Intelligent systems and learning data analytics in online education: a volume in intelligent data-ce

Page 1


https://ebookmass.com/product/intelligent-systems-andlearning-data-analytics-in-online-education-a-volume-inintelligent-data-centric-systems-santi-caballe/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Data Analytics for Intelligent Transportation Systems 1st Edition Edition Mashrur Chowdhury

https://ebookmass.com/product/data-analytics-for-intelligenttransportation-systems-1st-edition-edition-mashrur-chowdhury/

ebookmass.com

Intelligent Data-Analytics for Condition Monitoring Malik

https://ebookmass.com/product/intelligent-data-analytics-forcondition-monitoring-malik/

ebookmass.com

Intelligent Multi-Modal Data Processing (The Wiley Series in Intelligent Signal and Data Processing) 1st Edition Soham Sarkar

https://ebookmass.com/product/intelligent-multi-modal-data-processingthe-wiley-series-in-intelligent-signal-and-data-processing-1stedition-soham-sarkar/

ebookmass.com

Smith's

Anesthesia for Infants and Children 10th Edition

https://ebookmass.com/product/smiths-anesthesia-for-infants-andchildren-10th-edition-peter-j-davis/

ebookmass.com

Understanding Willing Participants: Milgram’s Obedience Experiments and the Holocaust. Volume 1 Nestar Russell

https://ebookmass.com/product/understanding-willing-participantsmilgrams-obedience-experiments-and-the-holocaust-volume-1-nestarrussell/

ebookmass.com

Ten Crises: The Political Economy of China’s Development (1949-2020) Tiejun Wen

https://ebookmass.com/product/ten-crises-the-political-economy-ofchinas-development-1949-2020-tiejun-wen/

ebookmass.com

Detection

Unlimited

Georgette Heyer [Heyer

https://ebookmass.com/product/detection-unlimited-georgette-heyerheyer-2/

ebookmass.com

eTextbook 978-1305506381 Managerial Economics: Applications, Strategies and Tactics

https://ebookmass.com/product/etextbook-978-1305506381-managerialeconomics-applications-strategies-and-tactics/

ebookmass.com

The Palgrave Handbook of Islam in Africa 1st Edition Fallou Ngom

https://ebookmass.com/product/the-palgrave-handbook-of-islam-inafrica-1st-edition-fallou-ngom/

ebookmass.com

https://ebookmass.com/product/a-nation-fermented-beer-bavaria-and-themaking-of-modern-germany-robert-shea-terrell/

ebookmass.com

IntelligentData-CentricSystems: SensorCollectedIntelligence

IntelligentSystemsand LearningDataAnalyticsin OnlineEducation

SantiCaballe ´

FacultyofComputerScience,MultimediaandTelecommunications, UniversitatObertadeCatalunya,Barcelona,Spain

StavrosN.Demetriadis

SchoolofInformatics,AristotleUniversityofThessaloniki, Thessaloniki,Greece

EduardoGo ´ mez-Sa´nchez

SchoolofTelecommunicationsEngineering, UniversidaddeValladolid,Valladolid,Spain

PantelisM.Papadopoulos

DepartmentofInstructionalTechnology, UniversityofTwente,Enschede,TheNetherlands

ArminWeinberger

DepartmentofEducationalTechnologyandKnowledgeManagement, SaarlandUniversity,Saarland,Germany

SeriesEditor

FatosXhafa

TechnicalUniversityofCatalonia(UPC),Barcelona,Spain

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfrom thepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbe foundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-823410-5

ForInformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: SonniniR.Yura

EditorialProjectManager: AndreaDulberger

ProductionProjectManager: MariaBernard

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

Dedication

“Toourfamilies”

Chapter1:ArtificialIntelligence(AI)-enabledremotelearningandteaching usingPedagogicalConversationalAgentsandLearningAnalytics

AmaraAtif,MeenaJha,DeborahRichardsandAyseA.Bilgin

1.2.1Challengesanddisappointmentsofonlinelearningorremoteteaching

1.2.2ArtificialIntelligence,PedagogicalConversationalAgents, andLearningAnalyticsinsupportforremoteteaching-learning

1.3OurexperiencewithPedagogicalConversationalAgents

1.3.1BuildingVIRTAinUnity3D.......................................................................9 1.3.2VIRTAarchitectureanddeploymentenvironment

1.4.1AccesstoVIRTAbyteachingweek

1.4.2HoursofaccesstoVIRTA

1.4.3AccesstoVIRTAbyweekandhour

1.4.4AccesstoVIRTAbydayofweek

1.4.5StudentinteractionswithVIRTA

1.5Discussion............................................................................................................21

1.5.1UtilizingPedagogicalConversationalAgentswith

1.5.2IntegratingLearningAnalyticsandPedagogical ConversationalAgents

1.6Futuretrendsandconclusion

Chapter2:Integratingaconversationalpedagogicalagentinto theinstructionalactivitiesofaMassiveOpenOnlineCourse

RocaelHerna´ndezRizzardini,He´ctorR.Amado-Salvatierra andMiguelMoralesChan

2.1Introduction

2.3.1Researchgoalsandhypotheses

2.4Resultsanddiscussion

2.5Conclusionsandfuturework

Chapter3:ImprovingMOOCsexperienceusingLearningAnalytics andIntelligentConversationalAgent

TariqAbdullahandAsmaaSakr

3.1Introduction

3.2OnlinelearningandMOOCs

3.4LAICAintegrationinMOOCs:framework

3.4.1Proposedframework

3.4.2LAICA:systemflow

3.4.3LAICA:analyticsanddissemination

3.5LAICAintegrationinMOOCs:exampleimplementation

3.5.1Knowledgebasecreation

3.5.2Databaseintegration

3.5.3Testplan

3.5.4Learninganalyticsintegration

3.6LAICAintegrationinMOOC:impactanalysis

3.7LAICAintegrationinMOOC:findingsanddiscussion

Chapter4:Sequentialengagement-basedonlinelearninganalytics

XiangyuSongandJianxinLi

4.1Introduction

4.2.1Learninganalytics

4.2.2Predictingstudent’sperformance

4.2.3Students’learningengagement

4.3.1Notationandproblemstatement................................................................77

4.3.2SPENstructureoverview

4.3.3Engagementdetector

4.3.4Sequentialpredictor

4.3.5Lossfunction

4.4Experimentsandevaluation

4.4.1Experimentsenvironment..........................................................................81

4.4.2Experimentsettings

4.4.3Comparedmethodsandmetrics

4.4.4Evaluation

4.4.5Experimentresultsanddiscussion

Chapter5:Anintelligentsystemtosupportplanninginteractivelearning

5.1Introduction

5.2Theoreticalbackgroundsofintelligentsystemsinactivelearningsystems

5.3.1LearningobjectsinMoodlesystem

5.3.2Relationshiplearningobject:learningtopic

5.3.3Structureofobserverasactivitymodule

5.3.4Dataanalyticstechniques

5.3.5Generalizedsequentialpatternsoflearningobject ....................................97

5.3.6FelderandSilvermanlearningstylemodel .............................................102

5.4Resultsanddiscussion .......................................................................................102

5.5Conclusion .........................................................................................................107

Chapter6:Aliteraturereviewonartificialintelligenceandethics inonlinelearning

6.1Introductionandmotivations .............................................................................111

6.2Artificialintelligenceinonlinelearning.............................................................113

6.2.1Chatbotsandeducationalbots .................................................................114

6.3Ethicsinonlinelearning ....................................................................................115

6.4Ethicsinartificialintelligence ...........................................................................116

6.4.1Datascienceandethics ...........................................................................118

6.4.2Openingtheblackboxwithexplainableartificialintelligence

6.5Limitationsofethicsbydesignandhowmoralsystemscan overcomethem ..................................................................................................121

6.6Reflectionsandguidelinesforanethicaluseofartificialintelligence inonlinelearning ...............................................................................................123

6.6.1Datascienceandfairness ........................................................................124

6.6.2Transparencyandhonesty .......................................................................124

6.6.3Purposeofintelligentsystem ..................................................................125

6.6.4Technologicalexclusionanddigitaldivide

6.7Concludingremarksandfuturework

Chapter7:Transferlearningtechniquesforcross-domainanalysisof postsinmassiveeducationalforums

7.1Introduction .......................................................................................................133

7.2Relatedworks ....................................................................................................135

7.3Textcategorizationmodel ..................................................................................138

7.3.1Word-leveldocumentrepresentation .......................................................139

7.3.2Overalldocumentrepresentationandclassification .................................139

7.4Transferlearningstrategy

7.5Experimentsandevaluation

7.5.1Textcategorizationperformance

7.5.2Transferlearningperformance

7.6Conclusionsandfurtherwork

Chapter8:Assistededucation:Usingpredictivemodeltoavoid schooldropoutine-learningsystems

FelipeNeves,FernandaCampos,VictorStro¨ele,Ma´rioDantas, Jose´ MariaN.DavidandReginaBraga 8.1Introduction

8.2.1Recommendersystems

8.2.2Predictivelearningmodels

8.2.3Learningstyles

8.3.1Comparativeanalysis

8.4PRIOREnsembleArchitecture

8.4.1Predictionprocess

8.5DPE-PRIOR:DropoutpredictiveEnsembleModel

8.5.1DPE-PRIORinaction

RinaAzoulay,EstherDavid,MireilleAvigalandDoritHutzler

9.1Introduction

9.3.1Reinforcementlearningmethods

9.3.2Bayesianinference-basedmethods

9.3.3Summaryofthecomparisonofadaptivemethods

9.4Methodologyandresearchapproach

9.4.1Theevaluationfunctionsusedinourstudy

9.4.2Adescriptionofthesimulatedenvironment

9.5Simulationresults ..............................................................................................193

9.5.1Topperformingalgorithms .....................................................................194

9.5.2Comparisonofalgorithmsovertime .......................................................195

9.5.3Comparisonofalgorithmsusingdifferentevaluationfunctions...............195

9.5.4Algorithmcomparisonfordynamicallychangedlevelofstudents ..........197

9.6Discussion..........................................................................................................198

9.7Conclusions .......................................................................................................200

Chapter10:Actor’sknowledgemassiveidentificationinthelearning managementsystem ........................................................................205

YassineBenjellounTouimi,AbdelladimHadioui,NourredineELFaddouli andSamirBennani

10.1Introduction .....................................................................................................205

10.2DiagnosisofhighereducationinMoroccoandcontributionofe-learning .......207

10.2.1Positionofe-learninginstructuringinformationand communicationtechnologyprojectsinMorocco ...............................208

10.2.2Theinteractiontraces ........................................................................208

10.2.3Learner’straces .................................................................................208

10.2.4Tutor’straces ....................................................................................209

10.2.5Administrator’straces .......................................................................210

10.2.6Researcher’straces ............................................................................210

10.2.7Learningmanagementsystemtracesfiles .........................................211

10.2.8Tracemanagementbybigdata..........................................................211

10.2.9Collectandloadingtracesprocesswithbigdatatools ......................213

10.2.10Thedatastorage ................................................................................215

10.2.11Dataanalysis .....................................................................................216

10.3Machinelearningevaluationtools....................................................................218

10.3.1Seekinginformation ............................................................................219

10.3.2Datavisualizationtools .......................................................................220

10.4E-learningmassivedata ...................................................................................220

10.4.1Theanalysisprocessofmassivetracesinamassiveonline opencoursediscussionforum...............................................................221

10.4.2Extractionknowledgebybigdataanalysisofmassivelogfiles ..........222

10.4.3Extractionknowledgebystatisticaldescriptiveanalysisoflogfiles ...223

10.4.4Semanticanalysisofbigdatainthediscussionforum ........................229

10.5Conclusion .......................................................................................................233 References .................................................................................................................233

Chapter11:Assessingstudents’socialandemotionalcompetencies throughgraphanalysisofemotional-enrichedsociograms...................239

EleniFotopoulou,AnastasiosZafeiropoulos,IsaacMuroGuiu, MichalisFeidakis,ThanasisDaradoumisandSymeonPapavassiliou

11.1Introduction

11.2State-of-the-artanalysis

11.2.1Sociometricassessmentapproaches

graphattributes ...................................................................................248

11.3.1Datacollection,processing,andemotional-enriched sociogramscomposition

11.3.2Socialnetworkanalysis

11.3.3ProvisionofinteractiverecommendationsforSocial andEmotionalLearningactivities

Chapter12:Anintelligentdistancelearningframework:

JohnYoon

12.3.1Modulestructure:ThreeLayers—BeginwithBasic, DiveintoAdvanced,andApplytoApplications .................................280

12.3.2Layerstructure:FourPanes—Slides,Videos,Summary, andQuizletPanes ...............................................................................281

12.3.3Answeringquestionspostedbystudentsonlayers: AnswerCollectionandRanking

12.4Learningassessmentandfeedback

12.4.1Assessmentquestiongeneration

12.4.2Smartphoneassessment .......................................................................287

12.4.3Question-drivenreorganizationofonlinecoursematerials

12.5Analytics:miningfromlearninggraphandassessmentgraph

12.5.1Assessmentdataanalyticsfordistanceteaching

12.6Simulationresult

Chapter13:Personalizingalternativesfordiverselearnergroups:

13.1Introduction

13.2Personalizationinonlineeducation:trends,systems,andapproaches

13.2.1Personalizationandaccessibility

13.2.2Readabilityasastartingpointforpersonalization

13.3Implementingreadabilitytools:generalstepsandsuggestions

13.3.1Precoursepreparation:contentanddisplayoptions

13.3.2Precoursepreparation:contentandtoolselection

13.3.3Facilitatingtooluse—encouragingtaskcrafting

13.3.4Evaluationofpersonalizationandtooluse

13.3.5Evaluationofperformance ..................................................................311

13.3.6Additionalimplementationconsiderations

13.4.1Practicalimplicationsforeducators

13.4.2Futureresearch

Chapter14:Humancomputationforlearningandteachingor collaborativetrackingoflearners’misconceptions

14.1.1Resultsfrompreliminarystudies

14.1.3Chapterstructure .................................................................................327

14.2.1Onlinehomeworksystems ..................................................................328

14.2.3Text-andnaturallanguageprocessingin Technology-EnhancedLearning

14.2.4WikisoftwareinTechnology-EnhancedLearning...............................330 14.3Resultsfrompreliminarystudies

14.3.1Validityofsystematicerroridentification

14.4.1Thesemanticwiki

14.4.2Thepersonalassistant

14.4.3Thetextprocessingcomponent

14.4.4Theanalyticscomponent

Listofcontributors

TariqAbdullah CollageofEngineeringandTechnology,UniversityofDerby,Derby,United Kingdom

He ´ ctorR.Amado-Salvatierra UniversidadGalileo,GESDepartment,Guatemala,Guatemala

AmaraAtif UniversityofTechnologySydney,Ultimo,NSW,Australia

MireilleAvigal TheOpenUniversityofIsrael,Raanana,Israel

RinaAzoulay DepartmentofComputerScience,JerusalemCollegeofTechnology,Jerusalem, Israel

MammedBagher BusinessSchool,EdinburghNapierUniversity,Edinburgh,UnitedKingdom

SamirBennani DepartmentofComputerScience,MohammadiaSchoolofEngineering, MohammedVUniversityinRabat,Rabat,Morocco

AyseA.Bilgin MacquarieUniversity,NorthRyde,NSW,Australia

ReginaBraga ComputerSciencePostgraduateProgram,KnowledgeEngineeringResearchGroup, FederalUniversityofJuizdeFora,JuizdeFora,Brazil

Franc¸oisBry LudwigMaximilianUniversityofMunich,Munchen,Germany

SantiCaballe ´ OpenUniversityofCatalonia,Barcelona,Spain

FernandaCampos ComputerSciencePostgraduateProgram,KnowledgeEngineeringResearch Group,FederalUniversityofJuizdeFora,JuizdeFora,Brazil

NicolaCapuano SchoolofEngineering,UniversityofBasilicata,Potenza,Italy

JoanCasas-Roma FacultyofComputerSciences,MultimediaandTelecommunication, UniversitatObertadeCatalunya(UOC)—Barcelona,Barcelona,Spain

JordiConesa FacultyofComputerSciences,MultimediaandTelecommunication,Universitat ObertadeCatalunya(UOC)—Barcelona,Barcelona,Spain

Ma ´ rioDantas ComputerSciencePostgraduateProgram,KnowledgeEngineeringResearchGroup, FederalUniversityofJuizdeFora,JuizdeFora,Brazil

ThanasisDaradoumis CulturalTechnologyandCommunication,UniversityoftheAegean, Lesvos,Greece

EstherDavid DepartmentofComputerScience,AshkelonAcademicCollege,Ashkelon,Israel

Jose ´ MariaN.David ComputerSciencePostgraduateProgram,KnowledgeEngineeringResearch Group,FederalUniversityofJuizdeFora,JuizdeFora,Brazil

StavrosDemetriadis AristotleUniversityofThessaloniki,Thessaloniki,Greece

NourredineELFaddouli DepartmentofComputerScience,MohammadiaSchoolofEngineering, MohammedVUniversityinRabat,Rabat,Morocco

MichalisFeidakis DepartmentofElectricalandElectronicsEngineering,UniversityofWest Attica,Athens,Greece

EleniFotopoulou SchoolofElectricalandComputerEngineering,NationalTechnicalUniversity ofAthens,Athens,Greece

EduardoGo ´ mez-Sa ´ nchez ValladolidUniversity,Valladolid,Spain

IsaacMuroGuiu InstitutMartaEstrada,Barcelona,Spain

AbdelladimHadioui DepartmentofComputerScience,MohammadiaSchoolofEngineering, MohammedVUniversityinRabat,Rabat,Morocco

NielsHeller LudwigMaximilianUniversityofMunich,Munchen,Germany

RocaelHerna ´ ndezRizzardini UniversidadGalileo,GESDepartment,Guatemala,Guatemala

MatthewHodges TelefonicaEducationDigital,Madrid,Spain

DoritHutzler TheOpenUniversityofIsrael,Raanana,Israel

DeboraJeske SchoolofAppliedPsychology,UniversityCollegeCork,Cork,RepublicofIreland

MeenaJha CentralQueenslandUniversity,Sydney,NSW,Australia

AnastasiosKarakostas CERTH(CentreforResearchandTechnologyHellas),Thessaloniki, Greece

AllisonKolling SaarlandUniversity,Saarbrucken,Germany

KristijanKuk UniversityofCriminalInvestigationandPoliceStudies,Belgrade,Serbia

JianxinLi SchoolofInformationTechnology,DeakinUniversity,Geelong,VIC,Australia

EdisMekic ´ StateUniversityofNoviPazar,NoviPazar,Serbia

KonstantinosMichos ValladolidUniversity,Valladolid,Spain

MiguelMoralesChan UniversidadGalileo,GESDepartment,Guatemala,Guatemala

FelipeNeves ComputerSciencePostgraduateProgram,KnowledgeEngineeringResearchGroup, FederalUniversityofJuizdeFora,JuizdeFora,Brazil

NadiaPantidi ComputationalMediaInnovationCentre,VictoriaUniversityofWellington, Wellington,NewZealand

GeorgePalaigeorgiou LearnWorlds,Limassol,Cyprus

PantelisM.Papadopoulos AarhusUniversity,Aarhus,Denmark

SymeonPapavassiliou SchoolofElectricalandComputerEngineering,NationalTechnical UniversityofAthens,Athens,Greece

TijanaPaunovic ´ SchoolofEconomics,Doboj,BosniaandHerzegovina

GeorgiosPsathas AristotleUniversityofThessaloniki,Thessaloniki,Greece DeborahRichards MacquarieUniversity,NorthRyde,NSW,Australia

AsmaaSakr CollageofEngineeringandTechnology,UniversityofDerby,Derby,United Kingdom

XiangyuSong SchoolofInformationTechnology,DeakinUniversity,Geelong,VIC,Australia

VictorStro ¨ ele ComputerSciencePostgraduateProgram,KnowledgeEngineeringResearchGroup, FederalUniversityofJuizdeFora,JuizdeFora,Brazil

StergiosTegos AristotleUniversityofThessaloniki,Thessaloniki,Greece

YassineBenjellounTouimi DepartmentofComputerScience,MohammadiaSchoolof Engineering,MohammedVUniversityinRabat,Rabat,Morocco

ThrasyvoulosTsiatsos AristotleUniversityofThessaloniki,Thessaloniki,Greece

CostasTsibanis GreekUniversitiesNetwork,Athens,Greece

IgorVukovic ´ UniversityofCriminalInvestigationandPoliceStudies,Belgrade,Serbia

ArminWeinberger SaarlandUniversity,Saarbru ¨ cken,Germany

ChristianWintherBech AarhusUniversity,Aarhus,Denmark

JohnYoon DepartmentofMathematicsandComputerSciences,MercyCollege,DobbsFerry, NY,UnitedStates

AnastasiosZafeiropoulos SchoolofElectricalandComputerEngineering,NationalTechnical UniversityofAthens,Athens,Greece

Foreword

Newtechnologiesandespeciallyinformationandcommunicationtechnologieshave penetratedalmosteverydimensionofsociety,includingeducation.Thepromisefor increasedefficiencyandalmostunlimitedeffectivenesshascharacterizedeachnewwaveof educationaltechnologies.DuringthecurrentCovid-19pandemiceducationaltechnologies havebeenthecornerstoneofremoteeducationandanessentialelementofeverydaylife. Andofcourse,thepotentialsynergybetweenartificialintelligence(AI)andeducationhas beenconsideredforseveraldecades.Expertandknowledge-basedsystems,accompaniedby powerfulmachinelearningtechniques,havepromisedadaptiveandpersonalizedlearning, orevenseamlesslearningacrossformal,nonformal,andinformalcontexts.Lastly,data sciences(DS)haveemergedasanotherrelevantcompanion,sinceinteractionsbetween humansandsystemscanbeeasilyregisteredandexploited,andthereforedatacanbe analyzedandeventuallysupportalleducationalstakeholders.Designing,deploying,and evaluatingappropriatealgorithms,tools,andsystemsusingallthesecomponentsisthe ultimategoalofmanyresearchersanddevelopers.

Suchatechnocentricapproachhasmostlydominatedthediscourseregardingtheprominent roleofinformationandcommunicationstechnologies,AI,andDSineducation.However, teachingandlearningcanbeconsideredashighlycomplexindividualandsocialprocesses embeddedinawidersocialcontext.Cognitiveandsocialprocessescannotbeeasily modeledanditisquitechallengingtofindtheadequateroleofsoftwareagentsinthewider educationalprocess.Designcannotbeeffectivelyaccomplishedwithoutastrong involvementorallrelevantstakeholders.Ontheotherhand,richdatamayberequired insteadofmassiveclickstreamsthatmaybeinterpretedthroughthelensofappropriate educationaltheories.Thedebateontheroleofeducationaltechnologieshasnotyetended, andeventuallywemayseeariseofnewrelevantandnecessarydiscoursesthatmayshed lightonthisevolvingfield.

Thisbookaddressesseveralissuesthathavebeenhighlightedabove.Conversationalagents mayinteractwithlearnersonaone-to-onebasisorsupportinggroup-levelprocesses.

Learninganalytics(LA)maybecalculatedandvisualizedindashboardsasameansfor learnerself-,co-,orsocially-sharedregulationorasasupportfordecision-makingby teachers,curriculumdesigners,oradministrators.Machinelearningtechniquescanbeused

inordertoderivepredictivemodelsregardingat-riskstudentsanddropoutrates.LA-based solutionsmayalleviatethescaleissuesfortheefficientsupportofteachingassistantsin massiveopenonlinecourses.Appropriateinstructionalapproachesmaybesupportedbyor complementAIapproaches.Severalpromisesandchallengesareintroducedandillustrated byrelevantresearchersinthisbook.

Consideringthecontributionsmadeinthisbookandaglobalviewofeducational technologiesorAIineducation,onecouldmentionsomeimportantissuesthatmightbe partofthecorrespondingresearchagenda:

•Significantconcernshavebeenexpressedregardingthetransparencyand trustworthinessofAI-basedmodelingandrecommendations,andevenmoreacutelyfor theteachingandlearningprocesses,wheresocialorcognitiveaspectsareinvolved.

•Similarly,theagencyofthehumans,andespeciallyteachersandstudents,isindanger andtheeffectivenessofthedesignedtoolsisquestioned.Thereforehumansmustbe broughtintheloop,orevenbeatthecenterofthedesignprocess,givingriseto human-centeredLAandAI.

•Severalcriticalvoiceshavebeenechoedintheliterature,andespeciallyduringthe Covid-19pandemic,regardingthetechnocentricviewofeducationaltechnologies, advocatingforanincreasedfocusonthesocialaimsofeducationandcallingfora renewedroleoftheteachers,asmediators.

•Sinceadvancesineducationaltechnologies,andespeciallyinLA,haveusuallybeen derivedinasinglefieldandmostlybytechnologists,aunifiedtheoreticalviewmight beconsidered,forexample,throughtheconsolidatedviewofLAthatbringstogether design,learningtheory,andDS.

•AI-basedsupporttolearnersandteachersshouldconsidernotonlythelearnerasan individual,butalsotakeintoaccountthecommunity-levelinteractionsandthegrouplevelteachingandlearningprocesses.Similarly,theinstitutionalanalyticsmightbe analyzedinconjunctionwiththeLAinordertoallowforawideradoptionandimpact.

•Well-knowntechniquesandapproachesinAImightbefurtherexplored,suchas processandtextmining,sentimentanalysis,ormultiagentsystems,alwaystakinginto accountthespecialanduniquecharacteristicsofteachingandlearning.

•Anintegratedviewshouldbesoughtregardingtheselectionanduseofhardandsoft sensors;theconstructionofanalytics,meaningfultoboththeoryandstakeholders;and theprovisionofmirroring,advising,andguidingactions.

•Professionaldevelopmentandcapacitybuildingactionsmightbestudiedandenacted, especiallyregardingteachersandlearningdesigners.Theseinitiativesshouldespecially takeintoaccountthebarriersforasmoothandpedagogicallysoundadoptionofthe tools,andconsiderthatultimatelytheeffectiveuseoftoolsisheavilyconditionedby thetechnologicalandpedagogicalknowledge,oreventheattitudesandbeliefsof teachers.

Ibelievethatrelevantrecentinterdisciplinaryresearchworkhasbeenpavingthewaytoa betterunderstandingoftheroleofAI,LA,andeducationaltechnologiesineducation,and eventuallyadvancingtowardabettereducation.Thisbookallowsforafurtherstepforward, althoughsignificantandchallengingworkisstillpendinginthiscomplexandhighly relevantfieldforsociety.

YannisDimitriadis

DepartmentofTelematicsEngineering,GSIC/EMICResearchGroup, UniversidaddeValladolid,Valladolid,Spain

Preface

Onlineeducationandespeciallymassiveopenonlinecourses(MOOCs)aroseasawayof transcendingformalhighereducationbyrealizingtechnology-enhancedformatsoflearning andinstructionandbygrantingaccesstoanaudiencewaybeyondstudentsenrolledinany onehighereducationinstitution(HEI).However,thepotentialforEuropeanHEIstoscale upandreachaninternationalaudienceofdiversebackgroundshasnotbeenrealizedyet. MOOCshavebeenreportedasanefficientandimportanteducationaltool,yettherearea numberofissuesandproblemsrelatedtotheireducationalimpact.Morespecifically,there isanimportantnumberofdropoutsduringacourse,littleparticipation,andlackof students’motivationandengagementoverall.Thismaybeduetoone-size-fits-all instructionalapproachesandverylimitedcommitmenttostudent studentand teacher studentcollaboration.

PreviousstudiescombineArtificialIntelligence(AI)-basedapproaches,suchastheuseof conversationalagents(CA),chatbots,anddataanalyticsinordertofacetheabove challenges.However,thesestudiesexploretheseandotherAIapproachesseparately,thus havinglessimpactinthelearningprocess.ThereforetheeffectiveintegrationofAInovel approachesineducationintermsofpedagogicalCAandlearninganalytics(LA)willcreate beneficialsynergiestorelevantlearningdimensions,resultinginstudents’greater participationandperformancewhileloweringdropoutratesandimprovingsatisfactionand retentionlevels.Inaddition,tutors,academiccoordinators,andmanagerswillbeprovided withtoolsthatwillfacilitatetheformativeandmonitoringprocesses.

Specifically,thebookaimstoprovidenovelAIandanalytics-basedmethodstoimprove onlineteachingandlearning,addressingkeyproblemssuchastheproblemofattritionin MOOCsandonlinelearningingeneral.Tothisend,thebookcontributestotheeducational sectoratdifferentlevels:

•Delivernewlearningandteachingmethodsforonlinelearning(withaspecificfocuson MOOCs),buildingonnoveltechnologiesincollaborativelearning,suchasCAandLA, thatarecapableofboostinglearnerinteractionandfacilitatelearners’self-regulation and-assessment.

•Demonstrateandvalidatethebuiltcapacityforinnovativeteachingandlearning methodsandmainstreamthemtotheexistingeducationandtrainingsystems,bythe

design,execution,andassessmentofpilotsthatorchestrateindividualandcollaborative learningactivities.

•Promotehighlyinnovativesolutionsandbeyondthestate-of-the-artmodelsforonline andMOOC-basedlearningandimplementationswiththeintegrationofAIservices, suchas,forexample,basedonCAandLA,tofacecurrentandfuturechallengesand forsustainableimpactononlineeducationalandtrainingsystems.

•Demonstrateandexemplifyefficientteachingtechniquesleveragingthepowerof analyzingdatageneratedbysmartAI-basedinterfaces,suchasthosepromoting interactionswithCAinlearningenvironments.

•DeepenourunderstandingofhowCAtoolscancontributetoincreasingthe transactionalqualityofpeers’dialogueand,consequently,thequalityoflearning,in varioussituations,suchaslearninginacademicsettingsandalsocorporatetrainingin businessenvironments.

Theultimateaimofthisbookistostimulateresearchfromboththeoreticalandpractical views,includingexperienceswithopensourcetools,whichwillallowothereducational institutionsandorganizationstoapply,evaluate,andreproducethebook’scontributions. Industryandacademicresearchers,professionals,andpractitionerscanleveragethe experiencesandideasfoundinthebook.

Thisbookconsistsof15chapters,startingwiththeIntroductoryChapterwheretheBook Editors,ledbyStavrosDemetriadis,presenttheEuropeanproject“colMOOC,”which supportstheeditionofthisbook.Theaimofthisleadingchapteristodescribetherationale oftheprojectmotivatedbytheissuesfoundinthecontextofMOOCs,whichprovidea powerfulmeansforinformalonlinelearningthatisalreadypopular,engaginggreat numbersofstudentsallovertheworld.However,studiesonMOOCsefficiencyfrequently reportonthehighdropoutratesofenrolledstudents,andthelackofproductivesocial interactiontopromotethequalityofMOOC-basedlearning.Theprojectproposesand developsanagent-basedtoolandmethodologyforintegratingflexibleandteacherconfigurableCAalongwithrelevantLAservicesinonlineeducationalplatforms,aimingto promotepeerlearninginteractions.TheauthorsclaimthatCAsappeartobeapromisingAI technologywiththepotentialofactingascatalystsofstudents’socialinteraction,afactor knowntobeneficiallyaffectlearningatmanylevels.Fromthisperspective,thechapter providesreflectionsonthefirstprojectoutcomesemergingfromfourdifferentpilot MOOCs.Earlyconclusionsanalyzethechallengesforintegratingateacher-configuredCAchatserviceinMOOCs,providehelpfulguidelinesforefficienttaskdesign,andhighlight promisingevidenceonthelearningimpactofparticipatinginagent-chatactivities.

Therestofthebookchaptersareorganizedintothreemajorareas:

PartI: IntelligentAgentSystemsandLearningDataAnalytics:Thechaptersinthisarea addresstheuseofpedagogicalCAsandLAtoprovidesupportive,personalized,

andinteractiveonlineteachingandlearninginlearningmanagementsystems (LMSs)andinparticularinmassiveeducationasinMOOCplatforms.Benefits andchallengesoftheproposededucationalstrategiessupportedbythese technologicalapproachesareunveiledandtheresearchresultsareillustratedwith practicaladoptionsinrealcontextsoflearning.Thecross-cuttingscopeofthe researchapproachescanbeappliedtodifferentknowledgeareasandlearning modesandstyleswiththeultimatepurposetoimproveandenhancetheonline teachingandlearningexperience.

PartII: ArtificialIntelligenceSystemsinOnlineEducation:Thisareastartswithexploring theintersectionbetweenAI,onlineeducation,andethicswiththeaimtodraw people’sattentiontotheethicalconcernssurroundingthiscrossroads.Therestof thechaptersintheareaprovideAI-basedsolutionstoaddressrelevantissuesfound incurrentonlineeducation,suchaspoorpersonalization,highacademicdropout, learners’disengagement,andlowparticipation,manyofthemresultingfrom facingonlineeducationatscaleandbigdata.Todealwiththeseissues,the chaptersproposetousedifferentAItechniques,suchasmachinelearning, sentimentanalysis,andnaturallanguageprocessing.Simulationresultsintermsof technicalperformanceandaccuracyarecomparedwithsimilarapproaches,and implicationsoftheseresultsforonlineeducationareillustratedintermsof improvingtheeffectivenessoftheonlineteachingandlearningprocessatscale.

PartIII: ApplicationsofIntelligentSystemsforOnlineEducation:Thechapterscoveringthis areapresenttheapplicabilityofdifferentapproachesofintelligentlearningsystems tovariousdomainsandforavarietyofpurposes,namelytheanalysisof socioemotionalprofileswithineducationalgroups,toovercometheuniformityof onlinelearningcontentstodealwithheterogeneouslearners,tosupportlearnerswith varyingreadingdifficulties,andtoimproveteachingandlearningofscience, technology,engineering,andmathematics(STEM)subjects.Strongimplicationsand furtherchallengesoftheapplicationoftheseapproachesincludemakingonline educationmoreeffective,multidisciplinary,andcollaborative,personalized,andfair.

Thechaptersinthefirstareaof IntelligentAgentSystemsandLearningDataAnalytics are organizedasfollows:

Atifetal.inChapter1,AI-EnabledRemoteLearningandTeachingUsingPedagogical ConversationalAgentsandLearningAnalytics,claimthattheadvancementsinAIhave potentiallycreatednewwaystoteachandlearn,suchastheuseofLAtomonitorand supportstudentsusingdatacapturedinLMSs.Tobackupthisclaim,theauthorsinthe chapterreportthebenefitsofusingAI-enabledCAsinmultipleunits/subjectsacrosstwo universitiesandillustratehowtheseCAscanplayarolesimilartoateacherorpeerlearner bysharingtheexpertisetheyhaveacquiredfromtheknowledgecontainedin student teachersocialinteractionsinLMSforumsandgrade-bookteacherfeedback.

Thechaptershowshowunliketeachersorpeers,theseCAscanbecontactedanonymously atanytime,theydonotmindbeingaskedthesamequestionrepeatedly,andtheycan empowerstudentstoexploreoptionsandoutcomes.Thechapterconcludeswitha discussionofthepotentialofLAtoautomateCAinteractions.

Chapter2,IntegratingaConversationalPedagogicalAgentintotheInstructionalActivities ofaMassiveOpenOnlineCourse,byRizzardinietal.addressesthetopicofusing pedagogicalCAstoofferawiderangeofpossibilitieswhenincorporatedintovirtual trainingcourses.ThechapterismotivatedinthecontextofMOOCs,wheretheinteraction withthestudentsisatscale,thushinderingpersonalizedinteractionbyhumanteachers.The authorsbelievethatanadequateconfigurationofpedagogicalCAshasthepotentialto providepersonalizedattention.However,theauthorsclaimthatthereareno“one-size-fitsall”approachesintermsofpedagogicalCAsgiventhattheconversationsusuallystartfrom scratch,withoutmuchusercontext,becomingespeciallyproblematicwhenaddressingthe issueofscalabilityinMOOCswherestudentsshowdifferentstatesandasimilarapproach isnotusefulforallofthem,requiringtostartwithapreviouscontext.Toaddressthisissue, theauthorsproposetheuseofLAtoprovideabettercontextfordecision-makingand initialvaluestolaunchthemodelresultingingreaterpossibilityofsuccess.Tothisend,the goalofthechapteristopresentaprototypeintegratingaCAembeddedintothe instructionalactivitiesofaMOOCwiththeultimateaimtoincreasemotivationandstudent engagementtoachievetheirlearninggoalswhileproducingimprovementsinstudents’ behaviorandhighercompletionrates.

AbdullahandSakrinChapter3,ImprovingMOOCsExperienceUsingLearningAnalytics andIntelligentConversationalAgent,discusstheeffectivenessthatonlinelearninghas provedinthelastyearsamongawiderangeoflearners.Inparticular,theauthorsclaimthat MOOCshaverevolutionizedtheshapeoflearningasasubstitutionaltoolcomparedtothe conventionaleducationalsystem,dueto,amongotherreasons,theirflexibilityintiming, eliminationofeconomicandgeographicalconstraints,whileenablinglearnersfrom differentculturestocommunicateandsharetheirknowledgethroughonlineforums.Then, theauthorsturnthediscussionintothechallengesfoundinMOOCsthatneedtobefaced, suchashigherdropoutsratesamonglearnersatdifferentphasesofthecourseandreduction inparticipationleveloflearners.Thechapteraimstoaddressthesechallengeswhile enhancingtheMOOCsexperiencethroughtheprovisionofaninnovativeframeworknamed LearningAnalyticsTechniqueandIntelligentConversationalAgent(LAICA)withthe purposeofintegratingLAandintelligentCAstoimprovetheMOOCexperiencefor learnersandeducators.ThechapterprovidesathroughoutdescriptionoftheLAICA frameworkfromthearchitecturalview,andacasestudyofimplementationandintegration oftheframeworkinaMOOCisprovided.

InChapter4,SequentialEngagement-basedOnlineLearningAnalyticsandPrediction, SongandLianalyzehowonlineeducationhasbecomeawidelyacceptedteachingmethod

overtherecentyearsasanintegratedlearningplatformprovidinglearningmaterialsand assessmenttools.Intheiranalysis,theauthorsclaimthatthroughthecompleteaccessrights andrecordsofthestudents’completeactivitiesonthelearningplatform,students’learning engagementandevaluationresultscanbewellanalyzedandpredicted.However,withthe developmentandchangesinteachingcontents,theauthorsclaimthatnewchallengeshave emergedasvariousnewformsoftextbooksandinteractivemethodshavebeenintroduced intovariousonlineeducationplatforms,whichmakemoreimplicitlearningpatternsbe learned,resultinginstudents’onlineactivitiesbeingcloselyrelatedtotheirfinalgrades. Fromthismotivation,theauthorssimulatelearningactivitiesinanewteachingformatin ordertoaccuratelypredicttheirfinalperformancebyleveragingimportantresearch outcomesintheLAfield.Eventually,thechapteraimstoexplainindetailhowtointegrate thelatestLAresearchmethodsintomodelingstudents’sequentiallearningengagement,so astoaccuratelypredictstudents’learningperformance.

Kuketal.concludesthefirstareaofthebookinChapter5,AnIntelligentSystemto SupportPlanningInteractiveLearningSegmentsinOnlineEducation,bydiscussingthe intelligenteducationalservicesusedbytoday’sLMSplatformsforthepurposeofcreating personalizedlearningenvironments.Theauthorsclaimthattheselearningenvironments mustbeadaptedforpersonalstudentleaningstyle.Tothisend,thepurposeofthechapter istopropose,develop,andexplaintheimp lementationofapers onalizedintelligent system.Theproposedsystemsuggestsadditionallearningresourcesthatwillsupport students’immersivelearningprocess,whichwillleadtowardbetteroutcomesoflearning activities.However,theauthorsconsiderthat onlinee-learningsystemsshouldimplement successfulmethodsandevaluationtechnique swhentakingdifferentteachingpathsthough facingtechnicalchallengess tillunsearched,whicharethemainmotivationofthechapter. Tothisend,theauthorsinthechapterurgethateverye-learningsystemshouldhave differentinteractivel earningsegmentsintheformoflearningobjectsintext,video, image,quiz,etc.,asentitiesineachsepar atecourseinthee-learningsystem,and supportedbyLAtechniquesasthemostappropriatemethodforautomaticdetectionof studentlearningmodels.Tothisend,thecha pterpresentsLAtechniquesforanalyzing learningpathscomposedfromfourdifferentle arningobjects,whicharethenimplemented inaMoodleenvironment.Asaresult,generalizedsequencepatternsaremapped,andan activitymodulenamedObserverisusedtotr ackstudents’learningbehavior.Theresults ofthetrackingareeventuallyusedtodevelopanintelligentsystemforplanning interactivelearningsegments.

Thechaptersinthesecondareaof ArtificialIntelligenceSystemsinOnlineEducation are organizedasfollows:

Chapter6,ALiteratureReviewonArtificialIntelligenceandEthicsinOnlineLearning,by Casas-RomaandConesadrawsattentiontohowAIisbeingusedinonlinelearningto improveteachingandlearning,withtheaimofprovidingamoreefficient,purposeful,

adaptive,ubiquitous,andfairlearningexperiences.However,theauthorsclaimthat,asit hasbeenseeninothercontexts,theintegrationofAIinonlinelearningcanhave unforeseenconsequenceswithdetrimentaleffectsthatcanresultinunfairand discriminatoryeducationaldecisions.Thereforethemainauthors’motivationisthatitis worththinkingaboutpotentialrisksthatlearningenvironmentsintegratingAIsystems mightpose.Tothisend,theauthorsexploretheintersectionsbetweenAI,onlineeducation, andethicsinordertounderstandtheethicalconcernssurroundingthiscrossroads.Asa result,thechapterprovidesanextensivereviewworkonthemainethicalchallengesin onlineeducationidentifiedintheliteraturewhiledistillingasetofguidelinestosupportthe ethicaldesignandintegrationofAIsystemsinonlinelearningenvironments.Theauthors concludethattheproposedguidelinesshouldhelptoensurethatonlineeducationishowis meanttobe:accessible,inclusive,fair,andbeneficialtosociety.

CapuanoinChapter7,TransferLearningTechniquesforCross-domainMOOCForum Postanalysis,addressestheroleofdiscussionforums,aspopulartoolsinthecontextof MOOCs,usedbystudentstoexpressfeelings,exchangeideas,andaskforhelp.Duetothe highnumberofstudentsenrolledandthesmallnumberofteachers,theauthorclaimsthat theautomaticanalysisofforumpostscanhelpinstructorstocapturethemostrelevant informationformoderatingandcarefullyplanningtheirinterventions.Tothisend,the authorfirstexploresseveralemergingapproachestotheautomaticcategorizationofMOOC forumpostsandclaimsthatsuchapproacheshaveacommondrawbackgiventhatwhen theyaretrainedonlabeledforumpostsfromonecourseordomain,theirapplicationon anothercourseordomainisoftenunsatisfactory.Forinstance,differentcourseshave differentfeaturespacesanddistributions,andcertainwordsmayappearfrequentlyinone course,butonlyrarelyinothers.Tohelpovercomethisdrawback,theauthorthen introducesacross-domaincorpus-basedtextcategorizationtoolthatincludestransfer learningcapabilitiesforthedetectionofintent,sentimentpolarity,levelofconfusion,and urgencyofMOOCforumposts.Theunderlyingmodel,basedonconvolutionaland recurrentneuralnetworks,istrainedonastandardlabeleddatasetandthenadaptedtoa targetcoursebytuningthemodelonasmallsetoflabeledsamples.Theproposedtool reportedinthechapteriseventuallyexperimentedwithandcomparedwithrelatedworks.

Chapter8,AssistedEducation:UsingPredictiveModeltoAvoidSchoolDropoutinELearningSystems,byNevesetal.discussestheimportantissueofstudentsdroppingoutof schoolasarealchallengeforeducationalspecialists,especiallyindistanceeducation classes,whichdealwithahugenumberofstudents’disengagementwithsocialand economiccosts.Inthiscontext,theauthorsclaimthatbehavioral,cognitive,and demographicfactorsmaybeassociatedwithearlyschooldropout.Motivatedbythisclaim, theaimofthechapteristoproposeanenhancedmachinelearningensemblepredictive architecturecapableofpredictingthedisengagementofstudentsalongwiththeclass.The systemnotifiesteachers,enablingthemtointerveneeffectivelyandmakestudents’success

possible,andstudentstogivethemachancetoturnback.Toevaluatetheproposed architecture,thechapterprovidesacasestudyshowingthefeasibilityofthesolutionand theuseofitstechnologies.Evaluationresultspointoutasignificantincreaseofgainin accuracyalongwiththeclass,reachingahighlevelofprecision.

Azoulayetal.inChapter9,AdaptiveTaskSelectioninAutomatedEducationalSoftware: AComparativeStudy,considerthechallengeofadaptingthedifficultylevelofthetasks suggestedtoastudentusinganeducationalsoftwaresystem.Intheirstudy,theauthors investigatetheeffectivenessofdifferentlearningalgorithmsforthechallengeofadapting thedifficultyofthetaskstoastudent’slevelandcomparedtheirefficiencybymeansof simulationwithvirtualstudents.Accordingtotheresults,theauthorsdemonstratethatthe methodsbasedonBayesianinferenceoutperformedmostoftheothermethods,whilein dynamicimprovementdomainstheitemresponsetheorymethodreachedthebestresults. Giventhefactthatcorrectlyadaptingthetaskstotheindividuallearners’abilitiescanhelp themincreasetheirimprovementandsatisfaction,thischaptercanassistthedesignersof intelligenttutoringsystemsinselectinganappropriateadaptationmethod,giventheneeds andgoalsoftheeducationalsystem,andgiventhecharacteristicsofthelearners.

Chapter10,Actor’sKnowledgeMassiveIdentificationintheLearningManagement System,byTouimietal.concludesthesecondareaofthebookbydiscussingonthe generationoftracesinanycomputersystemeitherbyuserinteractionswiththesystemor bythesystemitself.Theauthorsclaimthatwiththeproliferationofnewtechnologies, computertraceskeepincreasing,rapidlyandbrutallymakingenormouschangesinthefield ofeducationintermsoftechnicalmeansandteachingpedagogy.Inthecontextofonline education,theemergenceofMOOCsoffersunlimitedfreeaccessovertimeandspace whereinteractionsbylearnersgeneratelargeamountsofdatathataredifficultfortutors andlearnerstoprocessinlearningplatforms.Theauthorsfocusontheneedforlearnersto build,share,andseekknowledgeinaMOOCthroughdiscussionforums,whicharean efficienttoolforcommunication,sharingideas,opinions,andseekinganswerstolearners’ questions.Asacontributiontothisresearchfield,theaimofthechapteristoreportthe developmentofaframeworkcapableofmanagingbigdataindiscussionforumsinorderto extractandpresentrelevantknowledge,whichiscrucialinthecaseofMOOCs.The frameworkisbasedontheprocessofanalyzinglearners’tracelogfiles,whichincludesthe stagesofcollection,statisticalanalysis,andthensemanticanalysisoftracesoflearners’ interactions.Asstatisticalanalysisreducesthedimensionalityofthedataandbuildsnew variables,theauthorsproposetheLatentDirichletAllocationBayesianinferencemethodbe appliedtothreadsandmessagespostedinthediscussionforumsinordertoclassifythe relevantresponsemessages,presentasemanticresponsetothelearners,andenrichthe domainontologywithnewconceptsandnewrelationships.TheframeworkusestheApache Sparklibrariesforthecomputationspeedconstraints.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.