Machine learning and the internet of medical things in healthcare krishna kant singh - The full eboo

Page 1


https://ebookmass.com/product/machine-learning-and-theinternet-of-medical-things-in-healthcare-krishna-kant-singh/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Machine Learning Approaches for Convergence of IoT and Blockchain Krishna Kant Singh

https://ebookmass.com/product/machine-learning-approaches-forconvergence-of-iot-and-blockchain-krishna-kant-singh/

ebookmass.com

Machine Learning and the Internet of Things in Education: Models and Applications John Bush Idoko

https://ebookmass.com/product/machine-learning-and-the-internet-ofthings-in-education-models-and-applications-john-bush-idoko/

ebookmass.com

Machine Learning for Healthcare Applications Sachi Nandan Mohanty

https://ebookmass.com/product/machine-learning-for-healthcareapplications-sachi-nandan-mohanty/

ebookmass.com

The Vanished Days Susanna Kearsley

https://ebookmass.com/product/the-vanished-days-susanna-kearsley-3/

ebookmass.com

Mercy in Betrayal : Dark Mafia Romance (Sons of the Mafia Book 4) Vi Carter & E.R. Whyte

https://ebookmass.com/product/mercy-in-betrayal-dark-mafia-romancesons-of-the-mafia-book-4-vi-carter-e-r-whyte/

ebookmass.com

(eBook PDF) Ethics and Professionalism for Healthcare Managers

https://ebookmass.com/product/ebook-pdf-ethics-and-professionalismfor-healthcare-managers/

ebookmass.com

■■■■: 1964-1978 [■■] ■■

https://ebookmass.com/product/%e9%9d%9e%e5%b8%b8%e5%b9%b4%e4%bb%a31964-1978-%e4%b8%8a%e5%8d%b7-%e8%b6%99%e5%9c%92/

ebookmass.com

Social Entrepreneurship and Sustainable Business Models: The Case of India 1st ed. Edition Anirudh Agrawal

https://ebookmass.com/product/social-entrepreneurship-and-sustainablebusiness-models-the-case-of-india-1st-ed-edition-anirudh-agrawal/

ebookmass.com

Investigation of the internal structure of thermoresponsive diblock poly(2-methyl-2-oxazoline)-bpoly[N-(2,2-difluoroethyl)acrylamide] copolymer

nanoparticles 11th Edition David Babuka

https://ebookmass.com/product/investigation-of-the-internal-structureof-thermoresponsive-diblock-poly2-methyl-2-oxazoline-bpolyn-22-difluoroethylacrylamide-copolymer-nanoparticles-11th-editiondavid-babuka/ ebookmass.com

Medical Terminology 2nd Edition Paula Bostwick

https://ebookmass.com/product/medical-terminology-2nd-edition-paulabostwick/

ebookmass.com

MachineLearningand theInternetof MedicalThingsin Healthcare

MachineLearningand theInternetof MedicalThingsin Healthcare

KrishnaKantSingh Professor,FacultyofEngineering&Technology, Jain(Deemed-to-beUniversity),Bengaluru,India

MohamedElhoseny CollegeofComputerInformationTechnology, AmericanUniversityintheEmirates,Dubai,UnitedArabEmirates

AkanshaSingh DepartmentofCSE,ASET, AmityUniversityUttarPradesh,Noida,India

AhmedA.Elngar FacultyofComputersandArtificialIntelligence, Beni-SuefUniversity,BeniSuefCity,Egypt

AcademicPressisanimprintofElsevier

125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-821229-5

ForInformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: ChrisKatsaropoulos

EditorialProjectManager: RubySmith

ProductionProjectManager: SwapnaSrinivasan

CoverDesigner: MilesHitchen

TypesetbyMPSLimited,Chennai,India

CHAPTER1Machinelearningarchitectureandframework ........... 1 AshishTripathi,ArunKumarSingh,KrishnaKantSingh, PushpaChoudharyandPremChandVashist

1.1 Introduction....................................................................................1

1.1.1Machinelearningclassification..........................................2

1.2 Architectureofmachinelearning..................................................4

1.2.1Dataacquisition..................................................................5

1.2.2Dataprocessing...................................................................5

1.2.3Datamodeling.....................................................................9

1.2.4Execution(modelevaluation)...........................................12

1.2.5Deployment.......................................................................12

1.3 Machinelearningframework.......................................................12

1.3.1FeaturesofMLframework...............................................12

1.3.2TypesofMLframework...................................................15

1.4 Significanceofmachinelearninginthe healthcaresystem.........................................................................17

1.4.1Machine-learningapplicationsinthe healthcaresystem..............................................................18

1.5 Conclusion....................................................................................19 References....................................................................................20

CHAPTER2Machinelearninginhealthcare:review, opportunitiesandchallenges ..................................... 23 AnandNayyar,LataGadhaviandNoorZaman

2.1 Introduction..................................................................................23

2.1.1Machinelearninginanutshell.........................................24

2.1.2Machinelearningtechniquesandapplications.................25

2.1.3Desiredfeaturesofmachinelearning...............................28

2.1.4Howmachinelearningworks?.........................................29

2.1.5Whymachinelearningforhealthcare?.............................30

2.2 Analysisofdomain......................................................................32

2.2.1Backgroundandrelatedworks.........................................32

2.2.2IntegrationscenariosofMLandHealthcare....................33

2.2.3Existingmachinelearningapplications forhealthcare....................................................................33

2.3 Perspectiveofdiseasediagnosisusingmachinelearning...........37

2.3.1Futureperspectivetoenhancehealthcaresystem usingmachinelearning.....................................................38 2.4 Conclusions..................................................................................41 References....................................................................................41 CHAPTER3Machinelearningforbiomedicalsignal processing

3.1 Introduction..................................................................................47

3.2 ReviewsofECGsignal................................................................48

3.3 PreprocessingofECGsignalusingMLbasedtechniques.........51

3.3.1Leastmeansquare(LMS).................................................54

3.3.2Normalizedleastmeansquare(NLMS)...........................54

3.3.3DelayederrornormalizedLMS(DENLMS) algorithm...........................................................................54

3.3.4Signdataleastmeansquare(SDLMS)............................55

3.3.5Logleastmeansquare(LLMS)........................................57

3.4 FeatureextractionandclassificationofECGsignal usingML-basedtechniques.........................................................58

3.4.1Artificialneuralnetwork(ANN)......................................59

3.4.2Fuzzylogic(FL)...............................................................60

3.4.3Wavelettransforms...........................................................61

3.4.4Hybridapproach................................................................62

3.5 Discussionsandconclusions........................................................63 References....................................................................................63

CHAPTER4Artificialitelligenceinmedicine ............................... 67 ArunKumarSingh,AshishTripathi,KrishnaKantSingh, PushpaChoudharyandPremChandVashist 4.1 Introduction..................................................................................67

4.1.1Disease..............................................................................67 4.1.2Medicine............................................................................70

4.1.3HistoryofAIinmedicine.................................................73

4.1.4Drugdiscoveryprocess.....................................................75

4.1.5Machine-learningalgorithmsinmedicine........................77

4.1.6Expertsystems..................................................................82

4.1.7Fuzzyexpertsystems........................................................83

4.1.8Artificialneuralnetworks.................................................83

4.2 Conclusion....................................................................................84 References....................................................................................85

CHAPTER5Diagnosingofdiseaseusingmachinelearning ........ 89

PushpaSingh,NarendraSingh, KrishnaKantSinghandAkanshaSingh

5.1 Introduction..................................................................................89

5.2 Backgroundandrelatedwork......................................................90

5.2.1Challengesinconventionalhealthcaresystem.................91

5.2.2Machine-learningtoolsfordiagnosisandprediction.......91

5.2.3Python................................................................................92

5.2.4MATLAB..........................................................................93

5.3 Typesofmachine-learningalgorithm..........................................93

5.4 Diagnosismodelfordiseaseprediction.......................................95

5.4.1Datapreprocessing............................................................95

5.4.2Trainingandtestingdataset.............................................95

5.4.3Classificationtechnique....................................................96

5.4.4Performancemetrics.........................................................97

5.5 Confusionmatrix..........................................................................97

5.6 Diseasediagnosisbyvariousmachine-learningalgorithms........98

5.6.1Supportvectormachine(SVM)........................................98

5.6.2K-nearestneighbors(KNN)............................................100

5.6.3Decisiontree(DT)..........................................................101

5.6.4Naivebayes(NB)............................................................103

5.7 MLalgorithminneurological,cardiovascular, andcancerdiseasediagnosis......................................................104

5.7.1Neurologicaldiseasediagnosisbymachine learning............................................................................104

5.7.2Cardiovasculardiseasediagnosisbymachine learning............................................................................105

5.7.3Breastcancerdiagnosisandprediction: acasestudy.....................................................................105

5.7.4Impactofmachinelearninginthehealthcare industry............................................................................106

5.8 Conclusionandfuturescope......................................................107 References..................................................................................107

CHAPTER6Anovelapproachoftelemedicinefor managingfetalconditionbasedonmachine learningtechnologyfromIoT-basedwearable medicaldevice .......................................................... 113 AshuAshuandShilpiSharma

6.1 Introduction................................................................................113

6.2 Healthcareandbigdata..............................................................113

6.3

6.8.1Researchonrevolutionaryeffectoftelemedicine

6.8.2Roleofmachinelearningintelemedicine/healthcare.........120

6.8.3Roleofbigdataanalyticsinhealthcare.........................122

6.8.4Challengesfacedinhandlingbigdatain

6.8.5Researchdoneontracingthefetalwell-being usingtelemedicineandmachinelearningalgorithms....125

7.3.3Diagnosticservices.........................................................138 7.3.4Inpatientservices............................................................138

CHAPTER8Examiningdiabeticsubjectsontheircorrelation withTTHandCAD:astatisticalapproachon exploratoryresults .................................................... 153

SubhraRaniMondalandSubhankarDas

8.1 Introduction................................................................................153

8.1.1Generalapplicationprocedure........................................154

8.1.2Medicinalimaging..........................................................154

8.1.3BigdataandInternetofThings......................................156

8.1.4Artificialintelligence(AI)andmachine learning(ML)..................................................................156

8.1.5BigdataandIoTapplicationsinhealthcare...................158

8.1.6Diabetesanditstypes.....................................................159

8.1.7Coronaryarterydisease(CAD)......................................161

8.2 Reviewofliterature....................................................................163

8.3 Researchmethodology...............................................................164

8.3.1Trialsetup.......................................................................164

8.4 Resultanalysisanddiscussion...................................................166

8.4.1TTHcannotbe................................................................169

8.5 Originalityinthepresentedwork..............................................170

8.6 Futurescopeandlimitations......................................................171

8.7 Recommendationsandconsiderations.......................................171

8.8 Conclusion..................................................................................172 References..................................................................................173

CHAPTER9Cancerpredictionanddiagnosishinged onHCMLinIOMTenvironment ................................. 179

G.S.PradeepGhantasala,NalliVinayaKumari andRizwanPatan

9.1 Introductiontomachinelearning(ML).....................................179

9.1.1Somemachinelearningmethods....................................179

9.1.2Machinelearning............................................................179

9.2 IntroductiontoIOT....................................................................181

9.3 ApplicationofIOTinhealthcare...............................................182

9.3.1Redefininghealthcare.....................................................183

9.4 Machinelearninguseinhealthcare..........................................185

9.4.1Diagnoseheartdisease..................................................185

9.4.2Diabetesprediction.......................................................186

9.4.3Liverdiseaseprediction................................................187

9.4.4Surgeryonrobots..........................................................187

9.4.5Detectionandpredictionofcancer...............................188

9.4.6Treatmenttailored.........................................................188

9.4.7Discoveryofdrugs........................................................190

9.4.8Recorderofintelligentdigitalwellbeing......................190

9.4.9Radiologymachinelearning.........................................190

9.4.10Studyandclinicaltrial..................................................191

9.5 Cancerinhealthcare...................................................................192

9.5.1Methods...........................................................................192

9.5.2Result...............................................................................192 9.6 BreastcancerinIoHTML..........................................................193

9.6.1Studyofbreastcancerusingtheadaptivevoting algorithm.......................................................................193

9.6.2Softwaredevelopmentlifecycle(SDLC)....................193

9.6.3PartsofundertakingdutyPDRandPER.....................194

9.6.4Infostructure.................................................................195

9.6.5Inputstage.....................................................................195

9.6.6Outputdesign................................................................195

9.6.7Responsibledevelopersoverview.................................195

9.6.8Dataflow.......................................................................196

9.6.9Cancerpredictionofdataindifferentviews................196

9.6.10Cancerpredicationinusecaseview............................196

9.6.11Cancerpredicationinactivityview..............................196

9.6.12Cancerpredicationinclassview..................................196

9.6.13Cancerpredicationinstatechartview.........................198

9.6.14Symptomsofbreastcancer...........................................198

9.6.15Breastcancertypes.......................................................198

9.7 Casestudyinbreastcancer........................................................200

9.7.1Historyandassessmentofpatients.................................201

9.7.2Recommendationsfordiagnosis.....................................201

9.7.3Discourse.........................................................................202

9.7.4Outcomesofdiagnosis....................................................203

10.4 Datacollection...........................................................................214

10.4.1Recordingprocedure.....................................................214

10.4.2Noisereduction.............................................................215

10.5 Speechsignalprocessing...........................................................215

10.5.1Samplingandquantization...........................................216

10.5.2Representationofthesignalintimeand frequencydomain..........................................................217

10.5.3Frequencyanalysis........................................................219

10.5.4Shorttimeanalysis........................................................221

10.5.5Short-timefourieranalysis............................................222

10.5.6Cepstralanalysis...........................................................222

10.5.7Preprocessing:thenoisereductiontechnique..............223

10.5.8Frameblocking.............................................................225

10.5.9Windowing....................................................................226

10.6 Featuresforspeechrecognition.................................................226

10.6.1Typesofspeechfeatures...............................................226

10.7 Speechparameterization............................................................228

10.7.1Featureextraction..........................................................228

10.7.2Linearpredicativecoding(LPC)..................................229

10.7.3Linearpredictivecepstralcoefficients(LPCC)............231

10.7.4Weightedlinearpredictivecepstralcoefficients (WLPCC)......................................................................233

10.7.5Mel-frequencycepstralcoefficients.............................234

10.7.6Deltacoefficients..........................................................239

10.7.7Delta deltacoefficients...............................................240

10.7.8Powerspectrumdensity................................................240

10.8 Speechrecognition.....................................................................242

10.8.1Typesofspeechpatternrecognition.............................244

10.9 Speechclassification..................................................................244

10.9.1Artificialneuralnetwork(ANN)..................................245

10.9.2Supportvectormachine(SVM)....................................245

10.9.3Lineardiscriminantanalysis(LDA).............................246

10.9.4Randomforest...............................................................246

10.10 Summaryanddiscussion............................................................246 References..................................................................................248

11.1 Aleapintothehealthcaredomain.............................................251

11.2 Therealfactsofhealthrecordcollection..................................253

11.3 Aproposalforthefuture............................................................254

11.4 Discussionsandconcludingcommentsonhealthrecord collection....................................................................................255

11.5 Backgroundofelectronichealthrecordsystems.......................256

11.5.1Thedefinitionofanelectronichealth record(EHR).................................................................256

11.5.2Ashorthistoryofelectronichealthrecords.................257

11.6 Reviewofchallengesandstudymethodologies........................257

11.6.1AnalyzingEHRsystemsandburnout..........................257

11.6.2AnalyzingEHRsystemsandproductivity...................258

11.6.3AnalyzingEHRsystemsanddataaccuracy.................259

11.7 Conclusionanddiscussion.........................................................260 References..................................................................................261

Listofcontributors

GauravAggarwal

SchoolofComputingandInformationTechnology,ManipalUniversityJaipur, Jaipur,India

IshpreetAneja

DepartmentofDataScience,RochesterInstituteofTechnology,Rochester,NY, UnitedStates

AshuAshu

DepartmentofComputerScience,AmityUniversity,Noida,India

PushpaChoudhary

DepartmentofInformationTechnology,G.L.BajajInstituteofTechnologyand Management,GreaterNoida,India

SubhadipChowdhury

DurgapurSocietyofManagementScienceCollege,KNU,Asansol,India

SubhankarDas

ResearcherandLecturer,HonorsProgramme,DuyTanUniversity,DaNang, Vietnam

RitamDutta

SurendraInstituteofEngineeringandManagement,MAKAUT,Kolkata,India

LataGadhavi

ITDepartment,GovernmentPolytechnicGandhinagar,Gandhinagar,India

G.S.PradeepGhantasala

DepartmentofComputerScienceandEngineering,ChitkaraUniversity InstituteofEngineering&Technology,Chandigarh,India

SaradaPrasadGochhayat

VirginiaModeling,AnalysisandSimulationCentre,SimulationandVisualization Engineering,OldDominionUniversity,Suffolk,VA,UnitedStates

NalliVinayaKumari

DepartmentofComputerScienceandEngineering,MallaReddyInstituteof TechnologyandScience,Hyderabad,India

SubhraRaniMondal

ResearcherandLecturer,HonorsProgramme,DuyTanUniversity,DaNang, Vietnam

AnandNayyar

FacultyofInformationTechnology,GraduateSchool,DuyTanUniversity, DaNang,Vietnam

RizwanPatan

DepartmentofComputerScienceandEngineering,VelagapudiRamakrishna SiddharthaEngineeringCollege,Vijayawada,India

VandanaPatel

DepartmentofInstrumentationandControlEngineering,LalbhaiDalpatbhai CollegeofEngineering,Ahmedabad,India

AnjuS.Pillai

DepartmentofElectricalandElectronicsEngineering,AmritaSchoolof Engineering,AmritaVishwaVidyapeetham,Coimbatore,India

VijayalakshmiSaravanan

FacultyinDepartmentofSoftwareEngineering,RochesterInstituteof Technology,Rochester,NY,UnitedStates

AnkitK.Shah

DepartmentofInstrumentationandControlEngineering,LalbhaiDalpatbhai CollegeofEngineering,Ahmedabad,India

ShilpiSharma

DepartmentofComputerScience,AmityUniversity,Noida,India

AkanshaSingh

DepartmentofCSE,ASET,AmityUniversityUttarPradesh,Noida,India

ArunKumarSingh

DepartmentofInformationTechnology,G.L.BajajInstituteofTechnologyand Management,GreaterNoida,India

KrishnaKantSingh

FacultyofEngineering&Technology,Jain(Deemed-to-beUniversity), Bengaluru,India

LatikaSingh

AnsalUniversity,Gurugram,India

NarendraSingh

DepartmentofManagementStudies,G.L.BajajInstituteofManagementand Research,GreaterNoida,India

PushpaSingh

DepartmentofComputerScienceandEngineering,DelhiTechnicalCampus, GreaterNoida,India

AshishTripathi

DepartmentofInformationTechnology,G.L.BajajInstituteofTechnologyand Management,GreaterNoida,India

PremChandVashist

DepartmentofInformationTechnology,G.L.BajajInstituteofTechnologyand Management,GreaterNoida,India

HongYang

DepartmentofDataScience,RochesterInstituteofTechnology,Rochester,NY, UnitedStates

NoorZaman

SchoolofComputerScienceandEngineeringSCE,Taylor’sUniversity,Subang, Jaya,Malaysia

Machinelearning architectureandframework

1

AshishTripathi1,ArunKumarSingh1,KrishnaKantSingh2,PushpaChoudhary1 andPremChandVashist1

1DepartmentofInformationTechnology,G.L.BajajInstituteofTechnologyandManagement, GreaterNoida,India 2FacultyofEngineering&Technology,Jain(Deemed-to-beUniversity),Bengaluru,India

1.1 Introduction

In1959,ArthurSamuelproposedthetermMachineLearning(ML).Hewasthe masterofartificialintelligenceandcomputergaming.Hestatedthatmachine learninggivesalearningabilitytocomputerswithoutbeingexplicitly programmed.

In1997arelationalandmathematical-baseddefinitionofmachinelearning wasgivenbyTomMitchellinthatacomputerprogramusesexperience“e”to learnfromsometask“t.”Itapplies“p”asaperformancemeasureon“t”that automaticallyimproveswith“e.”

Inrecentyears,machinelearninghasbeenappearingasthemostsignificant technologyaroundtheglobetosolvemanyreal-lifeproblems.So,itisemerging asaverypopulartechnologyamongtheresearchersandindustrypeopleforproblemsolving.

Machinelearningisasubdomainofartificialintelligence(AI)thathelps machinestoautomaticallylearnfromexperienceandimprovetheirabilitytotake decisionstosolveanyproblemwithouttakinganyexplicitinstructions.Thefocus ofMListodevelopandapplycomputerprogramsthatareabletolearnfromthe problemdomainandmakebetterdecisions [1]

ThelearningprocessinMLstartswithobservingandanalyzingthedata throughdifferenttechniques,suchasusingexamples,experiences,relyingonpatternmatchingindata,etc.,thatallowsmachinestotakedecisionswithoutany assistancefromhumansoranyotherintervention [2]

Machine-learningalgorithmstakeasampledatasetasaninput,whichisalso knownasthetrainingdataset,tobuildandtrainamathematicalmodel(MLsystem).Inputdatamayincludetext,numerics,audio,multimedia,orvisualthings andcanbetakenfromvarioussourcessuchassensors,applications,devices, networks,andappliances.

MachineLearningandtheInternetofMedicalThingsinHealthcare.DOI: https://doi.org/10.1016/B978-0-12-821229-5.00005-7 Copyright © 2021ElsevierInc.Allrightsreserved.

Themathematicalmodelisusedtoextractknowledgefromtheinputdata throughanalyzingitselfwithoutanyexplicitprogrammingintervention.

Afterprocessingthedata,itgivessomeresponseasanoutput.Theoutput maybeintheformofanintegervalueorafloating-pointvalue [3]. Fig.1.1 showsthelearningofaMLsystemfromdatawithexplicitprogrammingsupport.

Unlikeconventionalalgorithms,MLalgorithmsareapplicableindifferent applications,suchascomputervision,filteringofemails,ecommerce,healthcare systems,andmanymore,toprovideeffectivesolutionswithhighaccuracy.

1.1.1 Machinelearningclassification

Learningcanbeunderstoodasaprocessthatconvertsexperienceintoexpertise. So,thelearningshouldbemeaningfulinrespecttosometask.Itisaclearly definedprocessthattakessomeinputsandproducesanoutputaccordingly.

Machine-learningalgorithmshavethreemajorclassificationsthatdependon thetypeandnatureofdataprovidedtothesystem,whichareasfollows:

1.1.1.1 Supervisedlearning

Supervisedlearningstartswithadatasetwhichcontainsbothinputandexpected outputdatawithlabels.Theselabelsareusedforclassificationandprovideabase forlearning [4].Thishelpsinfuturedataprocessing.

Thetermsupervisedlearningisconsideredtobeasystemwhichcontains pairsofinputsandoutputstoprovidetrainingtothemachinetocorrelateinputs andoutputsbasedoncertainrules [5]

Indeed,supervisedlearningistotrainthemachinehowthegiveninputsand outputscanbemappedorrelatedtogether.Theobjectiveofthislearningisto

FIGURE1.1 LearningofaMLsystemfromdifferentdatasources.

makethemachinecapableenoughbyproducingamappingfunctiontopredict thecorrectoutputonthegiveninputstothesystem.

Supervisedlearningisapplicableinvariousapplications,suchasself-driving cars,chatbots,facialrecognition,expertsystems,etc.

ArtificialNeuralNetworks [6,7],LogisticRegression [8],SupportVector machine [9],K-NearestNeighbor [10],andNaıveBayesClassifier [11] aresome examplesofsupervisedlearningalgorithms.

Unsupervisedlearningproblemsaregroupedunderclassificationand regression.

• Classification:itisatechniquethathelpstocategorizetheinputsintotwoor moreclassesbasedonthefeaturesoftheinputs.Itisusedtoassignthe correctclasslabeltotheinputs [12].Inclassification,predictionisbasedon yesorno [13].Asuitableexampleofclassificationisspamfilteringinwhich inputsareemailmessagesandthecorrespondingclassesarespamandnot spam.Otherexamplesaresentimentanalysistoanalyzethepositiveand negativesentiment,labelingofsecureandunsecureloans,andtoclassify whetherthepersonismaleorfemale.

• Regression:inregression,acontinuousorrealratherthandiscretevalueis obtainedastheoutput [14].

Forexample,thepredictionofhousepricebasedonsizeorquantifyingheight basedontherelativeimpactofgender,age,anddiet.

1.1.1.2 Unsupervisedlearning

Unsupervisedlearningisusedwherethedataarenotlabeledorclassifiedtotrainthe system [15].Thereisnolabeledsampledataavailableforthetrainingpurposes. Thislearningsystemitselfworkstoexploreandrecognizethepatternsand structuresintheinputdatatoobtainapredictedvalueorclassificationofan object [16].

Unsupervisedlearningdoesnotclaimtogivetheexactfigureoftheoutput. Thisformoflearningisappliedonunlabeleddatatotrainthesystemto exploreandexploitthehiddenstructure.Ithelpstocategorizetheunclassified andunlabeleddatabasedonfeatureextraction [17].Thislearningsystemworks inareal-timescenarioandhencethepresenceoflearnersistheprimenecessity tolabelandanalyzetheinputdata [18]

Thusinthislearning,humaninterventionforanalyzingandlabelingtheunlabeleddataisrequired,whichisnotfoundinsupervisedlearning [19].

Unsupervisedlearningcanbeunderstoodbyanexample:anunseenimage containinggoatandsheephasbeengivenforidentifyingbothseparately.Thusin theabsenceoftheinformationaboutthefeaturesofboththeanimals,themachine isnotabletocategorizeboth.But,wecancategorizeboththesheepandgoat basedontheirdifferences,similarities,andpatterns.First,weneedtoseparatethe picturesofgoatsandsecondlycollectallpicturesofsheepfromtheimage.Here, inthetask,therehasnotbeenanytrainingorsampledatausedtotrainthe

machinepreviously.Mappingofnearestneighbor,valuedecomposition,selforganizingmaps,andk-meansclusteringarethemostusedunsupervisedlearning techniques.

Unsupervisedlearningproblemsaregroupedintoclusteringandassociation problems.

• Clustering:thisconceptdealswithfindingagroupofuncategorizeddatabased oncertainfeatures,patterns,orstructures [20].Theclusteringalgorithmsare responsibleforidentifyinggroups/clustersofdata.Forexample,considering purchasingbehaviorofcustomerstoidentifyagroupofcustomers.

• Association:thisallowstheestablishmentofassociationamongdataobjects fromthelargesetofyourdata [18,21].Thiscanbeunderstoodby,for example,anassociationexistsifapersonthatbuysanobjectxthenalsohasa tendencytobuyobjecty.

1.1.1.3 Reinforcementlearning

Reinforcementlearninginvolvesinteractionwiththesurroundingenvironment anditappliesatrialanderrorapproachtoobtainrewardsorerrors.Algorithms identifythoseactionswhichcontainthebestrewards [22].

Reinforcementlearninghasthreemaincomponents:environment,actions,and agent.Heretheagentworksasadecision-maker,actionsdenotethestepsthataretaken bytheagent,andtheenvironmentisthedomaininwhichtheagentdoestheinteraction [23].Togetthemaximumlevelofperformancefrommachine/softwareagents,this learninghelpstodecidetheidealbehaviorautomaticallyforaparticularcontext.

Thistypeoflearningtechniqueusesareinforcementsignalthatrequiresfeedbackforguidingtheagenttodecidethebestamongalltheavailableactions. Additionally,ithelpstodecidetotakeaction,whereitishardtopredictthelevel ofseverityforcertainsituationsbasedongoodnessorbadness [24].Thislearning enablesmachinestolearnandplaygames,drivevehicles,etc.

So,themainobjectiveofreinforcementlearningistoapplythebesttechnique toachieveafastbusinessoutcomeasearlyaspossible.

1.2 Architectureofmachinelearning

Therequiredindustryinteresthasbeenincorporatedinthearchitectureof machinelearning.

Thustheobjectiveistooptimizetheuseofexistingresourcestogettheoptimizedresultusingtheavailabledata.Also,thishelpsinpredictiveanalysisand dataforecastinginvariousapplications,especiallywhenitislinkedwithdatasciencetechnology.

Thearchitectureofmachinelearninghasbeendefinedinvariousstages.Each stagehasdifferentrolesandallstagesworktogethertooptimizethedecisionsupportsystem.

FIGURE1.2 Phasesofmachinelearningarchitecture.

Thearchitectureofmachinelearninghasbeendividedintofivestages,such asdataacquisition,dataprocessing,datamodeling,execution,anddeployment. Thesestagesareshownin Fig.1.2

Thedetailsareasfollows:

1.2.1 Dataacquisition

Itiswell-knownthattheacquisitionofdataisproblem-specificanditisunique foreachMLproblem.Theexactestimationofdataisverydifficultinorderto obtaintheoptimalutilitywithrespecttomachinelearningproblems.Itisvery toughtopredictwhatamountofdataisrequiredtotrainthemodelintheearly stageofdataacquisition.

Insomeresearchactivities,itisfoundthatmorethantwo-thirdsofthecollecteddatamaybeuseless.Also,atthetimeofdatacollection,itisverydifficult tounderstandwhichportionofthedatawillbeabletoprovidethesignificantand correctresultbeforethetrainingbeginsforamodel.Thereforeitbecomesessentialtoaccumulateandstoreallkindsofdata,whetheritisrelatedtostructured, unstructured,online,offline,open,andinternal.Sothisphaseofdataacquisition shouldbetakenveryseriouslybecausethesuccessoftheMLmodeltraining dependsontherelevanceandqualityofdata.

ThereforethedataacquisitionisthefirstphaseinMLarchitecturethatapplies toaccumulatetheessentialdatafromdifferentsources [25],asshownin Fig.1.3.

Thedataisfurtherprocessedbythesystemtomakeadecisionforsolvinga givenproblem.Thisincludesdifferentactivitiessuchasgatheringcomprehensive andrelevantdata,case-baseddatasegregation,andvalidinterpretationofdatafor storingandprocessingaspertherequirements [26].

Actually,thedataisgatheredfromdifferentsourcesinanunstructuredformatand everysourcehasadifferentformatwhichisnotsuitableforanalysispurposes [27].

1.2.2 Dataprocessing

Thisstageacceptsdatafromthedataacquisitionlayertoapplyfurtherprocessing whichincludesdataintegration,normalization,filtering,cleaning,transformation, andencodingofdata.

Processingofdataalsodependsonthelearningtechniqueswhichhavebeen usedtosolvetheproblem [28].Forexample,inthecaseofsupervisedlearning, datasegregationisperformedwhichcreatessampledatainseveralsteps.The sampledataisfurtherappliedtotrainthesystemandthusthecreatedsampledata isgenerallycalledthetrainingdata [29].

Inunsupervisedlearning,theunlabeleddataismainlyusedforanalysispurposes.Thusthislearningtechniquemainlydealswithunpredictabledatathatare morecomplicatedandrequirecomplexprocessingascomparedtootherexisting learningtechniques [29]

Inthiscasedataaregroupedintoclustersandeachclusterbelongstoaspecificgroup.Eachclusterisformedbasedonthegranularityofthedata.

Thekindofprocessingisanotherfactorofdataprocessingwhichisbased onthefeaturesandactiontakenonthecontinuousdata.Also,itmayprocess upondiscretedata.Processingondiscr etedatamayneedmemoryboundprocessing [30]

So,theobjectiveofthisstageistoprovideacleanandstructureddataset. Sometimes,thisstageisalsoknownasthepreprocessingstage.Somemajorsteps comeunderthisphaseofMLarchitecture,whichareasfollows:

1.2.2.1 Arrangementofdata

Thestoreddataarerequiredtobearrangedinsortedorderwiththefiltering mechanism.Thishelpstoorganizethedatainsomeunderstandableform.

FIGURE1.3 Dataacquisition.

Itbecomesveryeasytoretrievetherequiredinformation,whichisnecessaryfor thevisualizationandanalysispurposesofthedata.

1.2.2.2

Analysisofdata

Thein-depthanalysisstartstounderstandthedataintermsofitstype,anymissingparts,valueofdata,correlationamongdata,andmuchmore,inordertotake furtheractiononthedata.Indataanalysis,dataisevaluatedbasedonthelogical andanalyticalreasoningtoexploreandexplaineachelementofthedataprovided toreachafinalconclusion.

1.2.2.3

Preprocessingofdata

Datapreprocessingisatechniquethatperformsthenecessaryconversionofthe rawdataintotheformwhichcanbeacceptedbythemachinelearningmodelas shownin Fig.1.4.Initiallythedataarecollectedinanunstructuredmannerfrom differentsourcesduringthedatacollection,thusthedatarequiresrefiningbefore involvementinthemachinelearningmodeling.Toprovidequalitydatasome approachesarerequiredtobetakensuchasformattingofdata,datacleaning (handleincompletedataduetonoiselikemissingvalues),andsamplingofdata. Thereforetheconversionfrominconsistent,incomplete,anderror-pronedata intoanunderstandable,clean,andstructuredformallowstheenhancementofthe accuracyandefficiencyoftheMLmodel.Asaresult,theenhancedMLmodel mightbeabletoprovidepreciseandoptimalresults.

FIGURE1.4

Dataprocessing:datapreprocessing.

1. Dataformatting:theimportanceofdataformattinggrowswhendatais acquiredfromvarioussourcesbydifferentpeople.Thefirsttaskforadata scientististostandardizerecordformats.Aspecialistcheckswhether variablesrepresentingeachattributearerecordedinthesameway.Titlesof productsandservices,prices,dateformats,andaddressesareexamplesof variables.Theprincipleofdataconsistencyalsoappliestoattributes representedbynumericranges.

2. Datacleaning:thissetofproceduresallowsfortheremovalofnoiseandthe fixingofinconsistenciesinthedata.Adatascientistcanfillinmissingdata usingimputationtechniques,e.g.,substitutemissingvalueswithmean attributes.Aspecialistalsodetectsoutliers’observationsthatdeviate significantlyfromtherestofdistribution.Ifanoutlierindicateserroneous data,adatascientistdeletesorcorrectsthem,ifpossible.Thisstagealso includesremovingincompleteanduselessdataobjects.

3. Datasampling:bigdatasetsrequiremoretimeandcomputationalpowerfor analysis.Ifadatasetistoolarge,applyingdatasamplingisthewaytogo. Adatascientistusesthistechniquetoselectasmallerbutrepresentativedata sampletobuildandrunmodelsmuchfaster,andatthesametimetoproduce accurateoutcomes.

1.2.2.4

Transformationofdata

ThisstepinvolvestheconversionofdataintoaformsuitablefortheMLmodel. Fordatatransformationthefollowingtechniquesareused:

1. Scalingofdata:thisisalsoknownasthenormalizationofdata.Ifattributes (features)ofdataarenumericthenthescalingoftheattributesbecomes essentialtoputthemintoacommonscale.Thenumericattributesofdata havedifferentranges,suchaskilometers,meters,andmillimeters, representingthedatavalue.Forexample,scalingofanattributefora minimumvaluemaybeintherange0to10,andforthemaximumvalue,it maybein-between11and100.

2. Decompositionofdata:itbreaksthecomplexdataintosmallerpartwhich makesiteasiertounderstandthedatapatterns.Decompositionisatechnique thatovercomestheissueofthecomplexconceptofattributesandbreaksthe complexfeaturesintosimplesubfeaturesthatmakesthedatamore understandableandmeaningful.Also,itguidesthemachinetowherethenew featurescanbeadded.Decompositionismostlyapplicablefortheanalysisof timeseriesdata.Estimatingademandforgoodspermonthforlocalvendors, amarketanalysisbasedonthedataofbigorganizationstoknowthedemand ofgoodsperthreemonths,orpersixmonths,areexamplesofdecomposition.

3. Aggregationofdata:aggregationcanbeunderstoodasthereverseprocessof decomposition.Inaggregation,severalfeaturesarecombinedintoasingle featureandwheneverrequiredallfeaturescanbeexplored.Inotherwords, theaggregationrepresentsthesummarizedformofthecollecteddatawhich

canbeusedfurtherfordataanalysis.Thisisthesignificantstepofdata transformation,wherethequalityandamountofdatadecidetheaccuracyof thedataanalysis.Therearevariousapplicationswheredataaggregationcan beused,whichmayincludethefinancesector,marketingplans,productionrelateddecisions,andproductpricing.

4. Featureengineering:thisisasignificanttaskinMLarchitectureinwhichthe requiredfeaturesareselectedandextractedfromthedata,whichisrelevantto thetaskormodeltobedeveloped,asshownin Fig.1.5.Therelevantfeatures ofdataarefurtherusedtoenhancethepredictiveefficiencyMLalgorithms. Thereforefeatureengineeringshouldbedonecorrectly,otherwiseitwill affecttheoveralldevelopmentoftheMLmodel.Featureengineeringinvolves foursubtasks:(1)featureselection:itdealswithselectingthemostusefuland relevantfeaturesfromthedata;(2)featureextraction:selectedfeaturesare extractedfromthedatafordatamodeling;(3)featureaddition:existing featuresareaddedwithnewfeaturesselectedandextractedfromnewly gathereddata;and(4)featurefiltering:irrelevantfeaturesarefilteredoutto makeMLmodelmoreefficientandeasytohandle.

1.2.3 Datamodeling

Datamodelinginvolvestheselectionofanappropriatealgorithmwhichshouldbe mostadaptableforthesystemtoaddresstheissuesintheproblemstatement [31]. ItinvolvesprovidingtrainingtoaMLalgorithmtodopredictionsbasedonthe availablefeatures,parametertuningasperthebusinessneeds,anditsvalidation onthesampledata.Thealgorithmsinvolvedinthisprocessareevolvedthrough learningtheenvironmentandapplyingthetrainingdatasetusedinthelearning process [32].Atrainedmodelreceivedaftersuccessfulmodelingisusedforinferencewhichallowsthesystemtodopredictionsonnewdatainputs.Theprocess ofdatamodelingisshownin Fig.1.6

Inthedatamodelingstage,variousmodelsaretrainedbythedatascientist. Theobjectiveofthisstageistoidentifythemodel,whosepredictionaccuracyis betterincomparisontoothers.

Thedatausedformodeltrainingarecategorizedintotwosubsets.Thefirst subsetofthedataisknownasatrainingdatasetwhichisusedastheinputto assisttheMLalgorithmduringthetrainingofthemodel.Theinputdataisthen processedbytheMLalgorithmwhichgivesamodelforpredictiveanalysison newdata.

Thetrainingcontinuesuntilwegetthedesiredmodel.Thetraininghelpsthe modeltoimproveitspredictivehypothesisfornewdata.Inotherwords,wecan saythatthismakesthemodelabletopredicttheintendedvaluefromthenew data.Thetrainingdatacanbelabeledorunlabeled.

Thelabeleddatahasthevalueassociatedwithit,whiletheunlabeleddatahas nopredefinedvalue.

FIGURE1.5 Dataprocessing:featureengineering.

Datamodeling:modeltrainingandscoringmodelbasedonnewdata.

FIGURE1.6

Thesecondsubsetofdataisknownastestdata.Thetestdataisusedtotest thepredictivehypothesisofthemodelwhichiscreatedduringthetraining.The overallobjectiveofthedatamodelingistodevelopsuchamodel,whichisable todothepredictiveanalysisoffuturedatawithhighaccuracy.

1.2.4 Execution(modelevaluation)

Theexecutionstageinvolvesapplication,testing,andfinetuningofthealgorithm (model)ontestdataset(unseendata).Theobjectiveofthisstageistoretrieve theexpectedoutcomefromthemachineandtooptimizethesystemperformance atthemaximumlevel [33].

AtthisstageofMLarchitecture,thesolutionprovidedbythesystemiscapableenoughtoexploreandprovidetherequireddatafordecision-makingbythe machine [34],asshownin Fig.1.7.

1.2.5 Deployment

Deploymentisthecrucialstagewhichdecideshowthemodelwillbedeployed intothesystemfordecision-making.Atthisstagethemodelactuallyisappliedin arealscenarioandalsoundergoesfurtherprocessing.Furthertheoutputofthe workingmodelisappliedasaninstructionintothesystemfordecision-making activities [35]

TheoutputoftheMLoperationsisdirectlyappliedtothebusinessproduction whereitplaysasignificantroleinenablingthemachinetotakeoutput-based expertdecisionswithoutdependencyonotherfactors.ThedeploymentofML modelisshownin Fig.1.8

1.3 Machinelearningframework

TheMLframeworkcanbeunderstoodasalibrary,aninterface,oratoolthat helpsworkingprofessionalstodevelopmodelsofmachinelearningwithease withoutworryingabouttheunderlyingprinciplesandcomplexitiesofthealgorithms [36].Theframeworkprovidestheoptimizedandprebuiltcomponentsto buildeasy,meaningful,andquickMLmodelsandotherrelatedtasks.

1.3.1 FeaturesofMLframework

Tochoosetherightframework,oneshou ldkeepthefollowingkeyfeatures inmind [37] ( https://hackernoon.com/top-10-ma chine-learning-frameworksfor-2019-h6120305j ).

• Frameworkshouldbeabletoprovideoptimizedperformance.

• Itshouldbeeasyandfriendlytohandlebythedevelopercommunity.

FIGURE1.7

Execution:modelevaluation.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.