Ideas of quantum chemistry: volume 2: interactions 3rd edition lucjan piela - Read the ebook online

Page 1


https://ebookmass.com/product/ideas-of-quantum-chemistryvolume-2-interactions-3rd-edition-lucjan-piela/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Ideas of Quantum Chemistry: Volume 1: From Quantum Physics to Chemistry 3rd Edition Lucjan Piela

https://ebookmass.com/product/ideas-of-quantum-chemistryvolume-1-from-quantum-physics-to-chemistry-3rd-edition-lucjan-piela/

ebookmass.com

Non-Covalent Interactions in Quantum Chemistry and Physics. Theory and Applications 1st Edition Edition

Alberto Otero De La Roza And Gino A. Dilabio (Eds.)

https://ebookmass.com/product/non-covalent-interactions-in-quantumchemistry-and-physics-theory-and-applications-1st-edition-editionalberto-otero-de-la-roza-and-gino-a-dilabio-eds/

ebookmass.com

Quantum Chemistry in the Age of Machine Learning Pavlo O. Dral

https://ebookmass.com/product/quantum-chemistry-in-the-age-of-machinelearning-pavlo-o-dral/

ebookmass.com

Civilians Under Siege from Sarajevo to Troy 1st Edition

Alex Dowdall

https://ebookmass.com/product/civilians-under-siege-from-sarajevo-totroy-1st-edition-alex-dowdall/

ebookmass.com

The Oxford Handbook of Film Theory Kyle Stevens

https://ebookmass.com/product/the-oxford-handbook-of-film-theory-kylestevens/

ebookmass.com

Liar Liar (Truths and Lies Duet Book 1) L A Cotton

https://ebookmass.com/product/liar-liar-truths-and-lies-duetbook-1-l-a-cotton/

ebookmass.com

Nothing to Fear Juno Rushdan

https://ebookmass.com/product/nothing-to-fear-juno-rushdan-2/

ebookmass.com

Fundamentals of Investments: Valuation and Management 8th Edition, (Ebook PDF)

https://ebookmass.com/product/fundamentals-of-investments-valuationand-management-8th-edition-ebook-pdf/

ebookmass.com

Dipped In Sunshine (Surfing The Waves Book 2) Fearne Hill

https://ebookmass.com/product/dipped-in-sunshine-surfing-the-wavesbook-2-fearne-hill/

ebookmass.com

https://ebookmass.com/product/spinal-interneurons-lyandyshaviktorovna-zholudeva/

ebookmass.com

Composeyourownbookaccording toyourneeds

ChooseyourownpaththroughtheTREE(allpathsbeginatthebasisoftheTREE).Youmay alsoconsidertheauthor’srecommendationswithtwobasicpaths:

• minimumminimorum,withthesign ,forthosewhowanttoproceedasquicklyaspossible togetanideaofwhatquantumchemistryisallabout,

• minimum,withthesigns and ,forthosewhoseekbasicinformationaboutquantum chemistry, aswellasotherpaths,whichconsistofthe minimumpath,i.e., and , and specialexcursions (followingthecorrespondingflags,pleasenotethechapternumberingshownas,e.g.,CH1for Chapter1,etc.)intothesubjectsrelatedto:

• largemolecules ( ),

• molecularmechanicsandmoleculardynamics (♠),

• solidstatechemistry/physics ( ),

• chemicalreactions ( ),

• spectroscopy ( ),

• exactcalculations onatomsorsmallmolecules( ),

• relativisticandquantumelectrodynamicseffects ( ),

• mostimportantcomputationalmethodsofquantumchemistry (♦),

• thefutureofquantumchemistry ( ),and

• “magical”aspectsofquantumphysics ( ).

IdeasofQuantumChemistry

IdeasofQuantumChemistry

DepartmentofChemistry

UniversityofWarsaw

Warsaw,Poland

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-444-64248-6

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

AcquisitionEditor: AnnekaHess

EditorialProjectManager: EmeraldLi

ProductionProjectManager: OmerMukthar

Designer: ChristianBilbow

TypesetbyVTeX

ToallonthequestfortheTruth

1.3Inverselattice. ..................................................................11 1.4FirstBrillouinzone(FBZ) .....................................................14

1.7.1Originofthebandstructure..............................................21

1.7.2Born–vonKármánconditionin1D ......................................23

1.7.3 k dependenceoforbitalenergy...........................................25

1.8Atripleroleofthewavevector

1.9.1Born–vonKármánboundaryconditionin3D...........................26

1.9.2CrystalorbitalsfromBlochfunctions(LCAOCOmethod)............28

1.9.3SCFLCAOCOequations................................................31

1.9.4Bandwidth................................................................32

1.9.5Fermilevelandenergygap:insulators,metals,andsemiconductors..33

1.10Solidstatequantumchemistry.................................................39

1.10.1Whydosomebandsgoup?..............................................40

1.10.2Whydosomebandsgodown?...........................................41

1.10.3Whydosomebandsstayconstant?......................................41

1.10.4Morecomplexbehaviorexplainable–examples........................41

1.11TheHartree–Fockmethodforcrystals........................................50

1.11.1Secularequation..........................................................50

1.11.2IntegrationintheFBZ....................................................52

1.11.3Fockmatrixelements.....................................................53

1.11.4Iterativeprocedure(SCFLCAOCO)....................................55

1.11.5Totalenergy...............................................................55

1.12Long-rangeinteractionproblem...............................................56

1.12.1Fockmatrixcorrections..................................................57

1.12.2Totalenergycorrections..................................................59

1.12.3MultipoleexpansionappliedtotheFockmatrix........................61

1.12.4Multipoleexpansionappliedtothetotalenergy........................65

1.13Backtotheexchangeterm.....................................................68

1.14Choiceofunitcell..............................................................70

1.14.1Fieldcompensationmethod..............................................73

1.14.2Thesymmetryofsubsystemchoice......................................75

Chapter2:CorrelationandAnticorrelationofElectronicMotions.................81 VARIATIONALMETHODSUSINGEXPLICITLYCORRELATEDWAVE

FUNCTIONS

2.1Correlationcuspcondition .....................................................89

2.2TheHylleraasCImethod......................................................93

2.3Two-electronsystems..........................................................94

2.3.1Harmonium–theharmonicheliumatom................................94

2.3.2Highaccuracy:theJames–CoolidgeandKołos–Wolniewiczfunctions96

2.3.3Highaccuracy:neutrinomass... .........................................99

2.4ExponentiallycorrelatedGaussianfunctions .................................101

2.5Electronholes..................................................................102

2.5.1Coulombhole(“correlationhole”).......................................102

2.5.2Exchangehole(“Fermihole”)...........................................105

VARIATIONALMETHODSWITHSLATERDETERMINANTS

2.6Staticelectroncorrelation......................................................112

2.7Dynamicelectroncorrelation..................................................112

2.8Anticorrelation,ordoelectronssticktogetherinsomestates?..............118

2.9Valencebond(VB)method... .................................................126

2.9.1Resonancetheory–hydrogenmolecule.................................126

2.9.2Resonancetheory–polyatomiccase....................................129

2.10Configurationinteraction(CI)method........................................134

2.10.1Brillouintheorem.........................................................136

2.10.2ConvergenceoftheCIexpansion........................................137

2.10.3ExampleofH2 O..........................................................137

2.10.4Whichexcitationsaremostimportant?..................................140

2.10.5Naturalorbitals(NOs)–awaytoshorterexpansions..................140

2.10.6SizeinconsistencyoftheCIexpansion..................................142

2.11DirectCImethod...............................................................142

2.12MultireferenceCImethod .....................................................143

2.13Multiconfigurationalself-consistentfield(MCSCF)method ...............144

2.13.1ClassicalMCSCFapproach.............................................145

2.13.2UnitaryMCSCFmethod.................................................146

2.13.3Completeactivespace(CASSCF)methodissize-consistent..........148

NONVARIATIONALMETHODSWITHSLATERDETERMINANTS

2.14Coupledcluster(CC)method .................................................149

2.14.1Waveandclusteroperators...............................................151

2.14.2RelationshipbetweenCIandCCmethods..............................152

2.14.3SolutionoftheCCequations.............................................153

2.14.4Example:CCwithdoubleexcitations............... ....................156

2.14.5SizeconsistencyoftheCCmethod......................................158

2.15Equationofmotionmethod(EOM-CC)......................................159

2.15.1Similaritytransformation.................................................159

2.15.2DerivationoftheEOM-CCequations...................................159

2.16Many-bodyperturbationtheory(MBPT). ....................................162

2.16.1UnperturbedHamiltonian................................................162

2.16.2Perturbationtheory–slightlydifferentpresentation....................163

2.16.3MBPTmachinery–partone:energyequation..........................164

2.16.4Reducedresolventorthe“almost”inverseof

2.16.5MBPTmachinery–parttwo:wavefunctionequation..................166

2.16.6Brillouin–Wignerperturbationtheory...................................168

2.16.7Rayleigh–Schrödingerperturbationtheory..............................168

2.17Møller–PlessetversionofRayleigh–Schrödingerperturbationtheory......169

2.17.1ExpressionforMP2energy..............................................170

2.17.2IstheMP2methodsize-consistent?.....................................171

2.17.3ConvergenceoftheMøller–Plessetperturbationseries.................173

2.17.4Specialstatusofdoubleexcitations......................................174

NONVARIATIONALMETHODSUSINGEXPLICITLYCORRELATEDWAVE FUNCTIONS

2.18Møller–PlessetR12method(MP2-R12).. ....................................176

2.18.1Resolutionofidentity(RI)methodordensityfitting(DF).............177

2.18.2OtherRImethods.. .......................................................178

Chapter3:ChasingtheCorrelationDragon:DensityFunctionalTheory(DFT)...191

3.1Electronicdensity–thesuperstar.............................................194

3.2Electrondensitydistributions–Baderanalysis..... ..........................196

3.2.1Overallshapeof ρ ........................................................196

3.2.2Criticalpoints.............................................................197

3.2.3Laplacianoftheelectronicdensityasa“magnifyingglass”...........202

3.3TwoimportantHohenberg–Kohntheorems...................................204

3.3.1Correlationdragonresidesinelectrondensity:equivalenceof 0 and ρ0 .....................................................................204

3.3.2Asecretofthecorrelationdragon:theexistenceofenergy functionalminimizedby ρ0 ..............................................207

3.4TheKohn–Shamequations... .................................................211

3.4.1AKohn–Shamsystemofnoninteractingelectrons......................211

3.4.2Chasingthecorrelationdragonintoanunknownpartofthetotalenergy212

3.4.3DerivationoftheKohn–Shamequations................................213

3.5Tryingtoguesstheappearanceofthecorrelationdragon....................218

3.5.1Localdensityapproximation(LDA).....................................218

3.5.2Nonlocaldensityapproximation(NLDA)...............................219

3.5.3TheapproximatecharacteroftheDFTversusapparentrigorof abinitio computations....................................................220

3.6Onthephysicaljustificationfortheexchange-correlationenergy...........221

3.6.1Theelectronpairdistributionfunction...................................221

3.6.2Adiabaticconnection:fromwhatisknowntowardsthetarget.........222

3.6.3Exchange-correlationenergyandtheelectronpairdistribution function....................................................................226

3.6.4Thecorrelationdragonhidesintheexchange-correlationhole.........227

3.6.5Electronholesinspinresolution.........................................227

3.6.6Thedragon’sultimatehide-out:thecorrelationhole!...................229

3.6.7PhysicalgroundsfortheDFTfunctionals...............................232

3.7Visualizationofelectronpairs:electronlocalizationfunction(ELF). .......233

3.8TheDFTexcitedstates........................................................238

3.9Thehuntedcorrelationdragonbeforeoureyes..

ELECTRICPHENOMENA

4.2Themoleculeimmobilizedinanelectricfield...

4.2.1Theelectricfieldasaperturbation.......................................261

4.2.2Thehomogeneouselectricfield..........................................266

4.2.3Thenonhomogeneouselectricfield:multipolepolarizabilities andhyperpolarizabilities.. ...............................................275

4.3Howtocalculatethedipolemoment..........................................277

4.3.1Coordinatesystemdependence..........................................278

4.3.2Hartree–Fockapproximation.............................................278

4.3.3Atomicandbonddipoles. ................................................279

4.3.4Withinthezero-differentialoverlapapproximation.....................280

4.4Howtocalculatethedipolepolarizability ....................................280

4.4.1Sumoverstates(SOS)method...........................................281

4.4.2Finitefieldmethod........................................................284

4.4.3Whatisgoingonathigherelectricfields................................289

4.5Amoleculeinanoscillatingelectricfield ....................................290

MAGNETICPHENOMENA

4.6Magneticdipolemomentsofelementaryparticles................... ........294

4.6.1Electron...................................................................294

4.6.2Nucleus....................................................................295

4.6.3Dipolemomentinthefield...............................................296

4.7NMRspectra–transitionsbetweenthenuclearquantumstates.............299

4.8Hamiltonianofthesystemintheelectromagneticfield......................301

4.8.1Choiceofthevectorandscalarpotentials...............................301

4.8.2RefinementoftheHamiltonian..........................................302

4.9EffectiveNMRHamiltonian...................................................306

4.9.1Signalaveraging..........................................................307

4.9.2EmpiricalHamiltonian...................................................307

4.9.3Nuclearspinenergylevels................................................312

4.10TheRamseytheoryoftheNMRchemicalshift..............................319

4.10.1Shieldingconstants.......................................................320

4.10.2Diamagneticandparamagneticcontributions...........................321

4.11TheRamseytheoryofNMRspin–spincouplingconstants..................322

4.11.1Diamagneticcontribution.................................................322

4.11.2Paramagneticcontribution................................................323

4.11.3Couplingconstants........................................................324

4.11.4TheFermicontactcouplingmechanism.................................325

4.12Gauge-invariantatomicorbitals(GIAOs).....................................326

4.12.1Londonorbitals ...........................................................327

4.12.2Integralsareinvariant.....................................................328

THEORYOFINTERMOLECULARINTERACTIONS

5.1Ideaoftherigidinteractionenergy............................................341

5.2Ideaoftheinternalrelaxation.................................................342

5.3Interactingsubsystems.........................................................343

5.3.1Naturaldivision...........................................................343

5.3.2Whatismostnatural?.....................................................344

5.4Bindingenergy.................................................................346

5.5Dissociationenergy............................................................346

5.6Dissociationbarrier ............................................................347

5.7Supermolecularapproach......................................................347

5.7.1Accuracyshouldbethesame...

5.7.2Basissetsuperpositionerror(BSSE).. ..................................349

5.7.3Goodandbadnewsaboutthesupermolecularmethod.................350

5.8Perturbationalapproach........................................................351

5.8.1Intermoleculardistance–whatdoesitmean?...........................351

5.8.2Polarizationapproximation(twomolecules)............................352

5.8.3Intermolecularinteractions:physicalinterpretation.....................357

5.8.4Electrostaticenergyinthemultipolerepresentationplusthepenetration energy.....................................................................361

5.8.5Inductionenergyinthemultipolerepresentation.. .....................368

5.8.6Dispersionenergyinthemultipolerepresentation......................369

5.8.7Resonanceinteraction–excimers........................................376

5.9Symmetry-adaptedperturbationtheory(SAPT)..............................377

5.9.1Polarizationapproximationisillegal... ..................................377

5.9.2Constructingasymmetry-adaptedfunction.............................378

5.9.3Theperturbationisalwayslargeinpolarizationapproximation........379

5.9.4IterativeschemeofSAPT................................................381

5.9.5Symmetryforcing.........................................................385

5.9.6Alinktothevariationalmethod–theHeitler–Londoninteraction energy.....................................................................388

5.9.7Summary:themaincontributionstotheinteractionenergy............389

5.10Convergenceproblems.........................................................392

5.10.1Padéapproximantsmayimproveconvergence..........................393

5.11Nonadditivityofintermolecularinteractions.................................398

5.11.1Interactionenergyrepresentsthenonadditivityofthetotalenergy....398

5.11.2Many-bodyexpansionoftherigidinteractionenergy..................398

5.11.3Whatisadditive,whatisnot?............................................401

5.11.4Additivityoftheelectrostaticinteraction................................401

5.11.5Exchangenonadditivity... ................................................402

5.11.6Inductionnonadditivity... ................................................406

5.11.7Additivityofthesecond-orderdispersionenergy.......................409

5.11.8Nonadditivityofthethird-orderdispersioninteraction.................410

ENGINEERINGOFINTERMOLECULARINTERACTIONS

5.12Ideaofmolecularsurface......................................................411

5.12.1vanderWaalsatomicradii...............................................411

5.12.2Aconceptofmolecularsurface..........................................411

5.12.3Confiningmolecularspace–thenanovessels...........................412

5.12.4Molecularsurfaceunderhighpressure ..................................413

5.13Decisiveforces.................................................................414

5.13.1Distinguishedroleofthevalencerepulsionandelectrostaticinteraction414

5.13.2Hydrogenbond. ...........................................................415

5.13.3Coordinationinteraction..................................................417

5.13.4Electrostaticcharacterofmolecularsurface–themapsofthe molecularpotential.......................................................418

5.13.5Hydrophobiceffect .......................................................420

5.14Constructionprinciples........................................................424

5.14.1Molecularrecognition–synthons.. ......................................424

5.14.2“Key-lock,”template-like,and“hand-glove”synthoninteractions....424

5.14.3Convexandconcave–thebasicsofstrategyinthenanoscale..........427

Chapter6:ChemicalReactions...................................................437

6.1Hypersurfaceofthepotentialenergyfornuclearmotion....................442

6.1.1Potentialenergyminimaandsaddlepoints..............................443

6.1.2Distinguishedreactioncoordinate(DRC)...............................446

6.1.3Steepestdescentpath(SDP)..............................................446

6.1.4Higher-ordersaddles......................................................447

6.1.5Ourgoal...................................................................447

6.2Chemicalreactiondynamics(apioneers’approach)...

ABINITIO APPROACH

6.3Accuratesolutions(threeatoms)..............................................453

6.3.1CoordinatesystemandHamiltonian.....................................453

6.3.2SolutiontotheSchrödingerequation....................................456

6.3.3Berryphase................................................................458

APPROXIMATEMETHODS

6.4Intrinsicreactioncoordinate(IRC).. ..........................................460

6.5ReactionpathHamiltonianmethod...........................................463

6.5.1EnergyclosetoIRC......................................................463

6.5.2Vibrationaladiabaticapproximation.....................................465

6.5.3Vibrationalnonadiabaticmodel. .........................................471

6.5.4ApplicationofthereactionpathHamiltonianmethodtothereaction H2 + OH → H2 O + H...................................................473

6.6Acceptor–donor(AD)theoryofchemicalreactions........... ...............479

6.6.1Asimplemodelofnucleophilicsubstitution–MO,AD,andVB formalisms................................................................479

6.6.2MOpicture → ADpicture...............................................480

6.6.3Reactionstages............................................................484

6.6.4Contributionsofthestructuresasthereactionproceeds................489

6.6.5Nucleophilicattack–themodelismoregeneral:H + ethylene → ethylene + H ............................................................492

6.6.6Themodellooksevenmoregeneral:theelectrophilicattack H+ + H2 → H2 + H+ ...................................................495

6.6.7Themodelworksalsoforthenucleophilicattackonthepolarizedbond496

6.7Symmetry-allowedandsymmetry-forbiddenreactions......................501

6.7.1Woodward–Hoffmannsymmetryrules..................................501

6.7.2ADformalism.............................................................501

6.7.3Electrocyclicreactions....................................................502

6.7.4Cycloadditionreaction.... ................................................504

6.7.5Barriermeansacostofopeningtheclosedshells.......................508

6.8Barrierfortheelectrontransferreaction.. ....................................509

6.8.1Diabaticandadiabaticpotential..........................................509

6.8.2Marcustheory.............................................................511

6.8.3Solvent-controlledelectrontransfer......................................516

Chapter7:InformationProcessing–TheMissionofChemistry...................533

7.1Multilevelsupramolecularstructures(statics)... .............................537

7.1.1Complexsystems.........................................................537

7.1.2Self-organizingcomplexsystems........................................537

7.1.3Cooperativeinteractions.. ................................................540

7.1.4Combinatorialchemistry–molecularlibraries..........................541

7.2Chemicalfeedback–asteeringelement(dynamics)......... ................543

7.2.1Alinktomathematics–attractors.......................................543

7.2.2Bifurcationsandchaos...................................................545

7.2.3Brusselatorwithoutdiffusion... .........................................547

7.2.4Brusselatorwithdiffusion–dissipativestructures......................553

7.2.5Hypercycles...............................................................555

7.2.6Fromself-organizationandcomplexitytoinformation.................555

7.3Informationandinformedmatter..............................................556

7.3.1Abstracttheoryofinformation...........................................557

7.3.2Teachingmolecules... ....................................................559

7.3.3Dynamicinformationprocessingofchemicalwaves...................561

7.3.4Moleculesascomputerprocessors.......................................568

7.3.5Themissionofchemistry.................................................573 AppendixA:DiracNotationforIntegrals.........................................581

Whateverweknowresultsfromour interaction withtheBigThing,whichwecalltheUniverse (andwhichislargelyunknown).Whatwedoknowuntilnow,however,seemstosupportthe viewthattheUniverseitselfoperatesthroughinteractionofsomesmallobjectsknownaselementaryparticlesandthatthisinteractionitself can bedescribedinamathematicallyconsistent way.Asusual,physicsmayhaveproblemswithwhattheword“elementary”reallymeans,but forthepurposeofthisbookwemaysafelyacceptalessrigorous“elementariness,”inwhich wehavetodowithnucleiandelectronsonly.Toexplainchemistryatthequantumlevel(which isusuallymorethansatisfactoryforchemicalpractice) itissufficienttotreatallnucleiand electronsaspointchargesthatinteractelectrostatically (throughtheCoulomblaw).

“Ideasofquantumchemistry”iscomposedofvolumes1and2.Theyareaimedtobeautonomous(1onbasics,2onsomespecializedtopics)foreconomicalaswellasergonomical reasons,butatthesametimeinterrelatedandtiedbyseveralaspects(topics,structure,logical connections,appendices)thusforminganentity.

“Ideasofquantumchemistry”Volume1:Fromquantumphysicstochemistry focusesonmaking twoimportantapproximations withthegoalofbeingabletoexplaintheverybasicsof chemistry.Themostimportantistheconceptofthemolecularthree-dimensionalstructure(resultingfromtheBorn–Oppenheimerapproximation,ChapterV1-6).Asecondapproximation madeassumesthateachelectronisdescribedbyitsownwavefunction(“electronicorbital,” ChapterV1-8).Toarriveattheseapproximationswithinthenonrelativisticapproachwefirst exploitthefactthateventhelightestnucleus(proton)ismorethanathousandtimesheavier thananelectron.AsaconsequencetheBorn–Oppenheimerapproximationallowsonetosolve theproblemofelectronicmotionassumingthatthenucleiaresoheavythattheydonotmove, i.e.,theyoccupycertainpositionsinspace.Theorbitalapproximationmeansthatanyelectron seesotherelectrons’motionaveraged.Fromthis,however,followsthatamovingelectrondoes notreacttosomeparticularpositionsofotherelectrons,whichlooksasiftheydidnotseeeach other’spositions.

Bymakingapproximationsofthiskind,wehavearrivedata(“minimal”)modelofthemolecule asanentitythathasadistinctspatialshape(“geometry”)andiskepttogetherbecauseofthe

Introduction(2)

chemicalbondsbetweenpairsofneighboringatoms.Usingtheminimalmodelwewereable toexplainwhychemicalbondscanbeformed.Suchasystemofbondsisstablewithrespect torelativelysmalldeviationsofftheequilibriummoleculargeometry(“chemicalbondpattern staysunchanged”)definedasthosepositionsofthenucleiwhichensurethelowestelectronic ground-stateenergyofthesystem(potentialenergysurface[PES]forthemotionofthenuclei). Largerdeviationsmovethesystemtowardsotherchemicalbondpatterns(stillwithinthesame electronicgroundstate1 ),whichmayalsohavetheirstableBorn–Oppenheimerequilibrium structures.Theatomsvibrateabouttheirequilibriumpositions,whilethemoleculeasawhole fliesinspacealongastraightlineandkeepsrotatingaboutitscenterofmass.

Thus,anymoleculecanbetreatedtoafirstapproximationasanobject,small,butsimilar totheobjectsweencounterineverydaylife.Ithasastablealbeitflexiblethree-dimensional architecture,wemayspeakaboutitsdetailslikeleft-andright-handside,itsfront,itsback, etc. Thispicturerepresentstheveryfoundationofallbranchesofchemistryandbiologyas wellasalargeportionofphysics. Understandingchemistrywouldbeextremelydifficult,if notimpossible,withoutthiscrucialpicture.Wehavetoremember,however,thattherealityis morecomplicatedthanthat,andthisisasimplificationonly,anextremelyfertileandfortuitous approximation.

Theminimalmodelworksusuallywithanerrorofabout1%intotalenergyandequilibrium atom–atomdistances.Thisseemsatfirstsightassatisfactory,anditisforabigportionof chemistry.However,themodelfailsspectacularlyforseveralimportantphenomena,likedescriptionofmetals,dissociationofachemicalbond,ubiquitousandimportantintermolecular interactions,etc.

“Ideasofquantumchemistry”Volume2:Interactions improvestheminimalmodelofa moleculebytakingintoaccounttheelectron–electronmutualcorrelationofmotion(Chapters 2 and 3)aswellasthemolecule’sinteractionwiththeexternalworld:inacrystal(Chapter 1),in externalelectricandmagneticfields(Chapter 4),andwithothermolecules(Chapters 5 and 6).

Theauthorisconvincedthatchemistryfacescurrentlythechallengeofinformationprocessing, quitedifferenttothisperformedbyourcomputers.Thisperspective,addressedmainlytomy youngstudents,isdiscussedinthelastchapter(Chapter 7)ofthisbook,whichdiffersvery muchfromotherchapters.Itshowssomeexcitingpossibilitiesofchemistryandoftheoretical chemistry,andposessomegeneralquestionsastowherethelimitsaretobeimposedondevelopmentscienceinordertobehonestwithrespecttoourselves,tootherpeople,andtoour planet.

Theideaoforbitalsisnotonlyasimpleandfruitfuldescriptionofmoleculeswithintheminimalmodel.Mostimportantly,theorbitalmodelprovidesalsoamapofideasandavocabulary,

1 HigherinenergyscaleareexcitedPESs.

Introduction(2) whichareusedbeyondtheorbitalmodel,inanymoresophisticatedtheory.Strictlyspeaking, inanyadvancedtheoryintroducedinvolume2,thereisnosuchthingasadefinitionofelectronicorbital,butstillthe“orbitallanguage”ismostoftenusedinthismorecomplexsituation, becauseitissimple,flexible,andinformative.

Volume1maybeviewedasindependentofvolume2,i.e.,volume1isautonomous,ifthe minimalmodelofchemistryisthereader’starget.Theoppositeisnottrue:volume2relieson volume1,mainlybecauseitneedstheminimalmodelasthestartingpoint.Tokeepvolume2as autonomicaspossibletheorbitalmodel(theHartree–Focktheory)isbrieflyrepeated(mainly Appendices A and B).

TREE

Anybookhasalinearappearanceandthepagenumbersremindusofthat.However,the logic ofvirtuallyanybookis nonlinear,andinmanycasescanbevisualizedbyadiagramconnectingthechaptersthat(logically)followfromoneanother.Suchadiagramallowsformultiple branchesemanatingfromagivenchapter,ifbeingonequalfooting.Thelogicalconnectionsare illustratedinthisbookasaTREEdiagram,playinganimportantroleinourbookandintended tobeastudyguide.Anauthorleadsthereaderinacertaindirectionandthereaderexpects tobeinformedwhatthisdirectionis,whythisdirectionisneeded,whatwillfollowthen,and whatbenefitshe/shewillgainaftersuchastudy.

AthicklineinthecenteroftheTREEseparatesvolume1(bottompart)fromvolume2(upper part).

Thetrunkrepresentsthepresentbook’sbackboneandiscoveredbythecontentofvolume1.

• Itbeginsbypresentingthefoundationofquantummechanics(postulates).

• ItcontinueswiththeSchrödingerequationforstationarystates,sofarthemostimportant equationinquantumchemicalapplications,and

• theseparationofnuclearandelectronicmotion(throughtheadiabaticapproximation, the centralideaofthepresentbookandchemistryingeneral).

• Itthendevelopstheorbitalmodelofelectronicstructure.

Thetrunkthuscorrespondstoatraditionalcourseinquantumchemistryforundergraduates. ThismaterialrepresentsthenecessarybasisforfurtherextensionsintootherpartsoftheTREE (appropriateforgraduatestudents).ThetrunkmakesitpossibletoreachthecrownoftheTREE (volume2),wherethereadermayfindtastyfruit.

TheTREEhelpstailoringyourownbook

TheTREEservesnotonlyasadiagramoflogicalchapterconnections,butalsoenablesthe readertomakeimportantdecisions,suchasthefollowing:

• thechoiceofalogicalpathofstudy(“itinerary”)leadingtotopicsofinterest,and

• eliminationofchaptersthatareirrelevanttothegoalofstudy.2 Thismeanstailoringthe reader’sownbook.

AllreadersarewelcometodesigntheirownitinerarieswhentraversingtheTREE,i.e.,tocreate theirownreader-tailoredbooks.Somereadersmightwishtotakeintoaccountthesuggestions forhow Ideasofquantumchemistry canbeshaped.

Minimumminimorumandminimum

Firstofall,thereadercanfollowtwobasicpaths:

• Minimumminimorum,forthosewhowanttoproceedasquicklyaspossibletogetanidea whatquantumchemistryisallabout,followingthechaptersdesignatedby( )(only47 pages,volume1).

• Minimum,forthosewhoseekbasicinformationaboutquantumchemistry,e.g.,inorderto usepopularcomputerpackagesforthestudyofmolecularelectronicstructure.Theymay followthechaptersdesignatedbythesymbols and involumes1and2.Onemay imaginehereastudentofchemistry,specializingin,say,analyticalororganicchemistry (notquantumchemistry).Thispathinvolvesreadingapproximately300pagesplusthe appropriateappendices(ifnecessary).

Otherproposedpathsconsistofthe minimumitinerary (i.e., and ) plus specialexcursions, whicharetermedadditionalitineraries.

Additionalitineraries

Thosewhowanttousetheexistingcomputerpackagesinaknowledgeablefashionorjustwant toknowmoreaboutthechosensubjectmayfollowthechaptersdesignatedbythefollowing specialsigns:

• largemolecules ( ),

• molecularmechanicsandmoleculardynamics (♠),

• solidstatechemistry/physics ( ),

2 Itis,therefore,possibletoprunesomeofthebranches.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.