Industrial catalytic processes for fine and specialty chemicals 1st edition sunil s joshi - The full

Page 1


https://ebookmass.com/product/industrial-catalytic-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Biomolecular Engineering Solutions for Renewable Specialty Chemicals: Microorganisms, Products and Processes R. Navanietha Krishnaraj

https://ebookmass.com/product/biomolecular-engineering-solutions-forrenewable-specialty-chemicals-microorganisms-products-and-processes-rnavanietha-krishnaraj/ ebookmass.com

Catalytic Processes for Water and Wastewater Treatment

John Vakros

https://ebookmass.com/product/catalytic-processes-for-water-andwastewater-treatment-john-vakros-2/

ebookmass.com

Catalytic Processes for Water and Wastewater Treatment

John Vakros

https://ebookmass.com/product/catalytic-processes-for-water-andwastewater-treatment-john-vakros/

ebookmass.com

Effects of brain-derived mitochondria on the function of neuron and vascular endothelial cell after traumatic brain injury. Baoliang Zhang & Yalong Gao & Qifeng Li & Dongdong Sun & Xinlong Dong & Xiaotian Li & Wenqiang Xin & Jianning Zhang

https://ebookmass.com/product/effects-of-brain-derived-mitochondriaon-the-function-of-neuron-and-vascular-endothelial-cell-aftertraumatic-brain-injury-baoliang-zhang-yalong-gao-qifeng-li-dongdongsun-xinlong-dong-xiao/ ebookmass.com

IndustrialCatalyticProcesses forFineandSpecialtyChemicals

CSIR-NationalChemicalLaboratory,Pune,India

VivekV.Ranade

CSIR-NationalChemicalLaboratory,Pune,India

KannanSrinivasan CSIR-CentralSaltandMarineChemicalsResearchInstitute,Councilof ScientificandIndustrialResearch,Bhavnagar,India

A.Venugopal IndianInstituteofChemicalTechnology,Hyderabad,India

P.Unnikrishnan CatalysisDivision,CSIR-NationalChemicalLaboratory,Pune,India MayukhG.Warawdekar FineResearchandDevelopmentCentrePvt.Ltd.,Mumbai,India

J.Yadav IndianInstituteofChemicalTechnology,Hyderabad,India

Notations

Abbreviations

BCRbubblecolumnreactor

CFDcomputationalfluiddynamics

COFscovalentorganicframeworks

CSTRcontinuousstirredtankreactor

CVDchemicalvapordeposition

DPdepositionprecipitation

GLgas-liquid

GLSgas-liquid-solid

HTshydrotalcites

LSliquid-solid

MOFsmetalorganicframeworks

O/Woilinwater

PAMAMpolyamidoamine

PVDphysicalvapordeposition

SMSIstrongmetalsupportinteraction

STRstirredtankreactor

TOFturnoverfrequency

TONturnovernumber

TS-1titaniumsilicalite-1

W/Owaterinoil

ZIFzeoliticimidazoleframework

Notations

a distance

a phasefraction

aB interfacialarea,m2/m3

ap surfaceareaoftheparticle,m2/m3 A reactant A oritsconcentration/pre-exponentialfactor/Arrheniusconstant

AE externalsurfaceareaofacatalyst

Nu Nusseltnumber

NA Avogadronumber

ne numberofeddiesperunitvolume

ni numberofbubblesperunitvolume

p reactionorder/pressure,Pa

P product P oritsconcentration/probabilityfactororstericfactor/power

Pc probabilityofcollision

PH2 partialpressureshydrogen

PO saturationvaporpressure/powernumber

Ps effectivesolidpressure

PrPrandtlnumber

Q product Q oritsconcentration/flowrate,m3/s/molarconcentrationsofthe speciesinsolution/impellerdischargeflow

q* relativediffusivityfactor

Qa0 internalheatofadsorption

qie collisionrateofbubbleswithturbulenteddies

r rateofreaction,subscriptindicatingspecificreaction/product/radiusofthe particle,m

R radius(m)/rateofreaction/universalgasconstant

RA reactionrateconstantforformation/consumptionofA

Re Reynoldsnumber

Reb Reynoldsnumberforbubble

Rep particleReynoldsnumber

s factorforimpeller/surfacetension

S sourceterms/degreeofsupersaturation

S0 initialstickingprobability

Sct turbulentSchmidtnumber

Sie collisioncross-sectionalarea

Sh Sherwoodnumber

Sc Schmidtnumber

Sq stickingcoefficient

St totalsurfacearea

T localgranulartemperaturetankdiameter,mandtemperature, K/temperature

td timefordiffusion

tk turbulenttimescale

tO inductionperiod

U, U, uG, uL superficialvelocity,m/s

upt particleterminalvelocity(m/s)

V, V0 bubblevolume,m3

Preface

Fineandspecialtychemicalsareessentialforeverythingwedoinourdailylives.These chemicalscatertoseveralkeyapplicationsrequiredformaintainingandenhancingourquality oflife,andwillbecomeincreasinglyimportant.Thefineandspecialtychemicalssectoris facingmanychallengestodayforvarietyofreasons,suchasfragmentedcapacity,relatively lowcapitalandtechnologyintensity,fastererosionofmarginsduetocommoditizationof products,therisingcostsofrawmaterialsandenergy,andstricterenvironmentalregulations. Thesechallengesalsooffernewopportunitiestoinnovateandcreateacompetitiveedge. Catalysisandcatalyticprocessesarethekeysfordevelopinggloballycompetitiveand environmentallybenignmethodsofconvertingnaturalresourcesintofineandspeciality chemicals.Replacementofthestoichiometricreactionsbythecatalyticreactions,development andimplementationofnewcatalystsystemsandtechnologiestomaketheprocesses environmentallyfriendly,energyefficiencyandbeinggloballycompetitivearetheneedsof thehour.

Withthisbackground,wehavestartedalargeandambitiousprogramentitledIndusMagic (anacronymforinnovate,developandup-scalemodular,agile,intensifiedandcontinuous processes;see www.indusmagic.org formoreinformation).CSIR-NationalChemical Laboratory(NCL),whichisapremierresearchlaboratoryintheareaofchemicalandallied sciencesinIndia,isthenodallaboratoryforexecutingtheIndusMagicprogram.CSIR-NCL interactscloselywiththechemicalindustryinIndiaandabroadanddevelopsknowledgebases andintellectualpropertytoaddressrelevantproblemsofthisindustry.AspartoftheIndus Magicprogram,weworkcloselywiththefineandspecialtychemicalssectortoidentify industryneeds.Theindustrialcatalysisandcatalyticprocesseswasidentifiedasoneofthekey needsandwasincorporatedasoneofthemajorsub-programsofIndusMagic.We organizedaworkshoponindustrialcatalysisandcatalyticprocessesaspartofthiswork (see http://induscap.ncl.res.in formoreinformation).Theworkshopbroughttogetherseveral expertsonindustrialcatalysisfromresearchinstitutes,academia,andindustry.Thisbook essentiallyoriginatedfromtheIndusCapworkshop.

Catalysts(homogeneousorheterogeneous)reducetheactivationenergybarrierfor transformationsandfacilitatebettercontrolonselectivity.Therefore,thedevelopmentand

CatalysisandCatalyticProcesses

1.1Introduction

Chemicalandalliedindustriesmanufactureproductsthatareessentialforcreatingand sustainingmodernsocieties.Thechemical(andbiological)transformationsnecessaryto maketheseessentialproductsofteninvolvetheuseofcatalysts.Thecatalyst(whichcanbe eitherhomogeneousorheterogeneous)providesareducedactivationenergybarrierto transformationsandfacilitatesbettercontrolonselectivity.Thedevelopmentandselection oftherightcatalyst,therefore,canmakeasubstantialimpactonprocessviabilityand economics.Besidestherightcatalyst,itisessentialtodeveloptherightreactortypeandprocess intensificationstrategiesforeffectivetranslationofthelaboratoryprocesstopractice.

Withstrictenvironmentalregulations,risingrawmaterialprices,depletingfeedstocks,andacall forgreenchemistryasdrivingforces,thechemicalindustryfacesalargerchallengewithboth opportunitiesandrisks.Catalysisisofparamountimportanceinthechemicalindustryduetoits directinvolvementintheproductionof80%ofindustriallyimportantchemicals.Catalystsare involvedinmorethan $10trillioningoodsandservicesoftheglobalgrossdomesticproduct (GDP)annually.Itisestimatedthattheglobaldemandoncatalystsismorethan $30billion,anda veryrobustgrowthisprojectedinthefuture.Thereisanurgentneedtodevelopcost-effective andenvironmentallybenignmethodsofconvertingnaturalresourcesintofineandspecialty chemicalsusinghighlyefficientcatalystsandemployingcleanermethodologies.The advancementsincatalysisandapplicationstothechemicalindustryareverysignificantandare responsibleforcleanerprocesses.Replacementofthestoichiometricreactionsbycatalytic reactionsandapplicationofnewcatalystsystemsandtechnologiestomaketheprocesses environmentallyfriendly,energyefficient,andgloballycompetitivearecurrentneeds.

Acatalystisasubstancethatprovidesanalternativerouteofreactionwheretheactivation energyislowered.Catalystsdon’taffectthechemicalequilibriumassociatedwithareaction; theymerelychangetheratesofreactions.Catalystsareclassifiedinavarietyofdifferent ways.Thecommonlyusedclassificationbyreactionengineersisbasedonnumberof phases,suchas

http://dx.doi.org/10.1016/B978-0-12-801457-8.00001-X

• homogenouscatalysis(catalystandsubstrateinsamephase)or

• heterogeneouscatalysis(solidcatalystandsubstrateisagasand/orliquid)

Basicconceptsofcatalysisarebrieflyintroducedinthefollowingsection. Itisimportanttocombinetheunderstandingofcatalysiswithkeyreactionengineeringexpertise totranslatethepotentialofacatalystintheformofapracticallyimplementedcatalyticprocessor plant.Anycatalyticreactorhastocarryoutseveralfunctionslikebringingreactantsintointimate contactwiththeactivesitesonacatalyst(toallowchemicalreactionstooccur),providingan appropriateenvironment(temperatureandconcentrationfields)foradequatetime,andallowing forremovalofproducts.Areactorengineerhastoensurethattheevolvedreactorhardwareand operatingprotocolsatisfyvariousprocessdemandswithoutcompromisingsafety,the environment,andeconomics.Naturally,successfulreactorengineeringrequiresbringingtogether betterchemistry[thermodynamics,catalysis(replacereagent-basedprocesses),improved solvents(supercriticalmedia,ionicliquids),improvedatomefficiency,wasteprevention—leave nowastetotreat]andbetterengineering(fluiddynamics,mixingandheatandmasstransfer,new waysofprocessintensification,computationalmodels,andreal-timeprocessmonitoringand control).Someoftheseaspectsarebrieflydiscussedin Section1.3.Organizationofthisbookis outlinedinthelastsectionofthechapter.

1.2CatalystsandCatalyticReactions

Theword catalyst wasfirstusedin1835.Overtheyears,ithasbeenestablishedthata catalystinfluenceskineticsofaprocesswithoutundergoinganychangeitself.Acatalyst doesnotalterthethermodynamicsofareaction.Insimplewords,acatalystalterstheroute withoutalteringthedestination(see Fig.1.1).Heretherouteisthemetaphorforactivation energy—minimumenergyinputforachemicalsystemtoundergoachemicalreactionand thetransitionstateofachemicalreaction.

Fig.1.1

Acatalystallowsreactiontoproceedthroughanalternativepath.

Thetermsthatareoftenusedinthecontextofcatalyticactivityareturnovernumber(TON),to definetheproductivityofacatalyst,andturnoverfrequency(TOF),todefinethecatalyst activityorTONperunittime.

TheTOFisdefinedintermsofactivecatalyticcenters,suchas

TOF ¼ volumetricrateofreaction numberofcenters=volume ¼ moles volume time volume moles ¼ time 1

TOFmaybeinarangeof10 2 to102 forindustrialapplications.

TheTONisdefinedasameasureofcapacityofthecatalystforacceleratingthereactionsuchas

TON ¼ TOF Lifetimeofacatalyst

TypicallyTONisintherangeof106 to107 forindustrialapplications.

Theroleofacatalystbecomesevenmoreimportantwhenmultiplereactionsare thermodynamicallyfeasible.Insuchcases,anappropriatecatalystmanipulatesthereaction ratesinsuchawaythatselectivitytowardadesiredproductincreases.Severalfactorsand parametersinfluencetheoverallperformanceofacatalyst.Theselectionofacatalystfor anindustrialprocessthereforedependsontheroleitissupposedtoplay.Theeffectofacatalyston kineticsofthereactionneedstobeunderstoodindetailtogetaninsightaboutthesurface chemistryinvolvedthatwouldhelpinthedesignofaspecificcatalysis.Itisthereforeimportantto understandtheelementarystepsthroughwhichacatalystinfluencesoverallperformance.

Homogeneouscatalyststypicallyformacomplexwithoneofthereactants,whicheventually transformsitintotheproductafterinteractingwithotherreactants.Theprocessisessentially similartohomogeneousreactionsintheabsenceofacatalystandisoftencontrolledby mixingreactantsandacatalystspeciesonamolecularlevel.Incontrasttothis,ina heterogeneouscatalyst,severaladditionalstepsareinvolvedalongwithreactionoccurring onthecatalystsurface,suchas

• externaldiffusiontowardacatalystpellet

• internaldiffusiontowardacatalystsurface

• molecularadsorptiononacatalystsurface

• surfacereaction

• desorptionfromacatalystsurface

• internaldiffusionawayfromthecatalystsurface

• externaldiffusionawayfromthecatalystpellet

Thesestepsneedtobeunderstoodtoselectanappropriatereactorandoperatingstrategy.This procedurewillbediscussedlaterinthisbook.

Heterogeneouscatalysisallowseasyseparationandreuseofacatalyst.Anexampleof heterogeneouscatalysisisHaber’sprocess,whereironpowderisusedasacatalysttoenablethe

Homogeneouscatalystsusedinindustrialchemistryaregenerallyfromorganometallic compounds(compoundswithametal-carbonbond).Thecentralmetalatomisboundtoorganic andinorganicligands.Thecatalystenvironmentcanbeeasilymodifiedtoalterthecatalytic propertiesbymanipulatingligands.Transitionmetalsplayamajorroleinthedevelopment oftheseorganometalliccomplexes.Thisisbecauseoftheavailabilityof d-orbitalsoftransition metals,whichallowligandstobondinsuchawaythattheyareavailableforfurtherreaction. Rhodiumphosphine-basedmetalcomplexessuchas[RhCl(PPh3)3]havebeenfoundtobe aneffectivecatalystforthehydrogenationofolefins.Onaccountofthestabilityoftransition metalcomplexes,theprocesstemperaturesaregenerallylimitedto200°C,andthisbecomes alimitationofhomogeneouscatalysis.Becausethecatalystiscompletelydispersedinthe reactionmedia,thesesystemsfacedifficultiesinseparationorrecoveryofcatalysts.

Significanteffortshavebeenandarebeingspentondecipheringmechanismsofhomogeneous catalysistofacilitatefurtherdevelopmentofnewcatalystsystems.Tolman[2]proposeda mechanismwithwhichareactioniscatalyzedbyhomogenousorganometalliccomplexes, whichwasreferredtoasthe16or18electronrule(see Fig.1.2).Itpostulatestheroleofthe oxidationstateandcoordinationnumberofthemetalcenterofthetransitionmetalcomplex. TheorganometalliccomplexesreferredtoarethetransitionmetalcomplexeswithCO,N2, CN ,RNC,PR3, π-aryl, π-allyl, –SiR3,and π-acylligands,whichhavehighligandfield strengthandcovalentbonding.Thetwomajorpostulatesoftheruleareasfollows[2]:

• Diamagneticorganometalliccomplexesoftransitionmetalsexistinanymeasurable quantityonlyifthevalenceshellofcentralmetalcontains16or18electrons.

• Theintermediatesthatareformedduringthecourseofthereactionshouldalsocontain16 or18valenceshellelectrons.

Saturated 18e complex

Unsaturated 16e complex

Unsaturated 16e complexes Saturated 18e complex

Fig.1.2

π complex, 18e

Cycleexplainingthe16/18electronrule.

Tounderstandthecatalyticcycleinhomogeneouscatalysis,astoichiometricreactionwith well-definedtransitionmetalcomplexescanbeusedtoelucidatethestepsinvolved.Labeled compoundscanalsobeusedtovalidatethepostulatedreactionmechanismbyemploying spectroscopicidentificationtechniques.Variousinsituspectroscopytechniquessuchasinfraredspectroscopy(IR),nuclearmagneticresonance(NMR),electronspinresonance(ESR),and Ramanareveryhelpfulindevelopingabetterunderstandingofhomogeneouscatalysis.Ithas beenobservedthatInfraredspectroscopyhasbeenveryusefulinstudyingcarbonylcomplexes.

1.2.3HeterogeneousCatalysts

Theuseofheterogeneouscatalystsinthechemicalindustrybeganintheearly1800swith Faradaybeingamongthepioneersofheterogeneouscatalysisanddiscoveringtheuseof platinumforoxidation.ThesesystemswereinuseduringtheSecondWorldWarfor reactionssuchasdehydrogenationofmethylcyclohexanetoformtolueneinthepresence ofPt-Al2O3 orinalkaneisomerizationusingCr2O3-Al2O3.Afterthewar,withdiversification inchemicalssynthesizedandadvancementoftechnology,heterogeneouscatalystswere usedforthehydrocrackingofhigh-boilingpetroleumusingNi-aluminosilicatetoformfuels. Thisrevolutionizedtheautomobileindustry.Anotherapplicationofsolidcatalystswasin thesynthesisofpolyethylenefromethylenebypolymerizationinthepresenceofZiegler-Natta (TiCl4-Al(C2H5)3)catalysts.Heterogeneouscatalystsareusedforinnumerablereactions suchasoxidation,nitration,coupling,condensation,andhydrogenation.

Heterogeneouscatalysisfacilitatesalargenumberofchemicalreactions.Theuseof heterogeneouscatalystsinfinechemicalsisgainingimportancebecauseofthefollowing reasons[3]:

• Becausethecatalystisnotinthesamephaseasthereactingmolecules,itallowsforahigher possibilityofcatalystrecoveryandrecyclability.Chemicalbondsareformedwiththe catalysteitherthroughphysisorptionorchemisorptionduringthereactionandbroken thereaftertoregeneratethecatalyst,albeitwithlossofactivityinsomecases[4].

• Solidacidcatalystsareeasiertohandleincomparisonwithconventionalmineralacids suchasH2SO4 andhydrofluoricacid(HF).Theyreducecapitalcostandalsoensure materialsafetybecausetheyhavelesscorrosivity.

• Heterogeneouscatalystsforbulkchemicalshavebeenusedsincethebeginningof chemicalindustries,hencetheprocessesandtheirrolesinthemechanismoftheorganic synthesisarewellunderstoodinmostcases.Thereforetheycanbedownscaledfor theirapplicationsinfinechemicalstosomeextent.

• Myriadcatalystswithacidicorbasicpropertiesexistorhavebeendesignedtosynthesize particularspecies,whichensuresproductmaximization.Mixedmetaloxide,clays, zeolites,silica,alumina,zirconia,andheteropolyacidsareafewclassesofcatalysts

usedpredominantly.Theycanbemodifiedtoalargeextentthroughimpregnationof homogeneouscatalystsormetalsandstructuralchanges.

• Microporousandmesoporousstructuresorsievesandhoneycomb-likestructuresallow heterogeneouscatalyststobehighlyshapeandstereoselective.Thesedesignsgive enzyme-likeefficiencytothecatalyst.

Anewstageofdevelopmentinheterogeneouscatalystscamewiththeobjectiveofusing renewablefeedstocksandenvironmentallybenignprocessesandtechniquesfordownstream wastereduction.Catalyststhathavehighefficiencyandbettersurfacepropertiesarebeing developedforprocessintensification[5].

Acatalystfacilitatesreactionthroughtheformationofcomplexeswithreactingspecies.The productformeddoesn’thavethetendencytobondwiththecatalyst,whichimpliesthecatalyst surfaceisregenerated.However,thisisonlypartiallycorrect.Thesurfaceandstructureofthe catalystaremodifiedwitheachreaction.Forinstance,inthecaseofapuremetalcatalyst, surfaceroughnessandcrystallinitychange,whereasinthecaseofmetaloxidesthereisachange intheratioofmetalandoxygen.Commercialcatalystsaregenerallyavailableinvarious physicalformssuchaspowder,pellets,granules,andextrudates.Poresizeplaysamajorrole instructureandthereforeincatalyticperformance(conversion,selectivity,yield,TOF,and TON).Porouscatalystsofferalargesurfacearea,theabilitytosupportvariedchemical functionalities,andtheabilitytoformdifferentnetworksaccordingtotheapplications.Broadly catalystsareclassifiedintothreekindsofporousmaterials:

• Microporous:Porediameterislessthan2nm.Atypicalexampleofamicroporouscatalyst iszeolite.Ithasacrystallineandwell-definedstructure.Ithasasilicon,aluminum,and oxygenframework,andwateroranothercationmaybepresentinthepores.Activated carbonisalsomicroporousadsorbentandhasvaryingorigins,thermalresistance,and porosity,dependingonthemethodofsynthesis.

• Mesoporous:Porediameterisbetween2and50nm.Mesoporoussolidsaresynthesized throughatemplatingapproach,whereinsurfactantsareusedfordirectingthestructure. Subsequently,thesurfactantisremoved,andamesoporoussystemisobtainedthat replicatesthesurfactantassembly[6].

• Macroporous:Porediameterisgreaterthan50nm.Macroporousmaterialcanbe synthesizedbyasol-gelmethodsuchasporoussilica,alumina,andzirconiagels.Inthe caseofzirconiagels,ametalsaltprecursorisusedfortheepoxidemediatedsol-gelmethod followedbyphaseseparation.Morphologyofthecatalystwouldbegovernedby temperatureandamountofsolventsorreactantsused[7].

Activityistherateatwhichareactionproceedsinpresenceofacatalyst.Theactivityofthe heterogeneouscatalystdependsonthereactionconditionsoftemperature,pressure,and catalystloadingwithrespecttoreactantsandonreactorconditionssuchasflowrateand surfaceareaofreactor.Anothercharacteristicofacatalystisselectivity,whichistheextent

Thefirststepinanyreactionengineeringanalysisisformulatingamathematicalframeworkto describetherate(andmechanism)bywhichonechemicalspeciesisconvertedintoanotherin theabsenceofanytransportlimitations(chemicalkinetics).Therateisthemass,inmolesofa species,transformedperunittime,whereasthemechanismisthesequenceofindividual chemicalevents,whoseoverallresultproducestheobservedtransformation.Althoughthe knowledgeofmechanismisnotnecessaryforreactionengineering,itisofgreatvaluein generalizingandsystematizingthereactionkinetics.Theknowledgeofrateoftransformation, however,isessentialforanyreactionengineeringactivity.Therateoftransformingone chemicalspeciesintoanothercannotbepredictedwithaccuracy.Itisaspecificquantitythat mustbedeterminedfromexperimentalmeasurements.

Measuringtherateofchemicalreactionsinthelaboratoryisitselfaspecializedbranchof scienceandengineering.Therateisformallydefinedasthechangeinmolesofacomponent perunittimeandperunitvolumeofreactionmixture.Itisimportantthatthisratebean intrinsicpropertyofagivenchemicalsystemandnotafunctionofanyphysicalprocesssuchas mixingorheatandmasstransfer.Thus,theratemustbealocalorpointvaluereferringtoa differentialvolumeofreactionmixturearoundthatpoint.Itis,therefore,essentialtoseparate theeffectsofphysicalprocessesfromthemeasuredexperimentaldatatoextractthe informationabouttheintrinsicreactionkinetics.Itisadifficulttask.Moreinformationabout chemicalkineticsandlaboratoryreactorsusedforobtainingintrinsickineticscanbefound intextbookslikeSmith[12],Levenspiel[13],andDoraiswamyandSharma[14].Assuming thatsuchintrinsicratedataisavailable,chemicalkineticistshavedevelopedanumberof valuablegeneralizationsforformulatingrateexpressions,includingthoseforcatalytic reactions.Varioustextbookscoveraspectsofchemicalkineticsindetail[12,13,15].

Oncetheintrinsickineticsisavailable,theproductionrateandcompositionoftheproductscan berelated,inprinciple,tothereactorvolume,reactorconfiguration,andmodeofoperation. Thisisthecentraltaskofareactionandreactorengineeringactivity.Thefirststepofreactor engineeringistoselectasuitablereactortype.Incatalyticreactors,multiplephasesare almostalwaysinvolved(seeexamplescitedinRefs.[14,16–19]).Severaltypesofreactorsare usedforsuchcatalyticandmultiphaseapplications.Broadly,thesereactorsmaybeclassified basedonpresenceofphases,suchas

• gas-liquidreactors:stirredreactors,bubblecolumnreactors,packedcolumns,andloop reactors;

• gas-liquid-solidsreactors:stirredslurryreactors,three-phasefluidizedbedreactors(bubble columnslurryreactors),packedbubblecolumnreactors,tricklebedreactors,andloop reactors;or

• gas-solidreactors:fluidizedbedreactors,fixedbedreactors,andmovingbedreactors.

Existenceofmultiplephasesopensupavarietyofchoicesinbringingthesephasestogetherto react.KrishnaandSie[20]havediscussedathree-levelapproachforreactordesignand selection:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.