Identification and quantification of drugs, metabolites, drug metabolizing enzymes, and transporters

Page 1


IdentificationandQuantificationofDrugs, Metabolites,DrugMetabolizingEnzymes,and Transporters:Concepts,MethodsandTranslational Sciences2ndEditionShuguangMa(Editor)

https://ebookmass.com/product/identification-andquantification-of-drugs-metabolites-drug-metabolizingenzymes-and-transporters-concepts-methods-and-translationalsciences-2nd-edition-shuguang-ma-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Chinese Medicinal Plants, Herbal Drugs and Substitutes: An Identification

https://ebookmass.com/product/chinese-medicinal-plants-herbal-drugsand-substitutes-an-identification/

ebookmass.com

Drugs and Drug Policy: The Control of Consciousness Alteration (NULL)

https://ebookmass.com/product/drugs-and-drug-policy-the-control-ofconsciousness-alteration-null/

ebookmass.com

Specification of Drug Substances and Products: Development and Validation of Analytical Methods 2nd Edition

Christopher M. Riley

https://ebookmass.com/product/specification-of-drug-substances-andproducts-development-and-validation-of-analytical-methods-2nd-editionchristopher-m-riley/

ebookmass.com

Rethinking

the

Age of Revolutions: France and the Birth of the Modern World David A. Bell

https://ebookmass.com/product/rethinking-the-age-of-revolutionsfrance-and-the-birth-of-the-modern-world-david-a-bell/

ebookmass.com

Criminal Investigation eBook

https://ebookmass.com/product/criminal-investigation-ebook/ ebookmass.com

Strategies & Tactics for the MBE (Bar Review)

https://ebookmass.com/product/strategies-tactics-for-the-mbe-barreview/ ebookmass.com

OCD For Dummies, 2nd Edition Laura L. Smith

https://ebookmass.com/product/ocd-for-dummies-2nd-edition-laura-lsmith/

ebookmass.com

Computational Leadership: Connecting Behavioral Science and Technology to Optimize Decision-Making and Increase Profits Brian R. Spisak

https://ebookmass.com/product/computational-leadership-connectingbehavioral-science-and-technology-to-optimize-decision-making-andincrease-profits-brian-r-spisak/ ebookmass.com

Abeloff’s Clinical Oncology 6th 2020 John E. Niederhuber, James O. Armitage, Michael B. Kastan, James H. Doroshow, Joel E. Tepper 6th Edition John E. Niederhuber

https://ebookmass.com/product/abeloffs-clinicaloncology-6th-2020-john-e-niederhuber-james-o-armitage-michael-bkastan-james-h-doroshow-joel-e-tepper-6th-edition-john-e-niederhuber/ ebookmass.com

Works of John Dryden. Volume 16 Plays: King Arthur. Cleomenes. Love Triumphant. Contributions to The Pilgrim Vinton A. Dearing (Editor)

https://ebookmass.com/product/works-of-john-dryden-volume-16-playsking-arthur-cleomenes-love-triumphant-contributions-to-the-pilgrimvinton-a-dearing-editor/ ebookmass.com

IDENTIFICATIONANDQUANTIFICATION OFDRUGS,METABOLITES, DRUGMETABOLIZINGENZYMES, ANDTRANSPORTERS

Concepts,Methods,andTranslationalSciences

IDENTIFICATIONAND QUANTIFICATION OFDRUGS, METABOLITES,DRUG METABOLIZING ENZYMES,AND

TRANSPORTERS

Concepts,Methods,and TranslationalSciences

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2020ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-820018-6

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor:KathrynEryilmaz

EditorialProjectManager: SaraValentino

ProductionProjectManager: JoyChristelNeumarinHonestThangiah

CoverDesigner: MilesHitchen

TypesetbySPiGlobal,India

Contributors

FarahAlQaraghuli DepartmentofPharmaceuticalSciences,SchoolofPharmacyand PharmaceuticalSciences,TheStateUniversity ofNewYorkatBuffalo,Buffalo,NY,United States

RavindraVarmaAlluri ClinicalPharmacology andSafetySciences,R&DBioPharmaceuticals, AstraZeneca,Cambridge,UnitedKingdom

SophieM.A.Argon DepartmentofPharmaceutics,SchoolofPharmacy,Universityof Washington,Seattle,WA,UnitedStates

PiyushBajaj DrugSafetyResearchandEvaluation,TakedaPharmaceuticalInternationalCo., Cambridge,MA,UnitedStates

TashingaE.Bapiro DMPK,ResearchandEarly Development,OncologyR&D,AstraZeneca, Cambridge,UnitedKingdom

AbdulBasit DepartmentofPharmaceutics, UniversityofWashington,Seattle;DepartmentofPharmaceuticalSciences,Washington StateUniversity,Spokane,WA,UnitedStates

AndreasBrink RochePharmaResearch andEarlyDevelopment,RocheInnovation CenterBasel,F.Hoffmann-LaRocheLtd,Basel, Switzerland

TingtingCai LaboratoryTestingDivision, WuXiAppTec,Nanjing,China

JoseCastro-Perez AgiosPharmaceuticals,Inc., Cambridge,MA,UnitedStates

JaeH.Chang PreclinicalDevelopment,ORIC Pharmaceuticals,SouthSanFrancisco,CA, UnitedStates

EugeneChia-TeChen DepartmentofDrug MetabolismandPharmacokinetics,Genentech, SouthSanFrancisco,CA,UnitedStates

MarieCroft PharmaronABS,Germantown, MD,UnitedStates

LiamEvans HyphaDiscoveryLtd.,Oxfordshire,UnitedKingdom

RaymondEvers DepartmentofPharmacokinetics,PharmacodynamicsandDrugMetabolism, Merck&CoInc.,Kenilworth,NJ,UnitedStates

RobertS.Foti Pharmacokinetics,PharmacodynamicsandDrugMetabolism,Merck ResearchLaboratories,Boston,MA,United States

AdrianJ.Fretland DMPK,ResearchandEarly Development,OncologyR&D,AstraZeneca, Waltham,MA,UnitedStates

ChristopherGemski TranslationalResearch BioassayandImmunogenicityGroup,Drug MetabolismandPharmacokineticDepartment, TakedaPharmaceuticalsInternationalCo., Cambridge,MA,UnitedStates

AnimaGhosal IndependentConsultant, Piscataway,NJ,UnitedStates

JiaHao DrugMetabolism,GileadSciences Inc,FosterCity,CA,UnitedStates

SatyajeetHaridas TranslationalResearchBioassayandImmunogenicityGroup,Drug MetabolismandPharmacokineticDepartment, TakedaPharmaceuticalsInternationalCo., Cambridge,MA,UnitedStates

SimonHauri RochePharmaResearchandEarly Development,RocheInnovationCenterBasel, F.Hoffmann-LaRocheLtd,Basel,Switzerland

NinaIsoherranen DepartmentofPharmaceutics,UniversityofWashington,Seattle, WA,UnitedStates

WenyingJian DMPK,JanssenR&D,Spring House,PA,UnitedStates

KevinJohnson DrugMetabolismandPharmacokinetics,Genentech,SouthSanFrancisco, CA,UnitedStates

BarryJones DMPK,ResearchandEarlyDevelopment,OncologyR&D,AstraZeneca,Cambridge,UnitedKingdom

RobertS.Jones DrugMetabolismandPharmacokinetics,Genentech,SouthSanFrancisco, CA,UnitedStates

JanFelixJoseph FreieUniversitaetBerlin,InstituteofPharmacy—PharmaceuticalAnalysis; FreieUniversitaetBerlin,Departmentof Biology,Chemistry,Pharmacy,CoreFacility BioSupraMol,Berlin,Germany

S.CyrusKhojasteh DrugMetabolismand Pharmacokinetics,Genentech,SouthSan Francisco,CA,UnitedStates

YurongLai DrugMetabolism,GileadSciences Inc,FosterCity,CA,UnitedStates

HoaLe DrugMetabolism,GileadSciences, FosterCity,CA,UnitedStates

XiaominLiang DrugMetabolism,GileadSciencesInc,FosterCity,CA,UnitedStates

LimingLiu ProductDevelopment,Curon BiopharmaceuticalLtd,Shanghai,People’s RepublicofChina

FilipeLopes RochePharmaResearchand EarlyDevelopment,RocheInnovationCenter Basel,F.Hoffmann-LaRocheLtd,Basel, Switzerland

JustinQ.Ly DrugMetabolismandPharmacokinetics,Genentech,SouthSanFrancisco,CA, UnitedStates

ShuguangMa DrugMetabolismandPharmacokinetics,GenentechInc.,SouthSanFrancisco, CA,UnitedStates

RoshiniMarkandu DMPK,ResearchandEarly Development,OncologyR&D,AstraZeneca, Cambridge,UnitedKingdom

RosalindeMasereeuw DivisionofPharmacology,UtrechtInstituteforPharmaceutical Sciences,Utrecht,TheNetherlands

J.EricMcDuffie Investigative&Mechanistic Toxicology,JanssenResearch&Development, SanDiego,CA,UnitedStates

KaushikMitra DepartmentofDrugMetabolismandPharmacokinetics,JanssenResearch andDevelopment,Springhouse,PA,United States

DianaMontgomery DepartmentofPharmacokinetics,PharmacodynamicsandDrug Metabolism,Merck&CoInc.,Kenilworth,NJ, UnitedStates

AlexandraL.Orton DMPK,ResearchandEarly Development,OncologyR&D,AstraZeneca, Cambridge,UnitedKingdom

KatieH.Owens DepartmentofPharmaceutics, SchoolofPharmacy,UniversityofWashington,Seattle,WA,UnitedStates

AxelPahler RochePharmaResearchand EarlyDevelopment,RocheInnovationCenter Basel,F.Hoffmann-LaRocheLtd,Basel, Switzerland

MariaKristinaParr FreieUniversitaetBerlin, InstituteofPharmacy—PharmaceuticalAnalysis,Berlin,Germany

ShefaliPatel DMPK,JanssenR&D,Spring House,PA,UnitedStates

IchikoD.Petrie DepartmentofPharmaceutics,SchoolofPharmacy,Universityof Washington,Seattle,WA,UnitedStates

RichardPhipps HyphaDiscoveryLtd.,Oxfordshire,UnitedKingdom

ChandraPrakash AgiosPharmaceuticals,Inc., Cambridge,MA,UnitedStates

BhagwatPrasad DepartmentofPharmaceutics, UniversityofWashington,Seattle;Department ofPharmaceuticalSciences,WashingtonState University,Spokane,WA,UnitedStates

IsabelleRagueneau-Majlessi Departmentof Pharmaceutics,SchoolofPharmacy,UniversityofWashington,Seattle,WA,UnitedStates

VenkateshPillaReddy DMPK,Researchand EarlyDevelopment,OncologyR&D;DepartmentsofModelingandSimulation,Early OncologyDrugMetabolismandPharmacokinetics,R&DOncology,AstraZeneca, Cambridge,UnitedKingdom

EllenRiddle DrugMetabolism,GileadSciences Inc,FosterCity,CA,UnitedStates

QianRuan PharmaceuticalCandidateCharacterization,Bristol-MyersSquibb,Princeton, NJ,UnitedStates

SimoneSchadt RochePharmaResearchand EarlyDevelopment,RocheInnovationCenter Basel,F.Hoffmann-LaRocheLtd,Basel, Switzerland

DhavalK.Shah DepartmentofPharmaceutical Sciences,SchoolofPharmacyandPharmaceuticalSciences,TheStateUniversityofNew YorkatBuffalo,Buffalo,NY,UnitedStates

JuliaShanu-Wilson HyphaDiscoveryLtd., Oxfordshire,UnitedKingdom

KellyMacLennanStaiger DrugMetabolism, GileadSciencesInc,FosterCity,CA,UnitedStates

JonathanSteele HyphaDiscoveryLtd.,Oxfordshire,UnitedKingdom

ManthenaV.S.Varma MedicineDesign, WorldwideR&D,PfizerInc.,Groton,CT, UnitedStates

MatthewP.Wagoner DrugSafetyResearch andEvaluation,TakedaPharmaceuticalInternationalCo.,Cambridge,MA,UnitedStates

NaidongWeng DMPK,JanssenR&D,Spring House,PA,UnitedStates

StephenWrigley HyphaDiscoveryLtd., Oxfordshire,UnitedKingdom

CaishengWu SchoolofPharmaceuticalSciences,XiamenUniversity,Xiamen,China

GraemeC.Young GlaxoSmithKlineResearch andDevelopmentLtd.,DavidJackCentre, Ware,UnitedKingdom

JingjingYu DepartmentofPharmaceutics, SchoolofPharmacy,UniversityofWashington,Seattle,WA,UnitedStates

LushanYu InstituteofDrugMetabolismand PharmaceuticalAnalysis,ZhejiangUniversity, Hangzhou,People’sRepublicofChina

SuZeng InstituteofDrugMetabolismand PharmaceuticalAnalysis,ZhejiangUniversity, Hangzhou,People’sRepublicofChina

HaeyoungZhang DepartmentofPharmaceutics,UniversityofWashington,Seattle, WA,UnitedStates

WanyingZhang DepartmentofPharmaceuticalSciences,SchoolofPharmacyand PharmaceuticalSciences,TheStateUniversityofNewYorkatBuffalo,Buffalo,NY, UnitedStates

AndyZ.X.Zhu DepartmentofDrugMetabolismandPharmacokinetics,TakedaPharmaceuticalsInternationalCo.,Cambridge,MA, UnitedStates

MingsheZhu MassDefectTechnologies,Princeton,NJ,UnitedStates

Foreword

Itismygreatpleasuretowritetheforewordforthisexcellentbook.Thestudyof drugmetabolismanddispositionisamature science,butstillessentialindrugdiscovery anddevelopment.Indeed,aquicksearchof PubMed,using“drugmetabolism”asthe searchterm,cameupwithmorethan 18,000hits.Oneoftheearlierarticlesisby BernardBrodie,consideredtobethefounder ofmodernpharmacologyandamajorcontributortothestudyofdrugmetabolism. Hisarticle—publishedintheJournalofPharmacyandPharmacologyin1956—istitled “PathwaysofDrugMetabolism”anditisbased onalectureattheUniversityofLondon [1] Itdescribeshisworkoverthedecadeand someofitisbasedoncollaborationswith otherpioneersinthefieldsuchasJulius Axelrod.Onesentencestillresonatesvery muchanditactuallycoversmuchofthematerialdescribedinthisbook:

Finally,itisthoughtthatadetailedknowledgeofenzymesinvolvedindrug“detoxification”mighthelpthemedicinalchemistto developcompoundsofeitherhighorlowstabilityinthebody,whicheverwouldbemoredesirableingainingadesiredtherapeuticresult.

Drugmetabolismscienceshaveadvanced tremendouslysincethepublicationofthisarticleandthisprogresswastoalargeextent enabledbyadvancesintheavailabilityof biochemicalreagentsandbioanalyticaltechniques,inparticularmassspectrometry. Bothacademicandindustrialscientistshave

identifiedmanybreakthroughsthathave ultimatelycontributedtobringingdrugsto patientswithanurgentneedforbettertreatments.Itisverygratifyingthatthenumber ofdrugsapprovedbytheFDAisincreasing steadilywith38NMEs(newmolecularentity)and10BLAs(biologicallicenseapplication)approvedbytheUSFoodandDrug Administration(FDA)in2019 [2].Thelevel ofinnovationisbestillustratedbyabouthalf oftheapproveddrugsin2019havinga breakthroughdesignation.Drugmetabolism andpharmacokinetics(DMPK)scientistsare fullyembeddedinprojectteamsindrugdiscoveryandworkhandinhandwithmedicinalchemistsontheidentificationofdrugs withsuperiorproperties.Thesescientists havebecomeverygoodatdialingoutthe “knownunknowns”suchasmetabolismbycytochromeP450enzymes.However,thishas actuallyresultedinhavingtodealwithmuch morecomplexdrugdispositionpathwaysinvolvinglesswell-studieddrugmetabolizing enzymesandalsomoreandmoredrug transporters.Thistrendisalsofueledbya shifttowardmoreandmoredrugshaving beyondthe“ruleoffive”molecularproperties [3].Indeed,theaveragemolecular weightofdrugsapprovedbytheFDAin 2016and2017wasmorethan500Daand themedianclogPofdrugsapprovedfrom 2008to2017isnow3.3,inpartdrivenbytrying,forexample,todisruptprotein-protein interactions.Anadditionalconsequenceof thisshiftinpropertiesisthatinvitroto invivoextrapolationofADMEproperties

topredictthehumanpharmacokineticshas becomemorecomplexandthesamecanbe saidofpredictingdrug-druginteraction— manyofwhichnowinvolvedrugtransporters.Ifanything,theinvolvementof DMPKscientistsisnowmoreimportantthan everbecauseofthepursuitofnovelmolecular modalitiesinacademiaandinthepharmaceuticalindustry;afewthatcometomind areantibody-drugconjugates,proteindegraders,andmacrocyclicpeptides.DMPK scientistscanhelpmakedrugsoutofthese hard-to-drugmodalities.Finally,theintegrationofthisdiversearrayofinvitroandinvivo dataisenabledbycomputationalmodeling andsimulation.Physiologicallybasedpharmacokinetic(PBPK)modelingisaverypowerfultooltopredicthumanpharmacokinetics andstudydrug-druginteractionaswellas thepharmacokineticsinspecialpopulations andinfants.Pharmacokinetic/pharmacodynamicmodelinganditsextension,quantitativesystemspharmacology,canhelp translatepreclinicalfindingstotheclinic.

Thisbookiscomprisedofmanyexcellent chapterswrittenbyexpertsinthefieldthat addresssomeofthechallengeshighlighted inthepreviousparagraph.Thefirstsection focuseson“Techniquesforidentifyingand quantifyingdrugsandmetabolites.” Chapters 1–3 introducethereaderstothelatestadvancesinbioanalysis,inparticularmass spectrometryfortheanalysisofdrugs,their metabolites,andendogenousbiomarkers.In contrastto20yearsago,high-resolution massspectrometryhasnowbecomeroutine andithashadagreatimpactonthestudy ofbiotransformation.Ofcourse,massspectrometryisfrequentlynotsufficienttoidentifythedefinitivestructureofametabolite, andhence Chapter4 focusesonstrategies forgeneratingmetabolitesandcharacterizationviaNMR.Supercriticalfluidchromatographyhasbecomeeasiertointerfaceandit cangreatlyfacilitatechiralseparation;the

lattertopiciscoveredin Chapter5.Thelast chapterinthefirstsection(Chapter6) focusesonacceleratormassspectrometry, apowerfultooltostudyADMEandthe absolutebioavailabilityinhumans.

Thesecondsectionaddresses“Drugmetabolizingenzymes,transportersanddrugdrug interactions.”CytochromeP450-mediated andnon-cytochromeP450-mediatedmetabolismisdiscussedin Chapters7and8. Invitrotoinvivopredictionofdrug-druginteractionisdescribedin Chapter9 while Chapter10 specificallyfocusesontherole oftransportersindrugdispositionand drug-druginteraction,and Chapter11 on theclinicalrelevanceofthesedrug-drug interactions.MakingpredictionsusingPBPK modelingreliesonaccurateknowledgeof physiologicconstantsand,mostrecently, massspectrometryhasbeenusedtodeterminetheabundanceofdrugmetabolizing enzymesandtransportersinvarioustissues. Thisisaddressedin Chapter12.Finally, Chapter13 focusesondisease-druginteractionsmediatedbytherapeuticproteinssuch asinterleukins.

Thethirdsectionfocuseson“Strategyrelatedtodrugmetabolismandsafety.”Metabolitesinsafetytestingcontinuestobea highlyrelevantareaofresearchindrugdiscoveryanddevelopmentanditisaddressed in Chapter14.Acloselookatthe(patent)literatureindicatesthatfindingdrugsthatbalancepotencyandmetabolicstabilitycanstill beproblematic,andthereforemanycompaniesincorporatedeuteriumtoenhance metabolitestabilityandlowerthedose— see Chapter15 fordetails.Thefocusonnovel chemicalspaceandmoremoleculardiversity hasintroducedmorechiralityinmolecules andtheimpactofthatonpharmacology,toxicology,anddrugmetabolismisdescribedin Chapter16.Drug-inducedliverinjuryand newpredictivemodelsforrenalinjuryaredescribedin Chapters17and18,respectively.

Finally, Chapter19 focusesonimmunogenicityasakeycomponentofantibody development.

Thefourthandlastsectionisdedicatedto “Translationalsciences.”Theuseofgeneticallymodifiedrodentsisexploredfurther in Chapter20,while Chapter21 speaksto theuseofCRISPRtoadvanceinvitroADME models.Invitrotoinvivoextrapolationof hepaticandrenalclearanceisdiscussedin Chapter22.Thebreadthofourscienceis nicelyillustratedby Chapter23 whichdescribestheroleofmathematicalmodeling intranslationalsciences.Last,butbyno meansleast, Chapter24 elegantlydefines waystopredictthehumanefficaciousdose usingPK/PDmodeling.

Asisthecasewithmanycompilations,a lotofefforthasgoneintoassemblingan

excellentsetofchaptersthatdescribethe stateoftheartinADMEsciencesasit relatestodrugdiscoveryanddevelopment. Theeffortsbyallauthors,andinparticular theeditorsShuguangMaandSwapan Chowdhury,aregreatlyappreciated.This bookwillbeusedasaresourceformany yearstocome.

CornelisE.C.A.Hop

References

[1] B.B.Brodie,Pathwaysofdrugmetabolism,J.Pharm. Pharmacol.8(1)(1956)1–17.

[2] A.Mullard,2019FDAdrugapprovals,Nat.Rev. DrugDiscov.19(2)(2020)79–84.

[3] M.D.Shultz,Twodecadesundertheinfluenceof theruleoffiveandthechangingpropertiesofapprovedoraldrugs,J.Med.Chem.62(4)(2019) 1701–1714.

Preface

Some15yearsago,oneofus(SKC)compiledthefirsteditionofthisbookthat coveredthemostup-to-dateinformation previouslyavailableonthestrategies, methods,applications,andimplicationsof scientificdataontheroleofenzymesand transportersinthedispositionofpharmaceuticals.Thebookwasagreatsuccessand waswidelyusedasavaluableresourceby scientistsinbothindustryandacademia. Sincethen,alothaschangedinthefieldof drugmetabolism,includinghowrecent scientificadvancesarebeingutilizedtodiscoveranddevelopsafermedicines.Therefore,ithasbecomeapparentthatanew editionofthebookisrequiredtofullycapturetheseprofoundchanges,whichinvolves theimplementationofnewertechnologiesin thediscoveryanddevelopmentofmedicines totreatawiderangeofmaladies.Withmuch enthusiasmfromthepublisher,wecollaboratedtoassembleacomprehensivetreatise thatwouldcapturehowthelatestscientific findingsarehavingafundamentalimpact ontheutilizationofthesenoveladvances indrugresearch.Thissecondeditionis completelyupdatedandprovidesanoverviewofthelastdecade’snumerousimprovementsinanalyticaltechnologiesforthe detectionandquantificationofdrugs,metabolites,andbiomarkers.Thisneweditiongoes beyondconventionalLC-MSandfeatures all-newchapters,including:howtoevaluate drugabsorption,distribution,metabolism,

andexcretion(ADME),thepotentialforhepaticandrenaltoxicity,immunogenicityof biotherapeutics,andtranslationaltoolsfor predictinghumandosage,safety,andefficacyofsmallmoleculesandbiologics.

Thisbookisorganizedintofoursections: (1)techniquesforidentifyingandquantifyingdrugsandmetabolites,(2)drugmetabolismenzymes,transporters,anddrug-drug interactions,(3)strategiesrelatedtodrug metabolismandsafety,and(4)translationalsciences.Thebookcontains24chapters coveringthemostrecent,novelscientific breakthroughsandhowtheyareutilizedto developmedicinesinthemodernera.Itis oursincerehopethatthismaterialwillserve asanimportanttoolanddeskreferencefor pharmacologists,toxicologists,clinicalscientists,andstudentsinterestedinthefields ofpharmacology,biochemistry,anddrug metabolism.

Finally,wewishtoacknowledgethecontributionsofthemanyscholarswhoparticipatedinandcontributedtothisbookfrom conceptionandpassionintoprint.Wealso wanttoextendourgratitudetothecontributionsoftheeditorialstaffandproduction manageratElsevier,andlastbutnotleast, thefamiliesoftheeditorsfortheirencouragement,love,andsupport.

ShuguangMa SwapanK.Chowdhury

1

Bioanalysisofsmallandlarge moleculedrugs,metabolites,and biomarkersbyLC-MS

NaidongWeng,ShefaliPatel,WenyingJian

DMPK,JanssenR&D,SpringHouse,PA,UnitedStates

1Introduction

Bioanalysis,oftenshortenedtoBA,isasubdisciplinewithinpharmaceuticalresearchand development(R&D).Contemporarybioanalysisquantitativelyanalyzesverylowquantity buthighlyvariablelevels(pg/mL-μg/mL)ofdrugcandidates,theirmetabolites,endogenous biomarkers,etc.inextremelycomplicatedbiologicalmatricessuchasplasma,blood,urine, andtissueswhichareharvestedfromdifferenttypesofanimalspecies(rodents,dogs, nonhumanprimates,etc.)andhumans [1].Bioanalysissupportsdiscovery,nonclinical (tox),andclinicalstudies(Fig.1). Fig.1 showstypicalstudiesanintegratedbioanalyticalfunctionwouldsupport.

Bioanalyticaldataareusedforcalculatingpharmacokineticparameterssuchasbioavailability,bioequivalence,drugandmetabolitesexposure,clearance,theirdistributioninto variousbodyorgans,correlationofpharmacokinetics(PK)effectsandpharmacodynamics (PD)changes,etc.Thus,bioanalysisplaysapivotalroleinmovingdrugcandidatesfromearly discoveryallthewaytoregulatoryfilingandpostmarketsurveillanceintheentiredrugdiscoveryanddevelopmentprocess.Intoday’sdynamicdrugdiscoveryanddevelopment environment,bioanalyticalscientistsnotonlyprovidepivotaldatabutalsoactivelyengage inproject/programgo/no-godiscussions,alongwithcolleaguesfromotherfunctionalareas. Whilethemostessentialelementofbioanalysisistouseanalyticalchemistryknowledgeand state-of-the-artinstrumentstoprovidereliableandaccuratemeasurement,knowledgefrom relevantdisciplinessuchasbiotransformation,pharmacokinetics,biology,pharmacology, etc.isinvaluableforensuringappropriateconductofbioanalysis.

1Bioanalysisofsmallandlargemoleculedrugs,metabolites,andbiomarkers

Discovery

In vitro

Plasma protein binding

Transporter

Inhibition-induction

Metabolic stability

Plasma-blood distribution

In vivo

Salt form selection

Formulation

Dose range finding

Preclinical Clinical

Short term (2wk, 4 wk) TOX

Long term (3mts +) TOX

Reproductive TOX

Carcinoma studies

Micronucleus studies

Animal ADME

Bioavailability (IV/ORAL )

SAD, MAD

Metabolite assessment (MIST)

Food effect

Drug-drug interaction

Comparator study

Human ADME

Population PK

Special population study (renal impaired, pediatric, etc.)

Adaptive design clinical trial

Bioequivalence

Tissue distribution Drug-like?Known liabilities?Superior efficacy?

FIG.1 Exemplarybioanalyticalsupportindrugdiscoveryanddevelopment.TOX,toxicology;SAD,singleascendingdosestudy;MAD,multipleascendingdosestudy;ADME,absorption,distribution,metabolism,andelimination; IV,intravenous.

Inthisbookchapter,wetrytoprovideabriefoverviewofcontemporarybioanalysisusing theLC-MSplatform.Itisanimpossibletasktoprovideadetailedandcomprehensivereview ofLC-MSbioanalysisinabookchapter.Thecasestudiesandliteraturearenodoubtincompleteandbiasedtowardourownexperiencesandpublications.Interestedreadersare referredtotheexcellentbioanalysishandbookbyLietal.foramorecomprehensiveoverview ofthisdiscipline [1].Nevertheless,wehopethereaderscanappreciatethecomplexityand dynamicsofmodernLC-MS-basedbioanalysisforsmallandlargemoleculedrugs,metabolites,andbiomarkers.

2Complexityofcontemporarybioanalysis

Bioanalyticalsupportisrequiredforimportantdecision-makingforalltypesofstudies, fromdiscovery(non-GLP),todevelopment(GLP),andtoclinical(GCP)studies.Yetthere aremanyuniqueandcomplicatedattributesofcost,quality,andtimelydeliveryateachof theabovementionedstages(orsubstagewithineachstage).Forbioanalysis,thequality andintegrityofthebioanalyticaldataareultimatelythemostimportantattributes.Theright scientificandcompliancevigormustbeappliedtoeachstudy.Thecurrentregulatorylandscapeforregulatedbioanalysisishighlycomplicated,withguidancefrommultipleregional healthauthorities [2–6].Sinceguidancefromdifferentregionsarenottotallyharmonized,and compoundedbyindividualinterpretationofdifferentinspectors,itisstillquiteachallengeto fullyunderstandandexecutetherightlevelofcompliancethatcanbeacceptableintheglobal filing.Effortsarecurrentlybeingmadetoharmonizetheguidelinesintoonesingleglobal guidelineICH-M10 [7]

Whiletimelydeliveryofbioanalyticaldatatosupportprojectdecisionsisamust-doitemto meettheever-tighteningdrugdiscoveryanddevelopmenttimelines,costisanotherattribute thatshouldnotbeoverlooked.Thecostofbioanalysisactivitiesshouldbecarefullymanaged toensurethatitstayswithinthepredeterminedbudget.Ontheotherside,theapplicationofa

I.Techniquesforidentifyingandquantifyingdrugsandmetabolites

tieredapproach,whichtypicallyconsistsofthreetiersofassayqualification—screeningassay,qualifiedassay,andvalidatedassaywiththeincreasedlevelsofvalidationparameters— canbeusedwithabalanceofscientificvigorandcost [8].TheEuropeanBioanalyticalForum (EBF)recommendsexercisingthisapproachfor“nonregulated”nonclinicalbioanalysisin drugdevelopmentandusing“fit-for-purpose”elementsinmetabolitequantitationfor establishingsafetycoverage(MIST);urinebioanalysis;andtissuebioanalysis [9,10].Of course,theactualimplementationofwhichtiertousedependsoneachindividualstudy. Forexample,forurinebioanalysis,whileaqualifiedassaycouldbeusedformostclinical studiesforunderstandingtheurinaryexcretionofadrugcandidate,validatedassaysshould beappliedifrenalclearanceisthemainrouteofelimination(PKendpoint)and/orthedrug targetactionisatthekidney.

Thereisanexpansionofbioanalysisscopeoverthepastdecades.Intheearlydays, bioanalysisfocusedonsupportingsmallmoleculePKandbioequivalence(BE)fromstandard formulationssuchastabletsandcapsules.Analysisofmetabolitesandbiomarkersrarely occurred.Currently,PKandBEforbothsmallandlargemolecules,aswellasmanyhybrid formsoflargeandsmallmoleculessuchasantibodydrugconjugate(ADC),aresupported bybioanalysis [11,12].Evenforsmallmolecules,advancementinformulationpresentsnew challengesforbioanalysis.Forexample,liposomesarewidelyappliedinthepharmaceutical industryduetotheiruniquecapabilitiessuchasencapsulatingandprotectingthetherapeutic analytesfromdegradation,controllingthereleaserate,facilitatingon-targetdelivery,and reducingtoxicityfordrugs [13,14].Forliposomaldrugproductdevelopment,validated bioanalyticalmethodstodeterminetheconcentrationoftheencapsulatedandnonencapsulated forms(boththeprotein-freeandprotein-bound)oftheactivesubstanceinbiologicalsamples shouldbeemployed.However,establishingsuchbioanalyticalassayscanbequitechallenging duetothepotentialraptureoftheliposomeduringsamplecollection,shipping,storage,and analysis,whichcanartificiallyelevatethenonencapsulatedconcentrations [15,16].

Peptideandproteindrugshaveevolvedinrecentyearsintomainstreamtherapeutics, representingasignificantportionofthepharmaceuticalmarket [17].Peptidesandproteins exhibithighlydiversestructuresandbroadbiologicalactivitiesashormones,neurotransmitters,structuralproteins,andmetabolicmodulatorsandthereforehaveasignificantroleas boththerapeuticsandbiomarkers.Unspecificproteolysisisamajoreliminationpathway forpeptidesandproteinsinsteadoftheoxidativehepaticmetabolismthatistypicalformost smallmoleculedrugs [18].InadditiontothetypicalPKsupport,bioanalysishasbeenactively engagedinnewlydevelopedareassuchasPKPDcorrelation,biomarkerresearchintarget engagement/tissuedistribution,simultaneousquantitationandmetaboliteidentification forsmallmoleculesandbiologics,andantidrugantibody(ADA),etc.,formanyofwhichboth scienceandregulatoryrequirementsarestillevolving.

Historically,bioanalysissupportcanbecategorizedintotwodistinctareas—liquidchromatographyforsmallmolecules,usuallychemicallysynthesized,andligandbindingassay forlargemolecules,suchasthosewhichmonoclonalantibodiestypicallyproducebycell culture.Withthedevelopmentofmoderninstrumentation,especiallymassspectrometers, measurementoflargemoleculesbyliquidchromatographyinconjunctionwithamassspectrometer(LC-MS)hasbecomeareality.ThereisalsoaneedtouseLC-MStoinvestigatethe invivofateofsomeofthenewmodalitiessuchasahalf-lifeextendedpeptideconstructed byconjugatingorfusinganotherwiseshort-livedpeptidewithanantibodyorFctoextensivelyextenditsinvivohalf-lifethroughdecreasedclearanceandincreasedstability [19].

LC-MShasalsobeenincreasinglyusedfordiscoveringandmeasuringendogenousproteinor peptidebiomarkers [20,21].

3Bioanalyticalrequirementsforsupportingdiscovery,nonclinical,andclinical studies

Letustakeafurtherlookatbioanalyticalrequirementsforsupportingdiscovery, nonclinicaldevelopment,andclinicalstudiesusingLC-MSmethods.Thesethreestages shouldnotbeviewedasthreeseparateandconsecutiveonessinceeachcanextendwellinto thenextstage,inparticularbetweennonclinicaldevelopmentandclinicalphases.Manyofthe longer-termtoxicologystudiesarerunninginparallelwiththeclinicalstudies.Discovery bioanalyticalsupportisperformedundernon-GLPconditions.GenericLC-MSmethodsusing gradientmobilephaseelutionandproteinprecipitationsampleextractionaretypicallyusedto analyzethedrugcandidatesinplasmaandtissues.Theresultsareusedtorankthedrugcandidatesaswellastoobtainotherimportantinformationsuchastissuedistributionandbasic pharmacokineticparameters,forexample,Cmax,Tmax,AUC,T1/2,andclearance.Usuallyan internalbioanalysis/PKguidelineisusedfortheconductofthistypeofstudy.Somelevelof methodverificationsuchasaccuracy,precision,andcriticalstabilityisperformedbeforethe sampleanalysis.RunacceptancecriteriaareusuallyalittlebitwiderthanthoseusedinGLP studies.EventhoughdiscoverybioanalysisdoesnotfollowstrictGLPrules,thedatagenerated inthediscoverystagearestillpivotalforcompoundselection,andthereforemanycompanies institutesomelevelsofcompliancetoensuredataintegrity.Nonclinicalbioanalyticalsupport indevelopmentisunderGLPregulationswherethedatageneratedshouldwithstandrigorous regulatoryscrutiny [2,3].Foreachmethod,vigorousmethoddevelopmentandvalidationis performedasperregulatoryguidanceandinternalStandardOperationProcedures(SOPs), eventhoughmethodvalidationitselfisnon-GLP.Anydeviationduringthesampleanalysis, whichfollowstheGLPprinciples,shouldbethoroughlyinvestigated,documented,andjustified.Oncethecandidatemovesintotheclinicalstage,automationandothermeansofimprovingthethroughputofsampleanalysisbecomemorerelevant.Thesameclinical bioanalyticalmethodcanbeusedbymultiplebioanalyticalchemistswithinorevenamong differentorganizationstomeetthedemandforanalyzingalargenumberofsamples.Atthe clinicalstage,especiallyforstudiesinfirstinhuman(FIH),abioanalyticalmethodwithbetter sensitivitythanthoseinnonclinicalstudiesmayberequired.Extensivemethodoptimization forbothsamplepreparationandLC-MSconditionstomaximizerecoveryandminimizematrix effectsisoftenpursued.

4Currentregulatorylandscapeforbioanalysis

BothnonclinicaldevelopmentandclinicalbioanalyticalsupportarerequiredtofollowinternalSOPsandregulatoryrecommendations.DozensofSOPsareusuallyusedtoaddress manyaspectsofbioanalyticalactivitiesrangingfrominstrumentqualification,maintenance, andcalibration,tobioanalyticalmethodvalidation,samplestorage,analysisanddestruction, todatamanagementandarchiving,etc.ThegoaloftheseSOPsistoensurethehighestdata

TABLE1

Bioanalyticalfullvalidation,partialvalidationandcrossvalidation [2]

Fullvalidation

Usedformeasuringanalyte concentrationsinbiologicalsamples. Afullvalidationofabioanalytical methodshouldbeperformedwhen establishingabioanalyticalmethod forthequantificationofananalytein clinicalandinpivotalnonclinical studies

Developingandvalidatinganassay forpivotalregulatorysubmission (INDorNDA)

Implementingananalyticalmethod thatisreportedintheliterature

Partialvalidation

Modificationstoafullyvalidated analyticalmethodmaybeevaluated bypartialvalidation.Partial validationcanrangefromaslittleas oneaccuracyandprecision determinationtoanearlyfull validation.Theitemsinapartial validationaredeterminedaccording totheextentandnatureofthe changesmadetothemethod

Analyticalsitechangeusingsame method(i.e.,bioanalyticalmethod transfersbetween laboratories)

Achangeinsampleprocessing procedures

Crossvalidation

Wheredataareobtainedfrom differentmethodswithinoracross studies,orwhendataareobtained withinastudyfromdifferent laboratoriesapplyingthesame method,comparisonofthosedatais needed,andacrossvalidationofthe appliedanalyticalmethodsshould becarriedout

Dataareobtainedfromdifferent fullyvalidatedmethodswithina study

Dataareobtainedwithinastudy fromdifferentlaboratorieswiththe samebioanalyticalmethod

integritywhichcanpasstheregulatoryscrutiny.TheseSOPsareusuallydraftedbasedonspecificregulationsandtheregulatoryguidancefromtheFoodandDrugAdministration(FDA) andotherinternationalregulatoryagencies,suchastheEuropeanMedicinesAgency(EMA), andotherfederal/staterequirements,aswellaspoliciesateachinstitute.OneofthemostimportantregulatoryguidelinesistheUSFDAguidanceonbioanalyticalmethodvalidation [2], whichprovidesageneralguidelineonestablishingimportantparameters,someofwhichare specificity/selectivity,sensitivity,linearityrangesfromalowerlimitofquantitation(LLOQ)to anupperlimitofquantitation(ULOQ),accuracy,precision,stability,matrixeffects,carryover, recovery,dilutionintegrity,incurredsamplereanalysis(ISR),etc.Themethodshouldalso demonstratereproducibilityandaccuracyforincurredsamplesanditssuitabilityforits intendeduse.However,itisuptoeachinstitutetoformulateitsownSOPsbasedonthisgeneral guidance.Typically,methodvalidationscanbecategorizedintofull,partial,andcrossvalidations(Table1).Mostofthevalidationsareconductedintheformoffullvalidation,whereasthe partialorcrossvalidationcanbeusedwhenafullvalidationisnotrequired,asshowninthe examplesin Table1.

5Generalconsiderationsforbioanalysisforsamplecollection

Duringtheprojectdiscussion,itisimportanttounderstandtheobjectiveofthestudyso thatimportantparameterssuchasmatrixtype,samplevolume,waysofsampling(regular samplingormicrosampling),analytestobemeasured(parentorparentplusmetabolites), anticoagulantselection,conditionofcentrifugationforharvestingplasma,samplestorage container,shippingconditionandinstruction,samplestoragecondition( 20°Cvs. 70°C),etc.canbeprovidedtotheprojectteam.Whileduringtheearlystageofdrug

discovery/developmentitisnotalwayspossibletoconductthefullspectrumofastability test,itis,however,alwaysgoodpracticetoevaluatewhetherthereispotentialinstability ofametabolitethatcanimpacttheaccuratequantitationoftheparentanalyteand/orthemetabolites.DetailedPKorTK(toxicokinetic)samplecollectioninformation,includinglabeling, willbeenteredintothelabmanualorstudydesign.Thefollowingisjustonetypicalexample inalabmanualsupportingaPhase1clinicalstudy.Itincludesthreepartsoftheinstruction (materialandlabeling;preparationofPKsamples;andshipmentofPKsamples).Asonecan seefromthisexample,anextremelydetailedinstructionisneededtoensuresuccessfulconductofbioanalysis.

Materialsandlabeling:

•BloodmustbecollectedinaglassorplasticK2EDTAcontainingbloodcollectiontubes (e.g.,Vacutainer).

•Notubeswithseparationgelshouldbeused.Theresultingplasmasamplesmustbestored inpolypropylenestoragetubeswithpolypropyleneorpolyethylenecaps.

•Alltubesandcontainerswillbelabeledwithpreprintedlabels.Thepreprintedinformation willincludethestudynumber,participantidentificationnumber,treatmentortreatment period,scheduledsamplingdayandtimeasstipulatedintheflowchart,andtheanalyte nameifapplicable.Nootherinformationwillbewrittenonthelabels.Labelsshouldbe attachedtothestoragetubesatleast12hbeforebeingfrozentoensureproperadherence.

•Labelsshouldbeappliedtothesampletubesasfollows:

• Applylabelstothesampletubessothattheydonotoverlapandobscureany information.Ifpossible,exposeanareabetweenthetwoendsofthelabeltoallow viewingofthecontentsofthetube.

• Donotaltertheorientationofthelabelonthesampletube.

• Applylabelstoalltubesinthesamemanner.

Preparationofpharmacokineticsamples:

•Collect4mLofbloodintotheappropriateK2EDTA-containingcollectiontube(e.g., Vacutainer)ateachtimepoint.

•Recordtheexactdateandtimeofsampling.

•Beforeprocessing,gentlyinvertthetubes8–10timestoaffordmixing;bloodsamplesmust bekeptonmeltingiceatalltimesduringprocessing.

•Centrifugebloodsampleswithin1hofcollectioninacentrifugeat1300g for10minat4°C, toyieldapproximately1.5–2mLofplasmafromeach4-mLwholebloodsample.Plasma samplesmustbekeptonmeltingiceatalltimesduringprocessing.

•Transferplasmaimmediatelytoaprelabeledpolypropylenetube.Plasmasamplesmustbe keptonmeltingiceatalltimesuntilstorageinafreezer.

•Storeplasmasamplesinanuprightpositioninafreezer,atasettemperatureat 20°Cuntil transfertothebioanalyticalfacility.

•Thetimebetweenbloodcollectionandfreezingtheplasmawillnotexceed2h.

•Shipsamplesaccordingtotheinstructionsprovided.Shipspecimenstothebioanalytical facility,sortedbyparticipant,samplecollectiondate,andtime.

•Questionsregardinghandlingtheplasmapharmacokineticspecimensshouldbe addressedtothecontactpersonforthesponsor.

Shipmentofpharmacokineticsamples:

•Allpharmacokineticsampleswillbesenttothebioanalyticalfacilityinasingleshipment attheendofthestudyorinmultipleshipmentsasagreeduponwiththebioanalytical scientist.

•Aninventorylistmustbeincludedwitheachshipment.Thesponsor-providedlogscanbe usedasaninventorylist.Theinventorylistmustnoteeachspecimendrawnforeach participantandnoteanymissingspecimens.

•Forallinternationalshipments,WorldCourierwillbeused.Fordomesticshipments,a reliabledomesticcourier,suchasFederalExpress,willbeused.

•Assoonastheshipmentdayandairbillnumber(s)areavailable,thesitewillsendan e-mailtotheprincipalinvestigator,samplemanagementteam,andsitemanagerofthe bioanalyticalfacility.Thee-mailmustspecifythestudynumber,thenumberof pharmacokineticsamples,thetimeofshipmentpickupandthetrackingnumberand includeanelectronicsampleinventory.

•Notifythebioanalyticalscientistandthecourier,atleast24hinadvanceoftheplanned shipment.Providethecourierwiththeappropriateaccountnumbertobeused,if applicable.

•Unlessagreementsweremadewiththeprincipalinvestigator,sampleswillbeshippedvia overnightdeliveryonlyonMondaythroughWednesday,excludingholidays.

•Preferablythefrozensampleswillbeshippedinboxes,sortedbyparticipantandsampling time.Boxeswillbepackedinbagsthatcanwithstanddryiceconditions(e.g.,cryogenic bags).

•Packthefrozensamplesinasufficientquantityofdryiceinappropriatecontainers,to maintainafrozenstateforatleast3days.

•Forallbiologicalsamples,followtheInternationalAirTransportAssociation(IATA) regulationsforshipment.

•Ensurethatthetotalpackageweightdoesnotexceed27.2kg(60pounds).

•Labelthepackagewiththesponsornameandstudynumber.

•Includeareturnaddress(whichincludestheinvestigator’sname)ontheoutsideofeach shippingcontainer.

•Complywithallcourierregulationsfortheshipmentofbiologicalspecimens(includeall paperwork).

•Retainalldocumentsindicatingthedate,time,andsignature(s)ofperson(s)makingthe shipment,inthestudyfiles.

6Diagnosisandmitigationofnonspecificadsorptionloss forurinebioanalysis

Forurinesamples,itisalwaysadvisabletoconductanonspecificadsorptionlossexperimentbeforeprotocolfinalizationsothat,ifnecessary,themeansofpreventingnonspecific adsorptioncanbeimplemented.Nonspecificadsorptionhappensfrequentlyinurineassays becauseurinelacksproteinsandlipidsthatcanbindtotheanalytesorsolubilizelipophilic analytes [22].Acommonapproachtourinemethoddevelopmentwithafocusonovercoming

adsorptionissueswaspublished [23].Asimpleandquickwaytoidentifyanadsorptionproblemisthroughaseriesoftransfersandincubations.Inthistest,adrugsolutionincontrol urineispreparedatalowqualitycontrol(QC)levelinatestcontainer.Dryandcleantest containersthataremadefromthesamematerialandareofthesamesizeasthoseforfuture urinesamplesshouldbeused.Aportionoftheurinesolutionispouredintoanextcontainer, andthenthetransferprocessisrepeatedforafewmorecontainers.Betweentransfers,each solutioninthecontainershouldbeleftatroomtemperatureforabout5–20mintoallowadsorptiontotakeplacebeforecontinuingtothenexttransferstep.Finally,theurinesample fromeachtestcontainerisassayedtodeterminethecompoundresponse.Asequentialloss ofanalyteresponseaftereachtransferindicatestheexistenceofnonspecificadsorptionloss. Toovercometheissue,antiadsorptiveagentscanbeutilized,suchasbovineserumalbumin (BSA),zwitterionicdetergentssuchas3-[3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate(CHAPS),sodiumdodecylbenzenesulfonate(SDBS),beta-cyclodextrin,Tween80, andTween20.

7Tissuebioanalysis

Knowledgeofdistributionofdrugs,metabolites,biomarkers,etc.atspecificlocationsin thebodyofanimalspeciesandhumansubjectsbecomesmoreandmoreimportantfordrug discoveryanddevelopment [24].Thisknowledgeisoftenobtainedthroughtheanalysisof tissuesamplesobtainedfromnonclinicaland,toalesserextent,clinicalstudies.Manyfactors canaffectthetissuedistributionofdrugsandmetabolites.Passivediffusionacrossthecell membraneistheprimarypathwayforthedrugtodistributetothetissue.However,transporterproteinscanalsoassistorminimizetheuptakeofthedrugsandmetabolitesinto thetissues.Othercontributingfactorssuchasdrugmetabolism,clearancerate,proteinbinding,permeability,molecularweight,log P,andpKa andotherphysicochemicalpropertiescan alsohaveasignificantimpactontissuedistribution.LC-MShasbecomethestandardtoolbox fortissuesampleanalysis [25].Differentfromplasma,whichisintheliquidform,tissuesamplesareinasolidorsemisolidformat.Therefore,fortypicalLC-MSassays,theyarehomogenizedpriortosampleextraction.Softtissuessuchasthebrain,liver,lung,andkidneycanbe easilyhomogenized.Toughtissuessuchasthemuscle,heart,stomach,intestine,andcolon aremorefibrousandneedamorevigoroushomogenizationprocedure.Ahighershearing forceandlongerdurationofprocessmayberequiredwhenarotorbladehomogenizeror beadsbeaterisused [26].Theheatgeneratedduringhomogenizationoftissuesmaycause degradationofthermolabileanalyte(s),andthereforecautionmustbeexercised.Hardtissues suchasskeletalbones,skin,andhairaremostlynonvascularizedtissuesandneedspecial treatment.Insomeextremecases,enzymaticdigestionorchemicaltreatmentmayberequired forsomehardtissues [27].Oncethetissuesampleishomogenized,thehomogenateisready forextractionandthesampleextractionapproachesusedforplasmasamplesshouldstillapply.However,differentfromplasmasamples,extractionrecoveryfromsolidtissuesamples cannotbeassumedtobe100%andfortifiedQCsamples,preparedintissuehomogenate,cannotmimictheincurredsamples [25].Similarly,theinternalstandard,whichwasroutinely usedtocompensateforincompleteorvariableextractionrecoveryfortheplasmasamples,

doesnottracktheanalytesinthetissues.Recoveryevaluationusingaradiolabeledincurred sample [28] andrecoveryevaluationwithorthogonalapproaches [29] arejusttwoexamples ofaddressingtheissueofrecoveryevaluation.

8Managingunstablemetabolitessuchasacylglucuronide

Whenmovingintothedevelopmentphase,informationaboutbiotransformationofthe drugcandidateanditsmetabolitesbecomesmoreavailable.Whiletheparentdrugmay notbesubjectedtoglucuronidation,itsphase1metabolism,forexample,oxidationofalcohol tothecarboxylicacidgroup,maygeneratemetabolitesthatcanformacylglucuronide.Ifthe plasmasampleswerecollectedwithoutacidificationtostabilizetheacylglucuronide,the phase1carboxylicacidmetabolitemaybeoverestimatedduetothebreakdownofacylglucuronideduringsamplecollection,storage,andanalysis.Itshouldalsobenotedthatacidificationoftheplasmasampleswillaffecttheproteinbindingbetweenthedrugcandidateand theendogenousproteinssuchasalbumin [30].Iftheprotein-bindingmeasurementisneeded withtheincurredsamples,aseparatepoolofunbufferedplasmasamplesshouldbecollected. Acidificationofthesamplescouldalsoleadtotheinstabilityofothermetabolites.Inoneexampleofquantitationofdiclofenacandmetabolitesinmouseplasma,acidificationtostabilize diclofenacacylglucuronideresultedinincreasedoxidativedegradationof5-OHdiclofenac andascorbicacidwasaddedtothesamplestopreventthedegradation [31]

Aswecantellfromthissimpleacylglucuronideexample,abioanalyticalsamplecollection strategymayevolve,dependingonthestageofthedrugdiscoveryanddevelopment.Forexample,attheearlystageofdrugdevelopment,informationonparentexposuremightbe enoughforago-no-godecision.There,asimplestabilizationofacylglucuronidebyadjusting thepHisused.Withtheprojectmovingforwardandgainingofinformationregardingacyl glucuronidemigration,whichmayraisetoxicityconcern [32],themeasurementofboththe parentandacylglucuronidemetaboliteisneeded.Plasmaproteinbindingforboththeparent andacylglucuronidemetabolitemaybeneededtobetterpredicttheinitialhumandose.One wouldthenbecarefulaboutthepotentialfreefraction(Fu)changewithpHadjustment (nonphysiologicalpH).

9Generalconsiderationsforbioanalysisforextraction,chromatography, andMSdetection

Bioanalyticalmethodstypicallyconsistofanalyteextractionfrombiologicalsamples,liquidchromatographytoseparateanalytesofinterestfromendogenouscomponentsandmetabolitesthatmaycauseamatrixeffectorselectivityissue,andMSdetection,ofteninthe formatoftandemmassspectrometers,toenhanceassayselectivityandsensitivity.WhendevelopingaquantitativebioanalyticalLC-MSmethod,oneneedstoholisticallyconsiderall threepartsasoneintegratedsystemandsometimestrade-offsneedtobecarefullybalanced [33].Onewillalwaysneedtokeepinmindtheintegrityoftheanalyteduringthesampleextraction,postextraction,andchromatography.Itshouldalsobenotedthatsomelabile

metabolites,eventhoughnotbeingmeasured,canconverttotheanalyteduringsampleextraction,chromatography,andMSdetectionandcausequantitationbiasfortheanalytesof interest.

BiologicalsamplesareseldomamenabletodirectinjectionontotheLC-MSsystem. AnalytesofinterestneedtobeextractedfromthebiologicalmatricespriortoLC-MSanalysis. Thepurposeofextractionistoeliminateorreduceinterferenceswhichcanco-elutewiththe analytesandcausematrixeffectsorquantitationerrors,andtoconcentratetheanalytesand improvetheirdetection.Whenoptimizingtheextraction,analyteratherthanthematrixisthe focus.Thismeansthatanextractionmethodwiththehighestrecoveryfortheanalytemay alsosufferfromaseverematrixeffect.Thecommonlyusedsamplepreparationmethods aredirectinjection,diluteandshoot,proteinprecipitation,liquid-liquidextraction(LLE) (solid-phasesupportedliquid-liquidextraction),andsolid-phaseextraction(SPE),thelast threebeingthemostfrequentlyused.Forexample,proteinprecipitationiswidelyutilized andisalsofrequentlythepreferredextractionmethodduringdrugdiscoveryandpreclinical development.Analytesofinterestarereleasedfromproteinwhenaproteinprecipitation reagentsuchasorganicsolvents(e.g.,acetonitrile,methanol),acids,orsalt(e.g.,ammonium sulfate)isaddedtothebiologicalsamplestodenaturetheprotein.Theanalytestaysinthe supernatantafterthecentrifugationandcanbeanalyzeddirectlyorcangothroughevaporation/reconstitutionstepstomaketheinjectionsolutioncompatiblewiththechromatographiccondition.Thisprocedureisoflowcost,easytoperform,andcanbeperformedin the96-wellformat.Theextractionisalsoverymildandthusavoidspotentialanalytedegradationorconversionfrommetabolitetoparent.Withtheadvancementofthemodernmass spectrometer,assaysensitivityatlowng/mL,whichinmostcasesisadequatefordiscovery andnonclinicalstudies,iseasilyachievable.However,ifasimplesampleextractionproceduresuchasproteinprecipitationisused,onemayneedtocompensateforthepotential ion-suppressionorin-sourceconversionsuchasthatfromtheglucuronidemetaboliteto theparentcompoundbyusingamoreextensivechromatographicelution.Themechanism forsampleextractionandchromatographyideallyshouldbeorthogonalsothatabetter methodselectivityisprovided.Ontheotherside,SPEisverypowerfulforsamplecleanup asitprovidessomelevelofchromatographicseparationbetweentheanalytesandother matrixcomponents.SPEisalsoeasilyautomatableandprovideshighcapacityforanalyte enrichment.However,someoftheSPEconditionscanbeharsh,especiallyinthecaseof strongcationorstronganionSPEwhereextremepHconditionsareusedtoelutetheanalytes. Thismayleadtounwantedinstabilityofanalytesorthebreakdownofconjugatedmetabolites totheanalyteofinterest.Therefore,theseSPEconditionsshouldonlybeusedwhenstability andbiotransformationoftheanalytearewellestablished.

Forlargemoleculebioanalysis,twoapproaches,namelythebottom-upandtop-down,are typicallyused [34].Thebottom-upapproachinvolvesanenzymaticdigestionandselectionof asurrogatepeptidethatcanrepresentthelargemolecule,whilethetop-downLC-MSmeasurestheintactlargemoleculedirectly.Bothapproachesstillrequireagoodsamplecleanto removetheabundantendogenousproteinsandotherinterferences.Inadditiontotheclassic samplecleanupproceduressuchasSPE,othernovelapproachesarealsodevelopedforproteinbioanalysis,notablyproteinprecipitation/pelletdigestion,abundantproteindepletion, andaffinityenrichment.Whilethebottom-upapproach,usingatriplequadrupolemassspectrometerforthedetection,typicallyhasasuperiorsensitivitytothetop-downapproachby

thehigh-resolutionmassspectrometersuchasTOF,thelatterhasseveraladvantagestoo [35] Forthetop-downintactproteinLC-MSanalysis,agenericMSmethodistypicallyused,and littlemethoddevelopmenttimeisrequired.Themethodisindependentoffragmentationefficiency,whichisoftennotthecaseforsurrogatepeptides.Theabilitytoacquirethecomplete informationofposttranslationalmodifications(PTM)andbiotransformationallows postacquisitiondatamining [19].Someofthecommonlyobservedchallengesforsample preparationoflargemoleculesincludelossofprotein/peptideduetononspecificadsorption; analyteinstabilityduetoproteases;poorreproducibilityofenzymaticdigestionandhighmatrixeffectsduetohighconcentrationofendogenousproteins;incompleterecoverydueto bindingofproteinorpeptidestohigh-abundanceproteinsandantibodies.Effortshavebeen madetoovercomethesechallenges.Possiblesolutionsfornonspecificadsorptionincludeuse oflow-adsorptionpolypropyleneandpolyethylenecontainers;useofsilanizedglasscontainers;avoidingpreparationoflowconcentrationsolutionsinamatrix-freeenvironment; addingacarriersuchasBSAtoanymatrix-freesolutions;andspikinghighconcentration stocksolutionsdirectlytoplasmaandpreparinglowconcentrationsampleswithserialdilution.Useofproteaseinhibitorssuchasdiisopropylflurophosphate(DFP),sodiumfluoride/ potassiumoxalate/trichloroaceticacid,4-(2-aminoethyl)benzenesulfonylfluoride,hydrochloride(AEBSF)—Pefabloc,orphenylmethylsulfonylfluoride(PMSF),storageofsamples inanultralowfreezer(< 60°C),andhandlingthesamplesinanicebatharerecommended aspossiblesolutionsforproteinandpeptideinstability.Thereareseveralpossiblesolutions toremoveabundantproteins [36].Thefirststepistouseurea,guanidine,orstrongacidto eliminateproteinbindingbetweentargetpeptide/proteinandendogenousabundantproteinssuchasalbumin.Ifthetargetprotein/peptideishighlyhydrophilic,TFAorTCAcan beusedtoprecipitateabundantproteinswhilekeepingtheanalytesintheaqueoussupernatant [37].SPE(anionorcationexchange)canbeusedaloneorinconjunctionwithprotein precipitation—forextractinghydrophilicproteins/peptides.Immuno-affinityextractionmay beusedforachievingadditionalselectivity [38].Thelargestchallengecurrentlyisstilltherelativelypoorsensitivity(comparedtoELISA),butithasbeensignificantlyimprovedwithnanoLC-MS/MSandabettersamplecleanupproceduresuchasimmune-affinityextraction.

ForLC-MSbioanalysis,chromatographyplaysapivotalroletoensureassayselectivityand robustness.Phase-IIconjugatedmetabolitessuchasglucuronideandglutathioneconjugates needtoberesolvedfromtheanalytesincetheycanbreakdownbacktotheanalyteintheion sourceandcauseassaybias [39].Isomersandendogenousinterferenceneedtoberesolved fromtheanalyte.CompoundssuchasphospholipidsanddosingvehicleslikePEGneedtobe resolvedfromanalytessincetheycancauseionsuppression [40].Reversed-phaseLChas beentraditionallyusedforthequantitativeLC-MS.Withanincreaseoforganicsolventconcentrationinthemobilephase,retentionoftheanalytedecreases.However,oneshouldbe awareofthepotentialbimodalretentiononthereversed-phasecolumn,leadingtoa U-shapedretentionprofilewheretheinitialretentiondecreasesuponincreasingtheorganic contentinthemobilephasebutafurtherincreaseintheorganiccontentresultsinincreased retentiontimeforcertaincompounds,especiallypolarbasicanalytes,duetotheirinteraction withtheresidualsilanolgroups.Thisbi-modelretentionmaycausearetentionshiftduring therunorirreproducibilityofthemethodwhenahighorganiccontentmobilephaseisused onareversed-phasecolumn [40].Thiscanalsoleadtothemismatchofinjectionsolventand chromatographywhichmayalsoleadtodistortedchromatographicpeaks [41].Inadditionto

reversed-phasechromatography,separationbasedonotherretentionmechanismscanalsobe usedcomplementarilysuchasHILICforpolaranalytes [42,43] andnormalphasechromatographyforchiralseparations [44].LargemoleculeLC-MSusuallyusesashorterchainstationaryphasesuchasC4,widerpoorsize(atleast300A ˚ ),andelevatedcolumntemperature.

TheprincipleofMSistheproductionofionsfromanalyzedcompoundsthatareseparated orfilteredbasedontheirmasstochargeratio(m/z).Mostoftheapplicationsforquantitative bioanalysisusetandemmassspectrometers(MS/MS)thatemploytwomassanalyzers—one fortheprecursorioninthefirstquadrupoleandtheotherfortheproductioninthethird quadrupoleafterthecollision—activateddissociationoftheprecursorioninacollisioncell (secondquadrupole).Betweenthehigh-pressureLCandtheMSoperatedunderahighvacuumenvironment,interfaceconnectionsthatoperateatatmosphericpressure,suchas electrosprayionization(ESI),atmospheric-pressurechemicalionization(APCI),andlessfrequentlyatmospheric-pressurephotoionization(APPI),havematuredintohighlyreliable techniquesnecessaryforquantitativeLC-MS/MSbioanalysis.Morerecently,application high-resolutionmassspectrometer(HRMS)inbioanalysishasdrawnalotofattention [45].Duetoitsenhancedspecificityusingthehigh-resolutionpoweranditscapabilityofsimultaneousquantitationandstructuralelucidation,HRMScouldleadtoapotentiallyrapid andreliablemethoddevelopmentforbioanalysisaswellassampleanalysis,thusgenerating bothcostandresourcesavings [46]

10SelectedapplicationsforLC-MSbioanalysis

Itisnottheintentionofthisbookchaptertocovereveryaspectofquantitativebioanalysis. Rather,afewrelativelynewlydevelopedareasarefocusedontofurtherillustratetheimpact ofbioanalysisondrugdiscoveryanddevelopmentbyusingcasestudiesfromourownlab. Inthefirstexample,wewilldiscussthestatusofusingLC-MS,asacomplementarytoolto thetraditionalELISAmethods,toanalyzelargemolecules,particularlysomeofthenovel platformofbiotherapeuticssuchasantibody-drugconjugate(ADC)andhalf-lifeextended peptides.ThevalueofmultipleLC-MSmethodssuchasthebottom-upandtop-downaswell assimultaneousquantitationandcataboliteidentificationishighlighted.Thesecondexample isthedevelopmentofmicrosamplingtechnologywhichhasbeenwidelyusedtosupportboth preclinicalandclinicalstudies.Incomparisonwiththetraditionalplasmasamplingtechnology,microsamplingpresentssomeadditionalchallengesformethodestablishment,validation,andsampleanalysis,fromboththescientificandcompliancepointsofview. Biomarkershavebecomemoreandmoreimportantindrugdiscoveryanddevelopment, fromconfirmationoftargetengagementtopatientstratification.Asbiomarkersareendogenousmolecules,theirmeasurementisparticularlychallengingforbioanalyticalscientistsas thereisno“true”blankmatrixtopreparestandardsandQCsamples.Itisalsoverydifficultto confirmtheselectivityofabiomarkerassaydueitsendogenousnature.Variousstrategiesin thethirdexamplehavebeenproposedtomitigatethesechallenges.Lastly,theaccuratereadingofimportantmetabolitesinthebodyhasdrawnalotofattentionrecentlysincethepublicationoftheFDAMISTguidance [47].Toestablishsafetycoveragetoensureasafeclinical trialispivotal.Itisnotalwaysstraightforwardtoestablishtherightbioanalyticalstrategyfor metabolitemeasurement.Inthelastcasestudy,thestrategyformetabolitebioanalysissuchas

measuringpolarmetabolites,assessmentofchiralconversion,andselectionofinternalstandardwillbediscussed.

10.1LC-MSoflargemolecules

LBAistraditionallytheprimaryplatformforbioanalysisoflargemoleculesandhasthe advantagesofprovidingsuperiorsensitivityandhighthroughput.However,itmayalsosufferfromlimitationssuchascross-reactivity,requirementofhighlyspecificreagents,andnot beingabletodirectlyelucidatestructureinformation.Inthepastdecade,LC-MShasincreasinglybeenappliedforbioanalysisoflargemoleculesasacomplementarytechniqueofLBA. LC-MShastheuniqueadvantagesofbeinghighlyspecific,moreresistanttomatrixinterference,andlessstringentonreagentrequirement.Moreimportantly,LC-MScanprovidevaluablestructureinformationwhichmaybecriticalforunderstandingtheADMEpropertiesof proteindrugcandidates.

Asdiscussedearlier,therearegenerallytwoapproachesofanalyzingproteinsusing LC-MS:bottom-upandtop-down.Inthebottom-upworkflow,proteolytic(usuallytryptic) peptidesgeneratedbydigestionaremonitoredassurrogatesoftheprotein,typicallyonatriplequadruplemassspectrometer,whichaffordshighlyspecificandsensitivedetection. However,therecouldbesituationswhenthesurrogatepeptidedoesnotadequatelyrepresent thewholeproteinintermsofitsfunctionality,stability,orcoexistenceofmultipleisoforms. High-levelstructuralinformationsuchasintegrityofamultiplesubunitproteinorproteolytic catabolismislostduringdigestion.Thisiswhenthetop-downintactanalysisoftheprotein canplayanimportantrole.Thetop-downintactbioanalysisoflargeproteins(e.g.,mAb)has gainedpopularityinrecentyearsthankstoapplicationsoftheadvancedsamplepreparation technique,suchasimmune-affinitycapture,whichenableseffectivesamplecleanup [35]. IntactmassspectraobtainedfromHRMSmaycontainthepeaksofnotonlytheunchanged intactmoleculebutalsothatofcatabolites,makingsimultaneousquantitationandcatabolite identificationpossible [19].

Inboththebottom-upandtop-downapproaches,theworkflowinvolvesanup-frontsamplepreparation.Dependingonthenatureoftheanalyte,requiredsensitivity,andthebiologicalmatrix,methodologiesrangingfromproteinprecipitation,solidphaseextraction, abundantproteindepletion,andaffinitycapturecanbechosenorcombined,withincreased effectivenessinthesamplecleanup.Inthebottom-upapproach,thesurrogate(orsignature) peptideisdetectedandanalyzedinthesamewayassmallmolecules,onatriplequadruple instrumentbymultiplereactionmonitoring(MRM)analysis,orinsomelabs,onHRMSbya fullscanorproductionanalysis,aprocessalsoknownasparallelreactionmonitoring(PRM). Incomparison,intactproteinanalysishasmorediversifiedchoiceswhenitcomestoMSdetection [48].Peptidesorsmallproteinscanbemonitoredinthesamewayassmallmolecules orsurrogatepeptidesontriplequadrupoleorHRMS.LargeproteinssuchasmAbareheavily chargedwhenanalyzedunderESI,resultinginclustersofmultiplechargedionswhichrequireresolutiononHRMS.Peaksforaselectedchargedstate(e.g.,thethreemostabundant peaks)canbeextractedwithacertainextractionwindowtoreconstructanextractedionchromatogram(EIC)whichcanbeusedforquantitation [49].Thisapproachismorewidely adaptedbecauseitdoesnotrequireadditionalsoftwarefordataprocessingandthuscan

beuniversallyappliedtodataacquiredoninstrumentsfromdifferentvendors.Alternatively, multiplechargedionsaredeconvolutedtogeneratenon-orzero-chargedpeakswhichcanbe inturnquantifiedbasedontheintactmolecule,aprocessrequiringaspecificsoftwarefunction.Inthecasewhenmultiplecomponents,suchasthoseofcatabolitesordifferentglycosylationisoforms,arepresentinthesample,deconvolutionisamoredirectandeffective waytovisualizethedata.

10.1.1LC-MSbioanalysisofmAb

Monoclonalantibodiesandrelatedproductsrepresentoneofthemostpromisingandfastgrowingclassesoftherapeutics.EventhoughthebioanalyticalplatformformAbhasbeen predominantlyLBA,therehavebeenincreasednumbersofapplicationsonquantitationof mAbusingLC-MS.Thisisparticularlytruefordiscoverystudysupportwhenaspecificreagentmaynotbereadilyavailableatanearlystagebeforetheidentificationofthefinalcandidatefordevelopment.ThegeneralworkflowfornonclinicalLC-MSbioanalysisofmAb involvedtrypsindigestionandLC-MRManalysisofsurrogatepeptides,whicharetypically theconservedsequencesofthehumanFcregiononthemAb.Thechoiceofsamplepreparationdependsontherequiredsensitivityandtypeofbiologicalmatrix.Proteinprecipitation followedbydigestionofthepellet,aprocessknownaspelletdigestion,hasbeenwidelyused becauseitiseasytooperateanddoesnotrequirespecificreagents [50].Forbettersensitivity, immune-affinitycaptureusingantihumanFccanprovideaneffectiveandselectivecleanup ofhumanmAbfromnonclinicalsamples.Forclinicalsamples,morespecificcapturingreagentssuchastheantiidiotypeantibodyagainstepitopeinCDRofthemAbcanbeused toavoidpullingdownendogenoushumanIgGs.Alternatively,thetargetproteinofthe mAbcanalsobeusedasanaffinitycapturereagent.Eitherway,cautionhastobeexercised toevaluateinterferencefromendogenoustargetsonthecapturingprocessandtounderstand whetherthemeasuredconcentrationsarethoseoffree(notoccupiedbytarget)ortotalmAb. DuetothehighlyspecificdetectionbyLC-MS,itispossibletomonitorcertainmodifications onthemolecules.Oneexampleisdeamidation,acommonandspontaneousbiotransformationofmAb.IthasbeenshownthatdeamidationatacertainregionofmAbcouldimpactits bindingaffinity,potency,safety,andpharmacokinetics [51].Thesurrogatepeptide containingAsn,thedeamidationproductAsp,andthesuccinimideintermediatecanbeseparatedonLCandmonitoredbyMRMtoevaluatetherelativelevelsofeachspecies,which helpsunderstandthedynamicsofthisinvivobiotransformation [52,53].

TheemergingtechniqueofintactproteinbioanalysishasalsobeenexemplifiedonmAbin afewpublications.Ourlabpublishedaworkflowofquantifyinglargeproteinsinbiological samplesbyusingimmune-affinitycapturecoupledtoLC-HRMSanalysis [35].The deconvolutedintactmassspectrawereprocessedforquantitationusingaresearchversion ofthesoftware.ThisdeconvolutedapproachwasalsocomparedwithEICanddemonstrated similarbioanalyticalperformanceintermsofsensitivity,linearity,accuracy,andprecision. Moreimportantly,theintactconcentrationdatageneratedforaninvivomonkeyPKstudy showedresultsconsistentwiththosebythemorecommonlyusedbottom-upapproach, confirmingthesuitabilityofquantifyingmAbusingtheintactquantitationmethod [49] Forbettersensitivityanddetectionresolution,mAbcanbebrokendownintorelatively smaller“intact”piecesbyusingreducingreagentstodissociatethelightchainsandheavy chains.Furthermore,mAbcanbespecificallycleavedaroundthehingeregionbytheIgG

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.