Machinery and energy systems for the hydrogen economy klaus brun - Quickly download the ebook to exp

Page 1


https://ebookmass.com/product/machinery-and-energy-systemsfor-the-hydrogen-economy-klaus-brun/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Thermal, mechanical, and hybrid chemical energy storage systems Klaus Brun (Editor)

https://ebookmass.com/product/thermal-mechanical-and-hybrid-chemicalenergy-storage-systems-klaus-brun-editor/

ebookmass.com

Technologies for Integrated Energy Systems and Networks

Giorgio Graditi

https://ebookmass.com/product/technologies-for-integrated-energysystems-and-networks-giorgio-graditi/

ebookmass.com

Hybrid Energy Systems for Offshore Applications Ibrahim Dincer

https://ebookmass.com/product/hybrid-energy-systems-for-offshoreapplications-ibrahim-dincer/

ebookmass.com

BDD in Action, 2nd Edition (Final Release) John Ferguson Smart

https://ebookmass.com/product/bdd-in-action-2nd-edition-final-releasejohn-ferguson-smart/

ebookmass.com

McLaughlin & Kaluznyu2019s Continuous Quality Improvement in Health Care 5th Edition, (Ebook PDF)

https://ebookmass.com/product/mclaughlin-kaluznys-continuous-qualityimprovement-in-health-care-5th-edition-ebook-pdf/

ebookmass.com

British Women's Writing from Brontë to Bloomsbury, Volume 2: 1860s and 1870s 1st ed. Edition Adrienne E. Gavin

https://ebookmass.com/product/british-womens-writing-from-bronte-tobloomsbury-volume-2-1860s-and-1870s-1st-ed-edition-adrienne-e-gavin/ ebookmass.com

Put Out to Pasture Amanda Flower

https://ebookmass.com/product/put-out-to-pasture-amanda-flower/

ebookmass.com

Seeking Truth and Hiding Facts Jeremy L. Wallace

https://ebookmass.com/product/seeking-truth-and-hiding-facts-jeremy-lwallace/ ebookmass.com

Greek Praise Poetry and the Rhetoric of Divinity Felix J. Meister

https://ebookmass.com/product/greek-praise-poetry-and-the-rhetoric-ofdivinity-felix-j-meister/

ebookmass.com

Medjugorje and the supernatural : science, mysticism, and extraordinary religious experience Klimek

https://ebookmass.com/product/medjugorje-and-the-supernatural-sciencemysticism-and-extraordinary-religious-experience-klimek/

ebookmass.com

MACHINERYANDENERGYSYSTEMS FORTHEHYDROGENECONOMY

MACHINERY ANDENERGY SYSTEMSFORTHE HYDROGEN ECONOMY

ElliottGroup,Jeannette,PA,UnitedStates

TIMOTHY ALLISON

MachineryDepartment,SouthwestResearchInstitute,SanAntonio,TX,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-90394-3

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

CoverImageCredit: ElliottGroupandSouthwestResearchInstitute

Publisher: CharlotteCockle

AcquisitionsEditor: PeterAdamson

EditorialProjectManager: JudithClarissePunzalan

ProductionProjectManager: PoulouseJoseph

CoverDesigner: MilesHitchen

TypesetbySTRAIVE,India

Contents

Contributorsix

Abouttheeditorsxi Prefacexiii Acknowledgmentsxvii

1.Machineryintheenergyfuture

RobertB.Laughlin

1.1Thehydrogeneconomy1

1.2Energysources2

1.3Theroleofmachinery3

1.4Competitionwithelectrochemistry4 1.5Ongoingissues5

1.6Machineryintheenergyfuture6 References6

A Hydrogenbackground

2.Fundamentals

WentingSun,SubithVasu,andMatthewS.Blais

2.1Physicalandchemicalpropertiesof hydrogen11

2.2Fundamentalhydrogenreaction kinetics14

2.3Hydrogencombustionproperties22 References28

3.Machinerybasics

BrianPettinato,RainerKurz,LeonidMoroz,ZahroofMohamed, SebastianFreund,BernhardWinkelmann,andEnverKarakas

3.1Introduction31 3.2Machinery36

References92 Furtherreading94

4.Heatengines

JoshuaSchmitt,ThomasBriggs,TimothyCallahan, SebastianFreund,RainerKurz,AdamNeil,GuillermoPaniagua, andDavidSa ´ nchez

4.1Thermodynamicprinciples95

4.2Conventionalenginecycles113

4.3Emergingcycleinnovations143 References184

B Hydrogenapplicationsandmarkets

5.Supplyprocessesandmachinery

ThomasI.Valdez,JasonMunster,EricMiller,andSebastianFreund

5.1Introduction191

5.2Thecolorofhydrogen192

5.3Coalgasification192

5.4Hydrogenreformationprocesses194

5.5Emergingtechnologies209

5.6Hydrogennaturalgasmixturecompatibilityand separationoptions212 References213

6.Transportandstorage

RainerKurz,BernhardWinkelmann,SebastianFreund, MarybethMcBain,MarkKeith,DonghuiZhang,StefanCich, PeterRenzi,andJoshuaSchmitt

6.1Introduction215

6.2Pipelinetransport218

6.3Transportconsiderationsforblue,turquoise,and greenhydrogen230

6.4Shippingliquidhydrogen231

6.5Transportbytrucks232

6.6Hydrogentransportandstoragewithother chemicals238

6.7Hydrogenstorage241 References247

Furtherreading249

7.Usage

ToddOmatick,DonghuiZhang,MatthewS.Blais,MounirMossolly, PeterRenzi,RainerKurz,SebastianFreund,andShaneHarvey

7.1Introduction252

7.2Hydrogenusedtoproduceelectricity—Power generationplants252

7.3Automotivetransportation274

7.4Othertransportation278

7.5Refineryandchemicalindustry(includingbio refineryandLNG)288

7.6Distribution293

References302

Furtherreading304

8.Economicsofhydrogenfuel

RobertB.LaughlinandSebastianFreund

8.1Introduction305

8.2Hydrogenenergycontent306

8.3Presenthydrogenprice309

8.4Presenthydrogenproduction310

8.5Arbitrageissues312

8.6Theoreticalprices:Gray,blue,andgreen313

8.7Fuelcellsvs.mechanicalengines315

8.8Electrochemistrycostissues317

8.9Carbonsequestrationcostissues321 References327

9.Compressorsandexpanders

JeffreyMoore,JonDurham,AndreEijk,EnverKarakas,RainerKurz, JosephLesak,MarybethMcBain,PatrickMcCalley,LeonidMoroz, ZahroofMohamed,BrianPettinato,GregPhillippi, HideharuWatanabe,andBenWilliams

9.1Centrifugalcompressors334

9.2Reciprocatingcompressors347

9.3Diaphragmcompressors397

9.4Screwcompressors399

9.5Compressorstationandpipelineconsiderations forhydrogenmixtures406

9.6Featuresofhydrogenturboexpanders408

9.7Hydrogenliquefaction414

References423

Furtherreading424

10.Powergenerationandmechanical drivers

JasonWilkes,MarybethMcBain,RainerKurz,JeffreyGoldmeer, TimothyCallahan,KarlWygant,JaswinderSingh,BrennaGeswein, andSebastianFreund

10.1Gasturbines(Rainer,Mounir,Goldmeer, Freund)426

10.2Gasengines447

10.3Risksassociatedwithhydrogenpowergeneration equipment461

References466

Furtherreading470

D Materialsandsafetyconsiderations

11.Materialsforthehydrogeneconomy

MichaelA.Miller,DerrickBauer,JohnMacha,EugeneBroerman,III, ElizabethTrillo,andFassettHickey

11.1Introduction477

11.2Hydrogeninteractionsandeffectsonmaterial performance481

11.3Characterizationofhydrogensolubility, trapping,andtransportinmetals485

11.4LTDMSanalysis492

11.5Materialsforhigh-pressure hydrogencompressionandtransportation502

11.6Magneticmaterialsandbondingagentsfor hydrogenmachinery513

References518

12.Safety

EugeneBroerman,III,MatthewS.Blais,NathanWeyandt,and PeterRenzi

12.1Introduction521

12.2Operationalissues521

12.3Safetyeventsandlessonslearned526

12.4Codesandstandards529

References542

E

Researchandtesting

13.Majortestfacilities,pilotplants,and R&Dprojects

MichaelMarshall,GriffinBeck,EugeneBroerman,III, EugenioTrilloLeo ´ n,andToshiichiMatsumoto

13.1Introduction546

13.2HydrogentestfacilitiesandR&Dprogramsin theUnitedStates546

13.3HydrogentestfacilitiesandR&Dprogramsin SpainandotherEuropeancountries(Eugenio TrilloLeo ´ n)553

13.4HydrogentestfacilitiesandR&Dprojectsin Japan560

References575

14.Novelandleading-edgetechnology development

SubithVasu,RaghuKancherla,PeterdeBock,ZahroofMohamed, EugeneBroerman,III,andMichaelOhadi

14.1Hydrogenfromsolarthermalenergy577

14.2Hydrogenfromwindenergy583

14.3Hydrogenfromnuclearenergy584

14.4Hydrogenfromhydropower586

14.5Hydrogenfromtidalpower586

14.6Hydrogenfromoceanicthermalenergy conversion587

14.7Alternativehydrogencarriers588

14.8Advancedcompressorsandvalves590

14.9Advancesinheatexchangers:High-temperature andhigh-pressureheatexchangersforhigh efficiencyandlightenergyconversion systems597

References601

15.Greenhydrogenmarketandgrowth SebastianFreundandDavidSanchez

15.1Thehydrogenmarket605

15.2Greenandlow-carbonhydrogen609

15.3TheEUhydrogenstrategy—Aphased approach614

15.4Fundamentalsofhydrogenproductionthrough waterelectrolysis615

15.5TechnicalfeasibilityoftheEUtargetsfor2024 and2030:Hydrogengenerationcapacity619

15.6Requirementsforadditionalrenewablepower generationcapacityandstressonmarket deployment622

15.7Discussion625

15.8Economicconsiderationsabouttheimpactof renewableenergydeploymentonthepriceof electricity(andhydrogen)626

15.9Conclusion633

References634

Nomenclature637 Index643

Contributors

DerrickBauer ElliottGroup,Jeannette,PA, UnitedStates

GriffinBeck SouthwestResearchInstitute,San Antonio,TX,UnitedStates

MatthewS.Blais SouthwestResearchInstitute, SanAntonio,TX,UnitedStates

PeterdeBock DepartmentofEnergy,Advanced ResearchProjectsAgency-Energy,Washington, DC,UnitedStates

ThomasBriggs SouthwestResearchInstitute, SanAntonio,TX,UnitedStates

EugeneBroerman,III SouthwestResearch Institute,SanAntonio,TX,UnitedStates

TimothyCallahan SouthwestResearch Institute,SanAntonio,TX,UnitedStates

StefanCich SouthwestResearchInstitute,San Antonio,TX,UnitedStates

JonDurham Aerzen,Katy,TX,UnitedStates

AndreEijk Consultant,Delft,TheNetherlands

SebastianFreund EnergyfreundConsulting, Unterfohring,Munich,Germany

BrennaGeswein CaterpillarO&G,Peoria,IL, UnitedStates

JeffreyGoldmeer GEGasPower,Schenectady, NY,UnitedStates

ShaneHarvey ElliottGroup,Jeannette,PA, UnitedStates

FassettHickey SouthwestResearchInstitute, SanAntonio,TX,UnitedStates

RaghuKancherla PowerSystemsMfg.,LLC, Jupiter,FL,UnitedStates

EnverKarakas ElliottGroup,Jeannette,PA, UnitedStates

MarkKeith NikolaMotorCompany,Phoenix, AZ,UnitedStates

RainerKurz SolarTurbines,SanDiego,CA, UnitedStates

RobertB.Laughlin DepartmentofPhysics, StanfordUniversity,Stanford,CA,United States

EugenioTrilloLeo ´ n LeanHydrogen,Mairena delAljarafe,Seville,Spain

JosephLesak NeumanandEsser,Katy,TX, UnitedStates

JohnMacha SouthwestResearchInstitute,San Antonio,TX,UnitedStates

MichaelMarshall SouthwestResearch Institute,SanAntonio,TX,UnitedStates

ToshiichiMatsumoto TheInstituteofApplied Energy,Tokyo,Japan

MarybethMcBain KinderMorgan,Houston, TX,UnitedStates

PatrickMcCalley NeumanandEsser,Katy,TX, UnitedStates

EricMiller DepartmentofEnergy,Washington, DC,UnitedStates

MichaelA.Miller SouthwestResearch Institute,SanAntonio,TX,UnitedStates

ZahroofMohamed ZahroofCorp.,Houston, TX,UnitedStates

JeffreyMoore SouthwestResearchInstitute, SanAntonio,TX,UnitedStates

LeonidMoroz SoftInWay,Inc.,Burlington,MA, UnitedStates

MounirMossolly TechnipEnergies,laDefense, NanterreCEDEX,France

JasonMunster CleanEpicAdvising,Long Beach,CA,UnitedStates

AdamNeil ElliottGroup,Jeannette,PA,United States

MichaelOhadi UniversityofMaryland,College Park,MD,UnitedStates

ToddOmatick ElliottGroup,Jeannette,PA, UnitedStates

GuillermoPaniagua PurdueUniversity,West Lafayette,IN,UnitedStates

BrianPettinato ElliottGroup,Jeannette,PA, UnitedStates

GregPhillippi ArielCorp.,Mt.Vernon,OH, UnitedStates

PeterRenzi PrafisEnergySolution,Richmond, TX,UnitedStates

DavidSa ´ nchez UniversityofSeville,Seville, Spain

JoshuaSchmitt SouthwestResearchInstitute, SanAntonio,TX,UnitedStates

JaswinderSingh CaterpillarO&G,Peoria,IL, UnitedStates

WentingSun GeorgiaInstituteofTechnology, Atlanta,GA,UnitedStates

ElizabethTrillo SouthwestResearchInstitute, SanAntonio,TX,UnitedStates

ThomasI.Valdez TeledyneEnergySystems Incorporated,Baltimore,MD,UnitedStates

SubithVasu UniversityofCentralFlorida, Orlando,FL,UnitedStates

HideharuWatanabe ElliottGroup,Jeannette, PA,UnitedStates

NathanWeyandt SouthwestResearchInstitute, SanAntonio,TX,UnitedStates

JasonWilkes SouthwestResearchInstitute,San Antonio,TX,UnitedStates

BenWilliams ArielCorp.,Mt.Vernon,OH, UnitedStates

BernhardWinkelmann NikolaMotor Company,Phoenix,AZ,UnitedStates

KarlWygant HanwhaPowerSystems, Houston,TX,UnitedStates

DonghuiZhang NikolaMotorCompany, Phoenix,AZ,UnitedStates

Abouttheeditors

KlausBrun istheDirectorofResearchandDevelopmentatElliottGroup,Pennsylvania, UnitedStates.Hispastexperienceincludespositionsinproductdevelopment,applications engineering,projectmanagement,andexecutivemanagementatSouthwestResearchInstitute,SolarTurbines,GeneralElectric,andAlstom.Heholds10patents,hasauthoredmore than350papers,andpublishedfivetextbooksonenergysystemsandturbomachinery.He isafellowoftheAmericanSocietyofMechanicalEngineersandwonanR&D100award in2007.HealsowontheASMEIndustrialGasTurbineAwardin2016and12individual ASMETurboExpoBestPaperawards.Hehaschairedseverallargeconferencesincluding theASMETurboExpoandtheSupercriticalCO2 PowerCyclesSymposium.Heisamember oftheGlobalPowerPropulsionSocietyBoardofDirectorsandthepastchairoftheASME InternationalGasTurbineInstituteBoardofDirectors.Dr.BruniscurrentlytheExecutive Correspondentof TurbomachineryInternationalMagazine andanassociateeditorofseveral journaltransactions.

TimothyAllison istheDirectorofMachineryDepartmentatSouthwestResearchInstitute,Texas,UnitedStates,whereheleadsanorganizationthatfocusesonR&Dfortheoil andgas,propulsion,andenergyindustries.Hisresearchexperienceincludesanalysis,fabrication,andtestingofturbomachineryandsystemsforadvancedpoweroroilandgasapplicationsincludinghigh-pressureturbomachinery,centrifugalcompressors,expanders,gas turbines,reciprocatingcompressors,andtestrigsforbearings,seals,bladedynamics,and aerodynamicperformance.Dr.Allisonholdstwopatents,hasauthoredfourbookchapters, editedonebook,andhaspublishedmorethan70articlesonvariousturbomachinerytopics. Hereceivedthebesttutorial/paperawardsfromtheASMETurboExpoOilandGasand SupercriticalCO2 PowerCycleCommitteesin2010,2014,2015,and2018.Hehaschaired orco-chairedthosetwoASMETurboExpocommitteesandorganizingcommitteesfor theSupercriticalCO2 PowerCyclesSymposium,theIndustrialProcessEmissionsReduction Workshop,andtheThermal-Chemical-MechanicalEnergyStorageWorkshop.Heisan advisorycommitteememberforthe2022ASMEAdvancedCleanEnergySummitandan associateeditorfortheASMEJournalofEngineeringforGasTurbinesandPower.

Preface

Thehydrogeneconomyanditstechnologyneedsareofsignificanteconomic,political,andacademicinterestinthemovement towardthedecarbonizationofmultipleenergysectors.Hydrogenisthemostcommon elementintheuniverseandthethirdmost commonelementonEarth;however,itis highlyreactivewithotherelements,soitis nearlyalwaysfoundinmolecularformcombinedwithoxygenaswaterorwithcarbonas anorganiccompound.Purehydrogenisattractiveasazero-carbonfuelbecauseitcan bestoredinlargevolumesoverlongdurationsandisalreadycompatibleinlowto moderateconcentrationswithexisting energyequipmentincludingsteamboilers, gasengines,gasturbines,industrial heaters/burners,andresidentialappliances. Thepetrochemicalindustryanditssupplier basehaveoperatedhydrogenpipelines, compressors,andgeologicstorageformany years,providingamaturetechnologybasis formanyhydrogeneconomyneeds.However,significantinfrastructurechangesare stillrequiredtomeettheproduction,transportation,storage,andusageneedsfora properlyfunctioninghydrogeneconomy. Thisincludesmachinerysuchascompressors,turbines,andpumpsaswellasheatenginesthatareverydifferentfromthose currentlyinstalledonpipelines,trucks, barges,andpowerplants.Forhydrogento beaviableenergycarrierinthefutureeconomy,machineryandpowercyclesmustoperatesafely,efficiently,andreliably;most importantly,theymustbeeconomically viable.

Asaresultofincreasingclimatestewardshipandcostreductionsforrenewablesolar andwindtechnologiesinthepastdecade, therehavebeensignificantchangestothe powergenerationmixonglobalandlocal scales.In2018,fossil-basedsystems accountedfor64.2%ofglobalpowergeneration,supplementedby10.2%nuclearpower. Theremaining 25%wasproducedbyrenewablesourcesincludinghydroelectric (15.8%),wind(4.8%),solar(2.2%),andgeothermal/biomass(2.4%combined).Althoughwindandsolarsourcesremaina relativelylowpercentageoftheoverallenergymix,theyarethefastest-growingcategoriesglobally,particularlyfordeveloped countries.From2017to2018,thesecountries saw19.8%and7.0%growthinsolarand windproduction,respectively.Inlocalregions,moredramaticchangescanbeseen; forexample,California’selectricityproductionprofileshowsthatcoal-basedelectricity hasdeclinedtonegligibleamounts.Renewableshavegrownrapidlyinthepastdecade, combiningfor21%growth.In2018,renewablesourcesincludingsolar,wind,hydro, geothermal,andbiofuelswereaclosesecond tonaturalgas,providing44%ofCalifornia’s electricityproduction.

Numerousgovernmentinitiativesacross theworldaretargetingadrasticreduction incarbonemissionsfromenergysectorsincludingelectricpower,transportation,and manufacturing.TheParisAgreement establishedin2016setagoaloflimiting globaltemperaturerisetolessthan2°C,to beachievedinpartbyloweringgreenhouse

gasemissionsandincreasingenergyproductionfromrenewablesources.Thisagreement hasbeensignedby186statesandtheEuropeanUnion,representingnearly97%of globalgreenhousegasemissions.Insupport ofthis,manycountrieshaveannouncedaggressivetargetsforcuttingCO2 andother greenhousegasemissionssignificantly (e.g.,50%and55%reductionsfortheUnited StatesandtheEuropeanUnion,respectively) by2030,andinmanycases,tonet-zero by2050.Toencouragethedevelopmentof enablingtechnologiesforachievingthese targets,government-fundedresearchprogramsarebeingorganizedincludingthe UnitedStates.DepartmentofEnergy’sEnergyStorageGrandChallenge,Energy “Earthshots”initiativesincludinga“HydrogenShot”targetinglow-costhydrogen,and the“H2@Scale”initiativetargetinglargescalehydrogeninfrastructure.

Twosignificantchallengesresultfromthe rapidintroductionofrenewableresources intotheenergymix.First,muchofthecapacitygrowthwillbeprovidedfromsolarphotovoltaicandwindgeneratorsthathavehigh variability.Windandsolarpoweroutputcan varysignificantlybyminute,hour,andseasonduetodiurnaleffects,weatherpatterns, andinstantaneoussolaravailability.The minute-to-minuteandseasonalvariations ofpowerproducedfromphotovoltaicand windplantsareonthesameorderofmagnitudeastheaverageoutput.Second,theavailabilityofwindandsolarresourcesisalso poorlymatchedwiththelocationswhere theenergyisneeded.Forexample,while thereissignificantwindandsolarpowerpotentialinwestTexas,therearenomajorelectricityusersorurbancentersinthisarea. Thesetwochallengesimplythatforalternativeenergysourcestobecomecompetitive, additionalenergystorageandtransport mustbeintegratedwiththem.Ina decarbonizedenergyeconomy,theprincipal

energycarrierswilllikelyincludeelectricity andhydrogen.Hydrogenhastheadvantage thatitcanbeeasilystored,whileelectricity hastheadvantagethatitdoesnothaveto bereconvertedtobeusefulformost applications.

Hydrogenisacolorless,odorlessgasthat burnswithanear-invisibleflame.However, hydrogenisoftenreferredtobycolor.These “colors”colloquiallyrefertothewaythehydrogenisgeneratedresultinginarainbowof colors.Forthemostpart,turbomachinery thateitherutilizesortransportshydrogen doesn’tcarewhereandhowthehydrogen originated,butitisstillimportanttounderstandthebasicnomenclature.

Greenhydrogenisproducedwithoutany greenhousegasemissions.Itismadebyusing electricityfromrenewablesources,likephotovoltaicsorwindpower,toelectrolyzewater. Electrolyzersuseanelectrochemicalreaction tosplitwaterintoitscomponents,hydrogen, andoxygen.Bluehydrogenisproducedfrom naturalgasusingaprocessknownassteam reforming,wherenaturalgasandsteamreact toformhydrogen,butalsocarbondioxide.To makehydrogen“blue”thecarbondioxide mustbecapturedandsequestered.Ifthesame processisusedbutthecarbonisnotcaptured, wecallthegasgrayhydrogen.Blackand brownhydrogenaremadethroughpartialoxidationgasificationfromblackcoal(anthracite orbituminous)orbrowncoal(lignite).Thisis thetypeofhydrogenthatcreatesthelargest amountofenvironmentallydamagingbyproducts.

Red(alsoknownaspinkorpurple)hydrogenisgeneratedusingelectricityfromnuclearenergy.Justlikegreenhydrogen,an electrolysisprocessisused.Thedifference isthatnuclearwasteiscreatedasabyproductoftheseprocesses.Therearealso someideastousethehigh-temperaturereactorsoravailablesteam.Turquoise(orcyan) hydrogenismadebyaprocesscalled

methanepyrolysis.Theby-productissolid carbon.Dependingonthethermalprocess thatisusedforpyrolysis—forexample, whetheritcomesfromrenewablesources— andthecapabilitytostorethesolidcarbon permanently,thiscanbealow-orno-carbon process.Yellowhydrogenisproducedby electrolysisdirectlyfromsolarenergywithouttheintermediatestepofcreatingelectricity.Insomepublications,theterm“yellow” hydrogenisusedwhentheelectricityfor theelectrolysisprocesscomesfrommultiple sources,someofthemrenewable,someof themconventional.Finally,whitehydrogen isnaturallyoccurringgeologicalhydrogen. Thisisaprocessthatinvolvesdrillingahole inthegroundtogettohydrogen,withsome frackinginvolved;however,thereiscurrentlynolarge-scaleexploitationofthisrelativelyrareresource.

Asanenergycarrier,hydrogenoffersboth advantagesandchallengesrelativetoother technologies.Oneadvantageisthathydrogencanbesourcedfromfeedstocksthat areabundantinnature.Thethreemostcommonprocessestoproducehydrogenonan industrialscaleareelectrolysis,steam reforming,andgasificationpartialoxidation. Therearemanyvariantsoftheseprocesses, buttheirfundamentaldifferenceisthatfor steamreformingandpartialoxidation;ahydrocarbonisrequiredasfeedmaterial, whereaselectrolysissimplyrequiresanelectricpowersourceandwater.Assuch,electrolysisnaturallylendsitselftoapplications whereenergystorageistheprimaryobjectiveofhydrogenconversion.Ontheother hand,steamreformingfornaturalgasorpartialoxidationforcoalisacomplexchemical processthatconvertsafossilfuelintohydrogen,carbonmonoxide,andothercompoundsthroughanincompleteoxidation reactionthatallowsthehydrogentobeseparatedfromthemixture.Thistypeofhydrogenisnotnecessarilyenvironmentally

friendlyandrequirescarbonandotheremissionscontrolstominimizecarbondioxide emissionstotheatmosphere(akabluehydrogen).Nonetheless,becauseofthelow costoffossilfuelsandtherelativelylowcost oftheplantprocessequipment,morethan 98%ofallthehydrogenthatiscurrentlyproducedisderivedfromsteamreformingand partialoxidationoffossilfuels.

Hydrogencanalsobetransportedmore efficientlythanelectricityandinmany forms.Althoughhydrogenhasaveryhigh energydensityonapermassbasis,itsenergy densityonavolumetricbasisasacryogenic liquidorasagasattypicalpipelineconditionsisrelativelylow.Thislowvolumetric energydensityusuallyrequireshighpressuresforstorageandtransport,but compressinghydrogenisveryenergyintensiveduetoitslowmolecularweight.The petrochemicalindustryhasdecadesofexperiencewithpurehydrogenpipelinesinvariousgloballocationswithanetlengthofmore than1000kmatpressuresfrom17bar (250psi)to96bar(1400psi),butthepipeline diametersof200–350mm(8–14in.)aremuch smallerthantypicalnaturalgastransmission pipelines,sonotalltechnologiesaredirectly scalableortransferable.

Hydrogencanbeconsideredoneofa varietyofthermochemicaltechnologiesthat storeenergythroughthecreationofchemical bonds.Thesechemicalscanbestoredfor longdurationsandreleasethermalenergy throughareactionwhenpowerisneeded. Inadditiontopurehydrogen,thereare severalhydrogen-basedreactionsthatcan beusedtoconverthydrogenintootherforms forstorageortransport,akathe“Power-toX”approach.Theseadditionalreactionsrequiremoreenergyconversionstepsbutoffer potentialbenefitsintransport,storage,or eventualconversionbacktoheatorelectricity.Therearemanypotentialchemicalsconsideredforhydrogen-basedPower-to-X,

includingsyntheticnaturalgas,ammonia, methanol,andformicacid,amongothers.

Bothgreenhydrogensfromalternativeenergysourcesandbluehydrogenderived fromfossilfuelsplayasignificantrolein thedecarbonizedenergyeconomy.This bookdiscussesthevarioustypesofdynamic machinesthatarerequiredineachstageof thehydrogensupplysystem,theirdesign, operation,andsafetychallengesaswellas theirbasiceconomics.Thetopicscovered inthebookwereselectedtoprovideengineers,scientists,andpractitionersinterested intheequipmentrequiredforthehydrogen economywithacomprehensivetechnology andapplicationoverview.Eachchapter

providessufficientbackgroundmaterialto standaloneandcanbeusedonitsown,althoughanattemptwasmadetoavoidduplicationthroughoutthebook.

We,theeditors,areindebtedtothechapterauthors.Theyareallsubjectmatterexpertswhowereselectedfromthescientific andengineeringcommunitybasedontheir relevantcontributionstothefield.Theyrepresentabroadanddiverserangeofknowledgeandhavevolunteerednumerous hourstoprovidetheircontributions;we thankthemwholeheartedly!

Acknowledgments

WethankRachelPyle,DorotheaMartinez,andAndreaBarnettfortheirtirelesseffortsand assistancewhileputtingthisbooktogether.

1

Machineryintheenergyfuture

DepartmentofPhysics,StanfordUniversity,Stanford,CA,UnitedStates

Inthedistantfuture,humanbeingswillnotburncarbonoutofthegroundanymore,either becausetheyhavebannedthepracticeorbecausesupplieshaverunout.Thereissomeuncertaintyaboutthetimescaleforthistohappen,fortheuseoftheenergycontainedinthese fuelsisintertwinedwiththeverynatureofourcivilizationandiscorrespondinglyhardto reduce(Smil,2017).Thus,forexample,Egypt(see Fig.1.1),acountrywithalargepopulation andamplesolarresources,isstillcompletelydependentonfossilfuels(StatisticalReviewof WorldEnergy,2020).However,thelong-termoutcomeonthescaleofcenturiesisnotin doubt.Suppliesoffossilfuelsontheeartharefinite,andtheywilleventuallybeexhausted (AnEstimateofUndiscoveredConventionalOilandGasResourcesoftheWorld,2012; H € o € ok andTang,2013).

1.1Thehydrogeneconomy

Thehydrogeneconomyisavisionofhowthingsmightworkinthisfuturetime( Rifkin, 2003 ; TheHydrogenEconomy:Opportunities,Costs,Barriers,andR&DNeeds,2004 ; Ball andWietschel,2009 ; BrandonandKurban,2017 ).Hydrogenmanufacturedfromnon-fossil energysourceswouldsupplantpresent-dayfluidfuelsbutotherwisebeusedsimilarly.As apracticalengineeringmatter,hydrogenthusproducedwouldbeaproxyfornaturalgas.It isthesimplestenergy-carryingsubstancetomanufacture,anditisenvironmentallybenign (TheFutureofHydrogen,2019 ).Thephysicsandchemistryofchemicalfuelsarealsoso elementarythatonecansaywithreasonablecon fidencethattherearenoalternativestohydrogenasaprimaryenergycarrierinthisdistantfuturetime.Thus,thereisgoodreasonto takethevisionseriouslyandanticipateafutureinwhichmanufacturedhydrogenhas displacedhydrocarbonsandcoalascivilization’scentralmassstoragemediumforenergy (HydrogenEnergyStorage:GridandTransportationServices,NREL/TP-5400-62518,2015; OptionsforProducingLow-CarbonHydrogenatScale,2018 ; HydrogeninElectricity’sFuture,R46436,2020).

FIG.1.1 LightsoftheNiledeltaatnight.In2010,whenthispicturewastaken,Egyptobtained96%ofitsenergy fromfossilfuels.In2019,thefractionwas95%(StatisticalReviewofWorldEnergy,2020). ImageCredit:EarthScience andRemoteSensingUnit,NASAJohnsonSpaceCenter,ISS025-E-9858.ThisimageisalsopostedatWikimediaCommons.

However,ahydrogeneconomyinthenearfuture,forexample,afewdecadesfromnow,is adifferentmatter,foritisblockedatthemomentbythelowcostoffossilfuels.Thiscostproblemiswidelydiscussed(PathtoHydrogenCompetitiveness:ACostPerspective,2020; HydrogenStrategy:EnablingaLow-CarbonEconomy,2020; vanRenssen,2020; Petersonetal., 2020; Collodietal.,2017; Christensen,2020; WestlakeandPellow,2019; Hydrogen:ARenewableEnergyPerspective,2019).Itseffectsareshownin Fig.1.2.Thereisaconsiderableand growingpoliticalmovementtooverrideitlegislativelyandforceatransitionawayfromfossil fuelsimmediately—thegroundsbeingthatcivilization’spresentCO2 emissionsarecausing lastingdamagetotheenvironment(ClimateChange2014:MitigationofClimateChange: WorkingGroupIIIContributiontotheIPCCFifthAssessmentReport,2015; Moore,2016; Rockstr € ometal.,2017; Walshetal.,2017; TowardaClimate-NeutralGermany,2020; Roelfsemaetal.,2020; Berners-Lee,2021; Gates,2021).Butthisiseasiersaidthandone.While thedamageinquestionisveryreal,soaretheeconomicforcesthatcauseit.Thesearedue fundamentallyto“us”,asopposedto“them”,sotheyarehardtolegislateaway (Schiermeier,2012; Robertsetal.,2021; Ramachandran,2021).

1.2Energysources

Thecostdisparitybetweenhydrogenandhydrocarbonshasitsrootsinthesourcesofenergy thesefuelscontain.Inthecaseofhydrocarbons,thisenergywassuppliedbyancientbiological processes,anditisthereforeessentiallyfreeexceptforthecostsofdiscovery,mining,refining, anddistribution.Theselatterthensetthemarketpricesofthefuels.Theenergyinhydrogen fuels,bycontrast,mustbeobtainedfromothersources,andthesearedecidedlynotfree.Indeed

FIG.1.2 Worldconsumptionofprimaryenergyoverthelast3decadesbrokendownintosectors(StatisticalReviewofWorldEnergy,2020).Thenuclearandhydronumbersreportedarenotthenumberofjoulesactuallydelivered but1/0.405 ¼ 2.47timesthenumberofjoulesactuallydelivered(StatisticalReviewofWorldEnergy,2020).Thismeasuresthenumberofjoulesoffossilfuelthatwouldhavebeenburnedinpowerplantswith40.5%efficiencytogeneratethesameamountofelectricity.Thewindandsolarcontributionstorenewableenergyhavebeensimilarly inflated,butthebiofuelscontributionhasnot.Thenumberofwindandsolarjoulesactuallydeliveredin2019totaled 6.75 1018 J (StatisticalReviewofWorldEnergy,2020; Renewables2020:AnalysisandForecastto2025,2020).The numberofbiofueljoules(includingthosefromcornethanol)deliveredin2019was4.11 1018 J (StatisticalReview ofWorldEnergy,2020).Thedashedlineatthebottomisthetotalenergycontentofallthehydrogenproducedin theworld,asreportedbytheIEA,convertedattheLHVvalueof1.2 108 Jkg 1 (TheFutureofHydrogen,2019). ThisincludesbothpureH2 (about60%ofthetotal)andH2 mixedwithothergases,notablyCO.TheIEAreportsthat 95%ofthishydrogenismadefromfossilfuels,primarilynaturalgasandcoal(TheFutureofHydrogen,2019; HydrogenStrategy:EnablingaLow-CarbonEconomy,2020).ThetoppanelshowstheKeelingcurve,the CO2 concentrationoftheatmospheremeasuredonMaunaLoa,Hawaii(Friedlingsteinetal.,2020; Bruhwiler etal.,2021; Breweretal.,2019; Keeling,2006).ThisatmosphericCO2 accountsforroughlyhalfthecarbonmassof thefossilfuelsconsumedinthelowerpanel,therestpresumablygoingintotheoceans.

themarketpriceoftheenergyusedtomakehydrogennormallylies above thatsuppliedbyfossil fuelsbecauseanyothersituationwouldgeneratearbitrageopportunities(TheFutureofHydrogen,2019).Sinceenergyisconservedabsolutely,thehydrogenfuelcontainsnoenergybeyond whatwasconsumed(fromothersources)initsmanufacture.Theenergysuppliedbyhydrogen thushasapricedisadvantagevis-a ` -visenergysuppliedbyfossilfuelsthatisfundamental.

1.3Theroleofmachinery

Theeconomicmilieuinwhichthetransitiontothehydrogeneconomymustoccurdictatesaspecialroleformachinery.Thegener ationofhydrogenischieflyamatterofchemistryand/orelectrochemistry,somechanicalconsiderationsarelargelyirrelevantforthat partoftheenergychain.Thisexcludesthetra nsportandmanagementofreactants,which arestandardpetrochemicalindustryactivities.Butinthere-conversionofhydrogen’s

FIG.1.3 Cutawayillustrationofahydrogen-capablegasturbine.CurrentNOx emissionrestrictionsrequirethese designstoburnamixtureofhydrogenandnaturalgas,withnomorethan30%hydrogenbyvolume(Inoueetal., 2018). ImageSource:MitsubishiPower.

storedenergytomotivepowerorelectricenergy,conventionalheatengineshaveanadvantagestemmingfromtheirlowcostandhighreliability( CostandPerformanceDatafor PowerGenerationTechnologies,2012).Theyalsofacilitatevastlyloweredcostsofpiping andstorageinfrastructureforthehydrogenfu el.Atleastatthebeginningofthetransition, whentheamountsofhydrogenarerelativelysmall,thereisnopracticalwaytotransmit hydrogenenergyoverlongdistancesotherthantoblendthehydrogenwithnaturalgas andsendthemixturethroughexistingpipelinestoexistinggasturbines( Melainaetal., 2013 ; PipelineHydrogen,2018; Isaac,2019; Pellegrinietal.,2020).Thereitisburnedinmachineseitherspeciallydesignedtohandlemixturesorretrofittedwithburnersthatcando so(Inoueetal.,2018; Goldmeer,2019 ; HydrogenGasTurbines,2020).Asshownin Fig.1.3,a hydrogen-capablegasturbineisnotsodifferentfromonethatburnsonlynaturalgas.

1.4Competitionwithelectrochemistry

Hydrogenisuniqueamongmanufacturedfuelsofthefutureinbeingespeciallysuitedfor useinfuelcells(YacobucciandCurtright,2004; Breeze,2017; SørensenandSpazzafumo, 2018).Thereisthusanalternatehydrogeneconomyscenarioinwhichthehydrogenisnot blendedwithnaturalgasforburningingasturbinesbutinsteadpipedinpureformtopower stationsorvehiclesequippedwithfuelcells.Thiswouldhavetheimportanteffectofeliminatingvirtuallyallthermally-generatedairpollution,inparticularNOx

However,economicsgreatlydisadvantagesthissecondscenario,atleastfornow.Theunderlyingreasonisthatfuelcellsarefundamentallymechanicalenginestoo.Theirmoving partsworkatthemolecularlevelandnearertothethermodynamicreversibilitylimit,but theyusethesamephysicalprinciplestogenerateelectricityfromthehydrogenthatconventionalenginesdoandhavethesamepracticalissuesofthermalefficiency,wearandtear,fabricationcost,andmaintenancecost.Thereisatthemomentonlyonefull-size(50MW) hydrogenfuelcellpowerplantintheworld(Larson,2020; Hanwha,Doosanopenby-product

hydrogenfuelcellpowerplant,2020).Itsreportedcostandperformancefiguresaremuch inferiortothoseofacombined-cyclegasturbineplant(Hanwha,Doosanopenby-product hydrogenfuelcellpowerplant,2020; Kanuri,2012; vanRooijen,2006; PureCellModel400, 2018).Therearealsoissuesoflong-termmaintenancecostsoffuelcellplants,butthesewill notbeknownreliablyuntilaftermanyyearsofoperation.

1.5Ongoingissues

Whilehydrogenisfunctionallyaproxyfornaturalgas,itisnotthesamethingasnatural gas,andithasspecialpropertiesthathavetobeaccommodatedifitgrowstodisplacefossil fuelsasamajorenergydeliveryvehicle.Themostimmediateofthese,suchasburnermodificationsofgasturbines,havealreadybeenworkedthroughtheengineeringandproduct designstages,andsoarereadytobeimplementednow(Inoueetal.,2018; Goldmeer, 2019; HydrogenGasTurbines,2020).Butothersthatwouldbeneededinlaterstagesaremore difficultandthesubjectofongoingresearchanddevelopment,asdiscussedfurtherinsubsequentchaptersofthisbook.Examplesinclude.

1. Hydrogenhasatendencytoinsinuateitselfintotheatomicstructureofmetalsand embrittlethem(LouthanJr.etal.,1972; SanMarchiandSomerday,2012; Robertsonetal., 2015; Lee,2016; Barreraetal.,2018; Martinetal.,2020).Thisproblemisalreadydealtwith intheworld’sexistinghydrogenpipelineinfrastructurebutnotinitsnaturalgaspiping andstoragesystemandnotgas-handlingcompressorsandpumps(Parfomak,2021).

2. Hydrogenhasanespeciallyhighflametemperaturewhenburningintheair,andthushas atendencytogenerateexcessiveNOx (WeilandandStrakey,2010).Thisproblemcanbe mitigatedbyleanburning,dilution,exhaustgasrecirculation,andothersimilarstrategies, butalloftheseinvolvetradeoffswiththermalefficiencyandflamestability(Ditaranto etal.,2020).NOx emissionlevelswithincurrentregulatorylimitshavebeenachievedin turbinesburningblendsofhydrogenandnaturalgaswithlessthan30%hydrogenby volumebutnotforturbinesburningpurehydrogen(Inoueetal.,2018; Goldmeer,2019; HydrogenGasTurbines,2020).Thisproblemremainsalsoforreciprocatingengines burningpurehydrogen(Hoekstraetal.,1996).

3. Hydrogen’ssmallmolecularweightmakesitdifficulttocompressusingturbocompressors (Schusteretal.,2020; Adametal.,2020; Brunetal.,2020; Wanner,2021).Thehighsoundspeed mandatesrotortipspeedsthatproducestressesbeyondtheabilityofpresent-daymaterialsto handle,andthelowmassputsaceilingonthecompressionratioperstage.Thepresent-day standardforpurehydrogenpipelinecompressorsisreciprocating(Wanner,2021).

4. Hydrogen’slowheatofcombustionmakesitsliquefactionlossesproblematic(Wanner, 2021; Connellyetal.,2019; OhligandDecker,2014).Withcurrentlyavailabletechnology, theenergyrequiredtocoolhydrogeninitiallyatstandardtemperatureandpressuretoits liquidstateisabout3.9 107 Jkg 1 (Wanner,2021; Connellyetal.,2019).Thisis33%ofthe hydrogen’sLHVenergycontentof1.2 108 Jkg 1.Nearlyallofthisliquefactionenergyis discardedaswasteheat.Thetheoreticalmaximumamountofenergyavailablefor extractioninthere-expansionprocessis1.56 107 Jkg 1 (Wanner,2021).

1.6Machineryintheenergyfuture

Thehistoricalconsumptionsituationshownin Fig.1.2 tellsusthatthetransitiontoafossilfreeeconomyisacomplexeventthatisunfoldingslowly,notwithstandingeffortsofagreat manypeopletoretardthenegativeeffectsofCO2 buildupontheearth,andthatmayormay notadvancesignificantlyinourlifetimes.Timewilltell.Butwhenthetransitioneventually comes,asthefinitenessofgeologicresourcesrequiresittodo,hydrogenwillverylikelybe oneofitscentralcomponents,withmechanicalmachineryessentialtohydrogen’sfunction. Thisisso,amongotherreasons,becausethelawsofphysicsandeconomicsasweknowthem todaywillstillbeoperatinginthisdistanttime.

References

Adam,P.,Bode,R.,Groissboeck,M.,2020.Hydrogenturbomachinery.Turbomach.Int.61(6),18. AnEstimateofUndiscoveredConventionalOilandGasResourcesoftheWorld,2012.FactSheet2012-3042. U.S.GeologicalSurvey.

Ball,M.,Wietschel,M.(Eds.),2009.TheHydrogenEconomy:OpportunitiesandChallenges.Cambridge UniversityPress.

Barrera,O.,etal.,2018.Understandingandmitigatinghydrogenembrittlementofsteels:areviewofexperimental, modeling,anddesignProgressfromatomistictocontinuum.J.Mater.Sci.53,6251. Berners-Lee,M.,2021.ThereIsnoPlanetB:HandbookfortheMakeorBreakYears.CambridgeUniversityPress. Brandon,N.P.,Kurban,Z.,2017.Cleanenergyandthehydrogeneconomy.Phil.Trans.R.Soc.A375,20160400. Breeze,P.,2017.FuelCells.AcademicPress.

Brewer,P.J.,etal.,2019.Advancesinreferencematerialsandmeasurementtechniquesforgreenhousegasatmosphericobservations.Metro56,034006.

Bruhwiler,L.,etal.,2021.Observationsofgreenhousegasesasclimateindicators.Clim.Chang.165,12. Brun,K.,etal.,2020.Hydrogencompression.Turbomach.Int.61(6),22.

Christensen,A.,2020.AssessmentofHydrogenProductionCostsfromElectrolysis:UnitedStatesandEurope.InternationalCouncilonCleanTransportation.

ClimateChange2014:MitigationofClimateChange:WorkingGroupIIIContributiontotheIPCCFifthAssessment Report,2015.CambridgeUniversityPress.

Collodi,G.,etal.,2017.Techno-EconomicEvaluationofSMRBasedStandalone(Merchant)HydrogenPlantwith CCS.InternationalEnergyAgencyGreenhouseGasProgramme(IAEGHG).

Connelly,E.,etal.,2019.CurrentStatusofHydrogenLiquefactionCosts.U.S.DepartmentofEnergy. CostandPerformanceDataforPowerGenerationTechnologies,2012.BlackandVeach.

Ditaranto,M.,Heggset,T.,Berstad,D.,2020.Conceptofhydrogenfiredgasturbinecyclewithexhaustgas recirculation:assessmentofprocessperformance.Energy1192,116646. Friedlingstein,P.,etal.,2020.Globalcarbonbudget2020.EarthSyst.Sci.Data12,3269.

Gates,B.,2021.HowtoAvoidaClimateDisaster.Knopf.

Goldmeer,J.,2019.PowertoGas:HydrogenforPowerGeneration,GEA33861.GeneralElectricCompany. Hanwha,Doosanopenby-producthydrogenfuelcellpowerplant,2020.FuelCellsBull.2020(8),7.

Hoekstra,R.L.,VanBlarigan,P.,Mulligan,N.,1996.NOx emissionsandefficiencyofhydrogen,naturalgas,and hydrogen/naturalgasblendedfuels.SAEInt.J.FuelsLubr.105,761.Section4. Hook,M.H.,Tang,X.,2013.Depletionoffossilfuelsandanthropogenicclimatechange – areview.Energy Policy52,797.

HydrogenEnergyStorage:GridandTransportationServices,NREL/TP-5400-62518,2015.U.S.National RenewableEnergyLaboratory.

HydrogenGasTurbines,2020.ETNGlobal.

HydrogeninElectricity’sFuture,R46436,2020.CongressionalResearchService. HydrogenStrategy:EnablingaLow-CarbonEconomy,2020.U.S.DepartmentofEnergy.

Hydrogen:ARenewableEnergyPerspective,2019.InternationalRenewableEnergyAgency. Inoue,K.,etal.,2018.Developmentofhydrogenandnaturalgasco-firinggasturbine.MitsubishiHeavyInd. Tech.Rev.55(2).

Isaac,T.,2019.HyDeploy:theUK’sfirsthydrogenblendingdeploymentproject.CleanEnergy3,114. Kanuri,S.V.,2012.UTCpowerandthepurecellmodel400fuelcellpowerplantfindingwideapplication.FuelCells Bull.2012(12),12.

Keeling,R.F.,2006.RecordingtheEarth’svitalsigns.Science319,1771.

Larson,A.,2020.InnovativeByproduct-HydrogenFuelCellPowerPlantCompleted.PowerMagazine. Lee,J.A.,2016.HydrogenEmbrittlement,NASA/TM-2016-2218602.U.S.NationalAeronauticsandSpace Administration.

LouthanJr.,M.R.,etal.,1972.Hydrogenembrittlementofmetals.Mater.Sci.Eng.10,357. Martin,M.L.,etal.,2020.Hydrogenembrittlementinferriticsteels.Appl.Phys.Rev.7,041301.

Melaina,M.W.,Antonia,O.,Penev,M.,2013.BlendingHydrogenintoNaturalGasPipelineNetworks:AReviewof KeyIssues,NREL/TP-5600-51995.U.S.NationalRenewableEnergyLaboratory. Moore,C.,2016.Climatechangelegislation:currentdevelopmentsandemergingtrends.In:Chen,W.-Y.,Suzuki,T., Lackner,M.(Eds.),HandbookofClimateChange,seconded.Springer. Ohlig,K.,Decker,L.,2014.Thelatestdevelopmentsandoutlookforhydrogenliquefactiontechnology.AIPConf. Proc.1573,1311.

OptionsforProducingLow-CarbonHydrogenatScale,2018.TheRoyalSociety. Parfomak,P.W.,2021.PipelineTransportationofHydrogen:Regulation,Research,andPolicy,R45700.Congressional ResearchService.

PathtoHydrogenCompetitiveness:ACostPerspective,2020.HydrogenCouncil. Pellegrini,M.,Guzzini,A.,Saccani,C.,2020.Apreliminaryassessmentofthepotentialoflowpercentagegreen hydrogenblendingintheItaliannaturalgasnetwork.Energies13,5570.

Peterson,D.,Vickers,J.,DeSantis,D.,2020.CostofElectrolyticHydrogenProductionwithExistingTechnology. U.S.DepartmentofEnergy.

PipelineHydrogen,2018.PacificGasandElectric. PureCellModel400,2018.DoosanFuelCellAmerica.

Ramachandran,V.,2021.Blanketbansonfossil-fuelfundswillentrenchpoverty.Nature592,489. Renewables2020:AnalysisandForecastto2025,2020.InternationalEnergyAgency. Rifkin,J.,2003.TheHydrogenEconomy.TarcherPerigee.

Roberts,J.T.,etal.,2021.Rebootingafailedpromiseofclimatefinance.Nat.Clim.Chang.11,180.

Robertson,I.M.,etal.,2015.HydrogenEmbrittlementUnderstood.Metall.Trans.B46,1085.

Rockstr € om,J.,etal.,2017.Aroadmapforrapiddecarbonization.Science355,1269.

Roelfsema,M.,etal.,2020.TakingstockofNationalClimatePoliciestoevaluateimplementationoftheParisagreement.Nat.Commun.11,2096.

SanMarchi,C.,Somerday,B.P.,2012.TechnicalReferenceforHydrogenCompatibilityofMaterials,SAND2012-7321. SandiaNationalLaboratory.

Schiermeier,Q.,2012.Hotair.Nature491,656.

Schuster,S.,Dohmen,H.J.,Brillert,D.,2020.Challengesofcompressinghydrogenforpipelinetransportationwith centrifugalcompressors.In:ProceedingsGlobalPowerandPropulsionSociety(GPPS)ChaniaConference,7–9 September2020,Chania,Greece,PaperNo.GPPS-CH-2020-0045.

Smil,V.,2017.EnergyandCivilization:AHistory.MITPress.

Sørensen,B.,Spazzafumo,G.,2018.HydrogenandFuelCells:EmergingTechnologiesandApplications,third ed.AcademicPress.

StatisticalReviewofWorldEnergy,2020.BritishPetroleum. TheFutureofHydrogen,2019.InternationalEnergyAgency. TheHydrogenEconomy:Opportunities,Costs,Barriers,andR&DNeeds,2004.NationalAcademiesPress. TowardaClimate-NeutralGermany,2020.Agora. vanRenssen,S.,2020.Thehydrogensolution?Nat.Clim.Chang.10,799. vanRooijen,J.,2006.ALifeCycleAssessmentofthePureCellStationaryFuelCellSystem:ProvidingaGuidefor EnvironmentalImprovement,ReportNo.CSS06-09.UniversityofMichigan,CenterforSustainableSystems,p.41. Walsh,B.,etal.,2017.PathwaysforbalancingCO2 emissionsandsinks.Nat.Commun.8,14856.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Machinery and energy systems for the hydrogen economy klaus brun - Quickly download the ebook to exp by Education Libraries - Issuu