Lithium-sulfur batteries: advances in high-energy density batteries prashant kumta - Read the ebook

Page 1


https://ebookmass.com/product/lithium-sulfur-batteriesadvances-in-high-energy-density-batteries-prashant-kumta/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Lithium-Sulfur Batteries: Materials, Challengess and Applications Gupta R.K.

https://ebookmass.com/product/lithium-sulfur-batteries-materialschallengess-and-applications-gupta-r-k/

ebookmass.com

Energy Storage Devices for Renewable Energy-Based Systems: Rechargeable Batteries and Supercapacitors 2nd Edition Nihal Kularatna

https://ebookmass.com/product/energy-storage-devices-for-renewableenergy-based-systems-rechargeable-batteries-and-supercapacitors-2ndedition-nihal-kularatna/

ebookmass.com

Zinc Batteries: Basics, Developments, and Applications Rajender Boddula

https://ebookmass.com/product/zinc-batteries-basics-developments-andapplications-rajender-boddula/

ebookmass.com

Kyland Mia Sheridan

https://ebookmass.com/product/kyland-mia-sheridan/

ebookmass.com

Python Fundamentals for Finance: A survey of Algorithmic Options trading with Python Van Der Post

https://ebookmass.com/product/python-fundamentals-for-finance-asurvey-of-algorithmic-options-trading-with-python-van-der-post/

ebookmass.com

The Icelandian (Men Of The World Book 10) J.O Mantel

https://ebookmass.com/product/the-icelandian-men-of-the-worldbook-10-j-o-mantel/

ebookmass.com

Happy Singles Day Ann Marie Walker

https://ebookmass.com/product/happy-singles-day-ann-marie-walker-3/

ebookmass.com

Excommunication in Thirteenth-Century England Felicity Hill

https://ebookmass.com/product/excommunication-in-thirteenth-centuryengland-felicity-hill/

ebookmass.com

Traditions and Encounters: A Brief Global History Vol 1 4th Edition – Ebook PDF Version

https://ebookmass.com/product/traditions-and-encounters-a-briefglobal-history-vol-1-4th-edition-ebook-pdf-version/

ebookmass.com

Welcome to Management: How to Grow from Top Performer to Excellent Leader Ryan Hawk

https://ebookmass.com/product/welcome-to-management-how-to-grow-fromtop-performer-to-excellent-leader-ryan-hawk/

ebookmass.com

LITHIUM-SULFUR BATTERIES

LITHIUM-SULFUR BATTERIES

SwansonSchoolofEngineering,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates

ALOYSIUSF.HEPP

NanotechInnovationsLLC,Oberlin,OH,UnitedStates

MONIK.DATTA

BioengineeringDepartment,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates

OLEGI.VELIKOKHATNYI

BioengineeringDepartment,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundat ourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,or ideascontainedinthematerialherein.

ISBN:978-0-12-819676-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: KaylaDosSantos

EditorialProjectManager: EmilyJoyGraceThomson

ProductionProjectManager: SojanP.Pazhayattil

CoverDesigner: GregHarris

Contributorsxi

PartITechnologybackgroundandnovelmaterials

1.Introductiontothelithium-sulfursystem:Technologyand electricvehicleapplications1 TobiasGlossmann,AbhiRaj,TeaPajan,andElizavetaBuch

1.1 Introductiontolithium-sulfurbattery3

1.2 Electricvehiclebatteries4

1.3 Earlylithium-sulfurbatteries5

1.4 Lithium-ionandlithium-sulfurbatteries5

1.5 Sulfur6

1.6 Today'slithium-sulfurbatteries7

1.7 Cathodes8

1.8 Anodeandelectrolyte9

1.9 Fundamentalchallenge:Lowcellvoltage10

1.10 Goal:Commercializedbattery12 References12

2.Solidelectrolytesforlithium-sulfurbatteries17 EleniTemecheandRichardM.Laine

2.1 IntroductiontoLi-Sbatteries18

2.2 Introductiontosolidelectrolytes19

2.3 Briefhistoryofsolidelectrolytes19

2.4 Introductiontoinorganicsolidelectrolytes20

2.5 Li-Sbatteriesbasedonpolymerelectrolytes39

2.6 Summary43 Acknowledgments44 References45

3.Applicationsofmetal-organicframeworksforlithium-sulfur batteries49 Fu-ShengKeandSi-ChengWan

3.1 Introduction49

3.2 MOFsforlithium-sulfurbatteries54

3.3 Characterizationtechniques92

3.4 Summaryandoutlook104 Acknowledgments107 References108

PartIIModelingandcharacterization

4.Multiscalemodelingofphysicochemicalinteractions inlithium-sulfurbatteryelectrodes123 ParthaP.Mukherjee,ZhixiaoLiu,FengHao,andBairavS.Vishnugopi

4.1 Introduction123

4.2 ThegrowthofcrystallineLi2Sfilmincathode125

4.3 Parasiticreactionsinanode144

4.4 Summaryandoutlook152 Acknowledgment154 References154

5.ReliableHPLC-MSmethodforthequantitativeand qualitativeanalysesofdissolvedpolysulfideionsduringthe operationofLi-Sbatteries159

DongZheng,TianyaoDing,andDeyangQu

5.1 IntroductiontoHPLC-MS159

5.2 Dissolvedpolysulfideionsandtheirbehaviorsinnonaqueous electrolytes164

5.3 AdvantagesofHPLC-MSvs.otheranalyticaltechniques166

5.4 One-stepderivatization,separation,anddeterminationof polysulfideions171

5.5 Themechanismofsulfurredoxreactiondeterminedinsitu electrochemical-HPLCtechnique175

5.6 Conclusions194 References195

6.Modelingofelectrode,electrolyte,andinterfacesof lithium-sulfurbatteries201

VenkatSrinivasanandAashutoshMistry

6.1 Introduction202

6.2 Mathematicaldescriptionofporouselectrodeperformance206

6.3 Evolutionofcathodeporouselectrodestructure213

6.4 Concentratedelectrolytetransporteffects218

6.5 Dynamicsofthepolysulfideshuttleeffect221

6.6 Sourcesofvariability:Mechanismsandproperties225

6.7 Summaryandoutlook226 Acknowledgments227 References227

PartIIIPerformanceimprovement

7.Recentprogressinfundamentalunderstanding ofselenium-dopedsulfurcathodesduringcharging anddischargingwithvariouselectrolytes235 ChenZhao,Gui-LiangXu,TianshouZhao,andKhalilAmine

7.1 Introduction235

7.2 OverviewofSexSy cathodecompositionandelectrochemistry236

7.3 ProgressonLi-SexSy batterieswithliquidelectrolytes238

7.4 All-solid-stateLi-SexSy batteries253

7.5 Concludingremarksandfuturedesignstrategiesfor SexSy-basedbatterysystems256 Acknowledgments257 References258

8.Suppressionoflithiumdendritegrowthin lithium-sulfurbatteries261

XiaoLongXuandHaoWang

8.1 Introduction261

8.2 Dendriticgrowthmechanism263

8.3 EffectofLidendritegrowthonLi-Sbatteries265

8.4 Suppressionmethod266

8.5 Conclusions287 References289

9.Theroleofadvancedhostmaterialsandbindersforimproving lithium-sulfurbatteryperformance297 ShahidHussain,NaseemAkhtar,AwaisAhmad,MuhammadKhurramTufail, MuhammadKashifAslam,MuhammadSufyanJaved,andXiangzhaoZhang

9.1 Introductiontoenergysourcesandrechargeablebatteries298

9.2 Complexenergystoragechallengesandsolutions298

9.3 Hostmaterials300

9.4 Binders314

9.5 Conclusionsandfuturedirections322 References322

10.Futureprospectsforlithium-sulfurbatteries:Thecriticality ofsolidelectrolytes327

10.1 Theadvantagesoflithium-sulfurbatteries327

10.2 Thechallengesofconventionalsulfurelectrodeswhen usedwithliquidelectrolytes331

10.3 Lithiummetalelectrodesinlithium-sulfurbatteries339

10.4 Pathforward345

Dedication346 References347

11.Newapproachestohigh-energy-densitycathodeandanode architecturesforlithium-sulfurbatteries353

MoniK.Datta,RamalingaKuruba,T.PrasadaRao,OlegI.Velikokhatnyi, andPrashantN.Kumta

11.1 Introduction354

11.2 Novelconfinementarchitecturesforsulfurcathodes359

11.3 Assemblyandtestingofpouchcells366

11.4 Coincells:Preparationofhybridsolidelectrolyte-coatedbattery separators373

11.5 Directlydepositedsulfurarchitectures376

11.6 Computationalstudiestoidentifyfunctionalelectrocatalysts393

11.7 Functionalelectrocatalystsandrelatedmaterialsforpolysulfide decomposition399

11.8 Engineeringdendrite-freeanodesforLi-Sbatteries421

11.9 Conclusions435

Acknowledgments436 References436

12.Asolid-stateapproachtoalithium-sulfurbattery441

MuhammadKhurramTufail,SyedShoaibAhmadShah, ShahidHussain,TayyabaNajam,andMuhammadKashifAslam

12.1 Introduction441

12.2 Solidelectrolytes443

12.3 Polymer/ceramichybridcompositeelectrolytes456

12.4 StableLimetalanodesforall-solid-stateLi-Sbatteries458

12.5 Sulfur-basedcathodecompositesforall-solid-stateLi-Sbatteries467

12.6 All-solid-statethin-filmbatteries474

12.7 Conclusions477 References478

PartVApplications:System-levelissuesandchallenging environments

13.Stateestimationmethodologiesforlithium-sulfurbattery managementsystems491 FatenAyadi,DanielJ.Auger,AbbasFotouhi,andNedaShateri

13.1 Introduction491

13.2 Lithium-sulfurbatterymodels493

13.3 Li-SBMS:Stateestimationmethods497

13.4 Performanceofstateestimationmethods507

13.5 Conclusionsandoutlook525

Acknowledgments527 References527

14.Batteriesforaeronauticsandspaceexploration:Recent developmentsandfutureprospects531 AloysiusF.Hepp,PrashantN.Kumta,OlegI.Velikokhatnyi, andMoniK.Datta

14.1 Introduction532

14.2 Energystoragefor(solar-)electricaircraftandhigh-altitude airships533

14.3 Overviewofenergystorageforspaceexploration552

14.4 RecentNASAmissionstoMercury,Mars,andsmallbodies553

14.5 RadiationissuesandexplorationmissionstotheJupiterregion565

14.6 Nextgeneration(s)ofbatterytechnologiesforspaceexploration572

14.7 Conclusions581 References584

Index 597

Contributors

AwaisAhmad

DepartmentofChemistry,TheUniversityofLahore,Lahore,Pakistan

NaseemAkhtar

CollegeofMaterialsScienceandEngineering,BeijingUniversityofChemicalTechnology, Beijing,China

KhalilAmine

ChemicalScienceandEngineeringDivision,ArgonneNationalLaboratory,Lemont,IL; MaterialsScienceandEngineering,StanfordUniversity,Stanford,CA,UnitedStates

MuhammadKashifAslam

FacultyofMaterialsandEnergy,SouthwestUniversity,Chongqing,China

DanielJ.Auger

SchoolofAerospace,TransportandManufacturing,CranfieldUniversity,Bedford, UnitedKingdom

FatenAyadi

SchoolofAerospace,TransportandManufacturing,CranfieldUniversity,Bedford, UnitedKingdom

PatrickBonnick

ToyotaResearchInstituteofNorthAmerica,AnnArbor,MI,UnitedStates

ElizavetaBuch

Mercedes-BenzAG,Stuttgart,Germany

MoniK.Datta

DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM),SwansonSchoolofEngineering,UniversityofPittsburgh,Pittsburgh,PA, UnitedStates

TianyaoDing

DepartmentofMechanicalEngineering,CollegeofEngineeringandAppliedScience, UniversityofWisconsinMilwaukee,Milwaukee,WI,UnitedStates

AbbasFotouhi

SchoolofAerospace,TransportandManufacturing,CranfieldUniversity,Bedford, UnitedKingdom

TobiasGlossmann

Mercedes-BenzResearch&DevelopmentNorthAmerica,Inc.,Redford;Oakland University,Rochester,MI,UnitedStates

FengHao

DepartmentofEngineeringMechanics,ShandongUniversity,Jinan,Shandong,China

AloysiusF.Hepp

NanotechInnovations,LLC,Oberlin,OH,UnitedStates

ShahidHussain

SchoolofMaterialsScienceandEngineering,JiangsuUniversity,Zhenjiang,China

MuhammadSufyanJaved

SchoolofMaterialsScienceandEngineering,JiangsuUniversity,Zhenjiang,China

Fu-ShengKe

SauvageCenterforMolecularSciences,CollegeofChemistryandMolecularSciences, WuhanUniversity,Wuhan,China

PrashantN.Kumta

DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM);DepartmentofChemicalandPetroleumEngineering;Departmentof MechanicalEngineeringandMaterialsScience,SwansonSchoolofEngineering,University ofPittsburgh,Pittsburgh,PA,UnitedStates

RamalingaKuruba

DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM),SwansonSchoolofEngineering,UniversityofPittsburgh,Pittsburgh,PA, UnitedStates

RichardM.Laine

DepartmentofMaterialsScienceandEngineering,UniversityofMichigan,AnnArbor,MI, UnitedStates

ZhixiaoLiu

CollegeofMaterialsScienceandEngineering,HunanUniversity,Changsa,Hunan,China

AashutoshMistry

ChemicalSciencesandEngineeringDivision,ArgonneNationalLaboratory,Lemont,IL, UnitedStates

ParthaP.Mukherjee

SchoolofMechanicalEngineering,PurdueUniversity,WestLafayette,IN,UnitedStates

JohnMuldoon

ToyotaResearchInstituteofNorthAmerica,AnnArbor,MI,UnitedStates

TayyabaNajam

CollegeofPhysicsandOptoelectronicEngineering,ShenzhenUniversity,Shenzhen, People’sRepublicofChina

TeaPajan

Mercedes-BenzAG,Stuttgart,Germany

T.PrasadaRao

DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM),SwansonSchoolofEngineering,UniversityofPittsburgh,Pittsburgh,PA, UnitedStates

DeyangQu

DepartmentofMechanicalEngineering,CollegeofEngineeringandAppliedScience, UniversityofWisconsinMilwaukee,Milwaukee,WI,UnitedStates

AbhiRaj

Mercedes-BenzResearch&DevelopmentNorthAmerica,Inc.,Redford,MI,UnitedStates

SyedShoaibAhmadShah

HefeiNationalLaboratoryforPhysicalSciencesattheMicroscale,SchoolofChemistryand MaterialScience,UniversityofScienceandTechnologyofChina,Hefei,People’sRepublic ofChina

NedaShateri

SchoolofAerospace,TransportandManufacturing,CranfieldUniversity,Bedford,United Kingdom

VenkatSrinivasan

ChemicalSciencesandEngineeringDivision;ArgonneCollaborativeCenterforEnergy StorageScience,ArgonneNationalLaboratory,Lemont,IL,UnitedStates

EleniTemeche

DepartmentofMaterialsScienceandEngineering,UniversityofMichigan,AnnArbor,MI, UnitedStates

MuhammadKhurramTufail

KeyLaboratoryofClusterScienceofMinistryofEducationBeijingKeyLaboratoryof Photoelectronic/ElectrophotonicConversionMaterials,SchoolofChemistryandChemical Engineering,BeijingInstituteofTechnology,Beijing,China

OlegI.Velikokhatnyi

DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM),SwansonSchoolofEngineering,UniversityofPittsburgh,Pittsburgh,PA, UnitedStates

BairavS.Vishnugopi

SchoolofMechanicalEngineering,PurdueUniversity,WestLafayette,IN,UnitedStates

Si-ChengWan

SauvageCenterforMolecularSciences,CollegeofChemistryandMolecularSciences, WuhanUniversity,Wuhan,China

HaoWang

TheCollegeofMaterialsScienceandEngineering,BeijingUniversityofTechnology, Beijing,China

Gui-LiangXu

ChemicalScienceandEngineeringDivision,ArgonneNationalLaboratory,Lemont,IL, UnitedStates

XiaoLongXu

TheCollegeofMaterialsScienceandEngineering,BeijingUniversityofTechnology, Beijing;SchoolofMaterialsScienceandEngineering,QiluUniversityofTechnology (ShandongAcademyofSciences),Jinan,ShandongProvince,China

XiangzhaoZhang

SchoolofMaterialsScienceandEngineering,JiangsuUniversity,Zhenjiang,China

ChenZhao

ChemicalScienceandEngineeringDivision,ArgonneNationalLaboratory,Lemont,IL, UnitedStates;DepartmentofMechanicalandAerospaceEngineering,TheHongKong UniversityofScienceandTechnology,Kowloon,HongKong,China

TianshouZhao

DepartmentofMechanicalandAerospaceEngineering,TheHongKongUniversityof ScienceandTechnology,Kowloon,HongKong,China

DongZheng

DepartmentofMechanicalEngineering,CollegeofEngineeringandAppliedScience, UniversityofWisconsinMilwaukee,Milwaukee,WI,UnitedStates xiv Contributors

Preface

Lithium-sulfur(Li-S)batteries(LSBs),duetotheirhighertheoreticalenergy densitiesof2600Whkg–1 comparedtocurrentlyused,conventionalLi-ion cellsof100–265Whkg–1,offersignificantopportunitiesforhigh-energy applications.Thistechnologywithahistorydatingbacktothe1960sisconsideredoneofthemostpromisingnext-generationenergystoragedevices. WhileLi-Sbatterytechnologyhasevolvedoflate,intosystemswithsignificantlyimprovedperformance,Li-Sbatterieshaveyettodate,meettheperformancemetricsandenergystoragedemandsformanypractical applications.ThepracticaluseofLi-Sbatterieshasbeenhinderedbymany challenges,themostprominentbeingthedissolutionandshuttlingof electrolyte-solublepolysulfidescombinedwiththelargevolumeexpansion ofconversionofsulfurtoLi2S,combinedwiththelowelectronicandionic conductivityofsulfur.Additionally,thereistheproblemofcorrosionand dendriteformationontheLimetalanodewhichcanleadtoinferiorCoulombicefficiencies,punctureandshort-circuitingofthebatteryrendering themsusceptibletofireandexplosion.Duringthepastdecade,toovercome thesebarrierspreventingwidespreadadoption,researcheffortshaveprogressedandfurtheredthefundamentalunderstandingofthebasicelectrochemistrywhilepositingnewinnovativeapproachestomaterialsandcell designs.AsimpleScopussearchwiththeterms“Li-Sbattery”produceda totalof10,300documents;usingtwoterms,“Li-Sbattery”and “materials,”producedatotalof6030results.Nearly80%ofallresultsfor bothsearcheshavebeenpublishedfrom2018to2021,asofthewriting ofthispreface.Recognizingtheimportanceofthistopic,theeditorsof Lithium-SulfurBatteries:AdvancesinHigh-EnergyDensityBatteries selectedand organized14(andincludingtwocoauthored)chapterswrittenbyexperts inthefieldsofbatterymaterialsscience,energystorage,andtheirapplications.Themainobjectiveistopresentthestate-of-the-artandpotential futuredevelopmentsinLi-Sbatteries,includingfundamentals,recent advances,electrolyteinterfacechallenges,approachestoachievehigh(er) performance,andprospectsforcurrentandfutureenergystorage-related applications.Thisbookisdividedintofiveparts,eachdevotedtoanimportantaspectofLi-Sbatteriesindicatedabove.

PartI, Technologybackgroundandnovelmaterials,includesthreechapters thatprovidesometechnicalbackgroundandintroducethemaintopic(s)

ofthebook:Li-Sbatterymaterials,technologies,andapplications. Chapter1,authoredbyateamofresearchersfromMercedesBenzledby Dr.TobiasGlossmann(alsoaffiliatedwithOaklandUniversity,Michigan, UnitedStates),providesanoverviewofthepromiseofLi-Sbatteriesas analternativetolithium-ionbatteriesforelectricvehiclesandgridstorage. Thisisprimarilyduetotheirbettertheoreticalperformance,lowercost,and environmentalbenefits.Thisintroductorychapterprovidesahigh-level perspectiveofLi-Sbatteriesandtheirintrinsicchallenges. Chapter2 iscoauthoredbyDr.EleniTemecheandProf.RichardLainefromtheUniversity ofMichigan;itbeginswithanintroductiontosolidelectrolytes,including inorganicsolid,polymer,andcompositeelectrolytes.Thechapterdescribes theuseofsolidelectrolytesinassemblingallsolid-stateLi-Sbatteries;solidstateLi-Sbatteriesofferconsiderablepotentialforthenext-generation energystoragesystemsduetotheiranticipatedhighspecificcapacity,low cost,andeco-friendlyfeaturesobviatingtheuseofflammableliquidorganic electrolytes.Solid-stateelectrolytesalsopreventthesolubilityofpolysulfides,amajordeterrenttoliquidelectrolyte-basedLi-Scellsasexplained above. Chapter3,coauthoredbySi-ChengWanandProf.Fu-ShengKe fromtheCollegeofChemistryandMolecularSciencesofWuhanUniversity,focusesonapplicationsofmetal-organicframeworks(MOFs)forLi-S batteries.Metal-organicframeworksareanovelclassofporouscrystalline materials;theyhavebeenthefocusofsignificantrecentstudyduetotheir largesurfacearea,highporosity,tunableporesize,andpotentialforuse innumerouschemicalenvironments.Theseuniquepropertiesrenderthem quitesuitableforuseinLi-Sbatteries.ThechapterappraisesrecentdevelopmentofMOF-basedmaterialsforLi-Sbatteries,includingsulfurhosts, lithiuminterface,electrolyte,separators,orinterlayers,aswellasinsitucharacterizationtechniques.Furthermore,thebenefits,challenges,andfuture prospectsoftheapplicationsofMOF-basedmaterialsinLi-Sbatteriesare assessedanddiscussed.

PartIItitled Modelingandcharacterization comprisesthreechapters.Prof. ParthaP.MukherjeefromPurdueUniversity(WestLafayette,IN,United States)leadsateamofcoauthorspresentingrecentresultsonmultiscale modelingofseveralphysicochemicalinteractionsinLi-Sbatteryelectrodes in Chapter4.Thiscomplexsysteminvolvesintricatespatialandtemporal phenomena:stepwiseelectrochemicalreactions,producingvariousintermediateproducts;depositionofshort-chainpolysulfides(PSs)attheelectrolyte/cathodeinterface(s),migrationofsolublePSsbetweentheelectrodes, andprecipitationofinsolublephases(e.g.,Li2S).In Chapter5,Prof.Deyang

Qu(fromtheUniversityofWisconsin-Milwaukee,UnitedStates)and coworkerssummarizetheuseofreliablehigh-pressureliquid chromatography-massspectrometry(HPLC-MS)methodologyforthe quantitativeandqualitativeanalysesofthedissolvedpolysulfideionsduring theoperationofLi-Sbatteries.TheadvantagesofHPLC-MSversusother spectroscopictechniquesarediscussed;also,assaysofHPLC-MSforthe polysulfideseparationanddeterminationareintroduced.Theuseof HPLC-MSenablesthedistributionofpolysulfideionsinelectrolytesto bequantitativelyandqualitativelydetermined.Coupledwithanelectrochemicalmethod,redoxmechanismsofsulfurcathode(s)arerevealed throughthedeterminationofthedistributionofPSionsatvariousstages ofchargeanddischargeintheoperationofaLi-Sbattery.In Chapter6, Dr.VenkatSrinivasanandDr.AashutoshMistryfromArgonneNational LaboratoryLemont,IL,UnitedStates,presentanin-depthdiscussionof themodelingliteraturethatexaminesvariousmechanismssuchas morphology-dependentmicrostructureevolution,nucleationdynamicsof theprecipitatephase,electrolytetransportlimitation,andPSshuttleeffect thatdegradetheperformanceofLi-Sbatteries.Eachofthesemechanisms dominatesthemacroscopicallymeasuredelectrochemicalsignaturesfora certainsubsetofcellspecificationsandoperation;thus,strategiesforperformanceimprovementdiffer.Thechapterconcludeswithadetailedsummary ofopportunitiesforfutureinvestigationstoelucidatethepoorlyunderstood interactionsthatwouldfacilitatetherationaldesignofsuchcells.

Performanceimprovement (ofLi-Sbatteries)isthetitleandtopicofPartIII ofthisbook;itcontainsthreechapters.In Chapter7,recentprogressinfundamentalunderstandingofselenium-dopedsulfurcathodes(SexSy)during charginganddischargingwithvariouselectrolytesissummarizedbyateam ofcoauthorsledbyDr.KhalilAmine,ChemicalScienceandEngineering Division,ArgonneNationalLaboratory(alsoaffiliatedwithStanfordUniversity,CA,UnitedStates),thatincludesProf.TianshouZhaofromthe HongKongUniversityofScienceandTechnology.Thechapterfocuses onfundamentalinsightsoftheSexSy cathodesduringcharge/dischargein avarietyofbothliquid-andsolid-stateelectrolytes.Inaddition,recentprogressutilizingvariouscathodestructuresdesignforLi-SexSy batteriesisalso discussed;suggestionsforfuturedevelopmentarefinallypresentedatthe chapter’sconclusion.In Chapter8,thesuppressionofLidendritegrowth inLi-SbatteriesisaddressedbyProf.HaoWangandhiscoworkerXiaoLong XufromtheCollegeofMaterialsScienceandEngineering,BeijingUniversityofTechnology,China.Thechapterbeginswithadescriptionof

dendriteinitiationandgrowthmechanisms.Somestrategiesfordelayingand suppressingdendritegrowtharedescribedsubsequently,typicallybydesigningappropriatebatterycomponentsintheseparator,anode,andelectrolyte. Finally,advantagesanddisadvantagesofvariousdendrite-growthprevention strategiesarediscussed.In Chapter9,theroleofadvancedhostmaterialsand bindersforimprovingLi-Sbatteryperformanceisdiscussedbyateamof coauthorsledbyProf.ShahidHussain(SchoolofMaterialsScienceand Engineering,JiangsuUniversity,Zhenjiang,China)andProf.NaseemAkhtar(CollegeofMaterialsScienceandEngineering,BeijingUniversityof ChemicalTechnology,China).Thechapterpresentsrecentadvancesin polysulfide(PS)trapping-hostmaterialsandfunctionalbinders,whichmake thecathodemoreelectronicallyconductive,therebyimprovingthecycle lifeofLi-Sbatteries.Thechapternicelysummarizeshowanidealhostmaterialprovidessufficientsurfaceareaforreaction(s),confinementofsulfur,as wellasincreasingthefacilityofmovementofelectronsandLiions;also,how anidealbinderprovidesgoodadhesion,suitableswellingcapacity,high Li-ionconductivity,andeffectiveadsorptioncapabilityforPS.

PartIVtitled Futuredirections:Solid-statematerialsandnovelbatteryarchitectures comprisesthreechaptersthatdiscussnoveldevicedesignsandstructures aswellasanticipatedfutureresearchdirections,includingissuestobe addressedtoenabletheemploymentofadvancedLi-Sbatterytechnology. Chapter10 byPatrickBonnickandJohnMuldoonofToyotaResearchin AnnArbor,Michigan,UnitedStates,delvesintoseveralkeychallengeswith liquidelectrolytestobesurmountedtoenabletheadventofrobustand high-energy-densityLi-Scells.TheLipolysulfideshuttleandslowLi-PS depositionkineticsatlowelectrolyte/Sratioshaveproventobepractically insurmountable;thishasthereforeshiftedresearchfocustowardsolidelectrolytes.However,issuesremainwithsolidelectrolytes:repeatedexpansion andcontractionoftheactivematerialscanleadtocracking,especiallywithin thepositiveelectrodeaswellasinterfaceinstabilitiesatbothelectrodes;also, Limetalelectrodesmustalsoovercomechallenges,suchasdendritegrowth, whenusedwithsolidelectrolytesatrelevantcurrentdensities.Theauthors discussstrengthsandweaknessesofmanyproposedsolutionstomeetthese challengeswithaneyetowardtheever-presentgoalofcompetingwithconventionalLi-ionenergydensities. Chapter11,acontributionfromateam fromtheUniversityofPittsburghledbyProf.Kumta,addressestheproblemsofpolysulfideformation,includinglossincapacityandeventualcell failureinLSBs.Theproblemisfurthercompoundedbydendriteformation ontheLianodeduringelectrochemicalcycling,resultinginmajorsafety

hazardsofflammabilityoftheelectrolyteandpossibleexplosiondueto short-circuitingofthebattery.Thischapteroutlinesvariousapproaches tocombatbothcathodeandanodeissues.Theseinvolvesynthesisandcharacterizationofcomplexframeworkmaterials(CFMs)forconfiningthepolysulfidesandsulfurintheLSBcathodes.TheCFMsincludeaconfinement hostandacoatingappliedtotheCFMhost,whichincludesoneormore formsofanelectricalconductor,aLi-ionconductor,andafunctionalelectrocatalystforelectrocatalyticallyconvertingthesolublepolysulfidesto Li2S.Furthermore,sulfurisinfiltratedintotheCFMhost,creatinga sulfur-carbonlinkageservingaseffectiveanchorsfortrappingtheensuing polysulfides.Thesystemshavebeentestedincoincellsandpouchcellswith metallicLianodesunderleanelectrolyteconditionsofelectrolyte-to-sulfur ratiosshowingpromiseandfeasibility.Newemergentdendrite-freealloys havealsobeenidentifiedtotestagainstpureLiandCFMcathodesincoin cellandpouchcellconfigurationsundersimilarconditions. Chapter12, coauthoredbyateamledbyProf.S.Hussain,SchoolofMaterialsScience andEngineering,JiangsuUniversity,Zhenjiang,China,discussesallsolidstateLi-Sbatteries(SSLiSBs);theuseoftraditionalorganicliquidelectrolyte inlithium-sulfurbatteriespreventsthemfrombeingcommercializeddueto safetyandseveraltechnicalissuesthatareyettoberesolved.Criticalchallengesandproblemsinpracticalapplications,suchaschemicalandelectrochemicalstability,compatibilityofsolid-stateelectrolyteswiththesulfurbasedactivematerials,andlithiummetal,arediscussed.Finally,thischapter addressesimprovedsafety,extendedworkingtemperaturewindow,and highenergy/powerdensitiesthatareseveralofthekeyadvantagesof SSLiSBs.

PartV, Applications:System-levelissuesandchallengingenvironments,focuses onpracticalandsystemsconsiderationswhenutilizingadvancedbattery (especiallyLi-S)technologiesforelectricvehicleandaerospacetransportationandexploration,energystorageduringoperation(s)whichpresentsignificantchallenges. Chapter13 isacollaborativeworkofresearchersfrom theSchoolofAerospace,TransportandManufacturing,CranfieldUniversityinBedford,UnitedKingdom,ledbyDr.DanielAuger.Lithium-sulfur batteriesofferparticularpromiseforvehicleapplicationsthatneedhigh gravimetricenergydensity.However,Li-Scellsrequirecarefulmanagement,astheybehavedifferentlythanthewell-knownconventionallithium-ionsystemsandstandardtechniquesdonotworkwell.Thechapter presentsthestateoftheartinLi-Sbattery-stateestimation,explainingthe limitationsof“standard”lithium-iontechniquesandpresentingtwogroups

oftechniquesthathaveshownpromise:recursiveBayesianandparticlefiltersandadaptiveneuro-fuzzyinferencesystemsandclassificationtechniques.Thechapteralsoaddressesthesetwoadvancedbattery-state estimationmethodsindetailandconcludeswithbriefremarksonthecurrentandfutureresearchdirections. Chapter14 ofthebookisacollaboration betweenthefourcoeditors;asummaryofenergystorageoptionsandissues foraeronauticsandspaceexplorationintroducesthisintriguingtopic.Batterieshavebeensuccessfullydemonstratedfornumerousexplorationmissionstoseveralclassesofsolarsystemdestinationsoverthepast50years. Giventhebroadtechnologyspaceofbatterytypesandmaterials,thefinal sectionsofthechapterfocusonadiscussionofseveralinstructiverepresentativemissionsandpracticalaspectsofbatteries(withemphasisonrechargeabletechnologies)forspaceexploration.Animportanttake-homelessonis theneedtodevelopenergystoragetechnologiesandpowersystemsthatcan withstandtheradiationfluxesandtemperatureextremesencountered throughoutthesolarsystem;thiswillbecriticalforelectronicdevices, advancedinstrumentation,andsmalloff-worldexplorationvehicles.The chapterconcludeswithaconsiderationoftheuseoflocalresourcesforsustainablehumansubsistencethatmayonedayenableoff-worldproductionof consumables,powercomponents,andstructuralmaterialstofacilitatethe constructionofsettlementsandtheexplorationofthefarthestregionsof thesolarsystem.

Thesuccessofthiseditedbookistheresultofthefullcommitmentof eachcontributingauthor.Withouttheiravailabilityandwillingnessinsharingtheirvaluableknowledgeandcriticalreviewoftherespectivetopics,the bookcouldnotbepublishedatsuchahighstandard.Ourheartfeltthanksare alsoextendedtoRachelPomeryandEmilyThomson,ourEditorialProject Managers.ChristinaGifford,AcquisitionsEditor,isparticularlyacknowledgedforherconstantsupportgiventhroughouttheentirepublicationprocess,especiallyduringthepandemic.Wesincerelyhopethatthisedited compilationofexemplaryworkfromestablishedandworldrenowned researchersonanextremelyhigh-profile,germane,andburgeoningsystem intheareaofhigh-energydensity,rechargeableLi-basedbatterieswillbe ofsignificantvaluetothescientificcommunityaswellaspractitioners,technologistsandemergingresearchersfrommaterialsscience,electronics,space researchandtechnology,batterytechnologyaswellaselectrochemical industries.Finally,afurtheraimofthiscollectionofcuttingedgeandpracticaltopicsistoenabletheeventualimplementationofthisemergingand promisingrechargeableenergystoragetechnology.

PARTI Technologybackground andnovelmaterials

system:Technologyandelectric vehicleapplications

TobiasGlossmanna,b,AbhiRaja,TeaPajanc,andElizavetaBuchc aMercedes-BenzResearch&DevelopmentNorthAmerica,Inc.,Redford,MI,UnitedStates bOaklandUniversity,Rochester,MI,UnitedStates cMercedes-BenzAG,Stuttgart,Germany

1.1Introductiontolithium-sulfurbattery

Basedontheirpromiseofhighspecificenergy( 2300Wh/kg)aswellas energydensity( 2600Wh/L)normalizedbyactivematerialsalone,lithium-sulfurbatteries(LSBs)havethepotentialtotakeasignificantbattery marketshareforvariousapplicationsinthenearfuture.Intheory,LSBs candelivermuchhigherenergydensityatsignificantlylowercostthan Li-ionbatteries(LIBs),akeyconsiderationintheemergingmarketsforgrid storageandelectricvehicles(EVs).Moreover,fortheseapplications,LSBs areahighlyanticipatedalternativetoLi-ionbatteriesasrequirementsare pushingthelimitsofthelatter [1].

WhilesignificantresearcheffortshavefocusedonLSBtechnology,notablecommercializationhasnotbeenachieved.Sofar,onlycompanieswith

Lithium-SulfurBatteries Copyright © 2022ElsevierInc. https://doi.org/10.1016/B978-0-12-819676-2.00010-4

smallerproductionvolumessuchasOxisorSionPowerhavemanufactured LSBsandtypicallyforratherspecializedapplications [2,3].Moregenerally, predictionsofimminentmarketintroductionhavebeenmadesincethe 1970s.Despitethis,primarilyduetoashortfallincyclelife,wehavenotseen majorcommercializationsuccess [4].Itisnotunusualforhighlypromising technologiestostrugglewithsimilarissuesformanyyearsuntilkeydiscoveriesenableabreakthrough.Inthischapter,wewillreviewtheprinciplesof LSBsandtheirhistorytounderstandwhythereissomuchinterestinLSBs andwhytheyarenotreadilyavailable.

1.2Electricvehiclebatteries

Today’sbatterypacksforEVsneedtostoreatleast40–120kWhofenergy, dependingonthevehicle’ssize,energyefficiency,andtargetdrivingrange. Insomemarkets,EVsneedtotravelmorethan320km(200miles)tofind customeracceptance.Whilethepackagingspaceforthebatterysystemof small-sizedvehiclesmayonlybeontheorderof200L,longerwheelbase cars,especiallysportutilityvehicles(SUVs),mayenableontheorderof 500Lofvolumeforthebatterypack.Thebatterycells,however,require amechanicalsupportstructure,abatterymanagementsystem,acoolingsystem,andpack-levelsafetyfeatures.Cables,connections,bus-bars,structural elements,coolingchannels,andotherthermalmanagementmaterials requireasignificantamountofvolume,dependingonthecellcharacteristics.Cellenergydensityisthekeycharacteristicinrespecttopackaging; however,cellswithhigherenergyefficiency,higherspecificenergy (Wh/kg),andlessviolentabusebehaviorthanthestate-of-the-artLIBswill allowmoreefficientpackagingthroughsavingsincoolingsystem,mechanicalstructure,andmeasurestopreventthermalpropagationbetweencellsin caseofathermalrunawayevent.Finalcell-levelenergydensitydevelopment targetsforLSBswillthereforedependatleastonthesethreecharacteristics. Passengercars,constitutingthemajorityoftheglobalvehiclemarket,are likelygoingtodriverequirementsforcalendarorservicelife,cyclelife, andfastchargingaswell.Vehiclemanufacturersareexpecting10–15years ofservicelifeforbatteries [5].Cyclelifeforanyapplicationwilldepend onthebatterysizeandvehicleefficiencyasenergythroughputistheequivalentmeasureformileage.Asimplifiedexampleclarifiesthisrelationship: Avehiclewitharangeof200milesfullyutilizedateverychargewouldhave tosupport1000cyclestoachieve200,000miles.

1.3Earlylithium-sulfurbatteries

Significantresearchonlithium-metal/sulfidebatterieswaspioneeredat ArgonneNationalLaboratoryinthe1960sandthe1970s,aneffortthatoriginatedfromthereactorprograminthe1960swhereelectrochemicalreactionsofmoltensaltsandliquidmetalwereinvestigated [6].Theassumption atthetimewasthatsulfuroranyotherchalcogenshadtobemeltedinorder forthebatterytooperate [7].Thesebatterieswereexpectedtoachieve requirementsfornotonlygridstoragesystems,butalsoelectricvehicle applications [4].Thecellsconsistedofliquidlithium,sulfur,andelectrolyte, asystemthatisnotverypracticalforoperationinamovingcarduetocomplicatedoverheadassociatedwithpackaging.Oneofthethreeliquidcomponentsofthecellthathadtobeimmobilizedforuseontheroadandthe electrolytewaschosen [7].Thiscelldesignusedratherhigharealcapacities toyieldacompellingenergydensity,solargearealcurrentsofabout 1A/cm2 wererequiredatpracticaldischargerates.Currentdensitiesin advancedLIBsforEVsmayreach20mA/cm2 forshortintervalsbutareusuallyevenlower.

1.4Lithium-ionandlithium-sulfurbatteries

Thelithium-ionbatteryconsistsofstacksorrollsoftwopairedthinelectrodeswithaseparatorlayerandliquidelectrolytebetweenthem.Thenegativeelectrodeisusuallyreferredtoasanodeandthepositiveascathodedue totheirroleinthedischargeprocess.LIBtechnology,asitiscommonnow, wasamajordevelopmentcomingfromhigh-temperatureliquidcellsaforementioned.TheLIBmanufacturingprocessproducesthincoatingsofdried slurryoncurrentcollectorenablingbetterelectronandiontransportdueto theshortdistancebetweenelectrodes.Theanode’sactivematerialistypicallygraphite,andthecathode’sactivematerialistypicallyametaloxide orphosphate.ThesesystemsarecalledLi-ionbatteriesduetothefactthat lithiumnominallyremainsoutsideoftheelectrodes,meaningsolvatedinthe electrolyte,inaLi+ chargedstate.TheLi-ions’locations,representingstateof-charge(SOC),arecontrolledbytheelectricalcurrentthroughthecell. TheenergeticallyhigherlocationistheanodewhereLi-ionsareinserted intographite.Volumeexpansionofgraphiteisabout13.1%uponanode lithiation(charge)butthestate-of-the-artbinderswillaccommodatethis expansion [8,9].Uponcelldischarge,Li-ionstraveltotheenergetically lowerlocation,thetransitionmetaloxide,andreacttherewithoneelectron

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.