Introductory statistics 4th revised edition edition sheldon m. ross - The newest ebook version is re

Page 1


The Zelensky Effect Olga Onuch

https://ebookmass.com/product/the-zelensky-effect-olga-onuch-2/

ebookmass.com

Hearing the Scriptures: Liturgical Exegesis of the Old Testament in Byzantine Orthodox Hymnography Eugen J. Pentiuc

https://ebookmass.com/product/hearing-the-scriptures-liturgicalexegesis-of-the-old-testament-in-byzantine-orthodox-hymnography-eugenj-pentiuc/ ebookmass.com

Sorry, Bro Taleen Voskuni

https://ebookmass.com/product/sorry-bro-taleen-voskuni/

ebookmass.com

Bradley and Daroff's Neurology in clinical practice 8th Edition Joseph Jankovic

https://ebookmass.com/product/bradley-and-daroffs-neurology-inclinical-practice-8th-edition-joseph-jankovic-2/

ebookmass.com

Nanostructured Carbon Nitrides for Sustainable Energy and Environmental Applications 1st Edition Shamik Chowdhury

https://ebookmass.com/product/nanostructured-carbon-nitrides-forsustainable-energy-and-environmental-applications-1st-edition-shamikchowdhury/

ebookmass.com

The Ones Who Got Away: Mighty Eighth Airmen on the Run in

https://ebookmass.com/product/the-ones-who-got-away-mighty-eighthairmen-on-the-run-in-occupied-europe-1st-edition-bill-yenne/

ebookmass.com

IntroductoryStatistics

AbouttheAuthor

SheldonM.RossreceivedhisPh.D.inStatisticsatStanfordUniversityin1968 andthenjoinedtheDepartmentofIndustrialEngineeringandOperationsResearchattheUniversityofCaliforniaatBerkeley.HeremainedatBerkeleyuntil Fall2004,whenhebecametheDanielJ.EpsteinProfessorofIndustrialand SystemsEngineeringintheDanielJ.EpsteinDepartmentofIndustrialandSystemsEngineeringattheUniversityofSouthernCalifornia.Hehaspublished manytechnicalarticlesandtextbooksintheareasofstatisticsandapplied probability.Amonghistextsare AFirstCourseinProbability (ninthedition), IntroductiontoProbabilityModels (eleventhedition), Simulation (fifthedition), and IntroductiontoProbabilityandStatisticsforEngineersandScientists (fifthedition).

ProfessorRossisthefoundingandcontinuingeditorofthejournal Probability intheEngineeringandInformationalSciences.HeisafellowoftheInstituteof MathematicalStatistics,theInstituteforOperationsResearchandManagement Sciences,andarecipientoftheHumboldtU.S.SeniorScientistAward.

2.2.1

9.6

10.2

10.6

10.7

11.3

12.12 Logistic Regression

12.1 3 Use of R in Regression

12.1 3.1 Simple Linear Regression

12.1 3.2 Mulliple Linear Regression.

12.1 3. 3 Logistic Regression.. Key Terms

Review Problems

CHAPTER13 Chi-Squared Goodness-aI-Fit Tests.

13.1 Inlroduclion

13.2 Chi-Squared Goodness-of-Fit Tests

13.3 Testing for Independence in Populations

ProbLems W4

13.4 Testing for Independence in Contingency Tables .608

ProbLems

13.5 Use of R...... Key Terms.. ................ ........................ Summary ... Review ProbLems

CHAPTER14 Nonparametric Hypotheses Tes t

14.1 Introduclion

14.2 Sign

14.2 .1 Testing the Equality of Population Distributions when Samples Are Paired.

14.2.2 One-Sided Tests

ProbLems..

14. 3 Signed-Rank Test.

14. 3.1 Zero Differences and Ties

CHAPTER16 Machine Learning and Big Data.

16.1 Introduction......... ...... ...........

16.2 Late Flight Probabilities

16.3 The Naive Bayes Approach

16.3.1 A Variation of Naive Bayes..

ProbLems

16.4 Distance Based Estimators the k-Nearest Neighbors Rule . ..................................................................

16.4.1 A Distance Weighted Melhod

ProbLems.,

16.5 Assessing the Approaches

16.6 Choosing the Best Probability, A Bandit Problem

ProbLems. ...............

APPENDIXA A Data 5e!..............

APPENDIXB Mathematical Preliminaries

APPENDIXC How to Choose a Random Sample ...

APPENDIX 0 Tables.........

APPENDIXE Programs.....

Preface

Statisticalthinkingwillonedaybeasnecessaryforefficientcitizenshipasthe abilitytoreadandwrite.

H.G.Wells(1866–1946)

Intoday’scomplicatedworld,veryfewissuesareclear-cutandwithoutcontroversy.Inordertounderstandandformanopinionaboutanissue,onemust usuallygatherinformation,ordata.Tolearnfromdata,onemustknowsomethingaboutstatistics,whichistheartoflearningfromdata.

Thisintroductorystatisticstextiswrittenforcollege-levelstudentsinanyfield ofstudy.Itcanbeusedinaquarter,semester,orfull-yearcourse.Itsonlyprerequisiteishighschoolalgebra.Ourgoalinwritingitistopresentstatistical conceptsandtechniquesinamannerthatwillteachstudentsnotonlyhowand whentoutilizethestatisticalproceduresdeveloped,butalsotounderstand whytheseproceduresshouldbeused.Asaresultwehavemadeagreateffort toexplaintheideasbehindthestatisticalconceptsandtechniquespresented. Conceptsaremotivated,illustrated,andexplainedinawaythatattemptsto increaseone’sintuition.Itisonlywhenastudentdevelopsafeelorintuition forstatisticsthatsheorheisreallyonthepathtowardmakingsenseofdata.

Toillustratethediverseapplicationsofstatisticsandtoofferstudentsdifferentperspectivesabouttheuseofstatistics,wehaveprovidedawidevariety oftextexamplesandproblemstobeworkedbystudents.Mostrefertorealworldissues,suchasguncontrol,stockpricemodels,healthissues,driving agelimits,schooladmissionages,publicpolicyissues,genderissues,useof helmets,sports,disputedauthorship,scientificfraud,andVitaminC,among manyothers.Manyofthemusedatathatnotonlyarerealbutarethemselvesofinterest.Theexampleshavebeenposedinaclearandconcisemanner andincludemanythought-provokingproblemsthatemphasizethinkingand problem-solvingskills.Inaddition,someoftheproblemsaredesignedtobe open-endedandcanbeusedasstartingpointsfortermprojects.

estedintestingwhethertheproportionsofmenandofwomenthatfavorterm limitsarethesame.

Probablythemostwidelyusedstatisticalinferencetechniqueisthatofthe analysisofvariance;thisisintroducedinChap. 11.Thistechniqueallowsus totestinferencesaboutparametersthatareaffectedbymanydifferentfactors. Bothone-andtwo-factoranalysisofvarianceproblemsareconsideredinthis chapter.

InChap. 12 welearnaboutlinearregressionandhowitcanbeusedtorelatethevalueofonevariable(say,theheightofaman)tothatofanother (theheightofhisfather).Theconceptofregressiontothemeanisdiscussed, andtheregressionfallacyisintroducedandcarefullyexplained.Wealsolearn abouttherelationbetweenregressionandcorrelation.Also,inanoptional section,weuseregressiontothemeanalongwiththecentrallimittheoremto presentasimple,originalargumenttoexplainwhybiologicaldatasetsoften appeartobenormallydistributed.

InChap. 13 wepresentgoodness-of-fittests,whichcanbeusedtotestwhether aproposedmodelisconsistentwithdata.Thischapteralsoconsiderspopulationsclassifiedaccordingtotwocharacteristicsandshowshowtotestwhether thecharacteristicsofarandomlychosenmemberofthepopulationareindependent.

Chapter 14 dealswithnonparametrichypothesistests,whichareteststhatcan beusedinsituationswheretheonesofearlierchaptersareinappropriate.

Chapter 15 introducesthesubjectmatterofqualitycontrol,akeystatistical techniqueinmanufacturingandproductionprocesses.

Chapter 16 dealswiththetopicsofmachinelearningandbigdata.Thetechniquesdescribedhavebecomepopularinrecentyearsduetothepreponderanceoflargeamountsofdata.Ageneralproblemconsideredistodetermine theprobabilitythatacrosscountryflightwillbelate,withtheflightdefinedby acharacterizingvectorgivingsuchinformationastheairline,thedepartureairport,thearrivalairport,thetimeofdeparture,andtheweatherconditions.We consideravarietyofestimationprocedures,withnameslikenaiveBayesand distancebasedapproaches.Wethenconsiderwhatareknownasbanditproblems,andwhichcanbeapplied,amongotherthings,tosequentiallychoosing amongdifferentmedicationsfortreatingaparticularmedicalcondition.

NEWTOTHISEDITION

Thefourtheditionhasmanynewandupdatedexamplesandexercises.Inaddition,arethefollowing:

1. Anewsection(Section 3.8)onLorenzCurvesandtheGiniIndex.Lorenz curvesareplots,as p rangesfrom 0 to 1,ofthefractionofthetotalin-

IntroductiontoStatistics

Statisticianshavealreadyoverruneverybranchofsciencewitharapidityof conquestrivalledonlybyAttila,Mohammed,andtheColoradobeetle.

Thischapterintroducesthesubjectmatterofstatistics,theartoflearningfrom data.Itdescribesthetwobranchesofstatistics,descriptiveandinferential.The ideaoflearningaboutapopulationbysamplingandstudyingcertainofits membersisdiscussed.Somehistoryispresented.

1.1INTRODUCTION

Isitbetterforchildrentostartschoolatayoungerorolderage?Thisiscertainly aquestionofinteresttomanyparentsaswellastopeoplewhosetpublic policy.Howcanweanswerit?

Itisreasonabletostartbythinkingaboutthisquestion,relatingittoyourown experiences,andtalkingitoverwithfriends.However,ifyouwanttoconvince othersandobtainaconsensus,itisthennecessarytogathersomeobjective information.Forinstance,inmanystates,achievementtestsaregiventochildrenattheendoftheirfirstyearinschool.Thechildren’sresultsonthese testscanbeobtainedandthenanalyzedtoseewhetherthereappearstobea connectionbetweenchildren’sagesatschoolentranceandtheirscoresonthe test.Infact,suchstudieshavebeendone,andtheyhavegenerallyconcluded thatolderstudententrantshave,asagroup,faredbetterthanyoungerentrants. However,ithasalsobeennotedthatthereasonforthismayjustbethatthose studentswhoenteredatanolderagewouldbeolderatthetimeoftheexamination,andthisbyitselfmaybewhatisresponsiblefortheirhigherscores.For instance,supposeparentsdidnotsendtheir6-year-oldstoschoolbutrather waitedanadditionalyear.Then,sincethesechildrenwillprobablylearnagreat dealathomeinthatyear,theywillprobablyscorehigherwhentheytakethe testattheendoftheirfirstyearofschoolthantheywouldhaveiftheyhad startedschoolatage6.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.