Lost circulation : mechanisms and solutions 1st edition alexandre lavrov - Own the ebook now and sta

Page 1


Mastery, Dependence, and the Ethics of Authority Aaron Stalnaker

https://ebookmass.com/product/mastery-dependence-and-the-ethics-ofauthority-aaron-stalnaker/

ebookmass.com

Feature extraction and image processing for computer vision Fourth Edition Aguado

https://ebookmass.com/product/feature-extraction-and-image-processingfor-computer-vision-fourth-edition-aguado/

ebookmass.com

Nambu Pistols: Japanese military handguns 1900–45 John Walter

https://ebookmass.com/product/nambu-pistols-japanese-militaryhandguns-1900-45-john-walter/

ebookmass.com

Computer Science Illuminated

https://ebookmass.com/product/computer-science-illuminated/

ebookmass.com

Environmental Applications of Microbial Nanotechnology: Emerging Trends in Environmental Remediation Pardeep Singh

https://ebookmass.com/product/environmental-applications-of-microbialnanotechnology-emerging-trends-in-environmental-remediation-pardeepsingh/

ebookmass.com

GulfProfessionalPublishingisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,USA TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UK

Copyright 2016ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-803916-8

ForinformationonallGulfProfessionalPublishingpublications visitourwebsiteat https://www.elsevier.com/

Publisher: JoeHayton

SeniorAcquisitionsEditor: KatieHammon

SeniorEditorialProjectManager: KattieWashington

ProductionProjectManager: KiruthikaGovindaraju Designer: VictoriaPearsonEsser

TypesetbyTNQBooksandJournals

LISTOFACRONYMS

APL Annularpressureloss

BHP Bottomholepressure

CBP Constantbottomholepressure

CCS Continuouscirculationsystem

CWD Casingwhiledrilling

ECD Equivalentcirculatingdensity

FBP Formationbreakdownpressure

FCP Fractureclosurepressure

FIP Fractureinitiationpressure

FIT Formationintegritytest

FMCD Floatingmudcapdrilling

FPP Fracturepropagationpressure

FRP Fracturereopeningpressure

HPHT Highpressure,hightemperature

ISIP Instantaneousshut-inpressure

KGD Khristianovitch Geertsma deKlerk

LCM Lostcirculationmaterial

LOT Leakofftest

LPM Losspreventionmaterial

MD Measureddepth

MPD Managedpressuredrilling

MWD Measurementwhiledrilling

NADF Nonaqueousdrillingfluids

OBM Oil-basemud

PDC Polycrystallinediamondcompact

PKN Perkins Kern Nordgren

PMCD Pressurizedmudcapdrilling

PSD Particlesizedistribution

RCD Rotatingcontroldevice

SBM Synthetic-basemud

TVD Trueverticaldepth

UBD Underbalanceddrilling

UCS Unconfinedcompressivestrength

WBM Water-basemud

WSM Wellborestrengtheningmaterial

XLOT Extendedleakofftest

BOX1.1LostCirculationinaGeothermalWellinIceland Lostcirculationisacommonproblemingeothermaldrilling,whereitisexacerbatedbyhightemperaturesandhardrocks.Asequenceoflostcirculationevents whiledrillingageothermalwellintheKraflafieldinIcelandin2008 09was describedbyPa ´ lssonetal.intheirpaper“DrillingofthewellIDDP-1” (Geothermics,2014,49,23 30).

Thewell,IDDP-1,waspartoftheIcelandDeepDrillingProjectandwas originallydesignedtoreacha4500-mdepth.Severeproblemswereencountered duringdrilling,andthewellhadtobesidetrackedeverytimeitapproached magmaat2100m.Mudlosseswereexperiencedoften,becomingworseasthe depthincreased.Also,thewellbecameincreasinglymoreunstableandwashed outwithdepth,whichaffectedtheholecleaningandreducedtherateof penetrationthatalreadywaslowduetothehardrock.

Minormudlossesoccurredinthefirst1000mwhiledrillingfortheintermediate18-5/800 casing.Thelosseswerecuredwithlostcirculationmaterial.

Lossesof20L/swerethenexperiencedat1432m.Theproblemwascuredby cementingthethiefzone.

Lossesinexcessof60L/swereexperiencedat2043m.Thelossescouldnotbe cured.Theweighteddrillingfluidwasreplacedwithwater,anddrillingcontinued. At2101m,thebottomholeassemblybroke.Afterunsuccessfulfishing,a cementplugwasplaced,andthewellwassidetracked.

Uponthesidetrack,totallossesoccurredat2054m.Acementplugwasplaced inthewell,andthedrillingcontinuedfrom2060m.Lossesresumedat2067m, andtotallossofcirculationoccurredat2076m.

Continuedproblemswithstuckpipeandunsuccessfulfishingattemptsat 2103mforcedasecondsidetrack.Mudlossescontinuedafterthesidetrack,and totallossofcirculationoccurredat2071m.Drillingwasterminatedupon reachingmagmaat2100m.Thewellwasthentestedandcompleted.

InanaturallyfracturedcarbonatefieldinIran,mudlosseswerereportedin 35%ofdrilledwells [3].InSaudiArabia,32%ofwellsinthenaturally fracturedcarbonateKhuffFormationexperienceballooning,while10% experiencelostcirculation [13]

Thebestwaytodealwithlostcirculationistopreventitfromhappening altogetherinthefirstplace.Inpractice,however,thismaybedifficultto achieve.Nevertheless,technologicalimprovementsinformationcharacterizationanddrillingfluiddesignenablethepreventionoflossesinmanywells. Preventinglostcirculationrequiresthatthemechanicsandphysicsofthis drillingproblemarefullyunderstood.

Themostobviouswaytopreventlostcirculationistokeepthedownhole pressuresufficientlylow ie,belowtheupperoperationalpressurebound. Inpractice,however,itisnotquiteobvioushowthisupperboundshouldbe chosen.Incompetentintactformations,theupperboundoftheoperational

FIGURE1.1 Casingpointsdeterminedfromthelower(porepressureorboreholestabilitylimit) andupper(lost-circulationpressure)operationalpressureboundsalongthewell.Thestaticbottomholepressureisshownwitha dottedline. Asterisks denotecasingpoints.

afictitiousverticalonshorewellin Fig.1.2.Theresult ie,thelocationsofthe casingpoints is,ofcourse,thesameasin Fig.1.1

Theabilitytopredictthelost-circulationpressureisthereforecrucialfor optimizingthecasingprogram. Figs.1.1and1.2 alsosuggestthatifthe lost-circulationpressurecouldbeincreased,longerintervalscouldbedrilled withthesamemudweight.Itwouldreducethenumberofcasingpointsand increasethewelldiameteratthetargetdepth.Thisisthemotivationfor applyingspecialtreatmentstoincreasethelost-circulationpressureintheopen hole(“wellborestrengthening”),discussedinchapter“PreventingLost Circulation.”

Evenifthebottomholepressurestaysbelowthelost-circulationpressure duringnormaldrilling,pressuresurgesduringtripsandconnectionsmay exceedthisupperboundandcauselostcirculation.Whenaconnectionis made,circulationissuspended.Duringconnection,thedrillingfluidstarts developinggelstrength.Whencirculationisresumedafterconnection,the pressureneedstobeincreasedsufficientlytobreakthegel.Thismayleadto

FIGURE1.2 Casingpointsdeterminedfromthegradientprofilesalongthewell.Thestaticmud weightisshownwitha dottedline Asterisks denotecasingpoints.

substantialpressurechangesduringconnections.Iftheoperationalpressure windowisnarrow eg,inadeepwaterwell thereductionofpressurebefore connectionmayleadtoaformationfluidinflux,andthepressuresurgeafter connectionmayleadtolostcirculation.

Tripsmaycauseformationfluidinfluxwhenpullingoutofthehole,and lostcirculationwhenrunninginhole.Preventinginfluxesandlostcirculation duringtripscanbeachieved,forexample,byoptimizingthedrillingfluid rheology.

Drillingthroughdepletedformationsisoftenrequiredinordertoaccess deeperreservoirs.Depletedformationsarepronetomudlosses.Insomewells drilledindepletedformations,lossesontheorderofthousandsofbarrelshave beenreported [14].Theminimumhorizontalstressisusuallyreducedin depletedreservoirs(chapter:StressesinRocks).Thisreductionaffectsthe operationalpressurewindowbyreducingthefracturingpressureandthereby increasingtheriskofmudlosses.

Deviatedorhorizontalwellsarepronetolostcirculation.Theoperational pressurewindowisnarrowinsuchwells.Insomecases,thewindowmayclose altogetherastheinclinationincreases.Inextendedreachwells,theproblemis additionallyaggravatedbyincreasingannularpressurelossesalongthehorizontalsection.Sincethefracturingpressureremainsapproximatelythesame atthesamedepth,thebottomholepressurewilleventuallyexceedit.

Aconsiderableshareofmudlossesoccurwhenrunningcasingorpumping cement.Runningthecasingpipegeneratesanexcessivebottomholepressure thatcanleadtoformationbreakdown.Duringcementing,highdensityand rheologyofcementresultinanelevatedbottomholepressure,likelytobethe highestpressuretheformationiseverexposedtoduringwellconstruction. Thismayleadtolostcirculationduringacementjob.

Anotherexampleofformationwherelossesarecommonissubsaltrubble zones [15].Suchformationsareoftenrepresentedbyrelativelyweakand/or fracturedshale.Ithasbeenarguedthatfracturesintheseshalesarecaused bydeformationintheadjacentsaltthroughoutgeologicalhistory [15].Pore pressureinthesubsaltshalecanbeeitherlowerorhigherthanthepore pressureinthesalt.Theformerscenarioisthecase,forexample,intheHassi Messaoudfield,whereseverelosseswereexperienced [16];thelatterscenario isthecase,forexample,intheGulfofMexico,withporepressurevs.depth schematicallyshownin Fig.1.3.Highporepressureinshalebelowthesaltis

FIGURE1.3 Porepressureprofile(solidline)aboveandbelowasaltbodytypicalofsomeGulf ofMexicowells.Thesaltbodyisshownwitha dottedline.Overpressureinthesubsaltshaleis causedbythesalt“trapping”theporepressure. BasedonSweatmanR,FaulR,BallewC.New solutionsforsubsalt-welllostcirculationandoptimizedprimarycementing.SPEpaper56499 presentedatthe1999SPEannualtechnicalconferenceandexhibitionheldinHouston,Texas; 3 6October1999.

causedbythesalt“trapping”theporepressure.Itresultsinanarrowmargin betweentheporepressureandthelost-circulationpressureinshale.Aswith otherfracturedrocks,fillingfracturesinthesubsaltshalewithcementorlost circulationmaterialisnotaneasytask.Accordingtoonereportfrom1999, “thecostofdrillingformationsapproximately1500ftabovethesaltto approximately1500ftbelowthesalthavereachedseveralmilliondollars” [15].Thenonproductivetimeassociatedwithsuchintervalscanbeweeks. Asanexample,morethanhalfofthewellsdrilledintheHassiMessaoud fieldexperiencedtotallossesinsubsaltshale [16].

Lostcirculationisexacerbatedindeepwaterdrilling.Thefracturegradient isoftenquitelowindeepwaterwells [17] (Fig.1.4).Thisresultsinanarrow operationalpressurewindowinsuchwells.Exceedingthefracturegradient canleadtomudlosses.

Lostcirculationisamultidisciplinarychallenge.Combattinglostcirculationrequiresacomplexapproachthatincludesrockmechanicalanalysis, carefulwelltrajectoryplanning,optimizationofdrillingfluidrheologyand composition,optimizationoflosspreventionandlostcirculationmaterials, andoptimizationofdrillinghydraulics [18].

Considerableadvancesinpetroleum-relatedrockmechanics,including hydraulicfracturemechanics,overthepastdecadeshaveimprovedour understandingoflostcirculation.Bettermethodsofmudlosspredictionand moreeffectivetreatmentsmakeitpossibletodrillwellsthatwouldbe impossibletodrillafewdecadesago.Atthesametime,increasinglymore difficultdrillingconditionsareencounteredaseverdeeperreservesare involvedinexplorationandproduction.Thisresultsinpersistenceofthe lost-circulationchallengetothisday.

FIGURE1.4 Fracturegradientasafunctionofverticaldepthindeepwaterdrilling:waterdepth incaseAisgreaterthanincaseB.

Chapter2

StressesinRocks

Thestressstateinthereservoirandaroundtheborehole,androckfailure causedbymechanicalorthermalstresses,playcentralrolesinlostcirculation. Theseconceptsarereviewedinthischapter.

2.1STRESS,STRENGTH,ANDFAILURE

Whenmechanicalloadsareappliedtotherock,orwhentherockisheatedor cooled,stressesareinduced. Stress isdefinedastheforceactingonasurfaceof unitarea.Ifwecutoutanimaginarycubeinsidetherockwiththefacesnormal tothecoordinateaxes,thestressoneachfacecanbedecomposedintothe normalstressandtheshearstress.Thelattercanbedecomposedonceagain intotwocomponentsactingalongtwocoordinatedirectionsparalleltotheface asshownin Fig.2.1.Normalstressesaredenotedby s,andshearstresses aredenotedby s,in Fig.2.1.Thefirstindexintheshearstress eg,“x”in

FIGURE2.1 Stresscomponents.

http://dx.doi.org/10.1016/B978-0-12-803916-8.00002-9

sxy denotesthefaceonwhichthestressisacting.Thesecondindexdenotes thedirectionofthestress.Thedirectionsofnormalstressesin Fig.2.1 correspond tocompressivestresses.Normalstressesinducelongitudinaldeformations. Compressivenormalstressesinducecontraction,whereastensilenormalstresses induceextension.Asignconventionisneededfornormalstresses.Inrockmechanics,compressivestressesareusuallyassumedpositive,andtensilestresses negative.

Equilibriumconditionsrequirethattheshearstresseswiththesamebut permutedindexesbeequal,forinstance sxy ¼ syx,andsimilarlyforothershear stresscomponents.

Theninestresscomponentsmakeupasecond-order stresstensor:

Duetothesymmetrypropertiesoftheshearstresses,thestresstensoris symmetricandthushassixindependentcomponents.

Rotatingthecubein Fig.2.1 would,ingeneral,changethevaluesof normalandshearstresses(exceptinthecaseofauniform,so-called hydrostatic compressionortensioninwhichcasetherearenoshearstresses,andall normalstresseshavethesamemagnitude).Thereexistsonespecialorientation ofthecubesuchthattherearenoshearstressesonitsfaces(Fig.2.2).Normal stressesactingonthecubefacesinthiscasearecalled principalstresses.They aredenotedby s1, s2,and s3,with s1 beingthegreatestofthethree(themost compressiveone)and s3 beingthesmallestofthethree(thetensileorleast compressiveone).Thedirectionsofthesestressesarecalled principalaxes

FIGURE2.2 Principalstresses.

Inthe s0 s coordinates,theMohr’shypothesiscanberepresentedusing thefailureenvelopeshownasthesolidlinein Fig.2.4.Thestressstateslocated betweenthefailureenvelopeandthe s0 -axisareadmissible.Thestressstates locatedaboveortotheleftofthefailureenvelopecannotbeattainedwithout breakingtherock.Therockfailswhenapointinthestressspacereachesthe failureenvelopeduringloading.Itisconvenienttoillustratethisbymeansofa Mohr’scircle whichisshownasadashedlinein Fig.2.4.TheMohr’scirclein Fig.2.4 issupportedbytheminimumandmaximumeffectivestressesand showsthestressstateonplaneswithdifferentorientations.Whilethefailure envelopedescribesthepropertiesoftherockitself,theMohr’scircledescribes theactualstateofstressinducedintherockbyloading.Inthesituationshown in Fig.2.4,theMohr’scircledoesnotcrossthefailureenvelope.Thus,no failureoccurs(notethattheminimumprincipalstress, s0 3 ,iscompressivein Fig.2.4,andthusnotensilefailureoccursatthatpoint,either).If,asaresultof loading,theMohr’scircleisexpandedbyincreasingthemaximumeffective stressordecreasingtheminimumeffectivestress,theMohr’scirclemay eventuallytouchthefailureenvelope,resultinginshearfailure.Shearfailure canbeinducedalsobymovingtheMohr’scircleasawholeleftwardby increasingtheporepressureandthusreducingtheeffectivestresses.Eventually,thecirclewilltouchtheenvelopeinthiscase,againresultinginfailure.

Inpracticalrockmechanicsanalysis,thecurvedfailureenvelopeof Fig.2.4 isoftenapproximatedwithastraightline,asshownin Fig.2.5.The resultingfailurecriterionisknownasthe Mohr Coulombfailurecriterion. Theinterceptofthefailureenvelopewiththe s-axisisknownasthe cohesion, S0.Theslopeofthefailureenvelopeischaracterizedbythe coefficientof internalfriction, m.Thus,theMohr Coulombcriterionhasthreeparameters: S0, m,and T0.

Ifacylindricalrockspecimenissubjectedtocompressiveloadingalong thecylinder’saxiswhileitssidesurfaceremainsstress-free,failureoccurs

FIGURE2.4 FailureenvelopeandMohr’scircle. StressesinRocks Chapter j 2 17

Apartfromtectonicforces,elevatedhorizontalstressescanbecausedby geologicalhistory,inparticulariftheformationunderwentupliftcausedby erosionoftheoverburden.Thehorizontalstressesactingbeforetheuplift remainlockedintherockunlesstheyaregraduallydissipatedbystress relaxationcausedbyviscoelasticbehavioroftherock.

Therefore,inreality,thecoefficientinfrontof s0 v in Eq.[2.9] isnot necessarilyequalto nd =ð1 nd Þ,andtherelationshipbetweenthehorizontal andtheverticaleffectivestresscouldmoreaccuratelybewrittenasfollows:

Thecoefficient K0 typicallyvariesbetween1and10atshallowdepth,and between0.2and1.5atgreatdepth [1]

Crudeestimatesofhorizontalstressescanbeobtainedbyusingempirical relations,suchastheBreckels vanEekelenequationsforthetotalminimum horizontalstressattheUSGulfCoast [1]: sh ¼ 0:0053D1 145 þ 0:46ðPp Ppn Þ at

where D isthedepth; Pp istheporepressure;and Ppn isthe“normalpore pressure”correspondingtotheporepressuregradientof10.5MPa/km.

Contrarytothesimplifiedmodelgivenby Eq.[2.11],thehorizontal stressesareoftennotequal: sH s sh.

Sofar,wehaveassumedthatoneoftheinsituprincipalstressesisvertical. Eventhoughthisistrueinmanycases,thedirectionsofprincipalstressesmay begravelyaffectedbysurfacetopography.Inparticular,nearaslope,the verticaldirectionmightnotcoincidewithanyoftheprincipalstressdirection (eg,seeRef. [3]).Inthevalley,thehorizontalstresscanbelargerthanthe verticalstressevenintheabsenceoftectonicforces.

Fig.2.6 illustratestheimpactofstructuralfeaturesontheinsitustresses onshore.Indeepwaterdrilling,horizontalstressanomaliessimilartothose

FIGURE2.6 Effectofsurfacetopographyonprincipalstressdirectionsandmagnitudes.

Chapter j 2 21

shownin Fig.2.6 areobservednearsurfacesofescarpments,asopposedto intrabasinareas.Nottakingthereducedhorizontalstressesintoaccountwhen designingawellmayresultinlostcirculationincidentswhendrillingthe top-holesection [4].Directionsofinsitustressesinthereservoircanbe affectedbynearbyfaults,domes,andothergeologicalfeatures.

Toillustratecomplexitiesofinsitustressstates,letusconsiderstress distributionsaroundsaltbodies.Drillingthroughsaltisoftenaccompanied withboreholeinstabilitiesandonexitingthesalt,lostcirculation.Anumerical geomechanicalanalysisperformedinRef. [5] providesavaluableinsightinto theproblemsexperiencedwhiledrillingsalt.Saltcannotsustainshearstresses overlongperiods.Stressrelaxationleadstogradualreductionofshearstresses insalt,sothatthestateofstressgraduallyapproacheshydrostaticcompression,with sv z sH z sh.Theinabilitytosustainshearstressesforlong periodsmakessaltsimilartoaveryviscousfluidwhich,asanyfluid,would eventuallyapproachhydrostaticequilibrium.Theinsitustressesinsurroundingrocks(eg,shale)mayontheotherhandbefarfromhydrostatic.In theGulfofMexico,thetectonicregimeisnormalfaulting,andthefar-field stressesinrocksaroundthesaltaresuchthat sv > sH z sh.Thediscrepancybetweenthestressfieldsinsidethesaltbodyandoutsideitleadsto significantcomplexityofthestressfieldaroundtheboundaryofthesalt. Aroundasaltbodythatisclosetosphericalinshape,thestressesarealtered comparedwiththeirfar-fieldvalues,asshownin Fig.2.7.Horizontalstresses arereducedaboveandbelowthesalt,whichexplainsthereducedfracturing pressureexperiencedonexitingthesaltwhiledrilling.Inthesideburden ie, intherockslaterallyadjacenttothesalt thestresschangesaremore

FIGURE2.7 Alterationofinsitustressesaroundanidealized,spheroidalsaltbody(shownin gray). BasedontheresultsofFredrichJT,CoblentzD,FossumAF,ThorneBJ.Stressperturbations adjacenttosaltbodiesinthedeepwaterGulfofMexico.SPEpaper84554presentedattheSPE AnnualTechnicalConferenceandExhibitionheldinDenver,Colorado,USA,October5 8,2003.

complex:horizontalstressesinthoseareasbecomeanisotropic,evenifthe far-fieldhorizontalstressesareisotropic.Inaddition,principalstressesmaybe rotatedinthoseareas,withtheverticaldirectionnotbeingaprincipaldirection anymore [5].Thesestresschangeshaveadetrimentaleffectonborehole stability.

Reducedverticalstressesabovesaltbodiesindicatethatusingdensity profilestoevaluatetheverticalinsitustress, Eq.[2.8],wouldoverestimatethe insituverticalstressintheseareas.Thereductionintheverticalstressabove thesaltundernaturalconditionsisanexampleofthe archingeffect,similarto theoneobservedduringdepletion(Section2.4).Note,however,thatthe archingeffectin Fig.2.7 iscausedsolelybynaturalstressredistributiondueto stressrelaxationbeforeanyreservoirdepletion.Inparticular,sincesaltis unabletosustainshearstresses,theverticalstressneedstoberedistributedso thatsomepartoftheverticalloadthatwouldotherwisebebornebythesaltis carriedbythesurroundingrock.

Thesphericalgeometryofthesaltbodyin Fig.2.7 isastrongidealization. Numericalanalyseswithmorerealisticgeometriesconfirmthatreducedhorizontalinsitustressespersistrightaboveandrightbelowthesalt [6].Thisis consistentwithlostcirculationincidentsexperiencedwhenenteringorexiting thesalt.Areductionofthefracturegradientby3ppg(0.36g/cm3)underneath thesaltwasreportedforawellintheGulfofMexico [6].

Iftheshapeofthesaltbodyisnotspheroidal(eg,inthecaseofasalt sheet),stressperturbationsaroundthesaltarelesssevere.Accordingtothe numericalresultsofFredrichetal. [5],thehydrostaticstressmagnitudeina spheroidalsaltbodyliesbetweenthefar-fieldvaluesof sv and sH z sh.Ina saltbodywithlateralextensionlargerthanitsheightbyafactorof4ormore, thehydrostaticstressinthesaltisclosetothefar-fieldverticalstress.

Inadditiontoreducedhorizontalstresses,therockbelowthesaltisoften damagedorbroken.These rubblezones furthercontributetomudlosseson exitingthesalt.

Theuncertaintyaboutthevaluesof sH, sh,andtheirdirectionscallfor experimentalmethodsthatwouldenablemeasurementoftheseparametersin thefield.Someofthemethodscurrentlyusedintheindustrywillbediscussed in Section2.7.

Numericalmodelingisanotherwaytoobtainestimatesofbothverticaland horizontalstressesinandaroundthereservoir.Theuseofnumericalmodeling requiresthattherocks(reservoir,overburden,andsideburden)areproperly characterizedintermsofrockmechanicalproperties,oratleastthevaluesof theseparametersareconstrainedtowithinsufficientlynarrowmargins.Dueto scarcityofcorematerial,particularlyfromthecaprock,suchconstrainingis oftendifficult.Inspiteofthisdifficulty,examplesofnumericalevaluationof rockstressesareavailable.Forinstance,finite-elementstressanalysiswas usedtoevaluatestressesinandaroundasaltdiapirinthedeepwaterGulfof Mexico [6]

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.