Magnetism and spintronics in carbon and carbon nanostructured materials sekhar chandra ray - Get the

Page 1


MagnetismandSpintronicsinCarbonandCarbon NanostructuredMaterialsSekharChandraRay

https://ebookmass.com/product/magnetism-and-spintronics-incarbon-and-carbon-nanostructured-materials-sekhar-chandraray/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Modelling and Mechanics of Carbon-Based Nanostructured Materials. A volume in Micro and Nano Technologies 1st Edition Edition Duangkamon Baowan

https://ebookmass.com/product/modelling-and-mechanics-of-carbon-basednanostructured-materials-a-volume-in-micro-and-nano-technologies-1stedition-edition-duangkamon-baowan/ ebookmass.com

Biomass-Derived Carbon Materials: Production and Applications Alagarsamy Pandikumar

https://ebookmass.com/product/biomass-derived-carbon-materialsproduction-and-applications-alagarsamy-pandikumar/

ebookmass.com

Nanostructured Carbon Nitrides for Sustainable Energy and Environmental Applications 1st Edition Shamik Chowdhury

https://ebookmass.com/product/nanostructured-carbon-nitrides-forsustainable-energy-and-environmental-applications-1st-edition-shamikchowdhury/

ebookmass.com

A Complete Resource Book in Chemistry for JEE Main 2019

Atul Singhal

https://ebookmass.com/product/a-complete-resource-book-in-chemistryfor-jee-main-2019-atul-singhal/

ebookmass.com

Miller's Anesthesia Review 3rd Edition Lorraine M. Sdrales

https://ebookmass.com/product/millers-anesthesia-review-3rd-editionlorraine-m-sdrales/

ebookmass.com

A Southern African Perspective on Fundamental Criminology 2nd Edition Christiaan Bezuidenhout

https://ebookmass.com/product/a-southern-african-perspective-onfundamental-criminology-2nd-edition-christiaan-bezuidenhout/

ebookmass.com

De Hormoon Revolutie Maisie Hill

https://ebookmass.com/product/de-hormoon-revolutie-maisie-hill/

ebookmass.com

Bossy Billionaire's Heart of Ice 1st Edition Layla Hill

https://ebookmass.com/product/bossy-billionaires-heart-of-ice-1stedition-layla-hill/

ebookmass.com

Fintech, Digital Currency and the Future of Islamic Finance: Strategic, Regulatory and Adoption Issues in the Gulf Cooperation Council 1st ed. Edition Nafis Alam

https://ebookmass.com/product/fintech-digital-currency-and-the-futureof-islamic-finance-strategic-regulatory-and-adoption-issues-in-thegulf-cooperation-council-1st-ed-edition-nafis-alam/

ebookmass.com

500

https://ebookmass.com/product/500-hesi-a2-questions-to-know-by-testday-kathy-a-zahler/

ebookmass.com

NanostructuredMaterials

NanostructuredMaterials

SekharChandraRay

DepartmentofPhysics,UniversityofSouthAfrica,Pretoria, SouthAfrica

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-817680-1

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MathewDeans

AcquisitionEditor: SimonHolt

EditorialProjectManager: AnaClaudiaA.Garcia

ProductionProjectManager: SelvarajRaviraj

CoverDesigner: Harris,Greg

TypesetbyMPSLimited,Chennai,India

Dedication

Dedicatedtoallthepeopleforthebettermentoftheirlife

1.Thefundamentalaspectsofspintronics1

1.1Introduction1

1.2Fundamentalaspectsofspintronics4

1.3Deviceprinciples12

1.4Differentspintronicsapplications,deviceprinciples,and devices14

1.5Conclusion17 References19 Furtherreading21

2.Introduction:carbonandcarbonnanomaterials23

2.1Introduction23

2.2Carbonandcarbonnanostructurematerialsinspintronics23

2.3Differentformsofcarbonandcarbonnanostructurematerials25

2.4Conclusionandperspectivesofcarbonandcarbon nanostructure-basedspintronicsapplications36 References37 Furtherreading45

3.Magnetismandspintronicsinamorphous/diamond-like carbon47

3.1Introduction47

3.2Magnetismofamorphouscarbonanddiamond-likecarbon48

3.3Electricalandtransportofamorphouscarbonanddiamond-like carbon52

3.4Magnetoresistanceandspintronicsofamorphouscarbon anddiamond-likecarbon56

3.5Spinfieldeffecttransistor(FET)63

3.6Diamond-likecarbonformagneticstoragedisks67

3.7Conclusionandperspectivesofamorphouscarbonand diamond-likecarboninspintronics68 References69 Furtherreading73

4.Magnetismandspintronicsincarbonnanotubes75 4.1Introduction75

4.2Magnetismofcarbonnanotubes77

4.3Spintronicdevices83

4.4Spincurrentsinmagnetictunneljunctions87

4.5Tunnelmagnetoresistanceincarbonnanotube based spintronicdevices93

4.6Conclusionandperspectivesofcarbonnanotubesin spintronics97 References97 Furtherreading102

5.Magnetismandspintronicsingraphene103

5.1Introduction103

5.2Makingofgrapheneintomagneticmaterials105

5.3Spingenerationandspinmanipulation107

5.4Magnetismingraphene109

5.5SpinHalleffectandedge-derivedspinphenomena113

5.6Spininjection,manipulation,anddetection115

5.7Spinrelaxationprocess117

5.8Spinrelaxationinsingle-layergrapheneandbilayer graphene121

5.9Electricalspintransport123

5.10Spintronicsmagnetoresistancedevices129

5.11Applicationsofgraphenespintronics131

5.12Graphene-ferroelectricmeta-devices138

5.13Conclusionandperspectivesofgraphene-basedspintronics140 References142

Furtherreading150

6.Magnetismandspintronicsingrapheneoxide151

6.1Introduction151

6.2Magnetizationofgrapheneoxide153

6.3In-planeandout-of-planemagnetization/magnetic anisotropy165

6.4Magnetoresistanceofgrapheneoxide165

6.5Applicationsofgrapheneoxidespintronics172

6.6Conclusionandperspectivesofgrapheneoxide based spintronics176 References176 Furtherreading181

7.Magnetismandspintronicsincarbon nanoparticle/fullerene183

7.1Introduction183

7.2Carbonnanoparticle basedspintronics184

7.3Carbonnanospherespintronics186

7.4Graphene-nano-dotsspintronics188

7.5Fullerene-basedspintronics191

7.6Conclusionandperspectivesofcarbonnanoparticles based spintronics195 References196

8.Magnetismandspintronicsinothercarbon-based compositematerials201

8.1Introduction201

8.2Carbonnanostructure-metal/nonmetal/metal-oxide compositesinspintronics202

8.3Conclusionandperspectivesofcarbon-metal/nonmetal/ composite-basedspintronics210

References210

9.Challengesandemergingdirectionofcarbonnanostructure materialsinmagnetismandspintronics213

References214 Index217

Abouttheauthor

SekharChandraRay(PhD,UniversityoftheNorthBengal,India)isaB-ratedresearcherin PhysicsfromtheNationalResearchFoundation.Heiscurrentlyaprofessorofphysicsatthe UniversityofSouthAfricainexperimentalcondensedmatterphysics.Prof.Rayhailsfrom Indiawherehecompletedhisdoctoralstudieswhichfocusedmainlyonphotovoltaicsolar gradematerials.HehasworkedasaresearchfellowandvisitingscientistinItaly(INFM Fellow),Taiwan(NSCFellow),Spain(ICMM,CSIC,ForeignResearcherFellow,Ministryof ScienceandTechnology,Spain),SouthKorea(BrainPoolResearchFellow,Govt.South Korea),andIndia(IACS,VisitingScientist).Hisresearchgroupfocusesoncarbonnanostructurematerialinelectronicstructure/magneticpropertiesforthepossiblefabricationofspintronicdevicesapplicationandbioimagingprocess.Atpresent,Prof.Rayisworkingon different2D-structurematerialssuchas graphene, MoS2, stanene, silicene,and germanene. Duringhis22-yearresearchcareer,hehaspublished125peer-reviewedresearcharticles, includingsevenin NaturePublishingGroup (NPG)journalwithmorethan3800citationsin internationallyrecognizedjournals.Prof.Rayalsoactsasaneditorialboardmemberof ScientificReports NPGjournal.

Preface

Thisbookhasbeenwrittentomeetthebasicrequirementofresearchersgettingtrainingin carbonandcarbonnanomaterialsformagnetismandspintronicapplications.

Carbon-basedspintronicsrefersmainlytothespininjectionandtransportincarbon materialsincludingcarbonnanotubes,graphene,fullerene,andorganicmaterials.Inthelast decade,extraordinarydevelopmenthasbeenachievedforcarbon-basedspintronics,andthe spintransporthasbeenstudiedinbothlocalandnonlocalspinvalvedevices.Aseriesoftheoreticalandexperimentalstudieshasbeendonetorevealthespinrelaxationmechanisms andspintransportpropertiesincarbonmaterials,mostlyforgrapheneandcarbonnanotubes.Inthisbook,weprovideabriefreviewonspininjectionandtransportingraphene, carbonnanotubes,fullerene,andorganicthinfilms.

Thecontentsofthebookarefromdifferentarticlespublishedindifferentjournalsfrom differentresearchgroupsworldwide.I,theauthorofthisbook,amverymuchthankfulto thosepublishersandtheauthorsfromwhosepublicationswehavecollectedallusefulinformationthatarepresentedinthisbook.Thisbookconsistsofninechaptersnamely,fundamentalaspectsofspintronics,carbonandcarbonnanomaterials,magnetismandspintronics inamorphous/diamond-likecarbon,magnetismandspintronicsincarbonnanotubes,magnetismandspintronicsingraphene,magnetismandspintronicsingrapheneoxide,magnetismandspintronicsincarbonnanoparticles/fullerene,magnetismandspintronicsinother carbon-basedcompositesmaterials,andchallengesandemergencedirectionofcarbon nanostructurematerialsinmagnetismandspintronics.

Wehopethatthisbookwillbeusefulforallresearcherswhoareworkingonthis researchfield.

Anysuggestionstowarditsfurtherimprovementwillbethankfullyacknowledgedand incorporatedinthenexteditions.

Acknowledgments

ProfessorSekharChandraRaywishestoextendhisthankstohisfriends,relatives,wife Mrs.SusmitaRayandsonMasterShrishmoyRayfortheirsupportinwritingthisbook.

Introduction

Thediscoveryandfabricationofnewmaterialshaveopenedthegatefornewresearchfields inscienceandtechnology.Thenovelmethodoffabricatinggraphene,apurely2Dcarbon lattice,andthediscoveryofthephenomenonofgiantmagnetoresistanceinmagneticmultilayersarenotexceptions.Thelatterhasbroughtaboutthecreationofthenewtechnological fieldofspintronics,whichutilizesbothspinandchargedegreesoffreedomofelectrons.As fortheformer,manyapplicationshavebeenproposed;however,nopracticaldeviceshave yetbeendevelopedinthefieldofspintronics.Theaimofthisbookistoprovidepossible hintstoovercomethedifficultiesingrapheneapplicationsinthefieldofspintronicsbycomparingthephysicalpropertiesofgrapheneandmagnetoresistive(MR)phenomenainspintronics.Thebookprovidesanoverviewandwillbeveryusefulforadvancedundergraduate studentsandgraduatestudentsofphysics,chemistry,andmaterialsscienceandyoung researchersinnanotechnologyandthefieldofspintronics.Thisbook

• coversthefundamentalpropertiesandvariousproposalsforapplicationsofgraphenein spintronics,aswellasanoverviewofchargeandspintransportingraphene;

• includesadescriptionofphysicalphenomenainbothgrapheneandspintronics;

• providesillustrationsandmanyreferencesforeasyunderstandingofthepresentstatusof grapheneapplicationsinspintronics;and

• discussestherecentdevelopments,futureperspectives,andmajorchallengesinthese fields.

Thefundamentalaspectsof spintronics

1.1Introduction

Informationtechnologyisoneoftheimportantissuesinthe21stcentury.AstheMoorelaw graduallylosesitseffect,conventionalcharge-basedelectronicswillcometoanendinthe nearfuture.Developingalternativehigh-speedandlow-energy-consuminginformationtechnologyisurgentlyneeded.Manynewmethodologieshavebeenproposed,suchasmolecular electronics,nano-electronics,spintronics,andquantuminformationtechniques,among whichspintronicsisoneofthemostpromisingones.Spintronicsisafieldofresearch exploitingtheinfluenceoftheelectronspinonelectricalconduction.Itismainlyknownfor the “giantmagnetoresistance” (GMR)(Baibichetal.,1998;Binashetal.,1989)andthelarge increaseoftheharddiskcapacityobtainedwiththereadheadsbasedonGMR.Butthe researchonspintronicshasalsorevealedmanyotherinterestingeffectsandisnowdevelopingalongpromisingnoveldirections.Comparedtoothermethodologies,spintronicsis compatiblewithconventionalelectronics,thusmanytechniquesusedinconventionalelectronicscanbedirectlyextendedtospintronics. “Spintronics, ” knownasspinelectronics, involvesthestudyofactivecontrolandmanipulationoftheintrinsicspinoftheelectrical chargeofelectronanditsassociatedmagneticmomentinsolid-statesystem.Theapproach inthefieldofelectronicsisbasedontheup-ordownspinofthecarriersratherthanonelectronsorholesasintraditionalsemiconductorelectronics.Itisdifferentfromconventional electronics,whichusestheelectron’schargedegreeoffreedomforinformationprocessing; spintronicsisdevotedtoincorporatingtheelectron’sspindegreeoffreedom.Inanidealsituation,therewillpurelybespincurrentandnochargecurrentinthespintronicscircuit, thusnoheatwillbecreatedandwasted.Therehasbeenagreatdealofrecentinterestinthe conceptof “spintronics” (Prinz,1995, 1998).Spintronicsisamultidisciplinaryfieldwhose centralthemeistheactivemanipulationofspindegreeoffreedominsolid-statesystem. Controllingandprobingspin-polarizedchargecarrier(ormanipulationofelectronspin)in semiconductorsand/ormetalsviaelectricalmeans,anattractiveroutetowardthedevelopmentofpracticalsemiconductor/metalspintronicdevices,whichareexpectedtohavea strongimpactonfutureinformationprocessingandstoragetechnologies.Itistheuseofa fundamentalpropertyofparticlesknownasspinforinformationprocessing.Itcarriesinformationinboththechargeandspinofanelectron,potentiallyoffersdeviceswithagreat diversityoffunctionalityinsolid-statedevicesandotherdevicesthatexploitspinproperties. Inthecaseoftheelectron,thespincaninfactassumeonlythevalues 1 1/2or 1/2:an eloquentinvitationtouseittoencodeinformation,inanalogytobits “0” and “1” ofthe

MagnetismandSpintronicsinCarbonandCarbonNanostructuredMaterials.DOI: https://doi.org/10.1016/B978-0-12-817680-1.00001-9 © 2020ElsevierInc.Allrightsreserved.

FIGURE1–1 Manipulationofelectronmovement(electronspin):spin-up(anticlockwise)andspin-down(clockwise). 2MagnetismandSpintronicsinCarbonandCarbonNanostructuredMaterials

binarycode(Fig.1 1).Inferromagneticmaterials,thespinoftheelectronscanbemodified fromtheoutside,applyingamagneticfield.Whenthemagneticfieldisremoved,thenew spinvaluesareretained,thatis,theencodedinformationremainsfirmlystoredwithout needforpowerandwithouttheriskofdemagnetization.

Spintransportandspinrelaxationinsemiconductorsandmetalsareimportantsolid-state physicsissuesthatareincludedinthefundamentalresearchalongwithnewtechnologybeing implementedintheelectronicstoragetechnology.Spintronicshelpedincreatingaprototype devicethatisusedintheindustryasareadhead,andamemory-storagecellisthe giantmagnetoresistive (GMR)sandwichstructure,whichconsistsofalternatingferromagneticand nonmagneticmetallayers.Dependingontherelativeorientationofthemagnetizationsinthe magneticlayers,thedeviceresistancechangesfromsmall(parallelmagnetizations)tolarge (antiparallelmagnetizations).Thischangeinresistance(alsocalledmagnetoresistance)isused tosensechangesinmagneticfields.Electronspincanbeidentifiedasamagneticfieldhaving oneortwopositions,knownas “ up ” and “down”.Thisgivesanextratwobinarystatestothe conventionalhighandlow-logicvalues,which arerepresentedbysimplecurrents.Whenthe spinstateisaddedtothemix,abitcanhavefourpossiblestates,whichcanbecalled “up-high” , “up-low” , “down-high,” and “down-low.” Thesefourstatesrepresentquantumbitsorqubits.

• Lowpowerconsumption

• Lesselectriccurrentrequired

• Fasterdevices

• Largerstoragecapacity

• Smallerdevices

• Lessheatdissipation

• Spintronicmemoryisnonvolatile

• Spinmanipulationisfaster,hencegreaterreadingandwritingspeed

Metallicspintronics hasalreadydeliveredfunctionaldevices(GMRreadheadsinlargecapacityharddiskdrives),andmagneticrandomaccessmemory(RAM)(MRAM),of insulatorspintronics [magnetictunneljunctions(MTJs)].Thebasicspinvalvehasevolvedtoa relatedthin-layeredstructure MTJ thatdisplaysgianttunnelingmagnetoresistance(TMR), aphenomenonwhereelectronstunnelthroughathininsulator.ThismeanstheTMRsignal ismuchlargerthanthatfromaGMRspinvalve:indeed,itisalmost100timeslarger.TMRis alsothebasisofmagneticRAM(MRAM),anonvolatilememorythatusesmagneticmoments toretaindatainsteadofelectricalcharges.

However,thecurrentbasicphysicsresearchismostlyfocusedon semiconductorspintronics.Althoughcreationofinhomogeneousspindistributiondoesnotrequireenergypenalty (incontrasttochargedistributionsofconventionalelectronics),spinisnotconservedwhereas chargeis.Thuseffortsinsemiconductorspintronicsresearcharefocusedonbasicproblems, suchascoherentmanipulationofelectronspinatagivenlocation,transportingspins betweendifferentlocationswithinconventionalsemiconductorenvironment,all-electrical spincontrolviaspin orbitinteractions,dilutedmagneticsemiconductors,andfixedor mobilespinqubitsforquantumcomputing.Otherpossibleapplicationsofspintronicsinclude high-speedmagneticfilters,sensors,quantumtransistors,andspinqubitsforquantumcomputers(Steane,1998;Lossetal.,1998;Burkardetal.,1999).Moreover,these “spintronic” devicesmightleadtoquantumcomputerandquantumcommunicationbasedonelectronic solid-statedevices,thuschangingtheperspectiveofinformationtechnologyinthe21st century.Morefundamentalresearchwill,however,beneededbeforeapracticalspintronic devicecanbedemonstrated,asmuchremainstobeunderstoodaboutspincoherence,spin entanglement,spindynamics,spinrelaxation,spintransports,etc. thedifferentfundamental aspectsofspintronics.

Spintronicsfacesanumberofchallenges,includingspingenerationandinjection,long distancespintransport,andmanipulationanddetectionofspinorientation.Insolvingthese issues,newconceptsandspintronicsmaterialswereproposedoneafteranother,suchas halfmetals,spin-gaplesssemiconductors,andbipolarmagneticsemiconductors.Topological insulatorscanalsobeviewedasaspecialclassofspintronicsmaterials,withtheirsurface statesusedforpurespingenerationandtransportation.Indesigningthesespintronicsmaterials,first-principlescalculationsplayaveryimportantrole.Inthissection,weattemptto giveabriefdiscussiononthebasicprinciplesandtheoreticaldesignofthesematerials. Meanwhile,wealsogivesomeattentiontoantiferromagnetic(AFM)spintronics,whichis mainlybasedonantiferromagnetsandhasarousedmuchinterestinrecentyears.

1.2Fundamentalaspectsofspintronics

Thefundamentalaspectsofspintronicsareunderlyingthegenerationofcarrier-spinpolarization,spincoherence,spinentanglement,controlspinandchargedynamics,spininjection, andspin-polarizedtransportinsemiconducting/metallicelectronicmaterials.

1.2.1Spinpolarization

Spinpolarizationisthedegreetowhichthespin,thatis,theintrinsicangularmomentumof elementaryparticles,isalignedwithagivendirection.Thispropertymaypertaintothespin, hencetothemagneticmoment,ofconductionelectronsinferromagneticmaterialsgivingrise tospin-polarizedcurrents.Spinpolarization,notonlyofelectrons,butalsoofholes,nuclei,and theexcitations,canbedefinedas PX 5 XS/X;wheretheratioofthedifference XS 5 Xλ X λ andthesum X 5 Xλ 1 X λ ofthespin-resolved λ componentsforaparticularquantity X.To avoidambiguityastowhatpreciselyismeantbyspinpolarization,boththechoicesofthe spin-resolvedcomponentsandtherelevantphysicalquantity X needtobespecified.

Conventionally, λ istakentobe m or 1 (numericalvalue 1 1)forspin-up,and k or (numericalvalue 1)forspin-down,withrespecttothechosenaxisofquantization(alongthespin angularmomentum,appliedmagneticfield,magnetization,ordirectionoflightpropagation). Inferromagneticmetals(FMs),itiscustomarytoreferto m (k)ascarrierswithmagnetic momentparallel(antiparallel)tothemagnetizationor,equivalently,ascarrierswith majority or minorityspin (Tedrowetal.,1973).Insemiconductorsthetermsmajorityandminorityusually refertorelativepopulationsofthecarrierswhile m or 1 and k or correspondtothequantum numbers mj withrespecttothe z axistakenalongthedirectionofthelightpropagationoralong theappliedmagneticfield(MeierandZakharchenya,1984; Jonkeretal.,2003).

1.2.2Spinrelaxation

Havingestablishedthatonecangeneratespin-polarizedearners,themostimportantissueis todeterminehowlongtheseelectronsremembertheirspinorientation.Thisisespecially importantforelectronicapplications,becauseifthespinsrelaxtoorapidly,thedistancestraversedbythespin-polarizedcurrentinadevicewillbetooshorttoserveanypracticalpurpose(Prinz,1995).Thespin spinrelaxationisthemechanismbywhich Mxy ,thetransverse componentofthemagnetizationvector,exponentiallydecaystowarditsequilibriumvaluein nuclearmagneticresonance(NMR)andmagneticresonanceimaging.Itischaracterizedby thespin spinrelaxationtime,knownas T2,atimeconstantcharacterizingthesignaldecay. Itisnamedincontrastto T1,thespin latticerelaxationtime.Itisthetimeittakesforthe magneticresonancesignaltoirreversiblydecay(37%i.e.,1/e)itsinitialvalueafteritsgenerationbytippingthelongitudinalmagnetizationtowardthemagnetictransverseplaneaccordingtothefollowingrelation: Mxy t ðÞ 5 Mxy 0 ðÞe t =T2 . T2 relaxationgenerallyproceedsmore rapidlythan T1 recoveryanddifferentmaterialshavedifferent T2.Whenexcitednuclear spins,lyingpartiallyinthetransverseplane,interactwitheachotherbythelocalmagnetic fieldin-homogeneitiesonthemicro-andnanoscales,theirrespectiveaccumulatedphases

deviatefromexpectedvalues.Whiletheslow-ornonvaryingcomponentofthisdeviationis reversible,somenetsignalwillinevitablybelostduetoshort-livedinteractions,suchascollisionsanddiffusion,throughheterogeneousspace. T2 decaydoesnotoccurduetothetilting ofthemagnetizationvectorawayfromthetransverseplane.

Spinrelaxationisverysensitivetotheelectronicbandstructure.Spinsofconduction electronsdecaybecauseofthespin orbitinteractionandmomentumscattering.Atlow temperatures(T # 20K),spinrelaxationiscausedbyimpurityscatteringandistemperature independent.Athighertemperatures,electronslosespincoherencebycollidingwith phonons(phononscaninduceaspinflipbecauseinthepresenceofaspin orbitcoupling, electronicBlochstatesarenotspinEigenstates).Spinrelaxationrate1/T1 increasesas temperatureincreases,withthegrowthbecominglinearabovetheDebyetemperature.This mechanism(Elliott,1954;Yafet,1963)isthemostimportantspinrelaxationmechanismin metalsandsemiconductorswithinversionsymmetry.

Differentspinrelaxationprocesseshavebeenfoundtobeimportantinsolids:

• Elliot Yafet

• D’yakonov Perel’

• Bir Aronov Pikus

• Hyperfineinteraction

Nonequilibriumdistributionofspinscausedbyinterfacesorspininjectionsisbrought backintoequilibriumbythesemechanisms,whichcanbeobstaclesforspintronics.Usually, suppressionsoftheseeffectsareimportantissuesinresearchanddevelopmentthough, sometimes,therelaxationwouldhelpfastdeviceaction.

1.2.3Spininjection

Spininjectioninanonmagneticmaterialis,inmostcases,achievedbythecreationofanonequilibriumspinpopulation(calledspinaccumulation)attheinterfacewithamagneticelectrode.Therateofspininjectiondependsonthespinrelaxationanddephasingmechanisms inthenonmagneticmaterial,whichtendstorestoretheequilibriumintheaccumulatedspin population;therelativelylonglifetimesofnonequilibriumelectronicspinsinsemiconductors andmetals,ofabout1ns,areessentialforspintronicdevices.Thespinlifetimescanhowever increasetohundredsofnanosecondsinconfinedsemiconductorheterostructures,which implytransportofcoherentspinpacketsoverhundredsof µm.

1.2.4Ohmicinjection

InanFMtheelectricalconductivityofthemajority-spin(spin-up)electronsdifferssubstantiallyfromminorityspin(spin-down),resultinginaspin-polarizedelectriccurrent.Themost straightforwardapproachtospininjectionistheformationofanohmiccontactbetweenan FMandasemiconductor,anticipatingaspin-polarizedcurrentinthesemiconductor. However,typicalmetal semiconductorohmiccontactsresultfromheavilydopingthe semiconductorsurface,leadingtospin flipscatteringandlossofthespinpolarization.

Followinguponearlierstudies(Johnsonetal.,1987;VanSonetal.,1987;Valetetal.,1993; HershÞeldetal.,1997)ofdiffusivespintransport,arecentworkby Schmidtetal.(2000) haspointedoutafundamentalproblemregardingohmicspininjectionacrossideal FM nonferromagnet(NFM)interfaces.Theeffectivenessofthespininjectiondependson theratioofthe(spin-dependent)conductivitiesoftheFMandNFMelectrodes, σ F and σ N, respectively.When σ F # σ N,asinthecaseofatypicalmetal,thenefficientandsubstantial spininjectioncanoccur,butwhentheNFMelectrodeisasemiconductor, σ Fcσ N,andthe spin-injectionefficiencywillbeverylow.Onlyforaferromagnetwheretheconductionelectronsarenearly100%spinpolarizedcanefficientspininjectionbeexpectedinthediffusive transport.Alargenumberofmaterialsapparentlyhavesuchhalf-metal-ferromagneticproperties(DeGrotetal.,1983;Kamperetal.,1988).Johnsonetal.haveproposedandpursued (Johnson1998,2001;Hammaretal.,1999,2000a,b)anapproachthatmayovercomethis obstacletospininjectionbytakingadvantageofthesplittingofthespindegeneracyofelectronsconfinedinasemiconductortwo-dimensional(2D)quantumwellstructure.Thesplittingisduetothespin orbiteffectthatcanarisefromanasymmetryintheconfining potential(Bychkovetal.,1994).Theresultcanbeaninducementofanonequilibriumspin polarizationifthe2Delectrongasiscarryingacurrent(Vorob’evetal.,1979).However,as intheohmiccontactexperiments,thesmallpercentagechangeindeviceresistance,thatis observedwithchangesinferromagnetorientation,hasledtosuggestionsofanalternative, local-Hall-effectexplanationforthedataandtootherquestionsregardingthisapproach (Monzonetal.,2000;Wees,2000;Hammaretal.,2000a,b).

1.2.5Tunnelinjection

AlvaradoandRenaud(Alvaradoetal.,1992),usingascanningtunnelingmicroscope(STM) withaferromagnetictip,showedthatavacuumtunnelingprocesscaneffectivelyinject spinsintoasemiconductor.Arecentextensionofthishasexaminedtheeffectofsurface structureonspin-dependentSTMtunneling( LaBellaetal.,2001).Thedevelopmentof FM-insulator FM-tunneljunctionswithhighmagnetoresistancehasalsodemonstrated thattunnelbarrierscanresultintheconservationofthespinpolarizationduringtunneling, suggestingthattunnelingmaybeamuchmoreeffectivemeansforachievingspininjection thandiffusivetransport.Theoreticalworkby Rashba(2000) hasquantitativelydeveloped theunderstandingofthepotentialeffectivenessoftunnelinjection.Iftheimpedanceofa barrierataninterfaceissufficientlyhigh,thenthetransportacrossthatinterfacewillbe determinedbythe(spin-dependent)densityoftheelectronicstatesofthetwoelectrodes thatareinvolvedinthetunnelingprocess.Thecurrentpassingthroughthebarrieristhen sufficientlysmallenoughfortheelectrodestoremaininequilibriumandtherelative (spin-dependent)conductivitiesoftheelectrodesplaynosubstantialroleindefiningor limitingthespin-dependenttransportacrosstheinterface.Thuseitherametal insulator semiconductortunneldiodeorametal semiconductorSchottkybarrierdiodethatusesan FMelectrodecanbeexpectedtobeaneffectivemeansforinjectingspinsintoasemiconductorsystem. 6MagnetismandSpintronicsinCarbonandCarbonNanostructuredMaterials

1.2.6Ballisticelectroninjection

Analternativetotunnelinjectionisspininjectionacrossferromagnet semiconductor interfacesintheballisticregime,withthe differencebetweenthetwospinconduction subbandsoftheFMandtheconductionbandofthesemiconductordeterminingthe spin-dependentinterfacialballisticelectr ontransmissionprobability.Itisgenerally assumedthatthetransversemomentumof anincidentelectronisconserved,and thisdeterminestheballistictransmissionan dreflectionprobabilitiesoftheinterface ( Kirczenow,2001;Grundler,2001 ).Also,onceaspin-polarize delectronentersthesemiconductorelectrode,theprobabilitythatitwil lbeelasticallyscatteredbackintotheferromagneticinjectormustbeverysmall.Ifthed evicedesignalsoinvolves,forexample,the spin-dependentcaptureofaninjectedcarrierbyanotherferromagneticelectrode,then transportthroughthesemiconductorregionmustbefullyballistic.However,iftheobjectiveissimplyefficientspininjection,athree-dimensionalballisticpointcontactbetween aferromagnetandasemiconductorshouldb eeffective.Recentexperimentswithpoint contactsformedbetweenferromagneticandnon-FMshavedemonstratedtheballistic point-contactinjectionofhigh( . 40%)spin-polarizedcurrentsintotheNFM( Upadhyay etal.,1998 , 1999 ).

1.2.7Hotelectroninjection

Anotherspintechniqueinvolvestheuseofpolarized “ hot ” electronsinjection,having energiesthataremuchgreaterthan E F ,bytunnel-injectingelectronsintoaferromagnetic layeratenergies cE F ( Monsmaetal.,1995;Jansenetal.,2001;Rippardetal.,2000 ). Asthemajority-spinandminority-spinelec tronshavemuchdifferentinelasticmeanfree paths,hotelectronpassagethrough,forexamp le,a3-nmColayer,issufficienttoresultin aballisticelectroncurrentth atismorethan90%polarized( Rippardetal.,2000 ).This highlypolarizedhotelectroncurrent canthencontinueontoanunderlying metal semiconductorinterfacewhereaportionofthebeamwillenterthesemiconductor,withthetransmissionprobabilitybei ngdeterminedbyenergyandmomentumconstraintsimposedbythebandstructuredifferencebetweenthesemiconductorandmetal attheinterface.Ifthereisnosubstantialspin flipscatteringattheinterface,theballistic electroncurrententeringthesemicond uctorwillalsobeveryhighlypolarized( . 90%), andtheinjectionenergy,re lativetothebottomofthesemic onductorconductionband, willbetunablethroughthetunnelinjectionbi as.Thedisadvantageofhotelectroninjectionisthattheoverallefficiencyislow.

1.2.8Spintransport

Particularinteresttothespintransporttheoryinsemiconductorsystemshasbeenthequestionastowhetherthequasiindependentelectronmodelcanadequatelyaccountforthe experimentalresults,orwhethermany-bodyorcorrelatedelectronprocessesareimportant. Thepresenceofspin-polarizedcarriersgivesrisetobothmodifiedchargetransportand

8MagnetismandSpintronicsinCarbonandCarbonNanostructuredMaterials

FIGURE1–2 Aschematicrepresentationofthedensityofelectronicstatesthatareavailabletoelectronsina normalmetalandinaferromagneticmetalwhosemajority-spinstatesarecompletelyfilled. E,Theelectron energy; EF,theFermilevel; N(E),densityofstates. CourtesyfromPrinz,G.A.,1998.Magneto-electronics.Science 282,1660 1663.

intrinsicspintransport,absentintheunpolarizedcase.Eachoftheseaspectsprovidesinformationaboutthedegreeofspinpolarization,whichcanbeutilizedinspintronics.Spinpolarizedtransportwilloccurnaturallyinanymaterialforwhichthereisanimbalanceof thespinpopulationsattheFermilevel.ThisimbalancecommonlyoccursinFMsbecause thedensityofstatesavailabletospin-upandspin-downelectronsisoftennearlyidentical, butthestatesareshiftedinenergywithrespecttoeachother(Fig.1 2).Thisshiftresultsin anunequalfillingofthebands,whichisthesourceofthenetmagneticmomentforthe materials,butitcanalsocausethespin-upandspin-downcarriersattheFermileveltobe unequalinnumber,character,andmobility.Thisinequalitycanproduceanetspinpolarizationinatransportmeasurement,butthesignandmagnitudeofthatpolarizationdepends onthespecificmeasurementbeingmade.Forexample,anFMmaybeusedasasourceof spin-polarizedcarriersinjectedintoasemiconductor,asuperconductor,oranormalmetal orcanbeusedtotunnelthroughaninsulatingbarrier.Thenatureofthespecificspinpolarizedcarriersandtheelectronicenergystatesassociatedwitheachmaterialmustbe identifiedineachcase.Themostdramaticeffectsaregenerallyseenforthemosthighly polarizedcurrents;thereforetherearecontinuingeffortstofind100%spin-polarizedconductingmaterials.ThesearematerialsthathaveonlyoneoccupiedspinbandattheFermi level.MaterialsthatareonlypartiallypolarizedsuchasFe,Co,Ni,andtheiralloys,which haveapolarization P of40% 50%(Soulenetal.,1998),are,however,adequatetodevelop technologicallyusefuldevices.Herethepolarization P isdefinedintermsofthenumberof carriers n thathavespin-up(nm)orspin-down(nk),as P 5 (nm nk)/(nm 1 nk).

Becauseofthespinpolarizationofanelectroncurrent,theeffectsseeninsolid-state devicescanbemostreadilyvisualizedifoneassumesthatthecurrentis100%polarized (Fig.1 2).Inthatcasetheonlystatesthatareavailabletothecarriersarethoseforwhich thespinsofthecarriersareparalleltothespindirectionofthosestatesattheFermilevel.If themagnetizationofthematerialsisreversed,thespindirectionofthosestatesalsoreverses.

Thusdependingonthedirectionofmagnetizationofamaterialrelativetothespinpolarizationofthecurrent,amaterialcanfunctionaseitheraconductororaninsulatorforelectrons ofaspecificspinpolarization.Ananalogycanbemadewithpolarizedlightpassingthrough ananalyzer.However,intheopticalcase,crossingthepolarizationaxisat90degrees preventsthetransmissionofthelight,whereasforspin-polarizedelectrons,themagnetizationmustberotated180degreestostopelectricalconduction.

Flatté(2001) hasextensivelyexaminedthisissueinthediffusivetransportregimeandhas concludedthatanindependentelectronapproachisquitecapableofexplainingmeasurementsofspinlifetimes,particularlytheroom-temperaturemeasurements. Shametal.(2000) and Sham(1999) havebeenfocusingontheverylowtemperatureregimewherecollective electronprocessesmaywellbeimportantindeterminingthespinrelaxationratesandspin lifetimes,althoughexperimentalresultsinthisregimearequitelimited.Onthedevicefront, Flatté(2001) hasconsideredthepossibilityofconstructingunipolarelectronicdevicesby usingferromagneticsemiconductormaterialswithvariablemagnetizationdirections.They haveshownthatsuchdevicesshouldbehaveverysimilarlytop ndiodesandbipolar transistorsandsuggestthattheycouldbeapplicableformagneticsensing,memory,andlogic.

1.2.9Spininjectionandspintransport

Spin-dependentelectrontransport,inbulkandnanostructures,isthepresenceofspinpolarizedcarriersthatgiverisetobothmodifiedchargetransportandintrinsicspintransport andareabsentintheunpolarizedcase.Eachoftheseaspectsprovidesinformationabout thedegreeofspinpolarizationthatcanbeutilizedinspintronics.Thetransportofspinpolarizedcarriersacrossthesemiconductor/metalinterfacewherethemetalisinthesuperconductingstate.Thestudyofsemiconductor/superconductorhybridstructureshasseveral importantramifications.Inthecontextofspinunpolarizedtransport(Lambertetal.,1998; Beenakker,1997),ithasbeendemonstrated(DeFranceschietal.,1998)thatthisconfigurationcanbeusedtoexaminetheinterfacialtransparencythatforasemiconductor/normal metalistypicallylimitedbyanativeSchottkybarrier.Inthepresenceofspin-polarized carriers,semiconductor/superconductorstructurecanalsoservetoquantifythedegreeof spinpolarizationofasemiconductorandprobebothpotentialandspin flipinterfacialscattering( ˇ Zuti ´ cetal.,1999).Tounderstandsuchsensitivitytospinpolarizationanddifferent typesofinterfacialscattering,itisimportanttoconsidertheprocessofAndreevreflection (Andreev,1964),whichgovernsthelowbiastransport.Inthistwo-particleprocess,anincidentelectronofspin σ 5 m,k onasemiconductor/superconductorinterfaceisreflectedasa holebelongingtotheoppositespinsubband,backtothesemiconductorregionwhilea Cooper(1956) pairistransferredtothesuperconductor.TheprobabilityforAndreevreflectionatlowbiasvoltageisthusrelatedtothesquareofthenormalstatetransmissioncoefficientandcanhavestrongerdependenceonthejunctiontransparencythantheordinary single-particletunneling.Forspin-polarizedcarrierswithdifferentpopulationsintwospin subbands,onlyafractionoftheincidentelectronsfromamajoritysubbandwillhavea minoritysubbandpartnerinordertobeAndreev-reflected.Inthesuperconductingstate,for

10MagnetismandSpintronicsinCarbonandCarbonNanostructuredMaterials

anappliedvoltagesmallerthanthesuperconductinggap,single-particletunnelingisnot allowedinthesuperconductorregionandthemodificationoftheAndreevreflection amplitudebyspinpolarizationorjunctiontransparencyismanifestedintransport measurements.

1.2.10Spindetection

Themostobviousapproachtotheelectricaldetectionofspinpopulationsinsemiconductors istousethespin-dependenttransportpropertiesofsemiconductor ferromagnetinterfaces. Experimentalefforts,withthisspin valvedetectionscheme,haveusedohmiccontactsfor thespin-collectionelectrode,butthesamedifficultiesdiscussedearlierapplytospincollection,anditappearsthatforeffectivespincollection/detection,eitheraballisticcontactora tunnelingcontactfromthesemiconductortoaferromagnetwillberequired.If,however,for reasonsofsignal-to-noise,anefficientspin-dependentextractionoftheinjectedspinpolarizedcurrentisrequired,thetunnelbarrierhastobesufficientlythinsothat (spin-dependent)tunnelingtransportintotheferromagneticelectrodeismoreprobablethan spinrelaxationwithinthesemiconductor(Rashba,2000).Analternativespindetectiontechniqueisapotentiometricmeasurement,withaferromagneticelectrode,ofthechemical potentialofthenonequilibriumspinpopulations(Hammaretal.,2000a,b;Johnson,2001). Withrespecttothecompletespintransistordevice,anextensiveanalysisby Tangetal. (2000) hasconcludedthatonlyforthecaseofballistictransportthroughoutthedevicestructurewillthedesired,electricalfield tunablespinprecessionbedetectableaspolarized electrontransitthroughthesemiconductorregion.Moreover,theyconclude,inaccordwith theinitialsuggestionof Dattaetal.(1990),thataverynarrow,single-orfew-electronchanneldevicestructurewillberequired.

1.2.11Spintransfer

Thespin-polarizedcurrentthatflowsfromonerelativelythick,andhencefixed,ferromagneticlayer,throughanonmagneticlayer,toanotherthin-film “free” nanomagnetcanby spin-dependentscatteringofthepolarizedcurrent(Berger,1996;Slonczewski,1996,1999) excitestrong,uniformspin-waveprocessionalmodesinthenanomagnet(Tsoietal.,1998; Myersetal.,1999;Rezendeetal.,2000).Intheabsenceofastrongexternalmagneticfield, thisspin-dependentscatteringcanalsoresultinthereversaloftheorientationofthemagneticmomentofthefreenanomagnetwiththefinalorientationrelativetothefixedlayer beingdependentonthedirectionofthecurrentflow(Katineetal.,2000).This “spin-transfer” processopensupthepossibilityofnewnanoscaledevicesformemoryandotherspinelectronicsapplications(Weberetal.,2001).Oneapplication,inadditiontodirectcurrent addressablemagneticmemory,mightbetheuseofspintransfertoexciteauniformspin waveinananomagnetandthentousethisnanomagnetasaprecessingspinfiltertoinjecta coherentspinpulseintoasemiconductorstructure.

1.2.12Spincoherence

Opticalpulsesareusedtocreateasuperpositionofthebasisspinstatesdefinedbyan appliedmagneticfieldandtheyfollowthephase,amplitude,andlocationoftheresulting electronicspinprecession(coherence)insemiconductors,heterostructures,andquantum dots.Thedataidentifiesnarrowrangesofdopingconcentrationswherespinlifetimesin semiconductorsareenhancedbyordersofmagnitude,culminatingintheobservationof spinlifetimesinsemiconductorsthatexceed100ns.Inheterostructuresandquantumdots, nanoseconddynamicspersisttoroomtemperature,providingpathwaystowardpractical coherentquantummagneto-electronics.

1.2.13Spinaccumulation

Whenspin-polarizedcurrentisdrivenfromaferromagneticfilmintoanonmagneticfilm, fasterthanthespinpolarization,itcandiffuseawayfromtheinterface,andanonequilibrium populationofspin-polarizedelectronsbuildsupinaregionofthicknessLs.Thisnonequilibriummagnetizationisdescribedasinequivalentchemicalpotentialsfortheupspinand downspinsubbandsofthenormalmetal.Thechemicalpotentialoftheferromagnet,however,isheldinequilibriumbytheintrinsicferromagnetic nonmagneticmetalinterface;this isthesameasaninternalelectricfield,associatedwiththenonequilibriumspinaccumulationthattriestodriveelectronsbackacrosstheinterfaceandintotheferromagnet.Because spinandchargearebothcarriedbytheelectron,agradientofspindensityresultsinan electricfield,whichcangeneratecurrentfloworproducedifferencesinvoltage(Johnson etal.,1987).Ifthemagneticmomentsofthetwoferromagneticlayersareparallel,spinaccumulationinthebasewillcreateanelectricfieldthatpushescurrentintothecollector,generatingapositivecurrentinthedetectorarmofthecircuit.If,however,themagneticmoments areantiparallel,thespin-accumulationelectricfieldatthebase collectorinterfacehasthe oppositesign,currentispulledfromthecollectorintothebase,andanegativecurrentis generatedinthedetectorarm.Thecurrentflowthroughthedetectorcanthusundergo bipolarmodulationbymodulatingthedirectionofmagnetizationinthesecondlayer.The devicemaybethoughtofasanonvolatilecomputermemoryelement,storinginformation viatheorientationofthesecondlayer.

1.2.14Coherentspintransportthroughsemiconductorsandinterfaces

Understandingthefundamentalpropertiesofspintransportinthesolidstateisessentialfor thedevelopmentofsemiconductor-basedspintronics.Inanalogytoconventionaldevices, whoseperformanceischaracterizedbycarriermobilitiesandlifetimes,spinmobilitiesand coherencetimesarefiguresofmeritforspintronicdevices.Recenttheoreticalworkhas shownthatitisessentialtoconsidertheinfluenceofelectricfieldsinducedbycarriermotion tounderstandthemotionofspinandthattheroom-temperaturespincoherencetimesin bulkandquantumwellstructuresappeartobedominatedbyprecessionaldecoherencedue tospin orbitcoupling(Flattéetal.,2000).Thesemodelsdescribehowthelow-fieldmobility

anddiffusionofspinpacketsdependsensitivelyonthedopingandrevealnewopportunities tocontrolspininteractionsbyengineeringstrainandcrystalorientation(Ohnoetal.,1999). Thespatialselectivityandtemporalresolutionofopticaltechniqueshavebeenusedtomonitorthedecoherenceanddephasingofelectronspinpolarizationduringtransportnotonly throughbulksemiconductorsbutalsoacrossheterojunctionsinengineeredstructures (Malajovichetal.,2000).

1.2.15Opticalcontrolofnuclearspins

Nuclearspinshavebeenproposedascandidatesforstoringbothclassicalandquantum informationbecauseofspinlifetimesthatexceedthoseofelectronsbyatleastseveralorders ofmagnitudeandthedegreeofcontrolprovidedbyconventionalNMRtechniques.The experimentalevidenceshowsthattheferromagneticmaterialscanbeusedtoimprint nuclearspinsinsemiconductors(Kawakamietal.,2001),therebyofferinganadditional pathwayformanipulatingandstoringinformationattheatomicscale.

1.2.16Quantumdots theartificialatomsinthesolidstate

Ithasbeenproposedthatthespinofanelectronconfinedtoquantumdotsisapromising candidateforquantumbitsandthatarrayofquantumdotscanbeusedinprincipletoimplementalarge-scalequantumcomputer(Lossetal.,1998;Burkardetal.,2000).Quantum operationsintheseproposalsareprovidedbythecouplingofelectronspinsinneighboring quantumdotsbyanexchangeinteractionbetweenthem.Thisinteractioncanbeswitchedby applyingcontrolledgatevoltagepulses,thusallowingrealizationoffundamentalquantum gatessuchastheexclusiveOR.Thereadoutofsuchaspinqubitcanbeperformedefficiently asaspin-polarizedelectriccurrentpassingthroughthedot(Engeletal.,2001)oroptically throughintegrationinsolid-statemicrocavities(Imamogluetal.,1999).Alternatively,qubit rotationscanbeimplementedbylocalelectrostaticshiftingoftheelectronintoaregionwith adifferenteffectivemagneticfield,suchasthatwhichoccursathetero-interfacesandin magneticsemiconductorstructures.

1.3Deviceprinciples

Thebasicactioninaspin-polarizeddeviceisshownin Fig.1 3,whereitisassumedthat theelectronsaretravelingfromanFM,throughanormalmetal,andintoasecondFM. Whenthemagnetizations(or,equivalently,themagneticmoments)ofthetwoFMsareinan alignedstate,theresistanceislow,whereastheresistanceishighintheantialignedstate. Actualdevicesarenotgenerallyfabricatedintheorientationshownin Fig.1 3,because theyaremadefromthinfilmsandtheresistanceperpendiculartotheplaneistoolow.The commonorientation,shownin Fig.1 4,providesmoreusefulresistance,butthephysical pictureofthespin-polarizedtransportismorecomplicated.Theeffectofthespinexclusion inantialignedfilmsisstillobserved,butitresultsinhigh-interfacescatteringand

FIGURE1–3 Schematicrepresentationsofspin-polarizedtransportfromaferromagneticmetal,throughanormal metal,andintoasecondferromagneticmetalforalignedandantialignedmagneticmoments. [,Disallowed channel. CourtesyfromPrinz,G.A.,1998.Magneto-electronics.Science282,1660 1663.

FIGURE1–4 Schematicrepresentationsoftransportthatisparalleltotheplaneofalayeredmagnetic-metal sandwichstructureforaligned(lowresistance)andantialigned(highresistance)orientations. Courtesyfrom Prinz,G.A.,1998.Magneto-electronics.Science282,1660 1663.

“channeling” ofthecurrentintonarrowedpathways(Fig.1 4).Whenthefilmsbecome aligned,bothoftheseresistance-generatingmechanismsareremoved,andthedeviceresistancedecreases.

Thissimpletwo-layersystemiscommonlyreferredtoasa “spinvalve” andisconstructed sothatthemagneticmomentofoneoftheferromagneticlayersisverydifficulttoreversein anappliedmagneticfield,whereasthemomentoftheotherlayerisveryeasytoreverse. Thiseasilyreversed(or “soft”)layerthenactsasthevalvecontrolandissensitivetomanipulationbyanexternalfield.Thedevicecanbeusedtomeasureormonitorthosefieldsand canhavenumerousapplications.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.