LITHIUM-SULFUR BATTERIES
Editedby PRASHANTN.KUMTA
SwansonSchoolofEngineering,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates
ALOYSIUSF.HEPP
NanotechInnovationsLLC,Oberlin,OH,UnitedStates
MONIK.DATTA
BioengineeringDepartment,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates
OLEGI.VELIKOKHATNYI
BioengineeringDepartment,UniversityofPittsburgh, Pittsburgh,PA,UnitedStates
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundat ourwebsite: www.elsevier.com/permissions
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,or ideascontainedinthematerialherein.
ISBN:978-0-12-819676-2
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: MatthewDeans
AcquisitionsEditor: KaylaDosSantos
EditorialProjectManager: EmilyJoyGraceThomson
ProductionProjectManager: SojanP.Pazhayattil
CoverDesigner: GregHarris
Contributorsxi
PartITechnologybackgroundandnovelmaterials
1.Introductiontothelithium-sulfursystem:Technologyand electricvehicleapplications1 TobiasGlossmann,AbhiRaj,TeaPajan,andElizavetaBuch
1.1 Introductiontolithium-sulfurbattery3
1.2 Electricvehiclebatteries4
1.3 Earlylithium-sulfurbatteries5
1.4 Lithium-ionandlithium-sulfurbatteries5
1.5 Sulfur6
1.6 Today'slithium-sulfurbatteries7
1.7 Cathodes8
1.8 Anodeandelectrolyte9
1.9 Fundamentalchallenge:Lowcellvoltage10
1.10 Goal:Commercializedbattery12 References12
2.Solidelectrolytesforlithium-sulfurbatteries17 EleniTemecheandRichardM.Laine
2.1 IntroductiontoLi-Sbatteries18
2.2 Introductiontosolidelectrolytes19
2.3 Briefhistoryofsolidelectrolytes19
2.4 Introductiontoinorganicsolidelectrolytes20
2.5 Li-Sbatteriesbasedonpolymerelectrolytes39
2.6 Summary43 Acknowledgments44 References45
3.Applicationsofmetal-organicframeworksforlithium-sulfur batteries49 Fu-ShengKeandSi-ChengWan
3.1 Introduction49
3.2 MOFsforlithium-sulfurbatteries54
3.3 Characterizationtechniques92
3.4 Summaryandoutlook104 Acknowledgments107 References108
PartIIModelingandcharacterization
4.Multiscalemodelingofphysicochemicalinteractions inlithium-sulfurbatteryelectrodes123 ParthaP.Mukherjee,ZhixiaoLiu,FengHao,andBairavS.Vishnugopi
4.1 Introduction123
4.2 ThegrowthofcrystallineLi2Sfilmincathode125
4.3 Parasiticreactionsinanode144
4.4 Summaryandoutlook152 Acknowledgment154 References154
5.ReliableHPLC-MSmethodforthequantitativeand qualitativeanalysesofdissolvedpolysulfideionsduringthe operationofLi-Sbatteries159
DongZheng,TianyaoDing,andDeyangQu
5.1 IntroductiontoHPLC-MS159
5.2 Dissolvedpolysulfideionsandtheirbehaviorsinnonaqueous electrolytes164
5.3 AdvantagesofHPLC-MSvs.otheranalyticaltechniques166
5.4 One-stepderivatization,separation,anddeterminationof polysulfideions171
5.5 Themechanismofsulfurredoxreactiondeterminedinsitu electrochemical-HPLCtechnique175
5.6 Conclusions194 References195
6.Modelingofelectrode,electrolyte,andinterfacesof lithium-sulfurbatteries201
VenkatSrinivasanandAashutoshMistry
6.1 Introduction202
6.2 Mathematicaldescriptionofporouselectrodeperformance206
6.3 Evolutionofcathodeporouselectrodestructure213
6.4 Concentratedelectrolytetransporteffects218
6.5 Dynamicsofthepolysulfideshuttleeffect221
6.6 Sourcesofvariability:Mechanismsandproperties225
6.7 Summaryandoutlook226 Acknowledgments227 References227
PartIIIPerformanceimprovement
7.Recentprogressinfundamentalunderstanding ofselenium-dopedsulfurcathodesduringcharging anddischargingwithvariouselectrolytes235 ChenZhao,Gui-LiangXu,TianshouZhao,andKhalilAmine
7.1 Introduction235
7.2 OverviewofSexSy cathodecompositionandelectrochemistry236
7.3 ProgressonLi-SexSy batterieswithliquidelectrolytes238
7.4 All-solid-stateLi-SexSy batteries253
7.5 Concludingremarksandfuturedesignstrategiesfor SexSy-basedbatterysystems256 Acknowledgments257 References258
8.Suppressionoflithiumdendritegrowthin lithium-sulfurbatteries261
XiaoLongXuandHaoWang
8.1 Introduction261
8.2 Dendriticgrowthmechanism263
8.3 EffectofLidendritegrowthonLi-Sbatteries265
8.4 Suppressionmethod266
8.5 Conclusions287 References289
9.Theroleofadvancedhostmaterialsandbindersforimproving lithium-sulfurbatteryperformance297 ShahidHussain,NaseemAkhtar,AwaisAhmad,MuhammadKhurramTufail, MuhammadKashifAslam,MuhammadSufyanJaved,andXiangzhaoZhang
9.1 Introductiontoenergysourcesandrechargeablebatteries298
9.2 Complexenergystoragechallengesandsolutions298
9.3 Hostmaterials300
9.4 Binders314
9.5 Conclusionsandfuturedirections322 References322
10.Futureprospectsforlithium-sulfurbatteries:Thecriticality ofsolidelectrolytes327
PatrickBonnickandJohnMuldoon
10.1 Theadvantagesoflithium-sulfurbatteries327
10.2 Thechallengesofconventionalsulfurelectrodeswhen usedwithliquidelectrolytes331
10.3 Lithiummetalelectrodesinlithium-sulfurbatteries339
10.4 Pathforward345
Dedication346 References347
11.Newapproachestohigh-energy-densitycathodeandanode architecturesforlithium-sulfurbatteries353
MoniK.Datta,RamalingaKuruba,T.PrasadaRao,OlegI.Velikokhatnyi, andPrashantN.Kumta
11.1 Introduction354
11.2 Novelconfinementarchitecturesforsulfurcathodes359
11.3 Assemblyandtestingofpouchcells366
11.4 Coincells:Preparationofhybridsolidelectrolyte-coatedbattery separators373
11.5 Directlydepositedsulfurarchitectures376
11.6 Computationalstudiestoidentifyfunctionalelectrocatalysts393
11.7 Functionalelectrocatalystsandrelatedmaterialsforpolysulfide decomposition399
11.8 Engineeringdendrite-freeanodesforLi-Sbatteries421
11.9 Conclusions435
Acknowledgments436 References436
12.Asolid-stateapproachtoalithium-sulfurbattery441
MuhammadKhurramTufail,SyedShoaibAhmadShah, ShahidHussain,TayyabaNajam,andMuhammadKashifAslam
12.1 Introduction441
12.2 Solidelectrolytes443
12.3 Polymer/ceramichybridcompositeelectrolytes456
12.4 StableLimetalanodesforall-solid-stateLi-Sbatteries458
12.5 Sulfur-basedcathodecompositesforall-solid-stateLi-Sbatteries467
12.6 All-solid-statethin-filmbatteries474
12.7 Conclusions477 References478
PartVApplications:System-levelissuesandchallenging environments
13.Stateestimationmethodologiesforlithium-sulfurbattery managementsystems491 FatenAyadi,DanielJ.Auger,AbbasFotouhi,andNedaShateri
13.1 Introduction491
13.2 Lithium-sulfurbatterymodels493
13.3 Li-SBMS:Stateestimationmethods497
13.4 Performanceofstateestimationmethods507
13.5 Conclusionsandoutlook525
Acknowledgments527 References527
14.Batteriesforaeronauticsandspaceexploration:Recent developmentsandfutureprospects531 AloysiusF.Hepp,PrashantN.Kumta,OlegI.Velikokhatnyi, andMoniK.Datta
14.1 Introduction532
14.2 Energystoragefor(solar-)electricaircraftandhigh-altitude airships533
14.3 Overviewofenergystorageforspaceexploration552
14.4 RecentNASAmissionstoMercury,Mars,andsmallbodies553
14.5 RadiationissuesandexplorationmissionstotheJupiterregion565
14.6 Nextgeneration(s)ofbatterytechnologiesforspaceexploration572
14.7 Conclusions581 References584
Index 597
Contributors
AwaisAhmad
DepartmentofChemistry,TheUniversityofLahore,Lahore,Pakistan
NaseemAkhtar
CollegeofMaterialsScienceandEngineering,BeijingUniversityofChemicalTechnology, Beijing,China
KhalilAmine
ChemicalScienceandEngineeringDivision,ArgonneNationalLaboratory,Lemont,IL; MaterialsScienceandEngineering,StanfordUniversity,Stanford,CA,UnitedStates
MuhammadKashifAslam
FacultyofMaterialsandEnergy,SouthwestUniversity,Chongqing,China
DanielJ.Auger
SchoolofAerospace,TransportandManufacturing,CranfieldUniversity,Bedford, UnitedKingdom
FatenAyadi
SchoolofAerospace,TransportandManufacturing,CranfieldUniversity,Bedford, UnitedKingdom
PatrickBonnick
ToyotaResearchInstituteofNorthAmerica,AnnArbor,MI,UnitedStates
ElizavetaBuch
Mercedes-BenzAG,Stuttgart,Germany
MoniK.Datta
DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM),SwansonSchoolofEngineering,UniversityofPittsburgh,Pittsburgh,PA, UnitedStates
TianyaoDing
DepartmentofMechanicalEngineering,CollegeofEngineeringandAppliedScience, UniversityofWisconsinMilwaukee,Milwaukee,WI,UnitedStates
AbbasFotouhi
SchoolofAerospace,TransportandManufacturing,CranfieldUniversity,Bedford, UnitedKingdom
TobiasGlossmann
Mercedes-BenzResearch&DevelopmentNorthAmerica,Inc.,Redford;Oakland University,Rochester,MI,UnitedStates
FengHao
DepartmentofEngineeringMechanics,ShandongUniversity,Jinan,Shandong,China
AloysiusF.Hepp
NanotechInnovations,LLC,Oberlin,OH,UnitedStates
ShahidHussain
SchoolofMaterialsScienceandEngineering,JiangsuUniversity,Zhenjiang,China
MuhammadSufyanJaved
SchoolofMaterialsScienceandEngineering,JiangsuUniversity,Zhenjiang,China
Fu-ShengKe
SauvageCenterforMolecularSciences,CollegeofChemistryandMolecularSciences, WuhanUniversity,Wuhan,China
PrashantN.Kumta
DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM);DepartmentofChemicalandPetroleumEngineering;Departmentof MechanicalEngineeringandMaterialsScience,SwansonSchoolofEngineering,University ofPittsburgh,Pittsburgh,PA,UnitedStates
RamalingaKuruba
DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM),SwansonSchoolofEngineering,UniversityofPittsburgh,Pittsburgh,PA, UnitedStates
RichardM.Laine
DepartmentofMaterialsScienceandEngineering,UniversityofMichigan,AnnArbor,MI, UnitedStates
ZhixiaoLiu
CollegeofMaterialsScienceandEngineering,HunanUniversity,Changsa,Hunan,China
AashutoshMistry
ChemicalSciencesandEngineeringDivision,ArgonneNationalLaboratory,Lemont,IL, UnitedStates
ParthaP.Mukherjee
SchoolofMechanicalEngineering,PurdueUniversity,WestLafayette,IN,UnitedStates
JohnMuldoon
ToyotaResearchInstituteofNorthAmerica,AnnArbor,MI,UnitedStates
TayyabaNajam
CollegeofPhysicsandOptoelectronicEngineering,ShenzhenUniversity,Shenzhen, People’sRepublicofChina
TeaPajan
Mercedes-BenzAG,Stuttgart,Germany
T.PrasadaRao
DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM),SwansonSchoolofEngineering,UniversityofPittsburgh,Pittsburgh,PA, UnitedStates
DeyangQu
DepartmentofMechanicalEngineering,CollegeofEngineeringandAppliedScience, UniversityofWisconsinMilwaukee,Milwaukee,WI,UnitedStates
AbhiRaj
Mercedes-BenzResearch&DevelopmentNorthAmerica,Inc.,Redford,MI,UnitedStates
SyedShoaibAhmadShah
HefeiNationalLaboratoryforPhysicalSciencesattheMicroscale,SchoolofChemistryand MaterialScience,UniversityofScienceandTechnologyofChina,Hefei,People’sRepublic ofChina
NedaShateri
SchoolofAerospace,TransportandManufacturing,CranfieldUniversity,Bedford,United Kingdom
VenkatSrinivasan
ChemicalSciencesandEngineeringDivision;ArgonneCollaborativeCenterforEnergy StorageScience,ArgonneNationalLaboratory,Lemont,IL,UnitedStates
EleniTemeche
DepartmentofMaterialsScienceandEngineering,UniversityofMichigan,AnnArbor,MI, UnitedStates
MuhammadKhurramTufail
KeyLaboratoryofClusterScienceofMinistryofEducationBeijingKeyLaboratoryof Photoelectronic/ElectrophotonicConversionMaterials,SchoolofChemistryandChemical Engineering,BeijingInstituteofTechnology,Beijing,China
OlegI.Velikokhatnyi
DepartmentofBioengineering;CenterforComplexEngineeredMultifunctionalMaterials (CCEMM),SwansonSchoolofEngineering,UniversityofPittsburgh,Pittsburgh,PA, UnitedStates
BairavS.Vishnugopi
SchoolofMechanicalEngineering,PurdueUniversity,WestLafayette,IN,UnitedStates
Si-ChengWan
SauvageCenterforMolecularSciences,CollegeofChemistryandMolecularSciences, WuhanUniversity,Wuhan,China
HaoWang
TheCollegeofMaterialsScienceandEngineering,BeijingUniversityofTechnology, Beijing,China
Gui-LiangXu
ChemicalScienceandEngineeringDivision,ArgonneNationalLaboratory,Lemont,IL, UnitedStates
XiaoLongXu
TheCollegeofMaterialsScienceandEngineering,BeijingUniversityofTechnology, Beijing;SchoolofMaterialsScienceandEngineering,QiluUniversityofTechnology (ShandongAcademyofSciences),Jinan,ShandongProvince,China
XiangzhaoZhang
SchoolofMaterialsScienceandEngineering,JiangsuUniversity,Zhenjiang,China
ChenZhao
ChemicalScienceandEngineeringDivision,ArgonneNationalLaboratory,Lemont,IL, UnitedStates;DepartmentofMechanicalandAerospaceEngineering,TheHongKong UniversityofScienceandTechnology,Kowloon,HongKong,China
TianshouZhao
DepartmentofMechanicalandAerospaceEngineering,TheHongKongUniversityof ScienceandTechnology,Kowloon,HongKong,China
DongZheng
DepartmentofMechanicalEngineering,CollegeofEngineeringandAppliedScience, UniversityofWisconsinMilwaukee,Milwaukee,WI,UnitedStates xiv Contributors
Preface
Lithium-sulfur(Li-S)batteries(LSBs),duetotheirhighertheoreticalenergy densitiesof2600Whkg–1 comparedtocurrentlyused,conventionalLi-ion cellsof100–265Whkg–1,offersignificantopportunitiesforhigh-energy applications.Thistechnologywithahistorydatingbacktothe1960sisconsideredoneofthemostpromisingnext-generationenergystoragedevices. WhileLi-Sbatterytechnologyhasevolvedoflate,intosystemswithsignificantlyimprovedperformance,Li-Sbatterieshaveyettodate,meettheperformancemetricsandenergystoragedemandsformanypractical applications.ThepracticaluseofLi-Sbatterieshasbeenhinderedbymany challenges,themostprominentbeingthedissolutionandshuttlingof electrolyte-solublepolysulfidescombinedwiththelargevolumeexpansion ofconversionofsulfurtoLi2S,combinedwiththelowelectronicandionic conductivityofsulfur.Additionally,thereistheproblemofcorrosionand dendriteformationontheLimetalanodewhichcanleadtoinferiorCoulombicefficiencies,punctureandshort-circuitingofthebatteryrendering themsusceptibletofireandexplosion.Duringthepastdecade,toovercome thesebarrierspreventingwidespreadadoption,researcheffortshaveprogressedandfurtheredthefundamentalunderstandingofthebasicelectrochemistrywhilepositingnewinnovativeapproachestomaterialsandcell designs.AsimpleScopussearchwiththeterms“Li-Sbattery”produceda totalof10,300documents;usingtwoterms,“Li-Sbattery”and “materials,”producedatotalof6030results.Nearly80%ofallresultsfor bothsearcheshavebeenpublishedfrom2018to2021,asofthewriting ofthispreface.Recognizingtheimportanceofthistopic,theeditorsof Lithium-SulfurBatteries:AdvancesinHigh-EnergyDensityBatteries selectedand organized14(andincludingtwocoauthored)chapterswrittenbyexperts inthefieldsofbatterymaterialsscience,energystorage,andtheirapplications.Themainobjectiveistopresentthestate-of-the-artandpotential futuredevelopmentsinLi-Sbatteries,includingfundamentals,recent advances,electrolyteinterfacechallenges,approachestoachievehigh(er) performance,andprospectsforcurrentandfutureenergystorage-related applications.Thisbookisdividedintofiveparts,eachdevotedtoanimportantaspectofLi-Sbatteriesindicatedabove.
PartI, Technologybackgroundandnovelmaterials,includesthreechapters thatprovidesometechnicalbackgroundandintroducethemaintopic(s)
ofthebook:Li-Sbatterymaterials,technologies,andapplications. Chapter1,authoredbyateamofresearchersfromMercedesBenzledby Dr.TobiasGlossmann(alsoaffiliatedwithOaklandUniversity,Michigan, UnitedStates),providesanoverviewofthepromiseofLi-Sbatteriesas analternativetolithium-ionbatteriesforelectricvehiclesandgridstorage. Thisisprimarilyduetotheirbettertheoreticalperformance,lowercost,and environmentalbenefits.Thisintroductorychapterprovidesahigh-level perspectiveofLi-Sbatteriesandtheirintrinsicchallenges. Chapter2 iscoauthoredbyDr.EleniTemecheandProf.RichardLainefromtheUniversity ofMichigan;itbeginswithanintroductiontosolidelectrolytes,including inorganicsolid,polymer,andcompositeelectrolytes.Thechapterdescribes theuseofsolidelectrolytesinassemblingallsolid-stateLi-Sbatteries;solidstateLi-Sbatteriesofferconsiderablepotentialforthenext-generation energystoragesystemsduetotheiranticipatedhighspecificcapacity,low cost,andeco-friendlyfeaturesobviatingtheuseofflammableliquidorganic electrolytes.Solid-stateelectrolytesalsopreventthesolubilityofpolysulfides,amajordeterrenttoliquidelectrolyte-basedLi-Scellsasexplained above. Chapter3,coauthoredbySi-ChengWanandProf.Fu-ShengKe fromtheCollegeofChemistryandMolecularSciencesofWuhanUniversity,focusesonapplicationsofmetal-organicframeworks(MOFs)forLi-S batteries.Metal-organicframeworksareanovelclassofporouscrystalline materials;theyhavebeenthefocusofsignificantrecentstudyduetotheir largesurfacearea,highporosity,tunableporesize,andpotentialforuse innumerouschemicalenvironments.Theseuniquepropertiesrenderthem quitesuitableforuseinLi-Sbatteries.ThechapterappraisesrecentdevelopmentofMOF-basedmaterialsforLi-Sbatteries,includingsulfurhosts, lithiuminterface,electrolyte,separators,orinterlayers,aswellasinsitucharacterizationtechniques.Furthermore,thebenefits,challenges,andfuture prospectsoftheapplicationsofMOF-basedmaterialsinLi-Sbatteriesare assessedanddiscussed.
PartIItitled Modelingandcharacterization comprisesthreechapters.Prof. ParthaP.MukherjeefromPurdueUniversity(WestLafayette,IN,United States)leadsateamofcoauthorspresentingrecentresultsonmultiscale modelingofseveralphysicochemicalinteractionsinLi-Sbatteryelectrodes in Chapter4.Thiscomplexsysteminvolvesintricatespatialandtemporal phenomena:stepwiseelectrochemicalreactions,producingvariousintermediateproducts;depositionofshort-chainpolysulfides(PSs)attheelectrolyte/cathodeinterface(s),migrationofsolublePSsbetweentheelectrodes, andprecipitationofinsolublephases(e.g.,Li2S).In Chapter5,Prof.Deyang
Qu(fromtheUniversityofWisconsin-Milwaukee,UnitedStates)and coworkerssummarizetheuseofreliablehigh-pressureliquid chromatography-massspectrometry(HPLC-MS)methodologyforthe quantitativeandqualitativeanalysesofthedissolvedpolysulfideionsduring theoperationofLi-Sbatteries.TheadvantagesofHPLC-MSversusother spectroscopictechniquesarediscussed;also,assaysofHPLC-MSforthe polysulfideseparationanddeterminationareintroduced.Theuseof HPLC-MSenablesthedistributionofpolysulfideionsinelectrolytesto bequantitativelyandqualitativelydetermined.Coupledwithanelectrochemicalmethod,redoxmechanismsofsulfurcathode(s)arerevealed throughthedeterminationofthedistributionofPSionsatvariousstages ofchargeanddischargeintheoperationofaLi-Sbattery.In Chapter6, Dr.VenkatSrinivasanandDr.AashutoshMistryfromArgonneNational LaboratoryLemont,IL,UnitedStates,presentanin-depthdiscussionof themodelingliteraturethatexaminesvariousmechanismssuchas morphology-dependentmicrostructureevolution,nucleationdynamicsof theprecipitatephase,electrolytetransportlimitation,andPSshuttleeffect thatdegradetheperformanceofLi-Sbatteries.Eachofthesemechanisms dominatesthemacroscopicallymeasuredelectrochemicalsignaturesfora certainsubsetofcellspecificationsandoperation;thus,strategiesforperformanceimprovementdiffer.Thechapterconcludeswithadetailedsummary ofopportunitiesforfutureinvestigationstoelucidatethepoorlyunderstood interactionsthatwouldfacilitatetherationaldesignofsuchcells.
Performanceimprovement (ofLi-Sbatteries)isthetitleandtopicofPartIII ofthisbook;itcontainsthreechapters.In Chapter7,recentprogressinfundamentalunderstandingofselenium-dopedsulfurcathodes(SexSy)during charginganddischargingwithvariouselectrolytesissummarizedbyateam ofcoauthorsledbyDr.KhalilAmine,ChemicalScienceandEngineering Division,ArgonneNationalLaboratory(alsoaffiliatedwithStanfordUniversity,CA,UnitedStates),thatincludesProf.TianshouZhaofromthe HongKongUniversityofScienceandTechnology.Thechapterfocuses onfundamentalinsightsoftheSexSy cathodesduringcharge/dischargein avarietyofbothliquid-andsolid-stateelectrolytes.Inaddition,recentprogressutilizingvariouscathodestructuresdesignforLi-SexSy batteriesisalso discussed;suggestionsforfuturedevelopmentarefinallypresentedatthe chapter’sconclusion.In Chapter8,thesuppressionofLidendritegrowth inLi-SbatteriesisaddressedbyProf.HaoWangandhiscoworkerXiaoLong XufromtheCollegeofMaterialsScienceandEngineering,BeijingUniversityofTechnology,China.Thechapterbeginswithadescriptionof
dendriteinitiationandgrowthmechanisms.Somestrategiesfordelayingand suppressingdendritegrowtharedescribedsubsequently,typicallybydesigningappropriatebatterycomponentsintheseparator,anode,andelectrolyte. Finally,advantagesanddisadvantagesofvariousdendrite-growthprevention strategiesarediscussed.In Chapter9,theroleofadvancedhostmaterialsand bindersforimprovingLi-Sbatteryperformanceisdiscussedbyateamof coauthorsledbyProf.ShahidHussain(SchoolofMaterialsScienceand Engineering,JiangsuUniversity,Zhenjiang,China)andProf.NaseemAkhtar(CollegeofMaterialsScienceandEngineering,BeijingUniversityof ChemicalTechnology,China).Thechapterpresentsrecentadvancesin polysulfide(PS)trapping-hostmaterialsandfunctionalbinders,whichmake thecathodemoreelectronicallyconductive,therebyimprovingthecycle lifeofLi-Sbatteries.Thechapternicelysummarizeshowanidealhostmaterialprovidessufficientsurfaceareaforreaction(s),confinementofsulfur,as wellasincreasingthefacilityofmovementofelectronsandLiions;also,how anidealbinderprovidesgoodadhesion,suitableswellingcapacity,high Li-ionconductivity,andeffectiveadsorptioncapabilityforPS.
PartIVtitled Futuredirections:Solid-statematerialsandnovelbatteryarchitectures comprisesthreechaptersthatdiscussnoveldevicedesignsandstructures aswellasanticipatedfutureresearchdirections,includingissuestobe addressedtoenabletheemploymentofadvancedLi-Sbatterytechnology. Chapter10 byPatrickBonnickandJohnMuldoonofToyotaResearchin AnnArbor,Michigan,UnitedStates,delvesintoseveralkeychallengeswith liquidelectrolytestobesurmountedtoenabletheadventofrobustand high-energy-densityLi-Scells.TheLipolysulfideshuttleandslowLi-PS depositionkineticsatlowelectrolyte/Sratioshaveproventobepractically insurmountable;thishasthereforeshiftedresearchfocustowardsolidelectrolytes.However,issuesremainwithsolidelectrolytes:repeatedexpansion andcontractionoftheactivematerialscanleadtocracking,especiallywithin thepositiveelectrodeaswellasinterfaceinstabilitiesatbothelectrodes;also, Limetalelectrodesmustalsoovercomechallenges,suchasdendritegrowth, whenusedwithsolidelectrolytesatrelevantcurrentdensities.Theauthors discussstrengthsandweaknessesofmanyproposedsolutionstomeetthese challengeswithaneyetowardtheever-presentgoalofcompetingwithconventionalLi-ionenergydensities. Chapter11,acontributionfromateam fromtheUniversityofPittsburghledbyProf.Kumta,addressestheproblemsofpolysulfideformation,includinglossincapacityandeventualcell failureinLSBs.Theproblemisfurthercompoundedbydendriteformation ontheLianodeduringelectrochemicalcycling,resultinginmajorsafety
hazardsofflammabilityoftheelectrolyteandpossibleexplosiondueto short-circuitingofthebattery.Thischapteroutlinesvariousapproaches tocombatbothcathodeandanodeissues.Theseinvolvesynthesisandcharacterizationofcomplexframeworkmaterials(CFMs)forconfiningthepolysulfidesandsulfurintheLSBcathodes.TheCFMsincludeaconfinement hostandacoatingappliedtotheCFMhost,whichincludesoneormore formsofanelectricalconductor,aLi-ionconductor,andafunctionalelectrocatalystforelectrocatalyticallyconvertingthesolublepolysulfidesto Li2S.Furthermore,sulfurisinfiltratedintotheCFMhost,creatinga sulfur-carbonlinkageservingaseffectiveanchorsfortrappingtheensuing polysulfides.Thesystemshavebeentestedincoincellsandpouchcellswith metallicLianodesunderleanelectrolyteconditionsofelectrolyte-to-sulfur ratiosshowingpromiseandfeasibility.Newemergentdendrite-freealloys havealsobeenidentifiedtotestagainstpureLiandCFMcathodesincoin cellandpouchcellconfigurationsundersimilarconditions. Chapter12, coauthoredbyateamledbyProf.S.Hussain,SchoolofMaterialsScience andEngineering,JiangsuUniversity,Zhenjiang,China,discussesallsolidstateLi-Sbatteries(SSLiSBs);theuseoftraditionalorganicliquidelectrolyte inlithium-sulfurbatteriespreventsthemfrombeingcommercializeddueto safetyandseveraltechnicalissuesthatareyettoberesolved.Criticalchallengesandproblemsinpracticalapplications,suchaschemicalandelectrochemicalstability,compatibilityofsolid-stateelectrolyteswiththesulfurbasedactivematerials,andlithiummetal,arediscussed.Finally,thischapter addressesimprovedsafety,extendedworkingtemperaturewindow,and highenergy/powerdensitiesthatareseveralofthekeyadvantagesof SSLiSBs.
PartV, Applications:System-levelissuesandchallengingenvironments,focuses onpracticalandsystemsconsiderationswhenutilizingadvancedbattery (especiallyLi-S)technologiesforelectricvehicleandaerospacetransportationandexploration,energystorageduringoperation(s)whichpresentsignificantchallenges. Chapter13 isacollaborativeworkofresearchersfrom theSchoolofAerospace,TransportandManufacturing,CranfieldUniversityinBedford,UnitedKingdom,ledbyDr.DanielAuger.Lithium-sulfur batteriesofferparticularpromiseforvehicleapplicationsthatneedhigh gravimetricenergydensity.However,Li-Scellsrequirecarefulmanagement,astheybehavedifferentlythanthewell-knownconventionallithium-ionsystemsandstandardtechniquesdonotworkwell.Thechapter presentsthestateoftheartinLi-Sbattery-stateestimation,explainingthe limitationsof“standard”lithium-iontechniquesandpresentingtwogroups
oftechniquesthathaveshownpromise:recursiveBayesianandparticlefiltersandadaptiveneuro-fuzzyinferencesystemsandclassificationtechniques.Thechapteralsoaddressesthesetwoadvancedbattery-state estimationmethodsindetailandconcludeswithbriefremarksonthecurrentandfutureresearchdirections. Chapter14 ofthebookisacollaboration betweenthefourcoeditors;asummaryofenergystorageoptionsandissues foraeronauticsandspaceexplorationintroducesthisintriguingtopic.Batterieshavebeensuccessfullydemonstratedfornumerousexplorationmissionstoseveralclassesofsolarsystemdestinationsoverthepast50years. Giventhebroadtechnologyspaceofbatterytypesandmaterials,thefinal sectionsofthechapterfocusonadiscussionofseveralinstructiverepresentativemissionsandpracticalaspectsofbatteries(withemphasisonrechargeabletechnologies)forspaceexploration.Animportanttake-homelessonis theneedtodevelopenergystoragetechnologiesandpowersystemsthatcan withstandtheradiationfluxesandtemperatureextremesencountered throughoutthesolarsystem;thiswillbecriticalforelectronicdevices, advancedinstrumentation,andsmalloff-worldexplorationvehicles.The chapterconcludeswithaconsiderationoftheuseoflocalresourcesforsustainablehumansubsistencethatmayonedayenableoff-worldproductionof consumables,powercomponents,andstructuralmaterialstofacilitatethe constructionofsettlementsandtheexplorationofthefarthestregionsof thesolarsystem.
Thesuccessofthiseditedbookistheresultofthefullcommitmentof eachcontributingauthor.Withouttheiravailabilityandwillingnessinsharingtheirvaluableknowledgeandcriticalreviewoftherespectivetopics,the bookcouldnotbepublishedatsuchahighstandard.Ourheartfeltthanksare alsoextendedtoRachelPomeryandEmilyThomson,ourEditorialProject Managers.ChristinaGifford,AcquisitionsEditor,isparticularlyacknowledgedforherconstantsupportgiventhroughouttheentirepublicationprocess,especiallyduringthepandemic.Wesincerelyhopethatthisedited compilationofexemplaryworkfromestablishedandworldrenowned researchersonanextremelyhigh-profile,germane,andburgeoningsystem intheareaofhigh-energydensity,rechargeableLi-basedbatterieswillbe ofsignificantvaluetothescientificcommunityaswellaspractitioners,technologistsandemergingresearchersfrommaterialsscience,electronics,space researchandtechnology,batterytechnologyaswellaselectrochemical industries.Finally,afurtheraimofthiscollectionofcuttingedgeandpracticaltopicsistoenabletheeventualimplementationofthisemergingand promisingrechargeableenergystoragetechnology.