Introduction to bioplastics engineering 1st edition ashter - The complete ebook set is ready for dow

Page 1


https://ebookmass.com/product/introduction-to-bioplasticsengineering-1st-edition-ashter/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Introduction to Engineering Fluid Mechanics 1st Edition Marcel Escudier

https://ebookmass.com/product/introduction-to-engineering-fluidmechanics-1st-edition-marcel-escudier/

ebookmass.com

Engineering Fundamentals: An Introduction to Engineering, SI Edition Saeed Moaveni

https://ebookmass.com/product/engineering-fundamentals-anintroduction-to-engineering-si-edition-saeed-moaveni/

ebookmass.com

Engineering Fundamentals: An Introduction to Engineering, 6th Edition Moaveni Saeed

https://ebookmass.com/product/engineering-fundamentals-anintroduction-to-engineering-6th-edition-moaveni-saeed/

ebookmass.com

Introduction to Modern Dynamics: Chaos, Networks, Space, and Time 2nd Edition David D. Nolte

https://ebookmass.com/product/introduction-to-modern-dynamics-chaosnetworks-space-and-time-2nd-edition-david-d-nolte-2/

ebookmass.com

The Chess Endgame

Exercise Book - John Nunn John Nunn

https://ebookmass.com/product/the-chess-endgame-exercise-book-johnnunn-john-nunn/

ebookmass.com

Locke: The Dragon Knight: Dragon's Blood M.C. Book 13 B.A. Stretke

https://ebookmass.com/product/locke-the-dragon-knight-dragons-blood-mc-book-13-b-a-stretke/

ebookmass.com

Neue Horizonte (World Languages) 8th Edition, (Ebook PDF)

https://ebookmass.com/product/neue-horizonte-world-languages-8thedition-ebook-pdf/

ebookmass.com

Asian American Educators and Microaggressions: More Than Just Work(ers) Andrew Wu

https://ebookmass.com/product/asian-american-educators-andmicroaggressions-more-than-just-workers-andrew-wu/

ebookmass.com

The Wiley Encyclopediaof Health Psychology Lee M. Cohen

https://ebookmass.com/product/the-wiley-encyclopediaof-healthpsychology-lee-m-cohen/

ebookmass.com

https://ebookmass.com/product/kaplans-cardiac-anesthesia-in-cardiacand-noncardiac-surgery-7e-7th-edition-joel-a-kaplan-md/

ebookmass.com

IntroductiontoBioplastics Engineering

PLASTICSDESIGNLIBRARY(PDL)

PDLHANDBOOKSERIES

SeriesEditor:SinaEbnesajjad,PhD(sina@FluoroConsultants.com) President,FluoroConsultantsGroup,LLC ChaddsFord,PA,USA www.FluoroConsultants.com

The PDLHandbookSeries isaimedatawiderangeofengineersandotherprofessionalsworking intheplasticsindustry,andrelatedsectorsusingplasticsandadhesives.

PDLisaseriesofdatabooks,referenceworksandpracticalguidescoveringplasticsengineering, applications,processing,andmanufacturing,andappliedaspectsofpolymerscience,elastomers, andadhesives.

RecentTitlesintheSeries

Biopolymers:ProcessingandProducts,MichaelNiaounakis(ISBN:9780323266987)

Biopolymers:Reuse,Recycling,andDisposal,MichaelNiaounakis(ISBN:9781455731459) CarbonNanotubeReinforcedComposites,MarcioLoos(ISBN:9781455731954) Extrusion,2e,JohnWagner&EldridgeMount(ISBN:9781437734812)

Fluoroplastics,Volume1,2e,SinaEbnesajjad(ISBN:9781455731992)

HandbookofBiopolymersandBiodegradablePlastics,SinaEbnesajjad(ISBN:9781455728343) HandbookofMoldedPartShrinkageandWarpage,JerryFischer(ISBN:9781455725977)

HandbookofPolymerApplicationsinMedicineandMedicalDevices,KayvonModjarrad&Sina Ebnesajjad(ISBN:9780323228053)

HandbookofThermoplasticElastomers,JiriGDrobny(ISBN:9780323221368)

HandbookofThermosetPlastics,2e,HannaDodiuk&SidneyGoodman(ISBN:9781455731077)

HighPerformancePolymers,2e,JohannesKarlFink(ISBN:9780323312226)

IntroductiontoFluoropolymers,SinaEbnesajjad(ISBN:9781455774425)

IonizingRadiationandPolymers,JiriGDrobny(ISBN:9781455778812)

ManufacturingFlexiblePackaging,ThomasDunn(ISBN:9780323264365)

PlasticFilmsinFoodPackaging,SinaEbnesajjad(ISBN:9781455731121)

PlasticsinMedicalDevices,2e,VinnySastri(ISBN:9781455732012)

PolylacticAcid,Rahmatet.al.(ISBN:9781437744590)

PolyvinylFluoride,SinaEbnesajjad(ISBN:9781455778850)

ReactivePolymers,2e,JohannesKarlFink(ISBN:9781455731497)

TheEffectofCreepandOtherTimeRelatedFactorsonPlasticsandElastomers,3e,Laurence McKeen(ISBN:9780323353137)

TheEffectofLongTermThermalExposureonPlasticsandElastomers,LaurenceMcKeen(ISBN: 9780323221085)

TheEffectofSterilizationonPlasticsandElastomers,3e,LaurenceMcKeen(ISBN: 9781455725984)

TheEffectofTemperatureandOtherFactorsonPlasticsandElastomers,3e,LaurenceMcKeen (ISBN:9780323310161)

TheEffectofUVLightandWeatheronPlasticsandElastomers,3e,LaurenceMcKeen(ISBN: 9781455728510)

ThermoformingofSingleandMultilayerLaminates,AliAshter(ISBN:9781455731725)

ThermoplasticsandThermoplasticComposites,2e,MichelBiron(ISBN:9781455778980)

ThermosetsandComposites,2e,MichelBiron(ISBN:9781455731244)

Tosubmitanewbookproposalfortheseries,orplaceanorder,pleasecontactDavidJackson, AcquisitionsEditor david.jackson@elsevier.com

IntroductiontoBioplastics Engineering

SyedAliAshter

R&DEndovascular

MaquetGetingeGroup

Merrimack,NH,USA

WilliamAndrewisanimprintofElsevier

WilliamAndrewisanimprintofElsevier

TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UK 50HampshireStreet,5thFloor,Cambridge,MA02139,USA

Copyright r 2016ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerial herein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress.

ISBN:978-0-323-39396-6

ForInformationonallWilliamAndrewpublications visitourwebsiteat https://www.elsevier.com/

Publisher:MatthewDeans

AcquisitionEditor:DavidJackson

EditorialProjectManager:ZaraPreston

ProductionProjectManager:NickyCarter

Designer:MarkRogers

TypesetbyMPSLimited,Chennai,India

Inmemoryofmyfather,(Late) ProfessorZaheerHaider

Preface

IntroductiontoBioplasticsEngineeringisapractical,user-friendly referenceforplasticsengineersworkingwithbiopolymersandbiodegradableplastics.Thisbookprovidesplasticsengineersandresearchers withafundamental,practicalunderstandingofthedifferencesbetween bioplasticsandbiodegradablepolymersandguidanceonthedifferent methodsusedtoprocessbioplastics.Thisbookalsocoversadditives andmodifiersforbiopolymersandtheireffectonproperties.Examples areincludedofcommercialapplicationsofbioplastics,aswellasnew bioplasticsbeingdevelopedandfuturetrendsintheindustry.

IntroductiontoBioplasticsEngineeringconsistsof10chaptersthat willenableengineers,researchers,technicians,andstudentsasound understandingonbioplasticbackgroundanditsmarket.Chapter1: Introductionprovidesdiscussiononglobalbioplasticmarket,current materialandmarkettrends,andlimitationtowardbiopolymercommercialization.Chapter2:OverviewofBiodegradablePolymersfocuseson definingbiodegradable,biopolymer,bio-based,andoxo-degradable terminologies.

Chapter3:MechanismsofPolymerDegradationreviewsdifferent mechanismsofpolymerdegradation.Inthischapter,degradationmechanismoffivedifferentengineeringpolymers,someofwhicharecommerciallyavailableandsomethathaspotentialforthefuture. Chapter4:FundamentalsonBiodegradabilitywilldiscussfundamentals onbiodegradability,testingstandards,andwaystomeasurebiodegradability.Chapter5:TypesofBiodegradablePolymerswillreview differenttypesofbio-basedandsyntheticbiopolymers.Itwillalsohighlightonpolymersderivedfrommonomersaswellasbio-derived polyethylene.

Chapter6:AdditivesandModifiersforBiopolymerstalksaboutdifferenttypesofadditivesandmodifiersforbiopolymersandstudytheir effectsonproperties.Chapter7:ProcessingBiodegradablePolymers includesdiscussionondifferentwaystoprocessbiodegradablepolymers.Processingofsomeofthecommercialbiodegradablepolymers willalsobediscussed.Chapter8:ExtrusionofBiopolymersreviews extrusionofbiopolymers.Inthischapter,conventionalextrusion

processforbiopolymerprocessing,starchextrusion,anddifferentextrusionscrewdesignswillbediscussed.

Chapter9:CommercialApplicationsofBioplasticsdiscussesdifferentareasofcommercialapplicationsofbiodegradableplasticssuchas packaging,bagsandsacks,disposablehousewares,agricultureand horticulture,medicaldevices,consumerelectronics,andautomotive. Newdevelopmentsofbioplasticinmaterial,processing,andapplicationsarereviewedinChapter10:NewDevelopments.

Acknowledgments

IwouldliketoshowmysincereappreciationtoProfessorStephen BurkeDriscollfromPlasticsEngineeringDepartment,Universityof MassachusettsLowellforprovidingvaluableinputsandguidance. IwouldalsoliketothankDrSinaEbnesajjad,PlasticsDesignLibrary HandbookSerieseditorforhissupportandconstantmentoringduring thebook-writingprocess.Iwouldalsoliketothankmyfamily especiallymywife,Tahira,andmytwokids,ZaynandNoorfortheir unconditionalsupport.Thisworkwouldhaveneverbeencompleted otherwise.

1.1Background

Overthelastseveralyears,productionofpolymersfromrenewable resourceshasshownsignificantgrowth.Someoftheplasticsproduced fromrenewableresourcessuchasvegetableoil,corn,andpeastarch havebeensynthesizedbymicrobesandareknownasbioplastics.Its developmentisdrivenbycurrentdemandstoreplacefossilfuel based polymers.Limitationinfossilfuelresources,pricevolatility,impacton theenvironment,andwastedisposalproblemsaresomeofthemain reasonsforthisshifttowardbio-basedplastics.

Theuseofnaturalpolymersisnotanewidea. Fig.1.1a c shows naturalresinslikeamber,shellac,andguttaperchathatwereused duringRomanTimesandtheMiddleAges [1 3].NativeAmericans weredevelopingandrefiningtechniquesformakingladlesandspoons fromanimalhornslongbeforetherewasanyEuropeancontact.Initial developmentworkbeganinthe1920swhenFordMotorCo.began experimentingwithsoybeansintheautomobiles.However,itallbegan inthe1940swhenFordMotorCo.gaveago-aheadtoproduceplastic partsfromsoybeanstosupporttheideaofsustainability [4]

Bioplasticsarebroadlyclassifiedasbio-basedand/orbiodegradable. Whenthefocusofthematerialisontheoriginofthecarbonbuilding blocksandnotbywhereitgoesattheendofitsproductlife,itis termedasbio-based.Itisimportanttounderstandthatallbio-based materialsarenotoftencharacterizedasbiodegradable,andsimilarly, notallbiodegradablematerialsarebio-based.Materialisconsidered biodegradablewhenmaterialsarebrokendownundertheinfluenceof microbesandrightconditionsandusethemasfoodsource.Whena completemicrobialassimilationofthefragmentedfoodsourcehappens within180daysinacompostenvironment,itisconsideredascompostable. Fig.1.2 showspictorialdifferencebetweentwobranchesof bioplastics—bio-basedandbiodegradable,respectively [5,6].

AmericanSocietyforTestingandMaterials(ASTM)developeda standardizedtestmethod,ASTMD6866todeterminebio-basedcontent. Originally,developedfortheUSDepartmentofAgriculture(USDA)

IntroductiontoBioplasticsEngineering.

DOI: http://dx.doi.org/10.1016/B978-0-323-39396-6.00001-4

© 2016ElsevierInc.Allrightsreserved.

2INTRODUCTIONTO BIOPLASTICS ENGINEERING

Figure1.1 NaturalresinsusedduringRomanTimesandMiddleAges: (a)Amber,(b)Shellac,and(c)GuttaPercha [1 3]

“Bio-based” feedstock

Must be certifiable as bio-based Bio-based - ASTM D6866

Bioplastics

“Biodegradable” end of life

Must be defined as certified compostable - ASTM D6868 & ASTM D6400

Figure1.2 Differentiatingbetweenbiodegradableandbio-based [6]

Bio-Preferredprogram,thistestmethodusesradiocarbondatingto determinebio-basedcontentsofmaterials.Standardizedtestmethods, ASTMD6868andASTMD6400,weredevelopedtosetspecification forcompostableplastics [5,7,8]

Fig.1.3 providesanillustrationonthelifecycleofbioplastics.Itall startswithgrowingplantssuchassugarcaneandcornthatarehighin starches.Theplantsarethenharvestedandprocessedtoextracttheir starches.Theextractedstarchesarethenrefinedandfermentedusing specialenzymesproducingchemicalcompoundthatreacttomakeplastics.Plasticsintheformofpelletsareusedtomanufactureproducts. Theproductatthisstageisfullybiodegradable.Afteritsfulluse,the productisthenplacedinanorganicwastecontainer,whichstartsthe laststageofthecycle [9,10].

Fig.1.4 showsmaterialcoordinatesystemtoclassifytypebasedon theirbio-basedcontentandbiodegradability.Thecoordinatesystemis

Figure1.3 Thelifecycleofbioplastics [9]. CTCCleanTechConsultingGmbH; WSJreporting.

4INTRODUCTIONTO BIOPLASTICS ENGINEERING

Bio-based

eg, biobased PE, PET, PA, PTT

Nonbiodegradable

Bioplastics

Bioplastics Bioplastics

Conventional plastics

eg, PE, PP, PET

eg, PLA, PHA, PBS, Starch blends

Biodegradable

eg, PBAT, PCL

Fossil-based

Figure1.4 Materialclassificationsystembasedontheirbiodegradabilityandbiobasedcontent [11]

subdividedintofourquadrants:bio-based,biodegradable,fossil-based, andnon-biodegradable.Eachquadrantrepresentsagroupofbioplastics thatareclassifiedasfollows [11]:

•Group1—Bioplasticsthatarebio-basedorpartlybio-based non-biodegradablesuchasbio-basedPE,PET,PA,andPTT.

•Group2—Bioplasticsthatarebio-basedandbiodegradable, suchasPLA,PHA,PBS,andstarchblends.

•Group3—Bioplasticsthatarefossil-basedandnonbiodegradablesuchasconventionalPE,PP,andPET.

•Group4—Bioplasticsthatarefossil-basedandbiodegradable suchasPBATandPCL.

Tohavesustainableproductionandconsumption,bioplasticshave someaddedbenefits.Someoftheseveraladvantagesareasfollows:

•Increaseinefficiency

•Renewableresourcethatcanbecultivatedannually

•Reductionincarbonfootprint

Currently,bioplasticsisininfancyandgoingthroughgrowth phase.Therearelotsofexpectationspinnedonbioplasticsandmany aspectshavetobeevaluatedtomaketheprocesscommerciallyviable.

Costfeasibilityisthemostimportantofallhowever,otherfactorssuch asconcernsaboutgeneticallymodifiedorganisms,sustainablygrown biomass,compostingprogramsandinfrastructure,lackofadequate labeling,andconcernovercontaminationofrecyclingsystemshaveto bethoroughlyunderstood.Despiteallthesepoints,bioplasticshave manymeritsoverthepetroplasticsasshownin Fig.1.5[12].

1.2UnderstandingGlobalMarkets

Bioplasticsareatypeofplasticthatcanbemadefromnatural resourcessuchasvegetableoilsandstarches.Sincebioplasticsare plant-basedproducts,theconsumptionofpetroleumfortheproduction ofplasticisexpectedtodecreaseby15 20%by2025.By2025,Asia andEuropewillhavethelargestshareofbioplasticsmarket.Asiawill accountfor32%whileEuropeat31%ofthetotalmarketfollowedby theUnitedStatesat28%.Currently,bioplasticsmarketgrowthisat 10%annuallycoveringapproximately10 15%ofthetotalplastics market.Thisnumberwouldincreaseto25 30%by2020 [13]

NovaInstitutehasdoneaglobalsurveyof247corporationscovering almostallmajorbio-basedplastics.Basedonthesurvey,theyestimate thatthebioplasticproductioncapacitywillincreasetonearly12million tonsby2020.Thiswouldincreasethebio-basedsharefrom1.5%in2011 to3%in2020.Theyestimatethatmostinvestmentinbio-basedcapacities willtakeplaceinAsiaandSouthAmericabecauseofbetteraccesstothe feedsource. Fig.1.6 showsanoverviewofthechangeinglobalbioplastics productionsbyregions [14].Europe’ssharewilldecreasefrom20%to 14%andNorthAmericawillseeadecreasefrom15%to13%.Asia’sbioplasticsproductionsharewillseeanincreasefrom52%to55%,whereas thatofSouthAmericawillseeajumpfrom13%to18%.

Can be composted locally into a soil amendment
Can contribute to healthier rural economics
Plastics industry supports more drilling
Figure1.5 Differencesbetweenbioplasticsandpetroplastics [12].

Overviewofthechangeinglobalbioplasticsproductionsbyregions [14] 6INTRODUCTIONTO

EuropeanBioplasticsAssociationestimatedthat58%of1.16million metrictonsglobalbioplasticscapacityin2011wasbio-based.Global bioplasticscapacitywillseealmostafivefoldincreasefrom2011to 2016.Thecompositionofbioplasticsproductioncapacityisalso expectedtochangesignificantlyfrom58%bio-based/non-biodegradable in2012to87%by2016.Someofthemajorfactorsdrivingthebioplastic marketarehighconsumeracceptance,highfossilfuelprices,increasein thedependenceonfossilfuels,andtheneedformoreecofriendlyproducts.AccordingtoastudybyHelmutKaiserConsultancy,lessthan3% ofallwasteplasticworldwidegetsrecycled,comparedwithrecycling ratesof30%forpaper,35%formetals,and18%forglass.Currently,the demandforbioplasticsisincreasingduetoitsrenewabilityandavailabilityofrawmaterial,advancedfunctionalityandtechnicalproperties,and therecyclingoptionthattheypresent. [13].

SomeofthemajorplayerscompetinginthismarketareCargill’s NatureWorks,DuPont,Braskem(BAK),TorayIndustries,LanxessAG, Bayer,BASF,andEastman.

1.3CurrentMaterialTrends

Oneofthemostimportantadvancementsfromthelastfewyearshas beenthedevelopmentofmaterialsthatareproducedfrommonomer buildingblocksfromthenaturalfeedstock.Thesematerialsaretermed asdrop-insandcandirectlyreplaceconventionalfossil-basedplastics. Thesedrop-insopenanewroutetoproducebimonomersthatcaneasily fitintoexistingproductioncycle.

Figure1.6

Figure1.7 Globalproductioncapacitiesofbioplastics [15].EuropeanBioplastics, InstituteforBioplasticsandBiocomposites,nova-Institute(2014).More information: www.bio-based.eu/markets and www.downloads.ifbb-hannover.de

Amongalldrop-ins,partiallybio-basedPETleadsthefield.BiobasedPETaccountsforapproximately40%oftheglobalbioplastics productioncapacity. Fig.1.7 showsglobalproductioncapacitiesofbioplastics.A10-foldincreaseto80%oftotalbioplasticsproduction capacityisexpectedin2018to5.6milliontons.Bio-basedPE(polyethylene)followsbio-basedPET,anotherdrop-inmaterialstronglydriving bioplasticsgrowthwithmorethan4%ofthebio-basedproduction capacitypredictedfor2016. Fig.1.8 showsglobalproductioncapacities ofbioplasticsbymaterialtype.Therearematerialsthathavebeenor arebeingcommercializedwhichincludebio-basednylon,polypropylene,polystyrene,polycarbonate,polyvinylchloride(PVC),andmany othertraditionalplastics.Europehastheworld’slargestmarketforbioplastics;however,productioncapacitiesofAsiaandSouthAmericaare seentorapidlygrowing. [15,16]

Starch-basedresinsandpolylacticacid(PLA)areprojectedtolead bioplasticproductsthrough2017,combiningtoaccountforover60% ofdemand.PLAdemandwillbenefitfromthedevelopmentofresins andcompoundswithenhancedperformanceformoredurableapplicationssuchasfibers,automotiveparts,andelectronicparts.

Asignificantshiftfromthefirst-generationfeedstockstosecondgenerationfeedstockssuchascellulosicswillhappenincomingyears. Cellulosicfeedstocksconsistofcropresidues,woodresidues,yard

8INTRODUCTIONTO BIOPLASTICS ENGINEERING

Figure1.8 Globalproductioncapacitiesofbioplasticsbymaterialtype [16]. EuropeanBioplastics,InstituteforBioplasticsandBiocomposites,nova-Institute (2014).Moreinformation: www.bio-based.eu/markets and www.downloads.ifbbhannover.de

waste,municipalsolidwaste,algae,orotherbiomass.Theycanbeconvertedtosugarsviavarioustechnologies,includingenzymatichydrolysisandbiomasspretreatment.Cellulosicfeedstockscurrentlyproduced arecelluloseacetatesandlignin-basedpolymers.However,inorderto generatemorecellulosicfeedstocks,sophisticatedbiorefineriesare neededthatcanperformtheprocessstepsneededtoproducevarious bio-productsasshownin Fig.1.9.Oncetheseareinplace,astreamof nonfoodcrop basedfermentablesugarswillbecomeavailablefor energy,chemicals,andpolymers [17,18]

Bio-basedadditivesandmodifiersareanotherareawhichwillseea strongdevelopment.BecauseofitsaddedadvantageandenlargedconcernsthatplasticizersusedinPVCandBisphenol-Ainpolycarbonate imposetotheenvironment,thereisadrivetofindahealthandenvironmentallyfriendlysolutions.Bio-basedadditivesarenotonlyrelevant forengineeringdurablebiopolymerswithenhancedperformancepropertiesbutalsousedtodevelopanalternativetotheconventional modifiers.Increasingly,bio-basedformulationsarealsobeingusedto

Biorefinery concept

Biomass

Sugar platform “Biochemical”

platform “Thermochemical”

modifyconventionalmaterials,asthesehavebeenfoundtoenhancethe performanceofthesematerialsinvariouswayswhileatthesametime improvingtheircarbonfootprint [19]

MetabolixInc.hasdevelopedaseriesofPHA-basedpolymericmodifiersthatdemonstrateverygoodmiscibilitywithPVCandimproveits mechanicalandenvironmentalperformancecharacteristics.Thisadditive andmodifierissoldunderthetradenameMirelasshownin Fig.1.10 Similarly,MitsubishiChemicalproducesapolycarbonateinwhichthe Bisphenol-Aishasbeenreplacedbyisosorbide,abiomonomerthatcan

Figure1.10 PHA-basedpolymericmodifierdevelopedbyMETABOLIX [20]
Figure1.9 Aconceptofbiorefinery [18]

besafelyusedinfoodapplications.Isosorbide-basedcopolyestersare extremelypromisingmaterialsthatofferenhancedperformanceproperties.PLA,blendedwithPMMA,enhancestheprocessabilityandother propertiesfarbeyondthoseofconventionalacrylicresins [20].

1.4CurrentMarketTrends

Fig.1.11 showsglobalproductioncapacitiesofbioplasticsbymarket segment.Bioplasticsaresegmentedintoavarietyofapplicationsincludingpackaging,agriculture,foodservices,automotive,consumerelectronics,householdappliances,andconsumergoods.Bioplasticsmarkets willseehighgrowthsover6billionUSdollarsin2015whichisexpected tosignificantlygrowtoover12.5billionUSdollarby2020 [21].Rigid packagingwilloutpaceothermarketsbyshowinghighergrowthespeciallyinfoodandbeveragepacking,cateringproducts,andbags [16]

Figure1.11 Globalproductioncapacitiesofbioplasticsby2018 [16].European Bioplastics,InstituteforBioplasticsandBiocomposites,nova-Institute(2014).More information: www.bio-based.eu/markets and www.downloads.ifbb-hannover.de

Fig.1.12 showsbioplasticsapplicationbymarketshare.Thepackagingindustrybyitselfrepresentsthebiggestapplicationfieldofthese materials.Itisestimatedthat66%oftheglobalbioplasticproductionis usedinpackagingapplicationsanditwillrepresentupto80%ofits globalproductioninthecomingyears [22]

Fig.1.13 showspackagingapplicationsinthebioplasticsindustry. TheincreaseinpackagingismainlyduetotheincreaseinPETmanufacturedbottlesmadefromrenewablesources [23]

Packagingbeingthelargestapplication,themostcommonbioplasticsthatisusedforfoodpackagingapplicationsareplasticsbased onstarchorcellulose,PLA,polyvinylalcohol,aliphatic aromatic

Figure1.12 Bioplasticsapplicationbymarketshare [22]
Figure1.13 Packagingapplicationsinbioplasticsindustry [23]

copolyestersandpolyethylene(PE )andpolyethyleneterephthalate (PET)partiallyorcompletelyobtainedfromrenewablesources(BioPEand/orBio-PET).Someofthebioplasticsapplicationsbymarket shareareshownin Fig.1.14. Figure1.14

Figure1.14 (Continued)

1.5BarrierstoBiopolymerCommercialization

Biopolymerdevelopmentisstillinitsearlystages.Duetothegrowingneedsofthecustomers,thereisastrongdemandtodevelopproductsthatareenvironment-friendlyandsustainable.However, biopolymerinnovationstomarketposesignificanttechnologicaland applicationchallenges.Constantincreaseindemandtomanufacture biopolymersfromtheplantsputpressureonagriculturalcropsasthey havetosatisfytheneedsoftheevergrowingpopulation.Inaddition, poorperformancecharacteristicsandhighcostwhencomparedagainst conventionalpolymersarethekeydrawback.Highinvestmentcoststo processbiopolymersalsoposesasachallenge [36]

Thetechnologytodevelopnumberofbio-basednon-biodegradable biopolymerslikePA6,PA66,andBio-PPisstillinitsinfancyperiod, andthesebiopolymersareyettomatureatcommercialstages.Plastic processingtechnologiesthatcanefficientlyprocessnewgenerationof

Figure1.14 (Continued)

Bio-based 19501960197019801990 Time 20002010

Figure1.15 Majordifferencesbetweenconventionalplasticsandbioplastics [37].

biopolymersneedtobedevelopedandhenceposeanothermajor challenge.Theproductperformanceofbiopolymersinthemarketis directlyassociatedwiththeirbio-basedcontentinbioplastics.Theareaof challengeisindevelopingtherighttoolthatcanaccuratelymeasurebiobasedcontentforbio-basedbiodegradableaswellasnon-biodegradable bioplastics [37].

Biopolymersfacesignificantchallengesintakingproductstomarket fasterandfocusonquicksolutionsbyintegratingtheproductintothe existingstructures.Thegrowthofbiopolymersishamperedbytheirpoor pricecompetitivenessandlackofappropriatefeedstocks. Fig.1.15 shows howbiopolymermarketisdoingagainstconventionalpolymer.Overthe lastdecade,biopolymermarkethasseenlargegrowth;however,there existconsiderablegapforbiopolymermarketrealization [37].

Incomparisontoconventionalpolymers,biopolymersarestillin theirearlygrowthphase.Theyareyettoestablishproventechnologyto drivegrowththroughinnovation,haveaproductionplatformtooperate withreliability,establishareliablesupply-chainandestablishcustomer basebymarketingtheproduct.

References

[1]NaturalHistoryofAmber, , http://www.houseofamber.com/eng/naturalhistory-of-amber/ . .

[2]Shellac—ApplicationsandUseinArt, , http://www.naturalpigments.com/ art-supply-education/shellac-use-art .

[3]PilotProducts,Inc., , http://www.pilotproducts.com/all-about-naturalrubber.html .

16INTRODUCTIONTO BIOPLASTICS ENGINEERING

[4]BensonFordResearchCenter, , https://www.thehenryford.org/research/ soybeancar.aspx . .

[5]StandardSpecificationforLabelingofPlasticsDesignedtoBe AerobicallyComposedinMunicipalorIndustrialFacilities,American SocietyforTestingMaterials(ASTM),D6400-12, , http://www.astm. org/Standards/D6400.htm . .

[6]NaturBag, , http://www.naturbag.com/frequently-asked-questions .

[7]StandardTestMethodforDeterminingtheBiobasedContentOfSolid, Liquid,andGaseousSamplesUsingRadiocarbonAnalysis,American SocietyforTestingMaterials(ASTM),D6866-12, , http://www.astm. org/Standards/D6866.htm . .

[8]StandardSpecificationforLabelingofEndItemsThatIncorporate PlasticsandPolymersasCoatingorAdditivesWithPaperandOther SubstratesDesignedtoBeAerobicallyCompostedinMunicipalor IndustrialFacilities,AmericanSocietyforTestingMaterials(ASTM), D6868-11, , http://www.astm.org/Standards/D6868.htm .

[9]TheLifeCycleofBioplastics, , https://bootstrapcompost.wordpress.com/ . .

[10]J.M.Bier,C.J.R.Verbeek,M.C.Lay,Lifecycleassessmentsofbioplastics:applicationsandissues,Int.J.Environ.Cult.Econ.Soc. Sustainability7(4)(2011)145 158(CGPublisher).

[11]BioplasticsMaterialCoordinateSystem,EuropeanBioplastics. , http:// en.european-bioplastics.org/press/faq-bioplastics/ . .

[12]SustainablePlastics, , http://www.sustainableplastics.org/about .

[13]BioplasticsMarketWorldwide:Applications,Methods,Competition, Materials,Technologies,Development,Recycle,RenewableEnergy, Production,Consumption,HelmutKaiserConsultancy, , http://www. hkc22.com/bioplastics.html .

[14]Bioplasticsmarkettotriple,EuropeanBiotechnologyMagazine, , http:// www.european-biotechnology-news.com/news/news/2013-01/bioplasticsproduction-to-triple.html . .

[15]GreenerPackage, , http://www.greenerpackage.com/bioplastics/data_ predict_significant_growth_bioplastics_2018 . .

[16]EuropeanBioplastics,InstituteforBioplasticsandBiocomposites,Nova Institute(2014).

[17]Thefutureofindustrialbiorefineries,WorldEconomicForum, , http://www3.weforum.org/docs/WEF _FutureIndustrialBiorefineries_ Report_2010.pdf . .

[18]Biofuels,BiochemicalandBioplastics,ViaSpace, , http://www.viaspace. com/biochemicals_bio_plastics.php . .

[19] N.Lardjane,N.Belhaneche-Bensemra,V.Massardier,Migrationofnew bio-basedadditivesfromrigidandplasticizedPVCstabilizedwithepoxidizedsunfloweroilinsoil,J.Polym.Res.20(2013)209.

[20]K.Laird,Bioplasticsin2013:5trendstowatch. , http://www.plasticstoday. com/articles/bioplastics-2013-5-trends-watch-122720121 . .

1:INTRODUCTION

[21]BioplasticsMarketForecast2014 2024,ProspectsforBio-based/NonBiodegradablePackaging,ConsumerElectronicsProducts,Catering, Agriculture&Pharmaceuticals,2014.

[22]TechnicalArticle&ReportonPlasticsIndustry,BiodegradablePlastics DemandtoGrow15%Annuallyto2015,Plastemart, , http://www. plastemart.com/Plastic-Technical-Article.asp?LiteratureID 5 1958&Paper 5 biodegradable-plastics-demand-to-grow-15-percent-annually-to-2015 .

[23] C.Wagner,Bioplastics:Types,Applications,ToxicityandRegulationof BioplasticsUsedinFoodContactMaterials,FoodPackagingForum, Zurich,2014.

[24]EuropeanBioplastics, , http://en.european-bi oplastics.org/market/ applications/packaging/ . .

[25]BiomassPackaging, , http://www.biomasspackaging.com/education/ bioplastics/ . /.

[26]BICs Ecolutions, , http://ie.bicworld.com/shavers-desc/144-bicr-ecolutionsbics-first-shaver-with-a-bioplastic-handle.html .

[27]EuropeanBioplastics, , http://en.european-bioplastics.org/press/presspictures/consumer-electronics/ .

[28]D.Smock,SiemensplasticreplicatesABSwithbioplasticandCO2-offtake,TheMoldingBlog(2012).

[29]DSMinAutomotive/Transportation, , http://www.dsm.com/markets/ automotive/en_US/informationcenter-press/2015/01/2015-01-08-dsm-tospeak-on-bio-based-materials-at-bioplastics-conference.html .

[30]A.Bredenberg,DoBioplasticsHaveaPlaceinAutomotivemanufacturing, ThomasNet.com, , http://news.thomasnet.com/imt/2012/12/17/do-bioplasticshave-a-place-in-automotive-manufacturing . .

[31]Corbion, , http://www.corbion.com/bioplastics/markets/automotive .

[32]A.Bredenberg,BioplasticsCanFindDiverseApplicationsintheWorld ofIntermediates,ThomasNet.com, , http://news.thomasnet.com/imt/ 2013/01/07/bioplastics-can-find-diverse-applications-in-the-world-ofintermediates . .

[33]EuropeanBioplastics, , http://en.european-bio plastics.org/market/ applications/agricu lturehorticulture/ . .

[34]Interempresas.net, , https://www.interempresas.net/Plastico/Articulos/ 111494-Entrevista-Sandra-Pazes-Ven tas-Iberia-Latinoamerica-DavidBertomeu-Tecnologia-Aplicacion.html .

[35]GreenerPackage, , http://www.greenerpackage.com/compost_biodegrade/ plantable_nursery_pot_biodegrades_soil .

[36]R.Papalia,Turningplantsintoplastics:challengesandopportunitiesinbioplasticsforconsumergoodscompanies,Environ.Lead., , http://www. environmentalleader.com/2011/06/07/turning-plants-into-plastics-challengesand-opportunities-in-bioplastics-for-consumer-goods-companies/ . .

[37] R.Rajagopal,SustainableValueCreationintheFineandSpeciality ChemicalsIndustry,WileyPublishers,NewDelhi,2014.

2OverviewofBiodegradable Polymers

2.1Introduction

Duetotheincreasedconsumptionoffossil-basedfuel,resource limitation,pricefluctuation,andimpactontheenvironment,therehas beenaconsiderableshifttowardusingbiodegradablematerials [1] Polymermaterialsarecomprisedofrepeatingmacromoleculesknown asmerunits.Eachmerunitiscalledamonomer,whilemultiplerepeatingunitsareknownaspolymers. Fig.2.1 showsexamplesofthemer unitsfordifferentpolymersystems [2].

Plasticsthatarederivedfromfossil-basedfeedstocksresistdegradation leadingtodiscussionsonhowtodisposethem.Thesediscussionshave beencriticaltowardthedevelopmentofbiodegradablepolymers.As shownin Fig.2.2,biodegradablepolymerscomefromvarioussources, fromnaturaltosyntheticpolymers.Naturalpolymersareavailablein largequantitiesfromrenewablesources,whilesyntheticpolymersare producedfromnonrenewablepetroleumresources [3,4].Renewable resourcefeedstocksalsoincludemicrobiallygrownpolymersandthose extractedfromstarch [5].

Fig.2.3 showsatypicalbiodegradationprocess.Inthisprocess, organicmoleculesintheenvironmentarebrokendownintosimpler compoundsbybreakingbonds,eitherhydrolyticallyorbyusingbacteria,fungi,yeast,andtheirenzymes [6].Undertheidealconditionsof temperature,moisture,andoxygen,biodegradationprocesshappens relativelyfast [6].Materialusageandfinalmodeofbiodegradation aredependentonthecompositionandprocessingmethodemployed. Anintegratedwastemanagementsystemmaybenecessaryinorderto efficientlyuse,recycle,anddisposeofbiopolymermaterials.Reduction intheconsumptionofsources,reuseofexistingmaterials,andrecycling ofdiscardedmaterialsmustallbeconsidered.

Biodegradablepolymersarethesolutiontodisposalproblems commonlyencounteredwithconventionalpolymers.Inthecaseof biodegradablepolymers,itisnotnecessarytorecycleaftertheendof itsusefullifeandtheycanbeleftintheenvironmenttobiodegrade.

IntroductiontoBioplasticsEngineering.

http://dx.doi.org/10.1016/B978-0-323-39396-6.00002-6

2016ElsevierInc.Allrightsreserved.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.