approachto-design-implementation-and-management-6th-edition-thomas-m-connolly/

ebookmass.com

A

History of East African Theatre, Volume 2 Palgrave

https://ebookmass.com/product/a-history-of-east-african-theatrevolume-2-palgrave/

ebookmass.com

Beautiful Unwanted Wildflower (Offspring Legends Book 2)

Hayley Faiman

https://ebookmass.com/product/beautiful-unwanted-wildflower-offspringlegends-book-2-hayley-faiman/

ebookmass.com

MalwareDiffusion ModelsforModern ComplexNetworks TheoryandApplications

MalwareDiffusion ModelsforModern ComplexNetworks TheoryandApplications

VasileiosKaryotis
M.H.R.Khouzani

AcquiringEditor: BrianRomer

EditorialProjectManager: AmyInvernizzi

ProjectManager: PriyaKumaraguruparan

Designer: MarkRogers

MorganKaufmann isanimprintofElsevier 50HampshireStreet,Cambridge,MA02139,USA

Copyright © 2016ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationabout thePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethodsorprofessionalpractices,maybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformationormethodsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligence orotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedin thematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloging-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary.

ISBN:978-0-12-802714-1

ForinformationonallMorganKaufmannpublications visitourwebsiteat www.mkp.com

CHAPTER4Queuing-basedMalwareDiffusionModeling

4.2.1BasicAssumptions ........................................

4.2.2MappingofMalwareDiffusiontoaQueuing Problem

4.4.1MalwareDiffusionModelsandNetworkChurn .....

4.4.2OpenQueuingNetworkTheoryforModeling MalwareSpreadinginComplexNetworkswith Churn .........................................................

4.4.3AnalysisofMalwarePropagationinNetworks withChurn...................................................

4.4.4DemonstrationofQueuingFrameworkfor MalwareSpreadinginComplexandWireless Networks

CHAPTER5Malware-PropagativeMarkovRandomFields

5.2 MarkovRandomFieldsBackground

5.2.1MarkovRandomFields .................................

5.2.2GibbsDistributionandRelationtoMRFs..........

5.2.3GibbsSamplingandSimulatedAnnealing ........

5.3 MalwareDiffusionModelingBasedonMRFs

5.4 RegularNetworks ..................................................

5.4.1ChainNetworks ..........................................

5.4.2RegularLattices:FiniteandInfiniteGrids

5.5 ComplexNetworkswithStochasticTopologies

5.5.1RandomNetworks .......................................

5.5.2Small-worldNetworks ..................................

5.5.3Scale-freeNetworks

5.5.4RandomGeometricNetworks .........................

5.5.5ComparisonofMalwareDiffusioninComplex Topologies .................................................

9.1.5RobustnessAnalysisforWirelessMultihop Networks ................................................... 187

9.1.6Conclusions ............................................... 191

9.2 DynamicsofInformationDissemination...................... 192

9.2.1IntroductiontoInformationDissemination ........ 192

9.2.2PreviousWorksonInformationDissemination.... 195

9.2.3Epidemic-basedModelingFrameworkforIDDin WirelessComplexCommunicationNetworks...... 196

9.2.4WirelessComplexNetworksAnalyzedand AssessmentMetrics ..................................... 198

9.2.5Useful-informationDisseminationEpidemic Modeling ................................................... 201

9.3 Malicious-informationPropagationModeling ............... 209

9.3.1SISClosedQueuingNetworkModel ................ 210

CHAPTER10TheRoadAhead

Introduction .........................................................

10.5 OpenProblemsforApplicationsofMalwareDiffusion ModelingFrameworks .............................................

PART 4APPENDICES

APPENDIXASystemsofOrdinaryDifferentialEquations

A.1 InitialDefinitions

A.2 First-orderDifferentialEquations

A.3 ExistenceandUniquenessofaSolution

A.4 LinearOrdinaryDifferentialEquations

A.5 Stability

APPENDIXBElementsofQueuingTheoryandQueuingNetworks

B.1 Introduction .........................................................

B.2 BasicQueuingSystems,Notation,andLittle’sLaw ....... 235

B.2.1ElementsofaQueuingSystem....................... 236

B.2.2FundamentalNotationandQuantitiesofInterest 237

B.2.3RelationBetweenArrival-DepartureProcesses andLittle’sLaw .......................................... 238

B.3 MarkovianSystemsinEquilibrium.............................

B.3.1Discrete-timeMarkovChains

B.3.2Continuous-timeMarkovProcesses

B.3.3Birth-and-DeathProcesses ............................

B.3.4The M/M/1 QueuingSystem

B.3.5The M/M/m SystemandOtherMultiserver QueuingSystems

B.4

B.5

B.6

B.6.1AnalyticalSolutionofTwo-queueClosed

C.1 BasicDefinitions,StateEquationRepresentations,and BasicTypesofOptimalControlProblems

C.2 CalculusofVariations .............................................

C.3 FindingTrajectoriesthatMinimizePerformance

C.3.1FunctionalsofaSingleFunction

C.3.2FunctionalsofSeveralIndependentFunctions...

C.3.3Piecewise-smoothExtremals..........................

C.3.4ConstrainedExtrema

C.4 VariationalApproachforOptimalControlProblems

C.4.1NecessaryConditionsforOptimalControl

C.4.2Pontryagin’sMinimumPrinciple

C.4.3Minimum-timeProblems

C.4.4MinimumControl-effortProblems

C.4.5SingularIntervalsinOptimalControlProblems

C.5 NumericalDeterminationofOptimalTrajectories

C.5.1SteepestDescent

C.5.2VariationofExtremals

C.5.3Quasilinearization........................................

C.5.4GradientProjection......................................

C.6 RelationshipBetweenDynamicProgramming(DP)and MinimumPrinciple ................................................

Preface

Malicioussoftware(malware)hasbecomeaseriousconcernforalltypesofcommunicationsnetworksandtheirusers,fromthelaymentothemoreexperiencedadministrators.Theproliferationofsophisticatedportabledevices,especiallysmartphones andtablets,andtheirincreasedcapabilities,havepropelledtheintensityofmalware disseminationandincreaseditsconsequencesinsociallifeandtheglobaleconomy. Thisbookisconcernedwiththetheoreticalaspectsofsuchmalwaredissemination, genericallydenotedas malwarediffusion,andpresentsmodelingapproachesthat describethebehavioranddynamicsofmalwarediffusioninvarioustypesofcomplex communicationsnetworksandespeciallywirelessones.

Themainobjectiveofthisbookistoclassifyandpresentinadequatedetailand analysis,familiesofstate-of-the-artmathematicalmethodologiesthatcanbeusedfor modelinggenericallymalwarediffusion,especiallyinwirelesscomplexnetworks. However,withminorandstraightforwardadaptations,thesetechniquescanbefurther extendedandappliedinothertypesofcomplexnetworksaswell.

Inaddition,thebookcoversholisticallythemathematicalmodelingofmalware diffusion,startingfromtheearlyemergenceofsuchattempts,uptothelatest, advancedandcross-disciplinebasedframeworksthatcombinediverseanalytictools. Startingfromthebasicepidemicsmodelsthatarebasedonsystemsofordinary differentialequations,thecontentproceedstomoreexoticanalytictoolsfoundedon queuingsystemstheory,MarkovRandomFields,optimalcontrolandgametheoretic formulations,respectively.Numericalandsimulationresultsareprovided,inorderto validateeachframeworkanddemonstrateitspotentials,alongwithsystembehavior studies.Thebookalsoprovidesasummaryoftherequiredmathematicalbackground, whichcanbeusefulforthenovicereader.Furthermore,itprovidesguidelines anddirectionsforextendingthecorrespondingapproachesinotherapplication domains,demonstratingsuchpossibilitybyusingapplicationmodelsininformation disseminationscenarios.

Consequently,thisbookaspirestostimulateinter-disciplinaryresearchand analysisinthebroaderareaofmodelinginformationdiffusionincomplexnetworking environments.Itmainlyfocusesonthediffusionofmaliciousinformation(software) overwirelesscomplexnetworks,however,aswillbecomeevident,mostoftheresults canbeeasilyextendedandadaptedforothertypesofnetworksandapplication domains.

IntendedAudience

Thecontentofthisbookispresentedinafashionaimingmainlyatfirstyeargraduateaudiences,postdoctoralresearchers,professorsandthemoreexperienced/interestedprofessionalengineersthatareinvolvedincomputersecurity researchanddevelopment.Mostofthemareassumedalreadyfamiliarwiththe practicaltopicsincludedinthebroaderresearchareaandthebookprovidesforthem asolidquantitativebackgroundontheavailablemathematicalmalwaremodeling

approachesinamoresystematicmannerthantheworksavailablenowadays(essentiallyscatteredjournal/conferencepapersandsurveys),i.e.withformaldefinitions, referencestothemathematicalmethodsandanalysisoftheadvancedtechniques. Thetextpresentsandanalyzesthelatestmathematicaltoolsthatcanbeofusein theresearchanddevelopmentactivitiesoftheaboveaudiences.However,despite itssemi-advancednature,studentsintheirlastundergraduateyearcanalsobenefit fromsuchaspecializedtreatmentandinvolvedmethodologies,byobtainingasolid backgroundofthecorrespondingarea.

Thebookfocusesonthemathematicalmodelingofmalwarediffusiondynamics, andassuch,somefamiliarityonbasicmathematicaltechniques,suchasprobability theory,queuingtheory,ordinarydifferentialequations,optimalcontrolandgame theoryisneeded.Therequiredquantitativelevelwillbenohigherthanthatofthefirst graduateyear.Consequently,thebookisidealforgraduatestudentsatthebeginning oftheirprograms,bothforcourseworklevel(graduatetextbook)andasacompanion intheirownresearchendeavors.Basicelementsoftherequiredmathematicaltools arepresentedinthethreeappendices,providingquickbackgroundreferenceforthose notfamiliarwiththecorrespondingfields.

Themaindisciplineforwhichthisbookwasdevelopedforiscomputerscience andsystemengineering.Ithasbeenspecificallywrittenforthoseinvolvedin computerandsystemsecurity.Academicsfromthesefieldscanusethebookintheir researchandgraduateclassrooms.Thematerialprovidedoffersacompletesetof existingstate-of-theartmethodologiesaccompaniedbyanextensivebibliography andapplicationexamples.Itprovidesacoherentperspectiveoftheareaofmalware diffusionandsecurity,andguidelinesfordevelopingandbroadeningone’sknowledgeandresearchskillsinthecorrespondingareas.

Regardingtheapplicationcontentofthebook,themainaudienceisexpectedto bescientistsandengineersactiveinthefieldofcommunications/computernetworks, namelythebroadercommunityofcomputerscientistsandelectricalengineers,and morespecifically,computerandsystemssecurityareexpectedtoformthemain audience.However,atthesametime,anumberofresearchersandprofessionals workinginotherdisciplinesthatstudyproblemssharingseveralcharacteristicswith theproblemsemerginginmalwarediffusioncanbealsoaccommodatedbythe contentsofthebook,atleastpartially.NetworkScienceisthemostprominent suchareathathasalreadybroughttogetherdisciplinesasdiverseassociology, biology,finance,computerscienceandelectricalengineering,inordertojointlystudy problemsandsharemethodsandresults.Malwarediffusionmaybeconsideredina moregenericfashionasinformationdiffusionandprofessionalsfromalltheaforementioneddisciplinesstudyinginformationdisseminationproblemsareexpected tohavepotentialinterest.Thegenericformofthepresentationandespeciallythe applicationsofthepresentedtechniquesintopracticalanddiverseproblems,such asinformationdisseminationdynamicsissuitablefordiverseprofessionalsassocial scientists,epidemiologistsandmarketingprofessionals,aswell.

Consequently,thelevelofthebookaccommodatespracticallyalllevelsof expertise,withmoreemphasisontheintermediatetoadvanced.Theapplicationsare

relevantmainlytoengineersandscientistsinthefieldofcommunicationsandcomputerscience,butalsorelevanttointer-disciplinaryscientistsandprofessionalsfrom theinformation-relateddisciplinesandNetworkScience.Thebookhasattemptedto balancebothdepth(technicallevel)andbreadth(applicationdomains)oftheincluded methodologies,originallypresentedformalwarediffusion.

ScopeandOutlineoftheBook

Scope

Thetopicsaddressedregardingmalwarediffusion,aretreatedinthisbookfrom aninter-disciplinaryNetworkScienceperspective,andarecurrentlyrapidlyevolving atratesthatotherresearchareashavebeenenjoyingformanyyearsnow.Within suchframework,somefieldsofNetworkSciencehavealreadybeenwell-shapedand advancedtoadesireddegree,e.g.socialnetworkanalysis(SNA)[125, 164],while othersstillconsistoffragmentedcontributionsandscatteredresults.

Malwarediffusionincomputernetworksingeneral,andwirelessonesinparticular,qualifiesasoneofthelatterfields.Untilrecently,mostoftheproposedapproaches formodelingthedynamicsofmalicioussoftwaredisseminationfollowedmoreorless thesamepracticesandtheywereessentiallybasedonsomerestrictiveassumptions. Mostofthemrequiredthediffusionprocesstotakeplacefirst,inordertolater develop/fitaccuratemodelsbasedontheobserveddataafterwards,lackingpredictive powerforgenericanticipatedattacks.Thus,itwasnotpossibletoholisticallycapture thebehaviorofdynamicsandpredicttheoutcomesofattacksbeforetheyactually takeplace.

However,inthelastdecade,severaladvancedmodelingmethodologieswere presented,whicharecapableofdescribingmoreaccuratelymalicioussoftware diffusionoverdiversetypesofnetworks,andmoreintelligentattackstrategies aswell.Genericmodelshavebeenpresented,andwhennecessarytheycanbe adaptedtodescribeaccuratelytheobservedbehaviorsinothertypesofnetworks. Suchapproachesutilizedifferentmathematicaltoolsfortheirpurposesandcapture properlythemostimportantaspectsofmalicioussoftwarediffusiondynamics.

Still,theliteratureismissingasystematicclassification,presentationandanalysis ofalltheseadvancedmethodologiesandobtainedresults,inamannercompatibleto thebroaderscopeofthedisciplineofNetworkScienceandwithreferencetokey legacyapproachesaswell.Thisbookaspirestofillthisgap,bymethodicallypresentingthetopicofmalwarediffusionincomplexcommunicationsnetworks.More specifically,thebookwillfocusonmalwarediffusionmodelingtechniquesespecially designedforwirelesscomplexnetworks.Howeverthepresentedmethodologiesare applicableforothertypesofcomplexcommunicationsandsocialnetworksandthe wirelessnetworkparadigmwillbeemployedmainlyfordemonstrationpurposes.The mathematicalmethodologiesthatwillbepresented,duetotheirgenericanalytical naturecanbeeasilyadaptedandusedinothertypesofcomplexnetworks,even non-technologicalones.Thus,thebookwillnotonlypresentandanalyzemalicious

softwaremodelingmethodsforwirelesscomplexnetworks,butalsodemonstrate howthesemethodscanbeextendedandappliedinothersettingsaswell,e.g. genericinformationdisseminationovercomplexnetworksofanytypesuchashuman, financial,etc.

Inshort,thisbookaspirestobecomeacornerstoneforasystematicorganizationandmathematicalmodelingofmalicioussoftwareandinformationdiffusion modelingwithinthebroaderframeworkofNetworkScienceandcomplexnetworks. Furthermore,itaspirestoprovidelong-termreferencetotherequiredbackgroundfor studyingin-depthandextendingthecorrespondingfieldofresearch.

Outline

Thisbookisorganizedinthreemainpartsandasetofauxiliaryappendices withrespecttothecoremathematicalareasrequiredinordertounderstandthemain contentsofthebook.Theintroductory Part1 consistsof Chapters1–3,andconstitutes athoroughintroductiontothegeneralmalwarediffusionmodelingframeworkwe considerinthisbook. Part2,whichincludes Chapters4–8,presentsstate-of-theartmalwarediffusionmodelingmathematicalmethodologiesandcorrespondsto themainanduniquecontributionofthisbookintheliterature.Itpresents,while alsoexplainingindetail,malwarediffusionmodelingmathematicalmethodologies utilizingalternative,yetpowerfulanalyticaltools. Part3 summarizesthekeypoints ofthepresentedmethodologiesandpresentsdirectionsforpotentialfutureresearch. Italsosetsthepresentedtheoreticalknowledgeintoabroaderapplicationperspective, whichcanbeexploitedinotherdisciplinesaswell.Finally,theappendicescontain brief,butcompletereviewsofthebasicmathematicaltoolsemployedinthisbook, namelyelementsofordinarydifferentialequations,elementsofqueuingtheoryand elementsofoptimalcontroltheory,whichcanbeveryhelpfulforthenon-familiar reader,inordertoquicklyobtainasolidunderstandingofthemathematicaltools requiredtounderstandthepresentedmodelsandapproaches.

Inmoredetail, Chapter1 servesasaconciseintroductiontothetopicsaddressed inthebook,introducingcomplexcommunicationnetworks,malwarediffusion,as wellassomehistoricalelementsoftheevolutionofnetworksandmalware.

Chapter2 definesthemalwarediffusionproblem,alongwiththenodeinfection modelsthatemergeintheliterature.Italsocollectsandpresentscharacteristic examplesofcomputernetworkattackswhichareofinterestinthestudyofmalware diffusionintheframeworkofthebook.

Chapter3 providesaconcisepresentationandquickreferenceanalysisofthe malwaremodelingmethods,withrespecttotheemergingincidentsintheearly daysofmodelingmalicioussoftwarepropagationdynamicsandbyfocusingonthe wirelessscenarios.Thecontentofthischapterwillserveasbackgroundforsomeof thestate-of-the-artapproachespresentedlaterin Part2.

Thefollowingchaptersin Part2 presentadvancedmalwaremodelingtechniques, eachdedicatedtoafamilyofapproachesdistinguishedbytherestaccordingtothe employedmathematicaltools.Thus,thefirstchapterof Part2,namely Chapter4,

presentsapproachesmodelingmalwarediffusionbymeansofqueuingtheory,and especiallyqueuingnetworks.Thebasicideaisthatthetimespentbyeachnodein astateofaninfectionmodel1 canbemappedtothewaitingtimeofacustomerina purequeuingsystem.Duetothesuperpositionofnodebehaviorsinanetwork,the correspondingqueuingsystemwillbeanetworkofqueuesformodelingthebehavior ofmalwareoverthenetwork.

Chapter5 initsturnpresentsandanalyzesmalwaremodelingapproachesthat exploitthenotionofMarkovRandomFields(MRFs).MRFsaresetsofrandom variablesthatcancumulativelydescribetheoverallstateofasystem,whereinthis case,thesystemisanattackednetwork.ByexploitingseveralpropertiesofMRFs, itispossibletoobtainsolutionsinasimplemanner,withoutsacrificingimportant detail,fordiversetypesofcomplexnetworks.

Chapter6 coversmalwaremodelingapproachesthatarebasedonstochastic epidemicsandoptimalcontrol.Suchapproachesallowanalyzingtherobustness potentialsofnetworksandattacksandobtainoptimalorsemi-optimalpoliciesfor dealingwithattacksandtheiroutcomes.

Chapter7 buildsonthepreviousandpresents,analyzesanddemonstrates malwaremodelingapproachesthatexploitprinciplesfromgametheorytomodel epidemics.Itcaststheproblemsinaninteractiveframeworkandcombinesthemwith optimalcontrolstrategies.

Finally, Chapter8 providesaqualitativecomparisonofallthepreviously(Chapters4–7)presentedapproacheswiththeulteriorgoaltorevealthedistinctfeaturesof eachapproachinacomparativefashion,allowingselectingthemostappropriateone fordifferentapplications.

In Part3, Chapter9 presentsotherapplicationareaswherethepresentedmodels maybeappliedsuccessfully,thus,exhibitingtheirpotentialforcreatingmoreholistic informationdiffusionframeworks. Chapter10 summarizesthelessonslearned, explainsthegroundcovereduntilnowandprovidespotentialdirectionsforfuture workinthespecifictopicofmalwarediffusionmodelingandthebroadervisionof informationdiffusion.Finally, Chapter11 concludesthisbook,highlightingthemost importantaspectsofmalwarediffusion,inparticular,andinformationdissemination ingeneral.

AppendixA providesbackgroundondifferentialequations, AppendixB onqueuingsystemstheory,and AppendixC onoptimalcontroltheoryandHamiltonians,for theinterestedreaders.

1Theinfectionmodelwillbeexplainedin Chapter2 anditdescribeshownodesofanetworkchangestates withrespecttomalwareandtheirownbehavior.

ListofFigures

Fig.1.1Simplearchitecturemodelofacellularnetworkandterminologyemployed (cell,terminal,basestation,coveragearea). 10

Fig.1.2Networkformationtradeoff:costversusbenefitofcollaboration.Forthe networktradeoff,thetotalcostandtotalgain,summedoverallentitiesare considered. 17

Fig.2.1Examplesofnodeinfectionmodelsofinterest. 38

Fig.3.1Simpleepidemicmodel:SIinfectionparadigmforeachmemberofthe population.

42

Fig.3.2Simpleepidemicmodel:Percentageofinfectedhostsasatimefunction. 43

Fig.3.3Kermack-McKendrick:Underlyinginfectionmodel. 44

Fig.3.4Statetransitionsinthetwo-factorspreadingmodel. 47

Fig.3.5Two-factormodel:numbersofinfectedandremovedhosts. 49

Fig.3.6Generalepidemicsinfectionmodel—statetransitiondiagram. 56

Fig.4.1Mappingofmalwarediffusionproblemtothebehaviorofaqueuingsystem. Theshadednodesaresusceptiblelegitimateneighborsofnode i.Thecolored nodesareeithermaliciousnodesorlegitimatealreadyinfectedneighborsof i.Node i isconsideredsusceptibleatthemoment. 66

Fig.4.2ClosedqueuingsystemsmodelingmalwarediffusionoverawirelessSIS network. 68

Fig.4.3TheNortonequivalentmodelformalwarepropagationincommunications networks.Thefigureshowstheinstancewhere k nodesarecurrentlyinfected. 70

Fig.4.4Statediagramfortheanalysisofthetwo-queueclosednetworkandfor obtainingtheexpressionofthesteady-statedistribution. 73

Fig.4.5Probabilityofnoinfectednodes πI (0). 77

Fig.4.6Probabilityofallnodesinfected πI ( N ) 77

Fig.4.7Averagenumberofinfectednodes E [L I ] versus λ/µ. 78

Fig.4.8Averagenumberofinfectednodes E [L I ] versuslegitimate N andmalicious M nodes. 79

Fig.4.9Averagethroughputofnoninfectedqueue E [γS ] versuslegitimate N and malicious M nodes. 80

Fig.4.10Averagethroughputofnoninfectedqueue E [γS ] versusinfection λ and recovery µ rate. 81

Fig.4.11Nortonequivalentoftheclosedqueuingnetworkmodelforapropagative system.Comparedto Fig.4.3,thereisadifferenceintheinfectionratedue totheimpactofattacker. 82

Fig.4.12Probabilityofzeronodesinfected πI (0) (accurate-approximated). 85

Fig.4.13Probabilityofallnodesinfected πI ( N ) versus λ/µ 86

Fig.4.14Probabilityofallnodesinfected πI ( N ) versus R. 87

Fig.4.15Averagenumberofinfectednodes E [L I ] versus λ/µ 88

Fig.4.16Averagenumberofinfectednodes E [L I ] versus R 89

Fig.4.17Averagenumberofinfectednodes E [L I ] versus N . 90

Fig.4.18Averagethroughputofthenoninfectedqueue E [γS ] versus λ. 91

Fig.4.19Averagethroughputofthenoninfectedqueue E [γS ] versus R 92

Fig.4.20Averagethroughputofthenoninfectedqueue E [γS ] versus N 93

Fig.4.21State-transitiondiagramforlegitimatenodesinanetworkwithchurn. 95

Fig.4.22Queuingmodelsformalwarespreadinginnetworkswithchurn. 97

Fig.4.23Percentageofsusceptibleandinfectednodesversusnetworkinfection/recoverystrengthandcomparisonwithnetworkswithnochurnfor complexnetworks. 102

Fig.4.24Expectedpercentageofsusceptible,infected,andrecoveringnodesversus infection/recoverystrength(simulation)forcomplexnetworkswith400and 800initialnodes. 103

Fig.4.25Percentagesofsusceptibleandinfectednodesasafunctionofinfectionto recoverystrength(numerical)forwirelessdistributed(multihop)networks. 104

Fig.4.26Expectednumberofnodesineachstateofawirelessdistributed(multihop) networkwithrespecttonetworkdensity. 105

Fig.4.27Expectednumberofnodesineachstateofawirelessdistributed(multihop) networkwithrespecttoinfection/recoveryrates. 106

Fig.4.28Expectedpercentagevariationofthetotalnumberofnodeswithrespect tonodedensityandinfection/recoverystrengthforwirelessdistributed (multihop)networks. 106

Fig.5.1RandomField(RF)terminologyoverarandomnetworkof n + 1sitesand threephases. 109

Fig.5.2Examplesofcomplexnetworktopologiesofinterest. 116

Fig.5.3Examplesofneighborhoodforthedarklyblueshaded(blackinprint versions)node(site) s intopologiesofinterest. 118

Fig.5.4SISmalware-propagativechainnetworkandMRFnotation. 119

Fig.5.5Steady-statesystemdistributionsfor T / J = 0.2. 123

Fig.5.6Expectednumberofinfectednodes. 124

Fig.5.7LatticenetworkandMRFmalwarediffusionmodelnotation. 126

Fig.5.8ERrandomnetworksandmalwaremodelingMRFs. 130

Fig.5.9MRFmalwarediffusionmodelingforWSSWnetworks. 131

Fig.5.10MRFmalwarediffusionmodelingforSFnetworks. 132

Fig.5.11MRFmalwarediffusionmodelingforrandomgeometric(multihop)networks. 133

Fig.5.12Scalingofpercentageofinfectednodeswithrespecttonetworkdensity:the sparsenetworkregime. 135

Fig.5.13Scalingofpercentageofinfectednodeswithrespecttonetworkdensity:the moderate-densityregime. 135

Fig.5.14Scalingofpercentageofinfectednodeswithrespecttonetworkdensity:the densenetworkregime. 136

Fig.6.1Transitions: S, I, R, D,respectively,representfractionofthesusceptible, infective,recovered,anddead. ν(t ) isthedynamiccontrolparameterofthe malware. 144

Fig.6.2Evaluationoftheoptimalcontrollerandthecorrespondingstatesasfunctions oftime.Theparametersaretimehorizon: T = 10,initialinfectionfraction: I0 = 0 1,contactrate: β = 0 9,instantaneousrewardrateofinfectionforthe malware: f (I ) = 0 1I,rewardpereachkillednode: κ = 1.Also,wehave taken Q(S, I ) ≡ 0.2,and B(S, I ) ≡ 0intheleftand B(S, I ) ≡ 0.2intheright figures.Thatis,intheleftfigure,patchescanonlyimmunizethesusceptible nodesbutintherightfigure,thesamepatchcansuccessfullyremovethe infection,ifany,andimmunizethenodeagainstfutureinfection.Wecansee thatwhenpatchingcanrecovertheinfectivenodestoo(rightfigure),then themalwarestartsthekillingphaseearlier.Thismakessenseasdeferringthe killinginthehopeoffindinganewsusceptibleisnowmuchriskier. 149

Fig.6.3Thejump(up)pointofoptimal ν,i.e.thestartingtimeoftheslaughterperiod, fordifferentvaluesofthepatchingandrates.Forbothcurves,wehavetaken therecoveryrateofthesusceptiblenodes,i.e. Q(S, I ) as γ,andtherecovery rateoftheinfectivenodes,i.e. B(S, I ),onceaszeroandonceasthesameas Q(S, I ) where γ isvariedfrom0 02to0 7withstepsof0 02.Therestofthe parametersare f (I ) = 0.1I, κ = 1, T = 10, β = 0.9,and I0 = 0.1.Notethat when B(S, I ) ≡ γ,thenfor γ ≥ 0.6,themalwarestartskillingtheinfective nodesfromtimezero. 150

Fig.7.1Statetransitions. uNi (t ) and uNr (t ) arethecontrolparametersofthenetwork while uM (t ) isthecontrolparameterofthemalware. 159

Fig.7.2Stateevolutionandsaddle-pointstrategies.Theparametersofthegameare asfollows: κ I = 10,κ D = 13,κu = 10,κr = 5, KI = KD = 0, β2 = β1 = β0 = 4 47,π = 1,andinitialfractions I0 = 0 15, R0 = 0 1, D0 = 0, and T = 4. 167

Fig.9.1Methodologyforstudyingoptimalattacks. 183

Fig.9.2Zero-levelcontoursof g( x1, x2 ). 187

Fig.9.3Optimal E [L I ] versus λ/µ 188

Fig.9.4Optimal E [L I ] versus N 189

Fig.9.5Optimal E [γS ] versus(λ,µ). 190

Fig.9.6Optimal E [γS ] versus N . 191

Fig.9.7Contemporarywirelesscomplexcommunicationnetworkarchitecturedepictingalltheconsideredandconvergedtypesofnetworks,including interconnectionstowiredbackhauls. 194

Fig.9.8IDDinregularlattice(HoMPC; pw = 0),ER(HoMEC; pw = 1),SF (HeMUC),andSW(HoMUC)networksfordifferent pw withmeandegree equalto10, λ = 0.01,and N = 2500. 203

Fig.9.9IDDindynamicMANETwith R = 2m, λ = 1,and k = 2.51, 1.26, 0.63,and 0.13,respectively. 206

Fig.9.10TheIDDinwirelesscomplexnetworks(cyber-physicalsystems)consisting ofbothlong-rangeandbroadcastdisseminationpatterns. 208

Fig.9.11IDDinhybrid(HoMECandHoMPC)complexnetworksofpropagating informationinbothdelocalizedandbroadcastfashions,where ke = 6, kb = 3,and λ = 0.05. 209

Fig.9.12Averagenumberofinfectedusersofthelegitimatenetwork E [L I ] asa functionof λ/µ 212

Fig.9.13Averagenumberofinfectednodes E [L I ] asafunctionof N (numerical result). 213

Fig.B.1Agenericindependentqueuingsystem. 236

Fig.B.2Graphicalpresentationoftherelationbetweenthearrival-departurecounting processesandvisualexplanationofLittle’slaw. 239

Fig.B.3Statediagramforthebirth-deathprocess. 243

Fig.B.4Twoqueuesintandem. 249

Fig.B.5Asimpletwo-queueclosednetwork. 251

Fig.B.6Statediagramofatwo-queueclosedqueuingnetworkwithstate-dependent servicerates. 253

Fig.C.1Analogybetweenfunctions,functionals,andextremevalues. 260

ListofTables

Table1.1ExamplesofComplexNetworkClassesBasedontheOriginoftheirFormation 19

Table1.2ComplexNetworkClassificationBasedonTopologyStructure 20

Table2.1MalwareDiffusionCategoriesandtheirCoverageinthisBook.Symbols‘+, -,*’MeantheCorrespondingCategoryisAddressed,NotAddressed,Only TouchedUponintheBook,Respectively 30

Table2.2ANon-exhaustiveClassificationofMalwareTypeswithExamples

Table2.3MappingofMalwareThreatstoMalwareAttackTypes

Table2.4LegitimateNodeStatesintheConsideredNodeInfectionModelsandtheir Interpretation

Table2.5ClassificationofNodeInfectionModels

Table8.1QualitativeComparisonofState-of-the-ArtMalwareModelingFrameworks 177

Table9.1TypesofDiffusingInformationandtheirFeatures

Table9.2ComplexNetworkClassification

TableB.1Arrival-ServiceDisciplineCharacterizationinKendallNotation

Fundamentalsof complex communications networks

1.1 INTRODUCTIONTOCOMMUNICATIONS NETWORKSANDMALICIOUSSOFTWARE

Incomplexnetworks[7, 164, 165]andthebroaderareaofNetworkScience1 [125, 155],modernanalysismethodologiesdevelopedlatelyhaveidentifiedmultiple anddiversetypesofinteractionsbetweenandamongpeerentities.Suchinteractions regardinghumans,computerdevices,cells,animals,andingeneral,whateverone mightthinkof,varyintheirdegreeofcriticality.Peerinteractionshavebeenholisticallymodeledbyvariousresearchdisciplines,e.g.inengineering,socialsciences, biology,andfinancialsciencesandlatelysystematicallywithintheframeworkof NetworkScience,asdifferenttypesofnetworkstructures,i.e.communications, social,biological,andfinancialnetworks.Thesenetworkstructuresbeardistinct andcharacteristicpropertiesofbroaderinterestforscienceanddailyhumanlives. Thekeyfeatureacrossallsuchdifferentnetworksistheflowofinformation,which typicallytakesplacespontaneously,e.g.inbiologicaltypesofnetworks,orinspecific casesinanon-demandmanner,e.g.incommunicationsnetworks.Theinformation disseminationprocessesovernetworksareusuallycontrolled,andtypicallytheyare ofusefulnatureforallpeersparticipatinginthecorrespondingnetwork.However, frequently,andespeciallyintheprospectofpotentialfinancialbenefit,information disseminationovernetworkscantakeamaliciousform,eitherfortheentitiesofthe networkindividuallyorthewholenetworkcumulatively.

Inordertoexplainthelatterbetter,nowadays,itisoftenobservedthatthe disseminatedinformationcanbeharmful,oritcouldbecontrolledbymalicious peers,notthelegitimateinformationowners/producers/consumers.Especiallyin communicationnetworks,usersexperiencealmostonadailybasisseveraltypesof malicioussoftware(malware),usuallysufferingpersonal,industrial,and/orfinancial consequences.Similarly,inbiologicalnetworks,virusescanbetransferringmalicious signalsthroughvariousbloodcellsornervenetworksofalivingorganism,leading eventuallytodiseaseswithsometimeslethalconsequences,e.g.extremecasesof thefluvirusandmalaria.Also,thisisespeciallyevidentinclassiccasesofvirus

1BothconceptsofNetworkScienceandcomplexnetworkswillbeexplainedindetaillaterinthischapter.

spreadingbetweenhumans,fromthesimplestseasonalfluscenariostothemore seriousscenariosof,e.g.HIVandmalaria.[87, 99, 160].

Especiallyforbiologicalnetworks,theirrobustnessagainsttheaforementioned threatsisverycriticalforsustainingallformsoflife,whileforscience,suchafeature isveryfascinatingwithrespecttothesustainabilitythatthesenetworksexhibit tothevariousformsofthreatsthroughoutsomanyyearsofevolutionandvirus spreads.Similarly,thestudyandanalysisofmalwarebehaviorincommunication networksareratherimportantformaintainingthecoherencyofmoderninformationbasedsocietiesandtheefficiencyoftheunderlyingnetworkinginfrastructures.The mostfrequentconsequencesofsuchmalwareinfectionsrendercomputerhostsat leastdysfunctional,thuspreventingtheexecutionofroutineorimportanttasks, whileinmoreserioussituations,theincurredcostmaybemuchhigheranddiverse. Frequently,thetargetsofmaliciousattacksarepublicutilitynetworks,e.g.waterand electricitygrids,orsocialnetworks,e.g.socialnetwork(facebook,twitter,instagram, linkedin,etc.)accountsandemailaccounts.Foralltheseexamples,theunderlying computer/communicationsnetworkoperationsareimplicitlyorexplicitlytargetedby themaliciousattacks.

Motivatedbytheaforementionedobservations,themainobjectiveofthisbookis topresent,classify,analyze,andcomparethestate-of-the-artmethodsformodeling malwarediffusionincomplexcommunicationsnetworksandespeciallywireless ones.Theterm malwarediffusion cumulativelyreferstoalltypesofmalicious softwaredisseminatinginvarioustypesofnetworksandcouldalsobeextended tocharacterizecumulativelyalltypesofmaliciousinformationdisseminationin complexnetworks,aswillbeexplainedinthefollowingsection.Ontheother hand,theterm complexnetwork characterizesgenericallythepotentialstructure thatanetworkmighthaveandinthisbookwewillpresentandanalyzemodeling frameworksformalwarediffusionthatareapplicabletomultipletypesofdiverse networkstructures.Thus,allofthepresentedapproachescouldbeusedtomodel malwareorinformationdisseminationinmultipleanddiversetypesofnetworks,e.g. communications,social,andbiological.

Themainfocusandapplicationdomainofthebookwillbefocusedonwireless complexnetworks,atermwhichincludesalltypesofwirelessnetworkscumulatively. Wirelesscomplexnetworkscanbecharacterizedbythepresenceorabsenceofcentral infrastructure,e.g.cellular[168], adhoc [39],sensor,mesh,andvehicularnetworks [5],inmostofwhichnodesoperateinapeerfashion,actingasbothroutersandrelays [5].Thepresentedmethodologiesarealsoapplicabletonetworkswithcentralized organization,e.g.wiredtypesofnetworktopologies,viastraightforwardextension ofthecorrespondingapproachesinvolvingdistributednetworkoperations.Similarly tothescopeofthisbook,forthesetypesofnetworks,ratherdiversemodeling approacheshaveemergedlatelyaimingatmodelingmalwarediffusionspeciallyin wirelessdecentralizednetworks.Suchapproachesyieldsimilarresultswithrespectto thetrendsofmalwarediffusiondynamics,butmorerestrictedintermsofgenerality orcontrolpotentialcomparedtotheresultsprovidedbytheapproachesthatwillbe describedinthisbook.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.