Magnetic ferrites and related nanocomposites ali ghasemi - The latest updated ebook version is ready

Page 1


https://ebookmass.com/product/magnetic-ferrites-and-related-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Green Micro and Nanocomposites Thomas S.

https://ebookmass.com/product/green-micro-and-nanocomposites-thomas-s/

ebookmass.com

Magnetic Communications: Theory and Techniques Liu

https://ebookmass.com/product/magnetic-communications-theory-andtechniques-liu/

ebookmass.com

Hazelwood Ali All five books Ali Hazelwood

https://ebookmass.com/product/hazelwood-ali-all-five-books-alihazelwood/

ebookmass.com

A Page of Rill and Hill 1st Edition Brent O. Yan(B.O.Y)

https://ebookmass.com/product/a-page-of-rill-and-hill-1st-editionbrent-o-yanb-o-y/

ebookmass.com

Magnus (3-Vikingos) 1ª Edition Emma Madden

https://ebookmass.com/product/magnus-3-vikingos-1a-edition-emmamadden/

ebookmass.com

Razor (Reapers Rejects MC Book 19) Elizabeth Knox

https://ebookmass.com/product/razor-reapers-rejects-mcbook-19-elizabeth-knox/

ebookmass.com

TAKEN: Sheppard & Sons Investigations Book 1 Eveline Rose

https://ebookmass.com/product/taken-sheppard-sons-investigationsbook-1-eveline-rose/

ebookmass.com

Hostile Forces: How the Chinese Communist Party Resists

International Pressure on Human Rights Jamie J. GruffyddJones

https://ebookmass.com/product/hostile-forces-how-the-chinesecommunist-party-resists-international-pressure-on-human-rights-jamiej-gruffydd-jones/ ebookmass.com

The Physicists' Daughter Mary Anna Evans

https://ebookmass.com/product/the-physicists-daughter-mary-annaevans-4/

ebookmass.com

Beautifully Wicked: The Complete Series: Voclain Academy Books 1 - 4 Jordan Grant

https://ebookmass.com/product/beautifully-wicked-the-complete-seriesvoclain-academy-books-1-4-jordan-grant/

ebookmass.com

MagneticFerritesand Related Nanocomposites

Thispageintentionallyleftblank

MagneticFerritesand Related Nanocomposites

AliGhasemi

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2022ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-824014-4

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: EdwardPayne

EditorialProjectManager: JohnLeonard

ProductionProjectManager: NirmalaArumugam

CoverDesigner: GregHarris

TypesetbyTNQTechnologies

TomywifeAzadeh forhercontinuedlove,patience,andsupport AND mychildren

Reza,Ava,andNava, whoarethereasonforthemercyofGod

Thispageintentionallyleftblank

CHAPTER1Fundamentalsofferrites ..........................................1

1.1 Introduction. .....................................................................1

1.2 Briefhistoryofmagnets .....................................................1

1.3 Basicscienceofmagnetism ................................................3

1.3.1Originofmagnetism ..................................................3

1.3.2CoulombandLorentzforces .......................................3

1.3.3Definitionoffundamentalmagneticparameters ..............4

1.3.4Ampe ` re’slaw...........................................................5

1.3.5Faraday’slaw ...........................................................6

1.3.6Lenz’slaw.. .............................................................6

1.3.7Maxwell’sequations ..................................................6

1.4 Classesofmagneticmaterials.. ............................................7

1.4.1Diamagnetism...........................................................7

1.4.2Paramagnetism... .......................................................7

1.4.3Ferromagnetism. .....................................................10

1.4.4Antiferromagnetism. ................................................11

1.4.5Ferrimagnetism.. .....................................................13

1.5 Importanceofferrites... .....................................................15

1.6 Fundamentalsofferritecrystalstructures... ...........................15

1.6.1Spinelferrites .........................................................16

1.6.2Hexagonalferrites... ................................................16

1.6.3Garnetstructure. .....................................................22

1.6.4Orthoferritestructure ...............................................23

1.7 Superexchangeinteraction. ................................................23

1.8 Applicationsofferrites. .....................................................26

1.8.1Applicationsofferritesinmicrowave-absorbing media....................................................................27

1.8.2Applicationsofferritesinharddiskdrives. ..................30

1.8.3Applicationsofferritesinbiosciences.. .......................32

1.8.4Applicationsofferritesintheenvironment ..................35

1.8.5Applicationsofferritesaspermanentmagnets.. ............35

1.8.6Applicationsofferritesinmodernelectronics... ............36

1.8.7Applicationsofferritesinmicrowavedevices... ............41 References.. ....................................................................45

CHAPTER2Ferritecharacterizationtechniques

2.1 Introduction .....................................................................49

2.2 X-raydiffraction... ...........................................................49

2.2.1FundamentalprinciplesofX-raydiffraction. .................50

2.2.2X-raydiffractioncomponentsandperformance.. ...........51

2.2.3Applications.. ..........................................................53

2.2.4Strengthsandlimitations. ..........................................53

2.3 Scanningelectronmicroscopy. ............................................54

2.3.1Thebasicprinciplesofscanningelectronmicroscopy .....54

2.3.2Scanningelectronmicroscopycomponentsand performance.. ..........................................................55

2.3.3Energy-andwavelength-dispersivespectroscopy ...........57

2.3.4Applications.. ..........................................................58

2.3.5Strengthsandlimitations. ..........................................58

2.4 Transmissionelectronmicroscopy .......................................59

2.4.1Selectedareadiffractionpatterns. ................................60

2.4.2Kikuchidiffractionlines.. ..........................................64

2.4.3Electronenergy-lossspectroscopy ...............................64

2.5 Atomicforcemicroscopy.. .................................................67

2.6 Magneticforcemicroscopy ................................................68

2.7 Fouriertransforminfraredspectroscopy................................68

2.7.1FundamentalprinciplesofFouriertransforminfrared spectroscopy.. ..........................................................68

2.7.2TypicalapplicationsofFouriertransforminfrared analysisofferritenanoparticles... ................................70

2.8 Thermalanalysismethods. .................................................73

2.8.1Thermalgravimetricanalysis. .....................................74

2.8.2Differentialthermalanalysis.. .....................................75

2.8.3Simultaneousthermalanalysis ....................................77

2.8.4Differentialscanningcalorimetry ................................77

2.9 Mo ¨ ssbauerspectroscopyofferrites ......................................77

2.10 Magneticanisotropy..........................................................82

2.10.1Magnetocrystallineanisotropy... ................................82

2.10.2Shapeanisotropy ....................................................84

2.10.3Inducedmagneticanisotropy ....................................85

2.10.4Magnetostrictionanisotropy. .....................................85

2.10.5Magneticsurfaceandinterfaceanisotropies ................86

2.11 Magneticdomains. ...........................................................86

2.12 Vibratingsamplemagnetometer... .......................................89

2.12.1Low-temperaturevibratingsamplemagnetometer... ......89

2.12.2High-temperaturevibratingsamplemagnetometer.. ......90

2.13 B H tracer.. ....................................................................91

2.14 Interpretationofthe M H loop. ..........................................92

2.15 Henkelplot. ....................................................................97

2.16 Alternatingcurrentmagneticsusceptibility ...........................97

2.17 First-orderreversalcurvemeasurement ..............................100

2.17.1First-orderreversalcurveanalysisbackground... ........100

2.17.2First-orderreversalcurveanalysismeasurements .......102

2.17.3First-orderreversalcurveanalysisapplications.. ........105

2.18 MeasurementofpermeabilityandCurietemperature... .........109

2.19 Measurementofpermittivity.............................................111

2.20 Definitionofintrinsicimpedance.......................................112

2.21 Microwavereflectionloss(R)measurements .......................113 References.. ..................................................................119

CHAPTER3Magneticferrites

3.1 Introduction. ..................................................................125

3.2 Importantdefinitions .......................................................125

3.2.1Particleswithsingle-domainstructure.. ......................125

3.2.2Timevariationofmagnetization................................127

3.2.3Superparamagneticstate ..........................................127

3.2.4Snoek’slaw. ..........................................................128

3.3 Hexagonalferrites.. ........................................................129

3.3.1M-typehexagonalferrites... .....................................131

3.3.2W-typehexagonalferrites... .....................................151

3.3.3Y-typehexagonalferrites .........................................162

3.3.4Z-typehexagonalferrites .........................................180

3.3.5X-typehexagonalferrites.... .....................................186

3.3.6U-typehexagonalferrites.... .....................................191

3.4 Spinelferrites... .............................................................201

3.4.1Simplespinelferrites ..............................................201

3.4.2Mixedspinelferrites ...............................................205

3.4.3Cobaltferrites ........................................................222

3.5 Biomedicalaspectsofmagnetite... ....................................242

3.6 Garnets. ........................................................................257

3.6.1Yttriumirongarnet.. ...............................................257

3.6.2Substitutedyttriumirongarnetnanoparticles.... ...........260

3.6.3Rare-earth-substitutedyttriumirongarnet nanoparticles .........................................................270

3.6.4Othertypesofgarnetnanoparticles ...........................279 References.. ..................................................................286

CHAPTER4Magnetoelectricferritenanocomposites

4.1 Introduction....

4.2 Magnetoelectriceffect .....................................................301

4.3 Boomgaard’srequirements ...............................................303

4.4 Ferroelectricsinmagnetoelectriccomponents......................304

4.5 Ferritesinmagnetoelectriccomponents...

4.6 Heterostructuralconfigurationofferrite/ferroelectric materialsinmagnetoelectriccomponents. ...........................306

4.7 Applicationsofmagnetoelectriccomponents.

4.8 Theoreticalaspectsofmagnetoelectriceffect

4.8.1Maxwell Wagnereffect...

4.8.2Koop’stheory..

4.8.3Jahn Tellerdistortions............................................309

4.9 Ferrite/ferroelectricnanocompositesformagnetoelectric components ...................................................................309

4.9.1Nickel-basedferrite/ferroelectriccomponents.

5.5

6.4 Typesofcarbonmaterials... .............................................438

6.5 Polymersassupportingmediaforabsorption.......................441

6.6 Permittivityandpermeabilityofabsorbingmedia.. ..............442

6.7 Hardferrite/carbonnanotubenanocomposites... ...................444

6.8 Hardferrite/single-walledcarbonnanotube nanocomposites.. ............................................................459

6.9 Spinelferrite/carbonnanotubenanocomposites. ...................463

6.10 Ferrite/graphenenanocomposites.... ...................................481

6.11 Ferrite/grapheneoxidenanocomposites ..............................491

6.12 Ferrite/carbonblacknanocomposites..................................494

6.13 Ferrite/carbonfibernanocomposites ...................................498

6.14 Softferrite/amorphouscarbonnanocomposites. ...................500

6.15 Ferrite/porouscarbonnanocomposites.. ..............................503

6.16 Ferrite/graphitenanosheetnanocomposites. .........................505

6.17 Ferrite-MoS2@nitrogen-dopedcarbonhybridstructure. .........507 References.. ..................................................................509 Furtherreading. .............................................................517

CHAPTER7Nanoferritephotocatalysts....................................521

7.1 Introduction. ..................................................................521

7.2 Basicdefinitionofphotocatalysts... ...................................521

7.3 NanocrystallineCo-ferritephotocatalyst .............................525

7.4 NanocrystallineZn-ferritephotocatalyst .............................534

7.5 NanocrystallineNi Zn-ferritephotocatalyst .......................542

7.6 NanocrystallineCo Zn ferritephotocatalyst... ...................543

7.7 NanocrystallineMn-richferritephotocatalyst... ...................548

7.8 NanocrystallineLi-ferriteandMg-ferritephotocatalysts ........558

7.9 NanocrystallineBi-ferritephotocatalyst ..............................562

7.10 Ferritenanocompositesphotocatalysts.. ..............................564

7.10.1PhotocatalyticpropertiesofNi1 xCoxFe2O4/ multiwalledcarbonnanotubenanocomposites............564

7.10.2PhotocatalyticpropertiesofCu1 xCoxFe2O4/ multiwalledcarbonnanotubenanocomposites............567

7.10.3Photocatalyticpropertiesofreduced-graphene oxide-Ni0.65Zn0.35Fe2O4 ferritenanohybrids. .............571

7.10.4PhotocatalyticpropertiesofMnFe2O4 ferrite-graphenenanocomposites. ............................573

7.10.5PhotocatalyticpropertiesofTiO2/ferrite nanocomposites... .................................................579 References.. ..................................................................580

CHAPTER8Ferritesynthesismethods

8.1 Introduction.... ...............................................................587

8.2 Synthesistechniquesforferritenanoparticles ......................587

8.2.1Sol geltechnique. .................................................587

8.2.2Coprecipitationtechnique. .......................................589

8.2.3Microemulsiontechnique.. .......................................590

8.2.4Hydrothermalandsolvothermaltechniques .................591

8.2.5Mechanicalmillingtechnique. ..................................598

8.2.6Thermaldecompositiontechnique .............................598

8.2.7Otherferritenanoparticlesynthesistechniques ............601

8.2.8Comparisonofferritesynthesistechniques .................602

8.3 Bulkferritesynthesistechniques. ......................................604

8.3.1Sparkplasmasinteringtechnique. .............................604

8.3.2Hotpressingandhotisostaticpressingtechniques........608

8.3.3Coldisostaticpressingtechnique.. .............................610

8.4 Synthesistechniquesofferritethinfilms. ...........................612

8.4.1Physicalvapordepositiontechnique.. ........................612

8.4.2Pulsedlaserdeposition ............................................617

8.4.3Molecularbeamepitaxy... .......................................618

8.5 Synthesistechniquesforferritenanofibers ..........................621 References ....................................................................622

Preface

WhenIdecidedtowritethisbook,theworldwasreactingtotheunwanted COVID-19pandemic.Nowthatthefinalpagesarefinished,thefourthpeakof thispandemicisspreadingallovertheworldandaffectingmanypeople.Ithas beenacauseofgreatsorrowwitnessinginnocentpeopleperishingunexpectedly becauseofthisvirus.Iwishthosewhohavelosttheirlivesabeatifyingandblessed soul.Isincerelybelievethat,withtheaidofscience,humankindwillcompletely eliminatethispandemicfromthefaceoftheEarth.

Inmodernsocietiestoday,considerableattentionhasbeenpaidtothedevelopmentandanalysisofmagneticmaterials.Magneticferritesareamongthemost importantmaterialsandplayimportantrolesinmanyapplications,including microwave-absorbingmedia,high-densityrecordingmagnets,bioscience,telecommunicationdevices,magnetoelectricsensors,electromagneticnoisesuppressors, exchange-springmagnets,permanentmagnets,photocatalysts,andmanycomponentsofmicrowavedevices.

Despitetherebeingmanypublishedbooksonthissubject,nodetailedbookhas beenintroducedthatdealsexclusivelywiththemagneticpropertiesofferritenanocomposites.Thosewhobecomeinterestedinthescienceofmagnetismusuallyhave quitedifferentprofessionalbackgrounds.Theymaybemetallurgists,physicists, electricalengineers,chemists,geologists,orceramists.Consequently,although eachnewindividualtothefieldhasadifferentviewofsuchfundamentalsasatomic theory,crystallography,electriccircuits,andcrystalchemistry,thisbookcoversall ofthesetopics.Furthermore,recentdevelopmentsinferritenanocompositesare reviewed.Themainhighlightsincludenewexperimentalapproachesandfindings relatedtothemechanismsofmagneticfeatureswithinferritenanocomposites.

Thebookcompriseseightchapters.Theirsequenceischosentogivereadersan insightintothebehaviorofmagneticferritenanocomposites. Chapter1 providesa quickreviewofmagnetismandrelatedphenomena.Theoriginofmagnetism,thedefinitionofmagneticparameters,andimportantequationsareintroduced.Theimportanceofdifferenttypesofferritessuchashexagonalferrites,spinelferrites,garnets, andorthoferriteswithindustriallyrelatedapplicationsisemphasized. Chapter2 discussesthesubjectoftechniquesforcharacterizingferrites.Thechapterprovides insightsintophaseidentificationandstructuralandthermalanalysisofferrites.Measurementapproachesforstaticanddynamicmagneticfeaturesandhigh-frequency permeability,permittivity,andreflectionlossarealsoreviewed. Chapter3 develops generalinformationaboutsubstitutedferrites.Structuralandmagneticfeaturesof differenttypesofhexagonalferrites,includingM,W,Y,U,X,andZtypes,spinel ferrite,ironoxides,andgarnetsarestudied.Theroleofsubstitutingcationson themagneticpropertiesofferritenanoparticles,bulks,andthinfilmsisevaluated. Chapter4 coversthemagnetoelectric(ME)componentsofferrite ferroelectric nanocompositesusedinfabricatingspintronicdevices,nanoscaleelectronics,sensors, informationstorage,andmagneticMRAMs.Also,differentferroelectricandmagnetic

ferriteswithvariousheterostructuralconfigurationsthataremostlyemployedtoprepareMEcomponentsareintroduced. Chapter5 dealswithexchange-springferrite nanocomposites.Nanostructureferritesdesignedwithspecificratiosofhard-to-soft magneticphaseareintroducedforenhancingmaximum-energyproducts.Therole ofeffectiveprocessingparameters,thenanocompositeconfigurationofsoftand hardphases,and(BH)max variationarealsostudied. Chapter6 isdevotedtoferrite carbonnanocompositeswithdifferentcompositionalandmorphologicalcharacteristicsusedinmicrowaveabsorptionmedia.Theroleofcarbonmaterialadditionsin balancingpermeabilityandpermittivityisinvestigatedinawidefrequencyrangeto reachthehighestreflectionlossvalues. Chapter7 startswiththebasicdefinitionof photocatalysts.Thephotocatalyticactivationoftypicalferritesisinvestigated,and theeffectofadsorbentdoseonthephotodegradationperformanceofdyesusingferrite isevaluated.Therolesofshapefactorsandeffectiveparametersinthecatalyticactivityofferritesarealsoevaluated. Chapter8 presentsvarioustechniquesforfabricating magneticferrites,suchasparticles,bulks,coatings,andfibers.

Thereferencesemployedcompriserelevantbooks,classicalpapers,reviewarticles,andconferenceproceedingsandareprovidedattheendofeachchapter.

Thisbookisanticipatedtobeusefulformaterialsscientists,physicists,electronicengineers,andchemistsinvolvedindevelopingandresearchinghighqualitymagneticferrites.Astheauthorofthisbook,Iamprivilegedtoacquaint readerswiththescientificaspectsofthesubjectwhilealsointroducingtheoutcome ofmymanyexperimentalandresearchendeavorspresentedinthisbook.Isincerely hopethecontributionwillassistreadersinproliferatingtheirknowledgeofferrites andrelatednanocomposites.

AcknowledgmentismadeofthesupportofProf.Q.Taghizadeh,presidentofthe MUT,forprovidinglaboratoryfacilitiesandfinancialsupport.Iwouldliketo expressmygratitudetoEng.MohammadRezaNasrIsfahaniandEng.Behnoush Alirezaeiforspendingconsiderabletimeprocuringtherequiredpermissionsand revisingthephotographsanddiagrams.Theirthoughtfuleffortssignificantly reducedtheburdenofpreparingthefinalversionofthisbook.IhavebenefitedenormouslyfromtheassistanceofDr.TahminehSodaeeinprovidingusefulinformation aboutthephotocatalyticperformanceandsynthesizingtechniquesofferrites. Dr.SamiraSamanifarprovidedliteratureaboutFORC,andDr.AliRostamnejadi helpedtointerpretmagneticsusceptibility.IalsowouldliketothankDr.AmirHosseinMontazerforhiscriticalcommentsandconstructivesuggestionsonpartsofthe book.Further,Iowemycolleaguesadeepdebtofgratitude;inparticular,Dr.EbrahimPaimozdandDr.GholamrezaGordaniforprovidingafriendlylaboratoryenvironmentandassistanceinpurchasingtherawmaterialsneededoverthecourseofthe experiment.IthankDr.ArkomKaewrawang,Prof.VladimirSepelak,andProf. AndreaPaesanoJr.fortheircontributionsinoriginalresearchworksthatbecame thebasesofmyexperimentalsetups.IacknowledgeSimonHolt,JohnLeonard, andNirmalaArumugamfortheirpatienceduringthecourseofwritingthisbook. IamverygratefultothelateProf.ArdeshirHosseinpour,whoinitiallyencouraged metopursuemyinterestinthefieldofmagneticferrites.Itisapleasuretoexpress

mydeepappreciationtoallindividualswhohelpedmepromotemyknowledgeof magneticferrites,especiallyProf.AkimitsuMorisakoandProf.XiaoxiLiu.Iam alsoobligedtothemanypublishersandindividualswhohavegivenmepermission toreproducetheirfiguresandtables.Lastbutbynomeansleast,Iwouldliketo thankElsevierfortheirencouragementandsteadycollaboration.

May2021

Thispageintentionallyleftblank

Fundamentalsofferrites 1

1.1 Introduction

Thischapterexplainstheprinciplesofmagneticphenomenaandrelatedtheoriesto provideabackgroundforthosewithlimitedfamiliaritywithmagnetismandrelated effects.Magneticmaterialsofvariousnatures,includingmetallic,ceramic,andcomposite,encompassmanycategoriesandapplications.Metallicspecimenssuchas SmCo,NdFeB,FePt,andTbFeCohaveanimportantroleindevelopinghardmagneticfeatures.Softmetallicmagnetssuchasironcobalt,mu-metal,permalloy,and superalloyhaveapplicationsinshieldingenvironmentsandrecordingheads.The mostimportantmagneticceramicsaretheferritesusedincommunicationandelectronicengineeringfields.Ferritesareusuallyknownasferrimagneticoxides.Ferritesareelectricallyinsulatingandexhibitlowlosswithinhigh-frequencyfields, makingthemappropriatecandidatesforcommunicationandmicrowavedevices. Thecrystalstructureofferritecontainsaninterlockingnetworkofpositively chargedcationsandnegativelychargeddivalentoxygenanions.Thesiteoccupancy ofionsandthecrystalstructureofferriteplayanimportantroleindeterminingmagneticfeatures.Largevarietiesofferritesindifferentconfigurationsarefabricatedto beemployedinmanynewtechnologieswithvariousrequirements.Thefrequency applicationsofferritesatwhichanyelectronicdevicecanfunctionrangefrom DCtomicrowave.

1.2 Briefhistoryofmagnets

LodestonerocksrichinFe3O4 ferritesaspermanentmagnetswereknownbypriests andpeoplein“Sumer,China,pre-ColumbianAmerica,andancientGreece.”The Chineseusedmagneticcompassessometimebefore2500BCE.Thefirstdevice basedonalodestonewasdevelopedbytheChineseandnameda“Southpointer” (Coey,2010).Inthe6thcenturyBCE,TheGreekphilosopherThalescarriedout theearliestobservationofmagnetismforwhichalodestoneormagnetiteattracted iron.Thefirstmanufacturedmagnetswerefabricatedbyrubbingironneedleson magnetitetoformtheessentialpartsofacompass(Goldman,2006).In1064,Zheng Gongliangcarriedoutthermoremanentmagnetizationthroughspecialheat

MagneticFerritesandRelatedNanocomposites. https://doi.org/10.1016/B978-0-12-824014-4.00009-3 Copyright © 2022ElsevierLtd.Allrightsreserved.

treatmentofiron.ShenKuainventedthenavigationcompassin1088.TheperpetuummobilewasdescribedbyPetrusPeregrinusinthefirstEuropeantextonmagnetism(Coey,2010).WilliamGilbertfoundthatmeltedandforgedsteelbarscooled underthemagneticfieldoftheearthcontainmagneticfeatures.Hepublishedthe firstsystematicexperimentalstudyonmagnetismin1600.HefoundthattheEarth isthegreatestmagnetintheworldandidentifieditasthesourceofthemagneticfield thataffectsthecompassneedleanddeterminesthedirectionofnavigationsystems (O ¨ zguretal.,2009a).

ThehorseshoemagnetwasinventedbyDanielBernoulliin1743.In1819, Oerstedfoundthatawirecarryingcurrentcoulddeflectacompassneedle,representingakindofcorrelationbetweenmagnetismandelectricity.Then,inParis, Andre-MarieAmpereandDominique-FrancoisAragowoundwireintoacoiland demonstratedthatamagneticfieldcouldbegeneratedbyapplyingcurrenttothe coil(Coey,2010).

WilliamSturgeonintroducedtheiron-coreelectromagnetin1824,which wasmoreeffectivethanaweakpermanentmagnetinelectricmotorsand generators.MichaelFaradaydiscoveredelectromagneticinductionin1821and themagneto-opticeffectin1845.Thepreviousexperimentalinvestigationinspired JamesClerkMaxwelltoformulatethetheoryofelectricityandmagnetismin1864 (Coey,2010).

ThefirsthysteresisloopwasplottedbyWarburgforanironmagnetin1880.

Curiefoundthetransitiontemperaturefromferromagnetismtoparamagnetism (Curielaw)in1895.Thetheoryofdiamagnetismandparamagnetismwasdiscussed byLangevinin1905(Ozguretal.,2009a).

ThetheoryofferromagnetismwasproposedbyPierre-ErnestWeissin1907to describethetransitiontemperature(Curietemperature)(Ozguretal.,2009a).

Regardingmagneticmaterials,itiswellknownthatcarbonsteelwasthefirst importantpermanentmagnetduring1820 1900.The1920swasthebeginningof quantummechanicsandthephysicsofmagnetism,whichwereusedforadeeper explanationofmagneticphenomena.Atthebeginningofthe20thcentury,thedevelopmentofpermanentmagnetsrapidlygrewbyaddingothermagneticornonmagneticelementssuchasMn,Co,W,Al,andNiintothecompositionwhile controllingprocessingconditions,especiallythequenchingstepsoftheheattreatmentprocess.During1900 1935,theAlnicowasdeveloped.Ferritepermanent magnetswereintroducedinthe1930sandusedinloudspeakersandlaterformotors inportableappliances.Substitutingvariouscationsinferritesandmakingnewnanocompositesarestillrapidlyexpandingareas.Thefirstrareearthcobaltpermanent magnetwasfabricatedinthe1960s,andtheNdFeBhardmagnetwasdeveloped inthe1980s(Goldman,2006; Ozgu ¨ retal.,2009a).Novelachievementsinpermanentmagnets,magneticrecording,andhigh-frequencymaterialshavemadeprogressintelecommunications,computerscience,andmicrowavesystems.Inrecent decades,theimpactofnanomagnetismandspinelectronicsinmodernelectronics hasbeenconsiderable.

1.3 Basicscienceofmagnetism

Inthissection,someimportantmagneticparametersandwell-knownlaws describingmagneticphenomenaareexplained.

1.3.1

Originofmagnetism

Accordingtothebasicscienceofatomicconfiguration,atomicmagneticmoment originatesfromtheorbitalmotionoftheelectronaroundthenucleusandthespin motionoftheelectronarounditsownaxis.Considerasimplemodelofanatom inwhichtheelectronmovesinacircularloopwithradius r andangularvelocity of u.Thetotalmagneticmomentproducedbycircularandspinmotionsis

where m and e arethemassandelectricchargeofasingleelectron,respectively (e/m ¼ 1.76 1011 C/kg), m0 isthemagneticpermeabilityoffreespace (m0 ¼ 4p 10 7 H/m),and P denotestheangularmomentumofthecircularmotion. Thefactorof g iscalled“gyromagneticratio”orsimply g factor,whichis1and2for orbitalandspinmotions,respectively.Theunitoforbitalmagneticmomentandspin magneticmomentistheBohrmagneton(Chikazumi & Graham,2009).

Notethatinmagneticceramicssuchasferrites,thecrystallinefield(electric field)resultingfromthesurroundingionswouldcausethequenchingoforbital moments,inwhichcasetheorbitalmomentofelectronsisfarsmallerthanspin moments(Smit,1959,pp.278 280).

1.3.2 CoulombandLorentzforces

Considertwomagneticpoleswithdistance r inmeter,aswellasstrengthsof m1 (weber)and m2 (weber).Theforceexertedinnewtonsfromonepoletotheother, knownastheCoulombforce,isgivenby

Theforceonthemagneticpolecanalsobeimposedbyemployinganelectric current.Forexample,byconsideringaninfinitelylongcoilorsolenoidcarryinga currentof I,theuniformmagneticfieldisgeneratedanddefinedby

where N denotesthenumberofturnsperunitlength(alongtheaxis)ofthesolenoid (Chikazumi & Graham,2009; Morrish,2001).

Ontheotherhand,byconsideringaparticlewithchargeqmovingwithavelocity of v andsubjectedtomagneticandelectricfieldsof B and E,theLorentzforceof f ¼ q(E þ v B)canbedefined.Cyclotronsandotherparticleaccelerators,cathode raytubetelevisions,andgeneratorsarebasedontheLorentzforceequation.

1.3.3 Definitionoffundamentalmagneticparameters

Whenamagneticfield(H)isappliedtoamaterial,theresponseofmaterialsiscalled magneticinduction(B),whichheavilydependsonthenatureofthespecimen.The relationof B and H definesthepropertiesandstatementsofmagneticmaterialtypes. Infreespaceandsomelimitedmaterials,therelationislinear,whileinmanycases, itisverycomplicatedandnotevensingle-valuedinsomemagnets.Animportant parameterthatcanbeextractedfromtherelationofmagneticinductionwithamagneticfieldispermeability,whichcanberepresentedasfollows:

Permeabilityindicateshowpermeablethematerialistothemagneticfield.The relationofmagneticinductionwithmagneticfieldisexpressedinthefollowing:

where m0 isthe B/H ratiomeasuredinavacuum,and M isthemagnetizationofthe material.Incgsunits,thepermeabilityoffreespaceisunityandsodoesnotappear intheequation(Cullity & Graham,2011; Spaldin,2010).

Magnetizationisaveryimportantparameterofmagneticmaterials.Magnetizationstronglydependsonboththeindividualmagneticmomentsoftheconstituent ions,atoms,ormoleculesandthetypeandstrengthofinteractionofmagneticmomentswitheachotherinamedium.Ingeneral,magnetizationisdefinedasthemagneticmoment(m)pervolumeunit(V):

Magneticpolarization(J)indicatestheintensityofmagnetizationandisgivenby

Thepolestrengthfortheareaunitperpendicularto M isfoundbythefollowing:

where n istheunitvectornormaltothesurfaceand s isthepolestrengthperunitof area.

Themagnetization-to-magneticfieldratioiscalledmagneticsusceptibilityand reflectshowresponsiveamaterialistoanappliedmagneticfield.Thesusceptibility equationinbothunitsisexpressedby

TherelationsbetweenpermeabilityandsusceptibilityinSIandcgssystemsare givenby(Cullity & Graham,2011; Morrish,2001)

Themagneticflux F isdefinedasthefluxofmagneticinductionthroughasurfacearea A;thatis,

where n istheunitnormal.Alargeamountoffluxdensityinmaterialsreflectsthe highpermeabilityvalueofthemedium(Morrish,2001).

Theunitsofmagneticinduction,magneticfield,magnetization,magneticpolarization,permeability,susceptibility,andmagneticflux,alongwiththeconversion factors,aresummarizedin Table1.1

1.3.4 Ampe ` re’slaw

Andre-MarieAmpe ` rediscoveredanimportantlawin1826whichrelatesthemagneticfieldalongaclosedloopinwhichcurrent I carriedthroughtheloop.The lawisasfollows:

where j representsthecurrentdensity.Ampe ` re’slawcanbeemployedforcalculatingthemagneticfieldofcurrentdistributionswithahighdegreeofsymmetry. Ingeneral,usingthislaw,themagneticfieldgeneratedbythecurrentcanbecalculatedfordifferentgeometries,suchasstraightlinesandcoaxialcable.Notethatthe currentshouldbesteadyandnotchangewithtime,andonlycurrentscarryingacross thepathsectionareconsideredforfindingthemagneticfield(Morrish,2001; O’handley,2000).

Table1.1 TherelationshipbetweensomemagneticparametersincgsandSI units.

Magneticinduction(B)GT10 4

Appliedfield(H)OeA/m103 4p

Magnetization(M)emu/cm3 A/m103

Magnetization(4pM)GA/m103 4p

Magneticpolarization(J)emu/cm3 T4p 10 4

Permeability(m)DimensionlessH/m4p 10 7

Susceptibility(c)emu/cm3 Dimensionless4p

Magneticflux(F)maxwell(Mx), G.cm2 weber(Wb),volt. second(V.s) 10 8

where, A,Ampere; emu,electromagneticunit; G,Gauss; H,Henry; J,Joule; Oe,Oersted; T,Tesla; Wb, Weber.

1.3.5 Faraday’slaw

In1831,MichaelFaradaydiscoveredthattime-varyingmagneticfieldscould generateanelectricfield.Thefollowingequationwasobtainedexperimentally:

where A isasurfacewhichhasthecircuitasitsboundary, n denotesthenormalvector,and E representstheelectrostaticfield.Thephenomenonisknownaselectromagneticinduction.Hedemonstratedthattheelectromagneticforce(emf) ε inducedinacoilisproportionaltothenegativerateofchangesinthemagneticflux:

Foracoilconsistingof N loops,theemfisgivenby(Morrish,2001; O’handley, 2000)

1.3.6 Lenz’slaw

Lenz’slawdeterminesthedirectionofaninducedcurrent.Theinducedcurrentgeneratesmagneticfieldsthattendtoopposevariationsinmagneticfluxwiththefields imposingsuchcurrents.Consideraconductingloopplacedinauniformmagnetic field,withthepositivedirectionofthenormalvectordefined.Then,byfinding therateoffluxchange d F=dt throughdifferentiation,threepossibilitiescanbedetermined.If d F=dt ispositive,then ε < 0;ifitisnegative,theinducedemfispositive; finally,considering d F=dt ¼ 0, ε ¼ 0.Theright-handruleisusedtodeterminethe directionoftheinducedcurrent.Bypointingthethumbinthedirectionofthearea vectorandcurlingthefingersaroundtheclosedloop,theinducedcurrentflowsinthe samedirectionasthedirectionoffingerscurlbyconsideringpositiveinducedemf, whileitistheoppositedirectionif ε < 0(Cullity & Graham,2011; Morrish,2001).

1.3.7 Maxwell’sequations

InresponsetotheexperimentscarriedoutbyAmpereandFaraday,Maxwelldevelopedthefollowingequations:

where V$ and V arevectoroperatorsofdivergenceandcurl,respectively. E isthe electricalfield, D showsthedisplacementvector, j denotesthecurrentdensity, r representstheelectricchargevolumedensity,and t istime.Thedisplacementvectoris relatedtotheelectricalfieldbythefollowingequation:

where ε0 isthepermittivityoffreespace(ε0 ¼ 8.85 10 12 Fm 1), P denotesthe polarizationofelectricdipoleperunitvolume,and ε isthedielectricconstant (Morrish,2001).

1.4 Classesofmagneticmaterials

Allmaterialscanbeclassifiedintermsoftheirmagneticsusceptibilityintofivemajorgroups(O’handley,2000):

1. diamagnetism

2. paramagnetism

3. ferromagnetism

4. antiferromagnetism

5. ferrimagnetism

1.4.1 Diamagnetism

MichaelFaradaydiscoveredthediamagneticnatureinSeptember1845.Diamagnetismistheweakestformofmagnetism.Thismagnetismisrelatedtotheorbitalrotationofelectronsaroundthenucleiinducedelectromagneticallywithinanexternal magneticfield.Indiamagneticsubstances,applyinganexternalmagneticfieldinducesamagneticmomentthatopposestheexternalmagneticfieldcausingit; thus,anegativemagnetizationisproducedwherethesusceptibilityofadiamagnetic materialisnegativeandveryweak(Chikazumi & Graham,2009).Thesusceptibility indiamagneticmaterialsistemperatureindependent.Superconductorsareanideal typeofdiamagnetsthathavegreatapplicationsinmodernindustries.Byapplyingan externalmagneticfield,dependingonfieldstrengthandworkingtemperature,superconductorsexpelthefieldlinesfromtheirinteriors.Allnoblegases,bismuth,and pyrolyticgraphitearediamagnets.

1.4.2 Paramagnetism

Inmanycases,paramagneticmaterialscontainmagneticatomsorionswithamagneticmomentduetounpairedelectronsinpartiallyfilledorbitals.Thespinsareisolatedfromtheirsurroundingenvironmentandcansomehowfreelyaligninthe directionoftheappliedfield.Theinteractionbetweenmagneticmomentsisvery weak,andtheorderofmagnitudeofmagneticsusceptibilityis10 3 to10 5 .

Inparamagneticmaterialsatfinitetemperatures,thespinsareagitated,andthermalenergycausesmisalignmentofspins.Withanelevationoftemperature,thethermalagitationwillincrease,causingvibrationinatomicmagneticmomentsthat reducessusceptibility.ThisbehaviorisdescribedbytheCurielaw,inwhichsusceptibilityhasanoppositetrendtotemperature.TheCurielawisgivenby(Cullity & Graham,2011)

where T istheabsolutetemperatureand C isamaterialconstantcalledtheCurie’s constant.Laterexperimentsdemonstratedthatthesusceptibilityofsomematerialsis fittedbyCurie Weisslaw:

where w isaconstant.Inthisequation, w canbepositive,negative,orzero.Clearly, when w ¼ 0,thentheCurie WeisslawequatestotheCurielaw.When w isnonzero, thenthereisaninteractionbetweenmagneticmomentsofneighboringatoms,and thematerialsareonlyparamagneticaboveacertaintransitiontemperature.If w is positive,thenthematerialisferromagneticbelowthetransitiontemperaturewhere thevalueof w correspondstothetransitiontemperature(Curietemperature, TC).If w isnegative,thenthematerialisantiferromagneticbelowthetransitiontemperature (Ne ´ eltemperature, TN),thoughthevalueof w doesnotrelateto TN.Notethatthis equationisonlyvalidwhenthematerialisinaparamagneticstate.Itisnotvalid formanymetalsastheelectronscontributingtothemagneticmomentarenotlocalized.However,thelawdoesapplytosomemetals,e.g.,rareearth,wherethe4felectronsthatcreatethemagneticmomentarecloselybound(Chikazumi & Graham, 2009).

Dependingonthestrengthanddirectionoftheexternalmagneticfield,partial alignmentoftheatomicmagneticmomentsoccurs,resultinginanetpositive magnetizationandpositivesusceptibility.Afterapplyingamagneticfieldtoaparamagneticsystemwithnointeractionbetweenatomicmagneticmoments,thepotentialenergy UH isgivenby

where q istheanglebetweenthedirectionofappliedfield H andatomicmagnetic moment m.Byconsideringcosq ¼ 1andmagneticfieldstrengthof106 A/m,the magnitudeofenergyisontheorderof10 23 J.Theorderofmagnitudeofthermal energykBT, wherekB isBoltzmannconstantatroomtemperature,is4.1 10 21 J. Whenthetwoenergiesarecompared,thethermalenergyislargerbyfactorsof102 to103 comparedwiththepotentialenergyofthemagneticfield(Chikazumi & Graham,2009).Thisindicatesthatatroomtemperatureforanoninteractingparamagneticsystem,thethermalenergycausesrandomfluctuationofmagneticmoments andprovidesveryweakmagnetization.Forreachingsaturationinpractice,thetemperaturemustbeverylowforfreezingthespins,whiletheintensityofthemagnetic fieldshouldbeveryhigh.

Paramagneticmaterialsobeyfromimportanttheories,includingLangevinand Paulimodels.TheLangevinmodel,whichistrueformaterialswithnoninteracting

c ¼ C =T (1.23)
c ¼ C =ðT wÞ (1.24)
UH ¼ mH cos q
(1.25)

localizedelectrons,statesthateveryatomhasamagneticmomentthatisrandomly orientedasaresultofthermalagitation.Byconsidering N atomicmomentsperunit volume,themagnetizationcanbecalculatedbasedontheLangevintheory.Inthis case,let nðqÞd q denotethenumberofatomicmomentsintheunitvolumeproviding ananglebetween q and q þ d q withthedirectionoftheappliedfield,whichisproportionaltothesolidangle2psinqd q andBoltzmannfactor expððmH cosqÞkB T Þ accordingtothefollowing:

where n0 isaproportionalityfactordeterminedbyconsideringthatthetotaldensity ofatomicmomentis N

Theintensityofmagnetizationisexpressedby

Bycombiningtheaboveequations,onecanreach

Bysetting mH =kB T ¼ a andcosq ¼ x,thefollowingexpressionisobtained:

ThefunctionintheparenthesesistheLangevinfunction, L(a).For a << 1,the Langevinfunctioncanbeexpandedas

Consideringthefirsttermintheaboveequation,theintensityofmagnetization canbesimplifiedto

Themagneticsusceptibilitycanalsobedeterminedbythefollowing:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.