Magnesia cements: from formulation to application 1st edition mark shand - Discover the ebook with a

Page 1


Cements:FromFormulationtoApplication 1stEditionMarkShand

https://ebookmass.com/product/magnesia-cements-fromformulation-to-application-1st-edition-mark-shand/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Data Assimilation for the Geosciences. From Theory to Application 1st Edition Edition Steven J. Fletcher (Auth.)

https://ebookmass.com/product/data-assimilation-for-the-geosciencesfrom-theory-to-application-1st-edition-edition-steven-j-fletcher-auth/

ebookmass.com

Psychoanalytic Case Formulation 1st Edition, (Ebook PDF)

https://ebookmass.com/product/psychoanalytic-case-formulation-1stedition-ebook-pdf/

ebookmass.com

Polymer Nanocomposite-Based Smart Materials: From Synthesis to Application Rachid Bouhfid

https://ebookmass.com/product/polymer-nanocomposite-based-smartmaterials-from-synthesis-to-application-rachid-bouhfid/ ebookmass.com

Wrath: A Hellion MC Novella Ava Manello

https://ebookmass.com/product/wrath-a-hellion-mc-novella-ava-manello/

ebookmass.com

Statistical Techniques in Business and Economics (The Mcgraw hill/Irwin Series in Operations and Decision Sciences) 17th Edition, (Ebook PDF)

https://ebookmass.com/product/statistical-techniques-in-business-andeconomics-the-mcgraw-hill-irwin-series-in-operations-and-decisionsciences-17th-edition-ebook-pdf/ ebookmass.com

Introduction to Corrections Third Edition E-book PDF

Version – Ebook PDF Version

https://ebookmass.com/product/introduction-to-corrections-thirdedition-e-book-pdf-version-ebook-pdf-version/

ebookmass.com

John Bell, il signore degli enigmi (Italian Edition) L.T. Meade & Robert Eustace

https://ebookmass.com/product/john-bell-il-signore-degli-enigmiitalian-edition-l-t-meade-robert-eustace/

ebookmass.com

Paying for Pollution: Why a Carbon Tax Is Good for America

Gilbert Metcalf

https://ebookmass.com/product/paying-for-pollution-why-a-carbon-taxis-good-for-america-gilbert-metcalf/

ebookmass.com

Spatial Economics, Volume I: Theory Stefano Colombo

https://ebookmass.com/product/spatial-economics-volume-i-theorystefano-colombo/

ebookmass.com

Dancing With Redemption (Barre To Bar Book 5) Summer Cooper

https://ebookmass.com/product/dancing-with-redemption-barre-to-barbook-5-summer-cooper/

ebookmass.com

MagnesiaCements

MagnesiaCements

FromFormulationtoApplication

MarkAlexanderShand

PremierMagnesia,LLC,Waynesville,NC,UnitedStates

AbirAl-Tabbaa

UniversityofCambridge,Cambridge,UnitedKingdom

JueshiQian

ChongqingUniversity,Chongqing,China

LiwuMo

CollegeofMaterialsScienceandEngineering,Nanjing TechUniversity,Nanjing,Jiangsu,China

StateKeyLaboratoryofMaterials-OrientedChemical Engineering,Nanjing,Jiangsu,China

FeiJin

UniversityofGlasgow,Glasgow,UnitedKingdom

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationabout thePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-391925-0

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnnekaHess

EditorialProjectManager: DevlinPerson

ProductionProjectManager: AnithaSivaraj

Designer: MatthewLimbert

TypesetbyVTeX

0Introduction–CharacterizationofMgO

MarkAlexanderShand,FeiJin

0.1Introduction1

0.2ImportantcharacteristicsofMgOandtestmethods2

0.3RelationshipsamongthemostimportantpropertiesofMgO5

0.4CategorizationofMgO6 References9 PartOneExistingmagnesiacementtechnologies

1Manufactureofmagnesiumoxideformagnesiacements

MarkAlexanderShand

1.1Magnesiumoxideproducedfrommagnesite13

1.2Formationofmacrocrystallinemagnesite15

1.3Formationofcryptocrystallinemagnesite15

1.4Magnesiumoxidederivedfrombrucite15

1.5Miningandprocessingofmagnesite16

1.6Syntheticmagnesia18

1.7Calcinationofmagnesiumcarbonateandmagnesiumhydroxide22 1.8Furnacesandkilns24 References28

2Magnesiumoxychloridecement

FeiJin

2.1Introduction29

2.2Phasecompositionandmicrostructure30

2.3Reactionmechanismandkinetics35

2.4PropertiesofMOC38

2.5CommondegradationmechanismsforMOCandcounter-measures51

2.6ApplicationsofMOC60

2.7Conclusionsandrecommendationsforfuturework65 References67 3Magnesiumoxysulfatecement

MarkAlexanderShand

3.1Introduction75

3.2Improvementinwaterresistance77

3.3Propertiesofmagnesiumoxysulfatecement79

3.4Magnesiumoxysulfateuses79 References82

4Magnesiumphosphatecement 85 JueshiQian

4.1Reviewonmagnesiumphosphatecements(MPCs)85

4.2FormulationofMPCs88

4.3HydrationandmicrostructureofMPCs96

4.4PropertiesofMPCs114

4.5ApplicationsofMPCs148 References159

5Magnesiumsilicatehydratecements 173 MarkAlexanderShand

5.1Introduction–typesofsilicatebinders173

5.2Magnesiumsilicatehydratecement174

5.3Conclusions180 References180

6Carbonatedmagnesiacements 183 AbirAl-Tabbaa,LiwuMo

6.1Introduction183

6.2Carbonatedmagnesiacementinmasonryblocks185

6.3Carbonatedmagnesiacementingroundimprovement193

6.4CarbonatedMgObinaryandternarycementsystems202 References208

7Magnesiainalkaliactivatedcements 213 FeiJin,AbirAl-Tabbaa

7.1Introduction213

7.2RoleofinherentMgOinAAC214

7.3EffectofadditivereactiveMgOonthepropertiesofAAC217

7.4ApplicationsofMgO-bearingAAC225

7.5Conclusionsandrecommendationsforfuturework237 References237

8Magnesiaasanexpansiveadditive 243 LiwuMo,AbirAl-Tabbaa

8.1HistoryofMgOexpansivecementandconcrete243

8.2HydrationandexpansionofMgOincement-basedmaterials246

8.3PerformanceofconcretewithMgOexpansiveadditive259

8.4ApplicationofMgOinshrinkagecompensationandcracking mitigationofconcrete262

8.5ManufactureofMgOexpansiveadditive265 References268

9Magnesiainself-healingcementandconcrete 275 AbirAl-Tabbaa

9.1Introductionandoverview275

9.2Expansiveadditivesinautogenicself-healingofcementitious systems277

9.3Autogenicself-healingincementusingMgO279

9.4Roleofmagnesiainautonomicself-healingapplicationsincement andconcrete291

9.5Fieldtrialsandapplications307 References310

Index 313

Acknowledgments

Theauthorswouldliketothankthefollowingindividualsfortheircontributions: Dr.ChrysoulaLitinaforherworkonthecopyrightpermissionsforchapter 6 (carbonatedmagnesiacements)andchapter 9 (magnesiainself-healingcementand concrete)andalsoDr.AntonisKanellopoulosandDr.RamiAlghamrifortheircontributiontothecontentofchapter 9 (magnesiainself-healingcementandconcrete). WewouldalsoliketothankDr.JihuiQinandDr.ChaoYoufortheircontributions tochapter 4 (MPC).TheauthorsgratefullyacknowledgethesupportfromtheUK EngineeringandPhysicalSciencesResearchCouncil(EPSRC)andtheNationalNaturalScienceFoundationofChinathroughresearchgrantsforaspectsofthework presentedinchapter 0 (characterizationofmagnesia),chapter 4 (magnesiumphosphatecement),chapter 6 (carbonatedmagnesiacements),chapter 7 (magnesiain alkaliactivatedcements),chapter 8 (magnesiaasexpansiveadditive)andchapter 9 (magnesiainself-healingcementandconcrete).TherelevantEPSRCresearchgrants were:Wasteminimizationthroughsustainablemagnesiumoxidecementproducts (GR/T26870/1),MagMats:Magnesia-bearingconstructionmaterialsforfutureenergy infrastructure(EP/M003159/1),MaterialsforLife(M4L):Biomimeticmulti-scale damageimmunityforconstructionmaterials(EP/K026631/1)andResilientMaterialsforLife(RM4L)(EP/P02081X/1).TherelevantNSFCgrantswere:MgO-bearing constructionmaterialsforfutureenergyinfrastructure(51461135003)andFormationmechanismandadjustmentofthemicrostructureofMg/Cacarbonatebinder (51502134).ProjectMagMatsinparticularwasinstrumentalinbringingtogetherthe UKandChinaco-authorsofthisbook.Theauthorsalsoacknowledgethesupport fromtheUKTechnologyStrategyBoardforthesupportthroughprojectSMiRT(Soil MixRemediationTechnology)relatedtosomeoftheworkinchapter 7 (Magnesiain alkaliactivatedcements).

WewouldalsoliketogiveaspecialthankyoutoElsevierfortheirpatienceand invaluableassistance.

Introduction–Characterizationof MgO

a PremierMagnesia,LLC,Waynesville,NC,UnitedStates, b UniversityofGlasgow,Glasgow, UnitedKingdom

Contents

0.1 Introduction 1

0.2 ImportantcharacteristicsofMgOandtestmethods 2

0.2.1 Densityandparticlesizes 2

0.2.2 Chemicalanalysis 3

0.2.3 Crystallitesize 4

0.2.4 Texturalproperties 4

0.2.5 ChemicalreactivityandreactiveMgOcontent 4

0.3 RelationshipsamongthemostimportantpropertiesofMgO 5

0.4 CategorizationofMgO 6

Acknowledgments 9 References 9

0.1Introduction

Commerciallyavailablemagnesiumoxide(magnesiaorMgO)isproducedmainlyby twomethods,thefirstviathecalcinationorheatingofmagnesite,anaturallyoccurringmineralofmagnesiumcarbonate.Thesecondmethodinvolvestheprecipitationof magnesiumhydroxidefromseawater,ormagnesium-richbrines,usinglimeordolime; themagnesiumhydroxidethenbeingcalcinedtoformmagnesiumoxide.LaboratorypreparedMgOcanalsobeobtainedeitherfromthecalcinationofbruciteprecipitated fromvariouschemicalprocessesorfromthecalcinationofbasicmagnesiumcarbonatesprecipitatedbycarbonationofMg-richsolutions.Themagnesiaobtainedfromthe calcinationofsyntheticbruciteorbasicmagnesiumcarbonatesisusuallyreferredtoas syntheticorprecipitatedmagnesia.Magnesiacementuseeitherlight-burntorreactive magnesiumoxide,aswellashard-burntordead-burntproductsthatareconsiderably lessreactivethanalight-burnedoxide.Thedegreeofburn,either‘light’,‘hard’or ‘dead-burnt’referstothethermaltreatmentorcalcinationconditionstheprecursor magnesiteorsyntheticbrucitehasbeensubjectedto.Light-burntconditionstypically involvecalcinationtemperatureslessthan1000°Cwhiledead-burntmaterialwillexperiencetemperatures1400–2000°C.Hard-burntmagnesiumoxidewillbeobtained bycalciningatanintermediatetemperaturesomewherebetweenlightanddead-burn, > 1000°C <1400°C.Finally,fusedmagnesia,producedattemperaturesabovethe MagnesiaCements. https://doi.org/10.1016/B978-0-12-391925-0.00006-6 Copyright©2020ElsevierInc.Allrightsreserved.

fusionpointofmagnesiumoxide(2800°C)istheleastreactive.Residencetimeinthe kilnistypicallytwotothreehours.Inaddition,itisfoundthatthereactivityofreactivegrademagnesiavariesconsiderablycomparedtotheothergrades.Therefore,it isdesirabletofurthercategorizereactivemagnesiausingthemostappropriateindex, whichwillaidtheselectionofsuitablereactivemagnesiaforspecificapplications.

ThischapterwillsummarizethepropertiesofMgO,particularlyreactive,hard-and dead-burntgrades,usedintheMgOcementsdiscussedinthisbookalongwiththerelevanttestingmethods.ConsideringtheparamountimportanceofMgOcharacteristics onthepropertiesofMgOcements,aswellasthevastnumberofdifferenttestsavailableforevaluatingthequalityofMgO,literaturedataweregatheredandcorrelated regardingdifferentcharacteristicsofalargenumberofMgOsamples,sothatreadersmayhaveanideaaboutthereactivityofMgOusedinspecificpaperswhereonly limitedinformationwasgiven.

0.2ImportantcharacteristicsofMgOandtestmethods

InordertoselectthemostsuitableMgOforspecificapplications,itisimportantto assessthequalityofthesample,whichincludesitschemicalcomposition,density, particlesizeandmostimportantlyitsreactivity.ManystudiesshowedthatthereactivityofMgOhadanotableimpactontheperformanceofMgOcement.Thereactivity ofMgOisdeterminedbyitsintrinsicpropertiessuchascrystaldistortionandspecific surfacearea(SSA),whichareinturndependentonthesourceandcalcinationhistoryofthesample(seeChapter 1).Thefollowingsectionswilldescribethevarious physio-chemicalpropertiesofMgOthatareusuallytestedandthepertinenttesting methods.

0.2.1Densityandparticlesizes

ThetruedensityofMgOis3.58g/cm3 andduetothelargeporevolumeinreactive MgOpowders,thebulkdensitycouldbefarlessthanthetheoreticalvalue,whichcan bemeasuredaccordingtoASTMD7481-09[1].

TheoldASTMtestingmethodforMgOspecifiedtheuseofwetsieveanalysiswith a200mesh(75µm)sieve.However,moderntestingequipmenthasmadethismethod obsolete,althoughthewetmethodcanstillbeused.Theparticularmethodologyof particlesizeanalysisisdependentuponthefinenessofthematerial.Coarsermaterialsgreaterthan100mesh(150µm)suchasaggregateandfiller,canbetestedusing ASTMsieves(eightinches)andasieveshakersuchasthatmanufacturedbyW.S. Tyler’sRo-Tapmachine.Finelydividedmagnesiumoxideandsomefillersareparticularlycohesiveinnaturemakingitdifficulttoobtainanaccuratesieveanalysiswhen finerthan100mesh.Useofsieveshakers,inthiscase,isnotrecommended,instead, anairjetsieveshouldbeemployed.Hosokawa-MicronPowderSystemsandRetsch GmbHmanufacturethistypeofsieveanalyzer.Inaddition,thelaserlightscattering methodisalsofrequentlyemployedfordeterminingtheparticlesizedistributionof MgOdispersedinethanolorisopropanol[2].

0.2.2Chemicalanalysis

ChemicalanalysisofcementgrademagnesiumoxideisdetailedbyASTMC245-52 andEN14016-2:2004(E).Thesemethodsareratherlengthyandcomplicatedwet chemicalprocedures,fortunately,modernchemicalanalyticalmethodscanbeused todeterminethechemicalpurityofparticularmagnesiumoxideinamuchmore rapidandaccuratemanner.X-rayfluorescence(XRF)andatomicabsorptionspectroscopy(AAS)orinductivelycoupledplasmaemissionspectroscopy(ICP)canbe usedtoachievethis.XRFanalyticalsamplescanbepreparedusingfinelyground pressedpowderorlithiummetaborate/lithiumtetraboratefluxblenddiscs.Thefluxingmethodwillgivethemostaccurateanalyticaldata.SamplesfortestingbyAAS orICPcanbepreparedbydissolutioninhotacid,typicallynitric,nitric/hydrochloric orperchlorate/nitricmixture.Thetypeofacidusedfordissolutionwilldependupon howwellthesilicaimpuritiesgointosolution.Forrecalcitrantacidinsolubles,lithium boratefusioncanalsobeemployedwhichcanthenbedissolvedinacidsolution. TheuseofAASshouldbeusedwithcautionespeciallywhenmeasuringmagnesium directlysincetheworkingsolutionhastobedilutedmanyfoldstobringitsconcentrationwithinthelinearrangeoftheinstrumentdetector,thusincreasingtheriskof magnesium-richdilutionerrors.Experiencehastaughtthatdeterminationofmagnesiumistypicallymostreliablewhendonebydifference;whatthismeansisthatallthe otherimpuritycomponentsoftheoxide,e.g.Ca,Si,FeandAlaremeasuredandsubtractedfrom100%,thedifferencebeingtheMgconcentration.Theelementalanalysis isconvertedtotheoxidebasisandthechemistryreportedasMgO,CaO,SiO2 ,Fe2 O3 , andAl2 O3 ,etc.

Lossonignition(LOI)measuresthequantityofresidualmagnesiumcarbonateand otherimpuritycarbonatesnotthermallydecomposedduringthecalcinationprocess. Inthecaseofsyntheticmagnesiumoxide,theLOIrepresentsresidualmagnesium hydroxidealsonotdecomposedduringcalcination.Lossonignitionisdeterminedby heatingasampleinacrucibleinalaboratoryfurnacebetween1000–1150 o C.The lossinweightafterheatingisexpressedasapercentageoftheinitialweight.LOIis anindicationofthermaltreatmentandwillreflectthereactivityofmagnesiumoxide. Ingeneral,alowLOIandhencelowresidualcarbonatecontentindicatesthattheoxide hasseenhighertemperaturesorlongercalcinationtimesandwill,therefore,beless reactivethanoxidethathasahigherLOIandhencelargerresidualcarbonatecontent.

Thefree-limecontentcanbemeasuredasdescribedinEN14016-2:2005(E), whichinvolvesusinghotethyleneglycoltoextractlimefromthesample.Theextract solutionisraisedtopH12usingammoniumhydroxidesolution,whichprecipitates magnesiumionfromsolution.Acomplexometrictitrationusingmurexideindicator andEDTAisperformedonthemagnesiumdepletedsolution.Themurexideformsa weakcomplexwithcalciumionwhentitratedwithEDTAwhichisamuchmorepowerfulchelatingagent,calciumionsareremovedfromthemurexide-Cacomplexby EDTAuntilallthecalciumisboundbyEDTA,whichistheend-pointofthetitration. Theend-pointisindicatedbythemurexidechangingfromredtoviolet.

0.2.3Crystallitesize

PowderX-Raydiffraction(XRD)iscommonlyusedtostudythemineralphasescontainedinaMgOsample,whichmayincludequartz,magnesite,calcite,brucite,and talc.XRDisalsousedtocalculatethecrystallitesizeoftheMgO,whichincreases withthecalciningtemperatureandduration,indicatingthesinteringextentduringthe calcinationprocess.Thecrystallitesize,GXRD ,canbecalculatedusingScherrer’sformula,usinganX-raydiffractometerwithCuKα radiation:

GXRD = Kλ/β · cos θ

where λ isthewavelengthofCuKα (0.15405nm), β thefull-widthathalf-maximum intensity(FWHM)ofaBraggreflectionexcludinginstrumentalbroadening, θ the BraggangleandKaconstant(= 0.9).ThemajorcharacteristicpeakofMgOat42.93° (2θ )isusuallyusedinthecalculation.

0.2.4Texturalproperties

Specificsurfacearea(SSA)determinedbythenitrogenadsorptiontestusing Brunauer–Emmett–Teller(BET)modelisauniversalmethodformeasuringtheactivityofceramicoxidessuchasMgO.Theunitsofmeasurementareareapergram ofsample(m2 /g).TheappropriatetesttouseisASTMC1274-10,andBETSSA willdirectlyreflectthethermaltreatmentthattheoxidehasexperienced.Apartfrom SSA,othertexturalpropertiessuchasporevolumeandmeanporeradiuscanalsobe determinedfromnitrogenadsorption-desorptionisotherms.

Analternativemethodforevaluatingthesurfaceareaisbyiodinenumber,which isoftenusedforactivatedcarbons[3].Bycomparingthetwotestvaluesofmagnesia sampleswithSSAfrom1to200m2 /g(determinedfromnitrogenadsorptiontestusing PointBmethod,whichisingoodagreementwiththevaluescalculatedfromtheBET model),ZettlemoyerandWalker[4]reportedanempiricalrelationshipbetweenthe twovalues:

0.2.5ChemicalreactivityandreactiveMgOcontent

ChemicalreactivityiswidelyusedbyindustrytoassessthequalityofMgO,whichis evaluatedbymeasuringthetimedurationrequiredfortheneutralizationofanacidic solutionbyacertainsamplemass.ThetimefromaddingtheMgOtothechangeofthe solutioncolorisrecordedasthereactivityandtheshorterthetime,themorereactive theMgO.

Therearemanyacidreactivitytestsreportedintheliterature[5–10]differingin thetypeandconcentrationofacid(citricacidandaceticacid),temperature,stirring speedandthepHindicatoremployedinthesolution.Generally,thetotalH+ content generatedbydissociationoftheacidismuchlessthantheOH generatedbythe

SSA = 0.95 ∗ iodinenumber.

hydrationofMgO,sothatatacertainhydrationdegreethecolorchangeofthepH indicatorwillbeobserved.Recentlyamoresophisticatedmethodwasproposedin [11]tospecificallyevaluatethereactivityofMgOasanexpansiveadditiveinPC. However,duetothedifferentreactionmechanismsbetweendifferenttypesofacids andMgOcomparedtoitshydrationinwater,itishardtocomparetheresultsbetween differenttests[12].Moreover,thecorrelationsbetweenthehydrationdegreesofMgO inacidswithitshydrationdegreeinwaterhavenotbeenestablishedyet.

TheChinesestandard[10]alsoproposedamethodofmeasuringtheactiveMgO contentinasample.TheMgOsampleishydratedatroomtemperaturefor24hours andthenat100–110 o Cuntildry.TheweightincreaseduetothehydrationofMgOin thisperiodisregardedastheactiveMgOcontent,whichisexpressedin%.Afewother hydrationmethods[13,14]wereproposedwhichdifferinthehydrationtemperature anddryingmethod,renderingvaryingactiveMgOcontentsforagivenMgOsample, whichmadethetestresultsimpossibletocomparedirectly.

Inaddition,itshouldbenotedthatthechemicalreactivityvalueandreactivity contentvaluearetotallydifferentandnotcomparable.Theformeristhetimeneeded foraMgOtoreachacertainhydrationdegree,whilethelatterindicatestheMgO contentthatwillbehydratedunderacertaintemperatureandperiod.

0.3Relationshipsamongthemostimportantproperties ofMgO

Althoughthereisnospecificreactivityrequirementforcementgrademagnesiumoxide,thereareanumberoftestmethodsthatcangaugehowreactiveaMgOis,andthis canbeusefulwhenselectinganappropriateMgO.Althoughthechemicalreactivityis oftenreferredtowhencomparingthereactivityofMgO,amongthevariouscharacteristicsofMgOasshowninthelastsection,SSA,asanintrinsiccharacteristicofMgO powder,isagreedtobethemostappropriateindexforevaluatingthereactivityof MgOfromdifferentproductionprocesses.SmithsonandBakhshi[15]suggestedthat thehydrationrateofMgOisdirectlyproportionaltotheSSAoftheMgOparticles, whichisinlinewithMaryškaandBláha[16],whoclaimedthatadecisiveinfluenceof thehydrationratewasexhibitedbythedegreeofcrystallizationandsinteringofMgO, whosemeasureisitsSSA.TheSSAofMgOisgreatlyinfluencedbythecalcination temperatureandresidencetime.Inaddition,Fig. 0.1 showstheprecursoralsohasa significantimpactonthechangeofSSAduringthecalcinationprocess.Therefore, providinginformationoncalcinationconditionsunderwhichthemagnesiumoxide wasproduceddoesnotnecessarilypredictitschemicalreactivity.Thephysicochemicalpropertiesoftheseprecursorsdiffersignificantly,whichresultedintheirdifferent thermalbehaviorsandthemicrostructuralevolutionduringcalcination(Fig. 0.2A). Similarly,thechemicalreactivitycannotbesolelyreflectedbythecrystallitesizeas theprecursoralsoplaysanimportantrole(Fig. 0.2D).Fig. 0.2Bshowsthecorrelation betweenSSAandLOI.Itcanbeseenthatnoclearrelationshipbetweenthetwovalues canbeobservedwhenMgOsamplesproducedfromdifferentrouteswerecompared. TherelationshipbetweenSSAandchemicalreactivityvaluesfromdifferenttestsis

Figure0.1 EffectofprecursorandcalcinationtemperatureontheSSAofMgO.Theresidencetimeis2 hours.Datawerecollectedfrom[17–21].

plottedinFig. 0.2C.Itisshownthatregardlessofthereactivitytestmethodandthe precursorused,thereactivityvaluesgenerallydecrease(smallerreactivityvaluesindicateamorereactiveMgO)withanincreaseofSSA.Moreimportantly,aboveacertain valueofSSA(∼10m2 /g),thereactivityvaluehardlychangeswithanincreaseofSSA. TherelationshipalsorevealsadrawbackofthechemicalreactivitytestfortheevaluationofMgOreactivitysinceitisnotcapableofdifferentiatingMgOwithveryhigh reactivities.SinceareactivegradeofMgOusuallyhasSSAof>10m2 /g(Fig. 0.1),it isrecommendedthatSSAshouldbeusedforreactivityevaluationinsteadofchemical reactivity.

0.4CategorizationofMgO

Studiesshowthatthecharacteristicsofreactivemagnesiumoxidesobtainedfromdifferentsourcesandproductionprocessesvarysignificantly,whichislikelytoinfluence theirperformanceindifferentcementsystemsandapplications.Itisthereforedesirabletofurthercategorizethemusingthemostappropriateindexthatcanbeusedfor reactivityevaluationofMgOregardlessoftheirsourcesandcalcinationprocesses. SSAisemployedherebasedonthediscussionspresentedabove.Itisrecommended thatreactiveMgOcanbedividedintothreecategoriesofhigh,mediumandlowreactivityMgOasfollows:

• CategoryI:highreactivityMgO,withSSA>60m2 /g;

• CategoryII:mediumreactivityMgO,with10m2 /g ≤ SSA ≤ 60m2 /gand

• CategoryIII:lowreactivityMgO,withSSA<10m2 /g.

Itshouldbenotedthatthecategorizationisarbitraryanddoesnotconsiderthespecifichydration/reactionmechanismindifferentMgOcementdescribedinthisbook.It helpstodistinguishMgOsampleswithinthereactivegraderegardlessoftheirprecur-

Figure0.2 Correlationsbetween(A)SSAandcrystallitesize;(B)SSAandLOI;(C)SSAandchemical reactivityand(D)crystallitesizeandchemicalreactivityusingdatafromliterature[4,14,21–35].

sorsandcalcinationhistorywhichintendstoaidtheselectionofthemostappropriate MgOfordifferentapplications.ThereadersmayfindthepossiblecorrespondingcharacteristicsoftheMgOintheliteraturebycomparingrelevanttestvaluesshownin Fig. 0.2.Nevertheless,careshouldbetakenwhenselectingreactiveMgOasother properties(e.g.,purityanddensity)ofMgOapartfromreactivitymaybealsoimportantforaspecificcementtype.

Hardburnedmagnesiaiscalcinednear1500 o Cinarotarykiln.Ithasadensityof approximately2.0g cm 3 andcrystalsizeof1to3microns.Atthistemperatureand duetotherotatingactionofthekiln,theMgOcanhaveaparticlesizeupto25mm. Hard-burntMgOisclassifiedasacategoryIIIMgOwithlowreactivity.

Figure0.2 (continued )

Dead-burnmagnesia,frequentlycalledbyitsmineralogicalnameofpericlase,is calcinedinatwo-stagefiringprocesstoasurfacearealessthan1m2 /gandcrystal sizerangingfrom50to150microns.Asthecalcinationtemperatureandresidence timeincreases,thecrystalssintertoformlargercrystalswithlessporosityandsurface areaandhigherdensity.Typicaldensitiesrangefrom3.1to3.45gs/cm3 .Inthefirst stage,themagnesiumhydroxideormagnesiteiscalcinedinamultiplehearthfurnace tomagnesiumoxidethatisthencompressedbyrollcompactorstoagreenbriquetteof suitablesizeanddurabilitytowithstandtheextremesoftheshaftkiln.Thebriquettes arefiredatnearly2100 o Ctosinterthebriquettestotheirfinalsizerangingfrom6to 25mm.Periclaseismostlyusedtomakerefractorybricksandrepairmaterialstoline steelfurnaces.

Acknowledgments

ThefinancialsupportforFeiJinfromtheEPSRC/NSFCgrantMagMats:Magnesia-bearingconstructionmaterialsforfutureenergyinfrastructure(EP/M003159/1)isgratefullyacknowledged.

References

[1]ASTM,Standardtestmethodsfordetermininglooseandtappedbulkdensitiesofpowders usingagraduatedcylinder,US, https://doi.org/10.1520/D7481-09.1,2009.

[2]ASTM,Standardtestmethodfordeterminingparticlesizedistributionofaluminaorquartz bylaserlightscattering,US, https://doi.org/10.1520/C1070-01R14.Copyright,2015.

[3]ASTM,Standardtestmethodfordeterminationofiodinenumberofactivatedcarbon,US, https://doi.org/10.1520/D4607-14.2,2006.

[4]A.C.Zettlemoyer,W.C.Walker,Activemagnesia,Ind.Eng.Chem.39(1947)69–74.

[5]M.A.Shand,TheChemistryandTechnologyofMagnesia,JohnWiley&Sons,Ltd.,Hoboken,NewJersey,2006.

[6]C.K.Chau,Z.Li,Acceleratedreactivityassessmentoflightburntmagnesiumoxide,J.Am. Ceram.Soc.91(2008)1640–1645, https://doi.org/10.1111/j.1551-2916.2008.02330.x.

[7]ChinaMinistryofResources&ChinaMinistryofWater,Generalinstituteofwaterresources&waterpowerplanning&PowerDesign,Technicalspecificationsforlightly burnedMgOusedinwaterresources&waterpowerengineering,China,1994.

[8]C.A.Strydom,E.M.vanderMerwe,M.E.Aphane,Theeffectofcalciningconditionson therehydrationofdeadburntmagnesiumoxideusingmagnesiumacetateasahydrating agent,J.Therm.Anal.Calorim.80(2005)659–662, https://doi.org/10.1007/s10973-0050710-x.

[9]NationalDevelopmentandReformCommission,Causticburnedmagnesiaformagnesium oxychloridecementproducts,China,2002(inChinese).

[10]NationalDevelopmentandReformCommission,Testmethodsforchemicalactivityof causticburnedmagnesia,China,2006.

[11]F.Cao,M.Miao,P.Yan,EffectsofreactivityofMgOexpansiveagentonitsperformancein cement-basedmaterialsandanimprovementoftheevaluatingmethodofMEAreactivity, Constr.Build.Mater.187(2018)257–266.

[12]F.Jin,CharacterisationandPerformanceofReactiveMgO-BasedCementsWithSupplementaryCementitiousMaterials,UniversityofCambridge,2014.

[13]J.Liu,S.Zhang,Q.Tian,Z.Yan,S.Wang,A.Lu,Testmethodfordeterminingtheactive MgOcontentinmagnesiaexpansiveagent,CN103115837A,2013.

[14]W.D.Zhang,H.Qian,Q.G.Kong,Preparationofactivemagnesiawithmagnesite,NonMet.Mines.30(2007)9–11.

[15]G.L.Smithson,N.N.Bakhshi,Thekineticsandmechanismofthehydrationofmagnesium oxideinabatchreactor,Can.J.Chem.Eng.47(1969)508–513, https://doi.org/10.1002/ cjce.5450470602.

[16]M.Maryška,J.Bláha,Hydrationkineticsofmagnesiumoxide:part3–hydrationrateof MgOintermsoftemperatureandtimeofitsfiring,Ceram.-Silik.41(1997)121–123.

[17]F.C.Harper,Effectofcalcinationtemperatureonthepropertiesofmagnesiumoxidesfor useinmagnesiumoxychloridecements,J.Appl.Chem.17(1967)5–10.

[18]M.Hartman,K.Svoboda,Physicalpropertiesofmagnesitecalcinesandtheirreactivity withsulfurdioxide,Ind.Eng.Chem.ProcessDes.Dev.24(1985)613–621, https://doi. org/10.1021/i200030a016.

[19]S.Sun,D.Jin,Thecalcinationprocessofmagnesiteandthestructurestudyofphase,Bull. Chin.Ceram.Soc.5(1988)13–17.

[20]B.Yunshan,X.Yan,L.Shuyu,L.Zhen,Studyonpreparationofhighactivemagnesiafrom magnesite&varietyorderlinessofitsactivity,Non-Met.Mines28(2005)51–53, http:// en.cnki.com.cn/Article_en/CJFDTOTAL-FJSK200504020.htm.(Accessed20December 2011).

[21]H.Dong,E.Yang,C.Unluer,F.Jin,A.Al-Tabbaa,Characterisationandcomparisonof MgOrecoveredfromrejectbrineobtainedfromdesalinationplants,J.Hazard.Mater. (2017),inpress.

[22]B.Liu,P.S.Thomas,A.S.Ray,J.P.Guerbois,ATGanalysisoftheeffectofcalcination conditionsonthepropertiesofreactivemagnesia,J.Therm.Anal.Calorim.88(2007) 145–149, https://doi.org/10.1007/s10973-006-8106-0.

[23]L.Mo,M.Deng,M.Tang,Effectsofcalcinationconditiononexpansionpropertyof MgO-typeexpansiveagentusedincement-basedmaterials,Cem.Concr.Res.40(2010) 437–446, https://doi.org/10.1016/j.cemconres.2009.09.025

[24]M.A.Aramendia,V.Borau,C.Jiménez,J.M.Marinas,J.R.Ruiz,F.J.Urbano,Influence ofthepreparationmethodonthestructuralandsurfacepropertiesofvariousmagnesium oxidesandtheircatalyticactivityintheMeerwein–Ponndorf–Verleyreaction,Appl.Catal. A,Gen.244(2003)207–215, https://doi.org/10.1016/S0926-860X(02)00213-2.

[25]F.Jin,A.Al-Tabbaa,Characterisationofdifferentcommercialreactivemagnesia,Adv. Cem.Res.26(2014)101–113.

[26]L.Huang,D.-Q.Li,Y.-J.Lin,M.Wei,D.G.Evans,X.Duan,Controllablepreparationof nano-MgOandinvestigationofitsbactericidalproperties,J.Inorg.Biochem.99(2005) 986–993, https://doi.org/10.1016/j.jinorgbio.2004.12.022.

[27]K.Itatani,M.Nomura,A.Kishioka,M.Kinoshita,Sinterabilityofvarioushigh-purity magnesiumoxidepowders,J.Mater.Sci.21(1986)1429–1435, https://doi.org/10.1007/ bf00553284

[28]A.G.Shastri,H.B.Chae,M.Bretz,J.Schwank,Morphologyandsurfaceuniformity growthinMgOdehydration,J.Phys.Chem.89(1985)3761–3766, https://doi.org/10.1021/ j100263a035

[29]B.-Q.Xu,J.-M.Wei,H.-Y.Wang,K.-Q.Sun,Q.-M.Zhu,Nano-MgO:novelpreparation andapplicationassupportofNicatalystforCO2reformingofmethane,Catal.Today68 (2001)217–225, https://doi.org/10.1016/S0920-5861(01)00303-0.

[30]E.Alvarado,L.M.Torres-Martinez,A.F.Fuentes,P.Quintana,PreparationandcharacterizationofMgOpowdersobtainedfromdifferentmagnesiumsaltsandthemineraldolomite, Polyhedron19(2000)2345–2351.

[31]V.Birchal,S.Rocha,V.Ciminelli,Theeffectofmagnesitecalcinationconditionsonmagnesiahydration,Miner.Eng.13(2000)1629–1633.

[32]M.E.Aphane,TheHydrationofMagnesiumOxideWithDifferentReactivitiesbyWater andMagnesiumAcetate,UniversityofSouthAfrica,2007.

[33]X.Cui,M.Deng,EffectsofcalcinedconditionsonactivityofMgO,J.NanjingUniv.Sci. Technol.30(2008)52–55.

[34]H.Li,InfluenceofMgO-bearingexpansiveagentondeformationandstrengthofcement pastes,NanjingTechUniversity,2010.

[35]G.Wang,PreparationandExpansivePropertyofMgOPreparationandExpansiveProperty ofMgO-BearingExpansiveAgentFromLow-GradeMagnesite,NanjinyTechUniversity, 2014(inChinese).

1 Manufactureofmagnesiumoxide formagnesiacements

Contents

1.1 Magnesiumoxideproducedfrommagnesite 13

1.2 Formationofmacrocrystallinemagnesite 15

1.3 Formationofcryptocrystallinemagnesite 15

1.4 Magnesiumoxidederivedfrombrucite 15

1.5 Miningandprocessingofmagnesite 16

1.6 Syntheticmagnesia 18

1.6.1 Precipitationprocess 20

1.6.2 Settlingandcompaction 21

1.6.3 Washing 21

1.6.4 Filtration 22

1.6.5 Generalpropertiesofsyntheticmagnesia 22

1.7 Calcinationofmagnesiumcarbonateandmagnesiumhydroxide 22

1.7.1 Calcinationofmagnesite 22

1.7.2 Calcinationofmagnesiumhydroxide 23

1.8 Furnacesandkilns 24

1.8.1 Introduction 24

1.8.2 Multiplehearthfurnaces(MHF) 24

1.8.3 Horizontalrotarykilns 26

1.8.4 Shaftkilns 28

References 28

1.1Magnesiumoxideproducedfrommagnesite

Magnesiumistheeightmostabundantelementintheearth’scrustandisthethird mostabundantelementinseawateraftersodiumandchlorine,beingpresentatabout 1272ppm.Thevastmajorityofmagnesiumoxideproducedworldwideisderivedfrom anaturallyoccurringmagnesiumcarbonatemineralcalledmagnesite(MgCO3 ).Other magnesiumcarbonatemineralsexist,suchasnesquehonite(MgCO3 ·3H2 O)andhydromagnesite(4MgCO3 Mg(OH)2 4H2 O),however,theiroccurrenceisrarerthanthat ofmagnesiteandaretypicallynotusedformagnesiumoxideproduction.Commercial depositsofmagnesitehavereservesinexcessofseveralmilliontonnesofexploitable

MagnesiaCements. https://doi.org/10.1016/B978-0-12-391925-0.00008-X Copyright©2020ElsevierInc.Allrightsreserved.

mineral.Worldwideproductionofmagnesitein2016wasestimatedat27.3million tonnesandtheestimatedglobalreservebaseisabout13billiontonnes[1].

Naturalmagnesiteoccursintwophysicallydifferentformsnamelycryptocrystallineandmacrocrystalline.ThemacrocrystallineformoccursasfinetocoarsegrainedcrystalsandisotherwiseknownasSparrymagnesite.Thistypeofmagnesite canoccurinavarietyofcolors,fromwhitetodarkgrey,however,thecolorisnot necessarilyagoodpredictorofpurity.Ingeneral,Sparrymagnesiteislesspurethan thecryptocrystallineform.China,Russia,andSlovakiaarethetopthreeproducersof magnesiumoxidederivedfrommacrocrystallinemagnesite.Cryptocrystallinemagnesitehassmallcrystalsize,1–10µm,andisotherwiseknownasamorphousmagnesite. Itisgenerallywhiteincolorandoccursashigh-qualitydepositswithlowFe2 O3 and CaOcontentwithAustralia,Turkey,andGreecebeingthethreetopproducersofmagnesiumoxidederivedfromthecryptocrystallineform.SeeTable 1.1 forabreakdown ofmagnesiumoxideproductionbycountry.Sparrymagnesiteisthemostcommon formandrepresents93%ofglobalmagnesiteresources,whereascryptocrystalline onlyrepresents7%.

Table1.1 Magnesiumoxideproductionbycountry,2009(source: adaptedfrom[7]). Country

Magnesiumoxidederivedfromthetwoformsofmagnesitenotonlyhavedifferinglevelsofpuritybutalsohavedifferentphysicalproperties.Sparrymagnesite tendstohaveahigherdensityduetolowerporosityoftheore,typically2.98g/cm3 , whereasthecryptocrystallineformhasahigheroreporosityandthereforealower density,around2.68g/cm3 .Macrocrystallinemagnesitehasaslightlyhighertemperatureofdecompositionofabout30–40 o C(decompositiontemperature678 o C).Itis notknownwhethermacrocrystallineorcryptocrystallinemagnesitemakesthebetter magnesiumoxideforuseinSorelcement,butbothtypesofmagnesitearesuccessfully usedtomakeoxideforthiscement.

1.2Formationofmacrocrystallinemagnesite

Crystallinemagnesiteisformedthroughhydrothermalreplacementofolderdolomite orlimestone(CaCO3 )formations[2].Theextantrockispenetratedbyhotmagnesiumrichwaterreleasedfrommagmathroughfissureandcracksinthebodyoftherock formation.Thehotwaterbecomesmagnesiumrichasitpassedthroughunderlying dolomite(CaMg(CO3 )2 ),seeReactions(1.1)and(1.2)

Anintermediatelayerofdolomiteisalwayspresentsuchthatlimestoneneverabuts magnesite.

1.3Formationofcryptocrystallinemagnesite

Theformationofcryptocrystallinemagnesitecanoccurbyseveralprocesses.Sedimentaryformationoccursinlagoons,freshwaterandsaltwaterlakes.Theconcentrationofsaltswithinthelakebywaterevaporationcausesprecipitationofcalcium carbonatewhenthesolubilityconstantexceeds10 8 32 (Ksp = [Ca2+ ][CO2 3 ]).Since calciumcarbonateislesssolublethanmagnesiumcarbonate,itwillbethefirstto precipitate.Thisresultsinthebodyofwaterbecomingconcentratedwithrespectto magnesiumion.Ifevaporationofwatercontinues,theneventuallythesolubilityconstantofmagnesiumcarbonateisexceeded,anditwillprecipitateoutofsolution.

Cryptocrystallinemagnesitecanalsobeformedviathealterationofserpentinebyhydrothermalprocesses.Depositsofmassivecryptocrystallinemagnesiteoccurinthe serpentizedultrabasicrockthathasundergonehydrothermalleachingofmagnesium fromtheserpentine(H4 Mg3 Si2 O9 ).Thehydrothermalsolutioncontainsdissolvedcarbondioxidethatisnecessaryforthedissolutionprocess,seeReaction(1.3).

Themagnesiteisdepositedintheveins,crackandfissureswithinthehostrockand thesilicaiscarriedawayinsolution.

1.4Magnesiumoxidederivedfrombrucite

Brucite,whichwasnamedafterArchibaldBruce(1777–1818)in1824,whodiscoveredthenaturallyoccurringmineralinHoboken,NewJersey,typicallyoccursas

MgCl2 + CaCO3 → MgCO3 + CaCl2
(1.1)
CaMg
(1.2)
[Mg][CO2 3 ]= Ksp = 10 5

tabularcrystals.Lesscommonlyitcanoccurinacicular,fibrous,andscalyform.Its colorcanrangefromwhite,palegreen,gray,gray-blue,andblue.Itcanalsohavea transparent,pearly,waxy,orvitreousappearance.

Bruciteformsthroughdedolomitizationbythermalmetamorphismatalowpartial pressureofcarbondioxideandhighpartialpressureofwater[3],seeReaction(1.4) and(1.5).

Itcanalsoformthroughthermaldecompositionofmagnesitetoformpericlase(MgO), Reaction(1.6)whichinbothcasesissubsequentlyhydratedtoformthehydroxide, Reaction(1.7).

Bruciteisararemineral,andcommercialdepositsareonlyfoundinChina,Russia, andtheUSA.Bruciteisoftenfoundinassociationwithserpentine,calcite,aragonite, dolomite,magnesite,hydromagnesite,artinite,talcandchrysotile.Itsthermaldecompositiontemperatureisapproximately350 o C,dependentuponthelevelofpurity.

1.5Miningandprocessingofmagnesite

Practicallyallmagnesiteminesareopenpitinnature.Thebasicprocessofmagnesite extractioninvolvesover-burdenremoval,drilling,blasting,loading,hauling,andpostprocessing.Theprocessingofmagnesitecanbedividedintothefollowingoperations: crushing,sizingandbeneficiation,andmostoftheseoperationsarecommontothe productionofsizedaggregatesandores,seeFig. 1.1 forageneralizedprocessingflow diagramformagnesite.

Overburdenisalayerofinterveningmaterial,primarilysoil,androck,between thesurfaceandtheorebody.Thisisremovedfirstinordertoexposetheunderlying ore.Thethicknessoftheoverburdencanvaryconsiderablyfromlessthanonefoot totensoffeet.Iftheoverburdenthicknessistoogreat,thecostofremovalcanbe considerableandmayforcetheuseofsub-surfaceminingmethods.

Oncetheoverburdeniscleareddrillingoperationcancommence.Thepurposeof drillingistwo-foldinnature.Thefirstistoascertainthechemistryofthemagnesite orebody,drillcuttingsaresampledfromaroundthedrillholeastheholeisbeingcut andarechemicallyanalyzed,andsecondly,thedrillholesaresubsequentlyusedto fillwithexplosivetofracturetherocktoasuitablesizesothatitcanbeloadedonto trucksandhauledawayforfurtherprocessing.

MgCO3

Figure1.1 Schematicflowdiagramofmagnesiteprocessing[8].©JohnWiley&Sons2006.

Thetypicalexplosiveusedinthedrill-holeisanammoniumnitrate/fueloilmixture (ANFO).Thepatternandspacingofdrill-holesdependupontheuniformityofthe deposit.Adepositofuniformthicknessandcompositionmayallowwidelyspaced holesof100–500feet,whereasthenon-uniformdepositmayrequirecloselyspaced holesofevery3to20feet.Thebottomoftheholeistypicallyprimedwitha1.0lb. castbooster,whichhasanexplosivevelocityof26000fps,usingnon-electrictype detonators.Theusualroundisabout400to700holesdrilledon10ft.centersand 18ft.deep,andeachholeisfilledwith45lb.ANFO.Thepowderfactoriskeptat between0.35to0.40lb.perton,dependinguponthedensityofANFObeingused. Aftertheblast-holeischargedwithexplosives,thetopoftheholeisstemmed(filled) withfinestone,typicallydrillhole-cuttings.Thisactstocontaintheexplosiveforce withintheholeandreducetheoccurrenceofair-overpressure(noiselevel).

Chemicalcontourmaps(orbenchmap)aremadeforthepurposeofselectiveminingoftheore.Thechemicalcontourmapisformedbycorrelatingthedrill-holecutting chemicalanalysiswiththeuniquelyidentifieddrill-holefromwhichthecuttingsamplecame.TheMuckmapisusedtodeterminewhichareasoftheblastedrockareto beminedorputtowasteandisthe“in-field”map.Astheblastedoredoesnotchange itspositionappreciably,thechemicalcontourmapcanbetranslateddirectlyontothe blastedarea.

Oncetheorehasbeenbrokenbyblastingandthechemicalcontourmapoverlaid ontothebrokenrock,theusableoreismarkedbystakingorbysomeothervisible marker.Unusableoreisremovedandtransportedtoawastesiteanddumped.The usableoreisthentransportedtotheprimarycrusherwhereitisreducedinsize,the crushedorethenbeingscreenedandanyoversizedmaterialreturnedtoasecondary crusher.

Thecrushedandsizedoreisthenstockpiledoverabelttunnelfeedersystemwhich hasnumerousaccessportsthatallowsloadingofmaterialontothebeltfromanywhere inmultiplestockpiles.Thisarrangementallowstheblendingofmagnesitefromdifferentpilestoachievethedesiredchemistryinthefinalproduct.Orethatrequires beneficiationisgenerallyputintoastockpileseparatefromtheorethatisofsufficientpuritytousewithoutfurtherpurification(directhaulore).Thecurrentprocess ofheavymediaseparation,HMS(sometimescalleddensemediaseparation),isthe mostwidelyusedsink-floatprocessusedtodayandisveryefficientatreducingthe acidinsolublecontentofmagnesite;however,itisnotaseffectiveatreducingthelime content.ThismeansthatmagnesiteundergoingHMScanhaveamuchhigherinsolublecontentthanthatoflimeandstillachieveachemicalpurityequivalenttothatof directhaulore.Thepracticallimitforthelimecontentisapproximately6wt.%,while thelimitforacidinsolublematerialcanbeashighas20wt.%.

Heavysolutions,heavyliquids,andferrofluidshaveallbeenusedasthedensemedia.However,themostpopularareaqueoussuspensionsoffineparticlesofmagnetic solidssuchasferrosilicon(density,6.8g/cm3 )ormagnetite(5.2g/cm3 ).Thebasisof theprocessisthepreparationofasuspensionthathasaspecificgravitysomewherein betweenthespecificgravityofthemineraltobebeneficiatedandthatoftheimpurities. Theaqueoussuspensionofdensemediaistypicallyadjustedtohaveaspecificgravity intherange3.0–3.10g/cm3 ,closetothedensityofmagnesiteitself(∼3.0g/cm3 ). Ganguemineralshavingadensitylowerthan3.0–3.10g/cm3 ,suchasquartzandnumeroussilicates,willfloatintheconeseparator,whilethemagnesitewillsink.Cone separatorscanprocessupto300tph,whereasdrumsandtroughordragtankvessels cantreat700–800tph.Thefeedsizetoaconeseparatorunitistypicallyintherange 1/4-in.to5inches.Theorefedintotheheavymediaseparationplantisfirstsized beforeenteringtheconeseparator,thefinesbeingrejectedfromthesystemtoensure thatthesuspensionmediaisnotcontaminatedwiththismaterial.Thefloatsandsinks areremovedfromtheconeandontoseparatescreenbeltsandarethoroughlywashed usingoverheadspraystoremoveanyadheringsuspensionmedia.Thesuspensionmediaisreclaimedfromthewashingsusingawetmagneticdrumseparator.Themediais thenfedintoadewateringunitandtheferrosiliconormagnetiteisthendemagnetized beforebeingrecycledbacktothemediamakeuptank.

Aftercalciningthemagnesite,theresultantmagnesiumoxidemayundergoacombinationofscreeningandgrindingtreatments.Theexacttreatmentwoulddependupon howthemagnesitedecrepitatesinthekiln;macrocrystallinemagnesitetendstodecrepitatemorethanthecryptocrystallinevariety.Thepurposeofthescreeningprocess wouldbetoeitherproduceacoarsesizedproductortoperhapsimprovetheproduct puritybyrejectingcertainsizefractionsofmaterialthatmaycontainahigherlevelof impurities.

1.6Syntheticmagnesia

Syntheticmagnesiaisproducedbyprecipitatingmagnesiumhydroxidefromeither seawaterorsub-surfaceorsurfacehighmagnesiumbrines,seeFig. 1.2.Astrongbase

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.