Ideas of quantum chemistry: volume 1: from quantum physics to chemistry 3rd edition lucjan piela - T

Page 1


IdeasofQuantumChemistry:Volume1:FromQuantum PhysicstoChemistry3rdEditionLucjanPiela

https://ebookmass.com/product/ideas-of-quantum-chemistryvolume-1-from-quantum-physics-to-chemistry-3rd-edition-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Ideas of Quantum Chemistry: Volume 2: Interactions 3rd Edition Lucjan Piela

https://ebookmass.com/product/ideas-of-quantum-chemistryvolume-2-interactions-3rd-edition-lucjan-piela/

ebookmass.com

Instructor's Solutions Manual to Quantum Chemistry 7th Edition Ira N. Levine

https://ebookmass.com/product/instructors-solutions-manual-to-quantumchemistry-7th-edition-ira-n-levine/

ebookmass.com

Quantum Bullsh*t: How to Ruin Your Life with Advice from Quantum Physics Chris Ferrie

https://ebookmass.com/product/quantum-bullsht-how-to-ruin-your-lifewith-advice-from-quantum-physics-chris-ferrie/ ebookmass.com

Drega: An Alien Warrior Romance (Fated Mates of the Sarkarnii Book 3) Hattie Jacks

https://ebookmass.com/product/drega-an-alien-warrior-romance-fatedmates-of-the-sarkarnii-book-3-hattie-jacks/

ebookmass.com

Silver Santa: Welcome to Kissing Springs, Book 3 Joi

Jackson & Kissing Springs Book Babes

https://ebookmass.com/product/silver-santa-welcome-to-kissing-springsbook-3-joi-jackson-kissing-springs-book-babes/

ebookmass.com

A Game of Retribution Scarlett St. Clair

https://ebookmass.com/product/a-game-of-retribution-scarlett-stclair-5/

ebookmass.com

The American Pageant AP 17th Edition David M. Kennedy And Lizabeth Cohen

https://ebookmass.com/product/the-american-pageant-ap-17th-editiondavid-m-kennedy-and-lizabeth-cohen/

ebookmass.com

Tsunamiites: Features and Implications 2nd Edition Tsunemasa Shiki (Editor)

https://ebookmass.com/product/tsunamiites-features-andimplications-2nd-edition-tsunemasa-shiki-editor/

ebookmass.com

International Organizational Behavior: Transcending Borders and Cultures 2nd Edition – Ebook PDF Version

https://ebookmass.com/product/international-organizational-behaviortranscending-borders-and-cultures-2nd-edition-ebook-pdf-version/

ebookmass.com

Assessment Workbook: Balancing Strengths and Differential Diagnosis 2nd Edition – Ebook PDF Version

https://ebookmass.com/product/clinical-assessment-workbook-balancingstrengths-and-differential-diagnosis-2nd-edition-ebook-pdf-version/

ebookmass.com

Composeyourownbookaccording toyourneeds

ChooseyourownpaththroughtheTREE(allpathsbeginatthebasisoftheTREE,Vol.1 correspondstoitsbottompart).Youmayalsoconsidertheauthor’srecommendationswithtwo basicpaths:

• minimumminimorum,withthesign ,forthosewhowanttoproceedasquicklyaspossible togetanideaofwhatquantumchemistryisallabout,

• minimum,withthesigns and ,forthosewhoseekbasicinformationaboutquantum chemistry,

aswellasotherpaths,whichconsistofthe minimumpath,i.e., and , and specialexcursions (followingthecorrespondingflags,pleasenotethechapternumberingisshownas,e.g.,CH1 forchapter1,etc.)intothesubjectsrelatedto:

• largemolecules ( ),

• molecularmechanicsandmoleculardynamics (♠),

• solidstatechemistry/physics ( ),

• chemicalreactions ( ),

• spectroscopy ( ),

• exactcalculations onatomsorsmallmolecules( ),

• relativisticandquantumelectrodynamicseffects ( ),

• themostimportantcomputationalmethodsofquantumchemistry (♦),

• thefutureofquantumchemistry ( ),and

• “magical”aspectsofquantumphysics ( ).

IdeasofQuantumChemistry

Volume1:FromQuantumPhysicstoChemistry

ThirdEdition

Thingsappear,ideaspersist Plato

ThirdEdition

DepartmentofChemistry

UniversityofWarsaw

Warsaw,Poland

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-444-64246-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

AcquisitionEditor: AnnekaHess

EditorialProjectManager: EmeraldLi

ProductionProjectManager: OmerMukthar

Designer: ChristianBilbow

TypesetbyVTeX

ToallonthequestfortheTruth

Chapter1:TheMagicofQuantumMechanics....................................1

1.1Historyofarevolution.........................................................5 1.2Postulatesofquantummechanics.............................................18 1.3TheHeisenberguncertaintyprinciple.........................................41 1.4TheCopenhageninterpretationoftheworld..................................46

1.5HowtodisprovetheHeisenbergprinciple?TheEinstein–Podolsky–Rosen’s recipe...........................................................................47

1.6ThelifeanddeathofSchrödinger’scat...

Chapter2:TheSchrödingerEquation.............................................69

2.1SymmetryofthenonrelativisticHamiltonianandtheconservationlaws...72

2.1.1Invariancewithrespecttotranslation....................................77

2.1.2Invariancewithrespecttorotation.......................................79

2.1.3Invariancewithrespecttopermutationofidenticalparticles (fermionsandbosons)....................................................80

2.1.4Invarianceofthetotalcharge.............................................80

2.1.5Fundamentalandlessfundamentalinvariances....... ..................81

2.1.6Invariancewithrespecttoinversion–parity............................81

2.1.7Invariancewithrespecttochargeconjugation...........................85

2.1.8Invariancewithrespecttothesymmetryofthenuclearframework....86

2.1.9Conservationoftotalspin................................................86

2.1.10Indicesofspectroscopicstates...........................................87

2.2Schrödingerequationforstationarystates....................................87

2.2.1WavefunctionsofclassQ................................................90

2.2.2Boundaryconditions. .....................................................93

2.3Thetime-dependentSchrödingerequation...................................96

2.3.1Evolutionintime..........................................................96

2.3.2Timedependenceofmechanicalquantities..............................97

2.3.3Meanenergyisconserved................................................99

2.3.4Symmetryisconserved...................................................99

2.3.5Energy-timeuncertaintyprinciple.......................................100

2.3.6Meditationsatwaterspring...............................................103

2.3.7Linearity...................................................................104

2.4Evolutionafterswitchingaperturbation......................................104

2.4.1Time-independentperturbation–thetwo-statemodel..................106

2.4.2Oscillatingperturbation–thetwo-statemodel..........................108

2.4.3Short-timeperturbation–thefirst-orderapproach......................110

2.4.4Time-independentperturbationandtheFermiGoldenRule............112

2.4.5OscillatingperturbationandtheFermiGoldenRule....................114 Chapter3:BeyondtheSchrödingerEquation.....................................123

3.1Aglimpseofclassicalrelativitytheory... ....................................127

3.1.1Thevanishingofapparentforces........................................127

3.1.2TheGalileantransformation.............................................130

3.1.3TheMichelson–Morleyexperiment....

3.1.4TheGalileantransformationcrashes.....................................133

3.1.5TheLorentztransformation..............................................134

3.1.6Newlawofaddingvelocities....

3.1.7TheMinkowskispace–timecontinuum..................................138

3.1.8Howdoweget E = mc 2 ?................................................142

3.2Towardsrelativisticquantummechanics......................................144

3.3TheDiracequation.............................................................147

3.3.1Theelectronicseaandthedayofglory..................................147

3.3.2TheDiracequationsforelectronandpositron..........................151

3.3.3Spinorsandbispinors.....................................................151

3.3.4Whatnext?................................................................153

3.3.5Largeandsmallcomponentsofthebispinor............................153

3.3.6HowtoavoiddrowningintheDiracsea.................................154

3.3.7FromDiractoSchrödinger–howtoderivethenonrelativistic Hamiltonian?..............................................................156

3.3.8Howdoesthespinappear?...............................................157

3.3.9Simplequestions..........................................................159

3.4Thehydrogen-likeatominDiractheory.. ....................................159

3.4.1Stepbystep:calculationofthehydrogen-likeatomgroundstate withinDiractheory.......................................................160

3.5Largersystems.................................................................166

3.6BeyondtheDiracequation.... .................................................170

3.6.1TheBreitequation........................................................171

3.6.2Afewwordsaboutquantumelectrodynamics...........................173

Chapter4:ExactSolutions–OurBeacons.......................................185

4.1Freeparticle ....................................................................188

4.2Boxwithends(andthemusic)................................................189

4.3Cyclicbox......................................................................193

4.3.1Comparisonoftwoboxes:hexatrieneandbenzene.....................196

4.4Carbonnanotube...............................................................200

4.5Singlebarrier ...................................................................203

4.5.1Tunnelingeffectbelowthebarrierheight................................203

4.5.2Surprisesforenergieslargerthanthebarrier............................207

4.6Themagicoftwobarriers .....................................................210

4.6.1Magicenergeticgates(resonancestates)................................211

4.6.2Strangeflightovertwobarriers..........................................215

4.7Harmonicoscillator ............................................................217

4.8Morseoscillator..

4.9Rigidrotator....................................................................229

4.10Hydrogen-likeatom ............................................................232

4.10.1Positroniumanditsshortlifeinmolecules..............................242

4.11Whatdoallthesesolutionshaveincommon?................................242

4.12Hookeheliumatom(harmonium).............................................243

4.13Hookemolecules...............................................................244

4.14CharmingSUSYandnewsolutions...........................................249

4.14.1SUSYpartners............................................................250

4.14.2RelationbetweentheSUSYpartners....................................251

4.15Beaconsandpearlsofphysics.................................................255

Chapter5:ThreeFundamentalApproximateMethods............................263

5.1Variationalmethod.............................................................265

5.1.1Variationalprinciple......................................................265

5.1.2Variationalparametersleadtothevariationalmethod..................269

5.1.3LinearvariationalparametersortheRitzmethod.......................271

5.2Methodofmoments............................................................273

5.3Perturbationalmethod.........................................................274

5.3.1Rayleigh–Schrödingerapproach.........................................274

5.3.2Hylleraasvariationalprinciple...........................................280

5.3.3Hylleraasequation........................................................281

5.3.4Degeneracy................................................................282

5.3.5Convergenceoftheperturbationalseries................................284

5.4Virialtheoremasaprobeofwavefunctionquality ..........................287

5.4.1Classicalmechanics–thevirial..........................................287

5.4.2Lookingatstars–thediscoveryofdarkmatter.........................288

5.4.3Quantummechanics......................................................288

5.4.4Areviewofexamples.....................................................290

5.4.5Whataboutthemeanvaluescalculatedwithanapproximatesolution?292

5.4.6Quantumchemistry:howusefulisthevirialtheorem?.................297

Chapter6:AKeyConceptofMolecular3DStructure–SeparationofElectronic andNuclearMotions.................................................305

6.1Separationofthecenter-of-massmotion......................................311

6.2Exact(nonadiabatic)theory.. .................................................315

6.3Adiabaticapproximation.......................................................318

6.4Born–Oppenheimerapproximation...........................................320

6.5Vibrationsofarotatingmolecule..............................................321

6.5.1Onemoreanalogy........................................................323

6.5.2Whatvibrates,whatrotates?.............................................324

6.5.3Thekeymessage:thepotentialenergysurface(PES)and molecularshape...........................................................326

6.6Basicprinciplesofelectronic,vibrationalandrotationalspectroscopy.....332

6.6.1Electronicandvibrationalstructure......................................332

6.6.2Rotationalstructure.......................................................332

6.7Approximateseparationofrotationsandvibrations..........................335

6.8UnderstandingtheIRspectrumofadiatomic:HCl..........................336

6.8.1Selectionrulesareconsequencesofconservationlaws.................337

6.8.2Microwavespectrumgivestheinternucleardistance...................339

6.8.3IRspectrumandisotopiceffect..........................................339

6.8.4Internucleardistance......................................................341

6.8.5Whywehaveaspectrum“envelope”....................................341

6.8.6Intensityofisotopomers’peaks. .........................................342

6.9Aquasiharmonicapproximation..............................................342

6.10Polyatomicmolecules..........................................................344

6.10.1Kineticenergyexpression................................................344

6.10.2Quasirigidmodel–simplifyingbyEckartconditions..................346

6.10.3Approximation:decouplingofrotationsandvibrations................348

6.10.4Spherical,symmetric,andasymmetrictops.............................348

6.10.5Separationoftranslational,rotational,andvibrationalmotions........350

6.11Typesofstates..................................................................351

6.11.1Repulsivepotential........................................................351

6.11.2“Hook-like”curves.. .....................................................351

6.11.3Continuum...

6.11.4Wavefunction“measurement”...........................................355

6.12Adiabatic,diabatic,andnonadiabaticapproaches ............................358

6.13Crossingofpotentialenergycurvesfordiatomics............................361

6.13.1Thenoncrossingrule .....................................................361

6.13.2SimulatingtheharpooningeffectintheNaClmolecule................363

6.14Polyatomicmoleculesandtheconicalintersection...........................367

6.14.1Branchingspaceandseamspace.........................................369

6.14.2Conicalintersection.......................................................369

6.14.3Berryphase................................................................371

6.14.4Theroleoftheconicalintersection–nonradiativetransitionsand photochemicalreactions.. ................................................373

6.14.5Whatisthenumberofconicalintersections?...........................375

6.15Atravelbeyondtheadiabaticapproximation .................................377

6.15.1Vibroniccoupling.........................................................377

6.15.2Consequencesforthequestofsuperconductors.........................381

6.15.3PhotostabilityofproteinsandDNA......................................383

6.15.4Muon-catalyzednuclearfusion. .........................................386

6.15.5“Russiandolls”–oramoleculewithinmolecule.......................388

7.1Rovibrationalspectra–anexampleofaccuratecalculations: atom–diatomicmolecule.......................................................401

7.1.1CoordinatesystemandHamiltonian.....................................401

7.1.2Anisotropyofthepotential V ............................................403

7.1.3Addingtheangularmomentainquantumphysics.... ..................404

7.1.4ApplicationoftheRitzmethod..........................................405

7.2Forcefields(FFs)...............................................................406

7.3Localmolecularmechanics....................................................411

7.3.1Bondsthatcannotbreak.. ................................................411

7.3.2Bondsthatcanbreak ......................................................413

7.4Globalmolecularmechanics..................................................413

7.4.1Multipleminimacatastrophe .............................................413

7.4.2Isittheglobalminimumwhichcounts?.................................414

7.5Smallamplitudeharmonicmotion–normalmodes..........................416

7.5.1Theoryofnormalmodes.................................................417

7.5.2Zero-vibrationenergy.....................................................426

7.6Moleculardynamics ...........................................................427

7.6.1Whatdoesmoleculardynamicsofferus?................................429

7.6.2Whattoworryabout?. ....................................................431

7.6.3Moleculardynamicsofnonequilibriumprocesses......................431

7.6.4Quantumclassicalmoleculardynamics.............

7.7Simulatedannealing...........................................................434

7.10Car–Parrinellodynamics. ......................................................443 7.11Cellularautomata..............................................................446

Chapter8:OrbitalModelofElectronicMotioninAtomsandMolecules..........457

8.1Hartree–Fockmethod–abird’seyeview....................................463

8.1.1Spinorbitalsastheone-electronbuildingblocks.......................464

8.1.2Variables...................................................................465

8.1.3Slaterdeterminant........................................................465

8.1.4WhatistheHartree–Fockmethodallabout?............................468

8.2TowardstheoptimalspinorbitalsandtheFockequation....................469

8.2.1Diracnotationforintegrals...............................................469

8.2.2Energyfunctionaltobeminimized......................................470

8.2.3Energyminimizationwithconstraints...................................471

8.2.4Slaterdeterminantsubjecttoaunitarytransformation..................475

8.2.5The ˆ J and ˆ K operatorsareinvariant.....................................476

8.2.6DiagonalizationoftheLagrangemultipliers............................477

8.2.7OptimalspinorbitalsaresolutionsoftheFockequation (generalHartree–Fock[GHF]method) ..................................478

8.2.8“Unrestricted”Hartree–Fock(UHF)method............................479

8.2.9TheclosedshellsystemsandtherestrictedHartree–Fock (RHF)method.............................................................479

8.2.10Iterativesolution:theSelf-ConsistentField(SCF)method.............488

8.3TotalenergyintheHartree–Fockmethod.....................................490

8.4Computationaltechnique:atomicorbitalsasbuildingblocksofthe molecularwavefunction.......................................................492

8.4.1Centeringoftheatomicorbital...........................................494

8.4.2Slater-typeorbitals(STOs)...............................................494

8.4.3Gaussian-typeorbitals(GTOs)...........................................495

8.4.4Linearcombinationofatomicorbitals(LCAO)method................499

8.4.5Basissetsofatomicorbitals..............................................504

8.4.6TheHartree–Fock–Roothaanmethod(SCFLCAOMO)...............504

8.4.7Somepracticalproblems.................................................507

8.5Backtofoundations ............................................................510

8.5.1WhendoestheRHFmethodfail?........................................510

8.5.2Fukutomeclasses.. .......................................................514

RESULTSOFTHEHARTREE–FOCKMETHOD

8.6Mendeleevperiodictable......................................................521

8.6.1Allatomsaresimilartothehydrogenatom–theorbitalmodelofan atom.......................................................................521

8.6.2Shellsandsubshells.......................................................522

8.6.3Educatedguessofatomicorbitals–theSlaterrules....................528

8.6.4Atomicradii...............................................................529

8.7Thenatureofthechemicalbond–quantummakesadifference............531

8.7.1Thesimplestchemicalbond:H+ 2 intheMOpicture....................531

8.7.2Canweseeachemicalbond?..... .......................................536

8.8Excitationenergy,ionizationpotential,andelectronaffinity (RHFapproach)................................................................537

8.8.1Approximateenergiesofelectronicstates...............................537

8.8.2Singletortripletexcitation?..............................................539

8.8.3Hund’srules.. .............................................................540

8.8.4Hund’srulesfortheatomicterms ........................................541

8.8.5Ionizationpotentialandelectronaffinity(Koopmans’theorem).......544

8.9Towardsachemicalpicture–localizationofmolecularorbitals............547

8.9.1Canachemicalbondbedefinedinapolyatomicmolecule?...........548

8.9.2Theexternallocalizationmethods .......................................549

8.9.3Theinternallocalizationmethods........................................550

8.9.4Examplesoflocalization.................................................552

8.9.5Localizationinpractice–computationaltechnique.....................554

8.9.6Thechemicalbondsof σ,π,δ symmetry................................555

8.9.7Electronpairdimensionsandthefoundationsofchemistry............558

8.9.8Hybridizationormixingone-centerAOs................................561

8.10Aminimalmodelofamolecule...............................................571

8.11Theisolobalanalogy...........................................................578

AppendixG:VectorandScalarPotentials........................................673

AppendixH:OptimalWaveFunctionfortheHydrogen-LikeAtom................683

AppendixI:TheVirialTheorem...................................................685

AppendixJ:Space-andBody-FixedCoordinateSystems...........................691

AppendixK:Orthogonalization...................................................697

AppendixL:DiagonalizationofaMatrix.........................................703

AppendixM:SecularEquation

AppendixN:Slater–CondonRules................................................707

AppendixO:LagrangeMultipliersMethod.......................................719

AppendixP:PenaltyFunctionMethod............................................725

AppendixQ:MolecularIntegralswithGaussian-TypeOrbitals

AppendixR:SingletandTripletStatesforTwoElectrons.........................731

AppendixS:TheHydrogenMolecularIonintheSimplestAtomicBasisSet.......735

AppendixT:DipoleMomentofaLonePair.......................................741

Quantumscimusguttaest,ignoramusmare

Whatweknowisadrop,whatwedonotknowisasea (Latinsentence)

Thisbook(volume1)isabouthowtounderstandthereasonforexistenceofmolecules,which theEarth,Nature,andourselvesarecomposedof.

Realityanditsimages

HaveyoueverseentheMilkyWayonthenightsky?Anexceptionalandbreathtakingexperience!Youfeelyourselflookingatagreatmystery,asifstandingontheshoresoftheUniverse, ofsomethingbeyondourimaginationofspaceandtime.Thewarmthofthecampfireflames andthecoldofthenight,theMoon,theMilkyWay,andthestars–allthatofferedawonderful, unique,andpuzzlingspectaclethat,formillennia,challengedourancestors’imaginationand posedtheBigQuestions: whatdowesee and whoarewe?

TheGreekphilosopherPlato(427–347BC)wasalreadyawarethatlookingattheskyislike lookingatshadowsofsomeunknownRealityseenonthewallofacave(litbyacampfire atitsentrance),Fig. 0.1.Itisoursensesthatconnectusandthe“shadows”somehowtothis mysteriousReality,whichwecalltheUniverse.WefeeltheUniverse’spresence,whileatthe sametimewe arepartofit –afascinatingthingbyitself.Canweunderstandwhathappens aroundusandinus?Manypeople,amongthemPlato,suspectedthatwhatweseeexhibitsa kindoforderorregularity,andthatmaybewe can understandit.Itismovingformetofeelthe spirituallinkbetweentheAcademiafoundedbyPlatointhesacredpieceoflandofAcademos inAthensandallofusinalluniversitiesoftheworld,whoareseekingthetruth,amongthem you,myfriend,whoarereadingthesewords.Usuallyafterpainfulwork,ifwearelucky,ina flashofenlightenmentasecretofNaturemaybedisclosedbeforeoureyes,agreatfeeling–ourprize,themostpreciousone.

Sensoryoperationsarethedirectresultofinteractions,bothbetweenmoleculesandbetween lightandmatter. All ofthesephenomenadealwithchemistry,physics,biology,andevenpsychology.Inthesecomplexeventsitisimpossibletodiscernpreciselywherethedisciplinesof

Fig.0.1. Plato’scave.Acavemanisabletoseeonlysomeshadowsonthecavewall.Theshadowsare producedbyanunknownRealityandafireoutsidethecave.

chemistry,physics,biology,andpsychologybeginandend.Anyseparationofthesedomainsis artificial.Theonlyreasonformakingsuchseparationsistofocusourattentionon some aspects ofoneindivisiblephenomenon.Sight,hearing,smell,taste,andtouch–aretheseouronlylinks andinformationchannelstotheUniverse?Howlittleweknowaboutit!Tofeelthat,justlook upatthesky.Amyriadofstarsarounduspointtonewworlds,whichwillremainunknownforever(becauseofdistance).Itistruethatbyingeniousspectrometrywehaveseriousgroundsto believethesestarsarebuiltfromthesamekindofmatterwehavearoundus.Thisboldconclusionwasquestionedquiterecently,sincewedonothavetheslightestideawhatkindofparticles represent90%ofthematterthatdoesnotshine(blackmatter).Thispertainstothemacroscale. Ontheotherend,imaginehowincrediblycomplicatedthechemistryof(unconditional)maternallovemustbe,themostbeautifulphenomenonintheUniverse!Scienceisacertainresponse ofhumanstoreducetheUnknown,butitcannotansweralllegitimatequestionsahumanbeing mayaskwhensittingatacampfire.ScienceisabletodiscoverlawsofNature,butisunable toansweraquestionlike: whydoesourworldconformtoanylawsatall1 ?Suchquestionsgo beyondscience.

Wetrytounderstandwhatmightbereallyaroundusbyconstructinginourmindsakind ofsimplifiedpicture,whichrepresentstosomeextentReality.Itcontainsseeminglyessential elements,beingdevoidofthoseelementsthatwethinkareirrelevant.Thesepictureswecall models.Anymodelreliesontheonehandonourperceptionofreality(ontheappropriatescale ofmassesandtime)emanatingfromourexperience,andontheotherhandonourabilityto

1 “Themostincomprehensiblethingabouttheworldisthatitisatallcomprehensible”(AlbertEinstein).

abstractbycreatingidealbeings.Theseidealbeingsseemtobeclosetotheconceptofideas (“forms”)thatPlatolovedmost.Manysuchmodelswillbedescribedinthisbook.

Itisfascinatingthatmanisabletomagnifytherealmofhissensesbyusingsophisticatedtools, e.g.,toseequarkssittinginaproton2 ortodiscoveranamazinglysimpleequationofmotion3 thatdescribesbothcosmiccatastrophes,withintensitybeyondourimagination,andtheflight ofabutterfly.AwatermoleculehasexactlythesamepropertiesinthePacificOceanason Marsorinanothergalaxy.Theconditionsovertheremaybequitedifferentfromthoseinour laboratory,butwe assume thatiftheseconditionscouldbeimposedinthelab,themolecule wouldbehaveinexactlythesameway.Weholdouthopethatasetofuniversalphysicallaws applyfortheentireUniverse.

Themodelofthesebasiclawsisnotyetcompleteorunified.Thankstotheprogressandimportantgeneralizationsofphysics,muchiscurrentlyunderstood.Forexample,forceswith seeminglydisparatesourceshavebeenreducedtoonlythreekinds:

• thoseattributedto stronginteractions (actinginnuclearmatter),

• thoseattributedto electroweakinteractions (thedomainofchemistry,biology,aswellas β -decay),

• thoseattributedto gravitationalinteractions (showingupmainlyinastrophysics).

Manyscientistsbelieveotherreductionsarepossible,perhapsuptoasinglefundamentalinteraction,onethatexplainsEverything(quotingFeynman:“thefrogsaswellasthecomposers”). Thisassertionisbasedontheconviction,whichseemstobesupportedbydevelopmentsin modernphysics,thatthelawsofNaturearenotonlyuniversal,butalsosimple.

Whichofthethreebasicinteractionsisthemostimportant?Thisisanill-conceivedquestion.Theanswerdependsontheexternalconditionsimposed(pressure,temperature)andthe magnitudeoftheenergyexchangedamongsttheinteractingobjects.Ameasureoftheenergyexchanged( E )maybetakentobethepercentageoftheaccompanyingmassdeficiency ( m)accordingtoEinstein’srelation E = mc 2 .Atagivenmagnitudeofexchangedenergiessomeparticlesarestable.Stronginteractionsproducethehugepressuresthataccompany thegravitationalcollapseofastarandleadtotheformationofneutronstars,wherethemass deficiency m approaches40%.Atsmallerpressures,whereindividualnucleimayexistand

2 Aprotonis1015 timessmallerthanahumanbeingandneverthelessin1970JeromeFriedman,HenryKendall, andRichardTaylorwereabletotakeaproton’sphotograph.Theyhaveshownusthreequarksandunknown electricallyneutralmatterthatbindsthequarkstogether(“gluons”)!

3 Accelerationisdirectly proportional toforce.Higherderivativesofthetrajectorywithrespecttotimedonot enterthisequation,neitherdoesthenatureorcauseoftheforce.Theequationisalsoinvariantwithrespecttoany possiblestartingpoint(position,velocity,andmass).Whataremarkablesimplicityandgenerality(withinlimits; seeChapter 3)!

Introduction

undergonuclearreactions(stronginteractions4 ),themassdeficiencyisoftheorderof1%. Atmuchlowerpressurestheelectroweakforcesdominate,nucleiarestable,andatomicand molecularstructuresemerge.Life(asweknowit)becomespossible.Theenergiesexchanged aremuchsmallerandcorrespondtoamassdeficiencyoftheorderofonlyabout10 7 %.The weakestofthebasicforcesisgravitation.Paradoxically,thisforceisthemostimportantonthe macroscale(galaxies,stars,planets,etc.).Therearetworeasonsforthis.Gravitationalinteractionssharewithelectricinteractionsthelongestrangeknown(bothdecayas1/r ).However, unlikeelectricinteractions5 thoseduetogravitationarenotshielded.ForthisreasontheEarth andtheMoonattracteachotherbyahugegravitationalforce6 whiletheirelectricinteraction isnegligible.ThisishowDavidconquersGoliath,sinceat anydistance electronsandprotonsattracteachotherbyelectrostaticforces,about40ordersofmagnitudestrongerthantheir gravitationalattraction.

Gravitationdoesnothaveanymeasurableinfluenceonthecollisionsofmoleculesleadingto chemicalreactions,sincereactionsareduetomuchstrongerelectricinteractions.7

Tendegreesonly

Duetostronginteractions,protonsovercomemutualelectrostaticrepulsionandform(togetherwithneutrons)stablenuclei,leadingtothevarietyofchemicalelements.Therefore, stronginteractionsaretheprerequisiteofanychemistry(excepthydrogenchemistry).However, chemistsdealwithalreadypreparedstablenuclei8 andthesestronginteractionshaveavery smallrange(ofabout10 13 cm)ascomparedtointer-atomicdistances(oftheorderof10 8 cm). Thisiswhyachemistmaytreatnucleiasstablepointchargesthatcreateanelectrostatic field. Testtubeconditionsallowforthepresenceofelectronsandphotons,thuscompletingthe setofparticlesthatonemightexpecttosee(someexceptionsarecoveredinthisbook).Thishas todowiththeorderofmagnitudeofenergiesexchanged;undertheconditionsofourchemical reactions,theenergiesexchangedexcludepracticallyallnuclearreactions.

4 Withacorrespondinglargeenergyoutput;theenergycomingfromthefusionD + D → Hetakingplaceonthe Sunmakesourexistencepossible.

5 Inelectrostaticinteractionschargesofoppositesignattracteachotherwhilechargesofthesamesignrepeleach other(Coulomb’slaw).Thisresultsinthefactthatlargebodies(builtofahugenumberofchargedparticles)are nearlyelectrically neutral andinteractelectricallyonlyveryweakly.Thisdramaticallyreducestherangeoftheir electricalinteractions.

6 HugetidesanddeformationsofthewholeEartharewitnesstothat.

7 Itdoesnotmeanthatgravitationhasnoinfluenceonreactants’concentrations.Gravitationcontrolstheconvection flowinliquidsandgases(andevensolids)andthereforeachemicalreactionorevencrystallizationmayproceed inadifferentmannerontheEarth’ssurface,inthestratosphere,inacentrifuge,orinspace.

8 Atleastonthetimescaleofchemicalexperiments.Instabilityofsomenucleiisusedbynuclearchemistryand radiationchemistry.

Onthevastscaleofattainabletemperatures9 chemicalstructuresmayexistinthenarrowtemperaturerangeof0KtothousandsofK.Abovethisrangeonehasplasma,whichrepresents asoupmadeofelectronsandnuclei.Nature,initsvibrantlivingform,requiresatemperature rangeofabout200–320K,amarginofonly120K.Onedoesnotrequireachemistforchemicalstructurestoexist.However,todevelopachemicalscienceonehastohaveachemist.This chemistcansurviveatemperaturerangeof273 ± 50K,i.e.,arangeofonly100K.Thereader hastoadmitthatachemistmaythinkofhisjobonlyinthenarrowrangeof290–300K,only 10K.

Grandunificationandmissionofchemistry

Supposeourdreamcomestrueandthegrandunificationofthethreeremainingbasicforces isaccomplishedoneday.WewouldthenknowthefirstprinciplesofconstructingEverything. Oneoftheconsequencesofsuchafeatisacatalogofalltheelementaryparticles;maybethe catalogwillbefinite,10 hopefullyitwillbesimple.Wemighthaveacatalogoftheconserved symmetries(whichseemtobemoreelementarythantheparticles).Ofcourse,knowingsuch firstprincipleswouldhaveanenormousconceptualimpactonallthephysicalsciences.Itcould createanimpressionthateverythingisclear,becausescienceiscomplete.Eventhoughsuch structuresandprocessesaregovernedbyfirstprinciples,itwouldstillbeverydifficulttopredict theirexistencebysuchprinciplesalone.Theresultingstructureswoulddependnotonlyonthe principles,butalsoontheinitialconditions,complexity,self-organization,etc.11 Therefore,if itdoeshappen,theGrandUnificationwillnotchangethegoalsofchemistry.

Organizationofthebook

TREE

Anybookhasalinearappearance,i.e.,thetextgoespageafterpageandthepagenumbers remindusofthat.However,the logic ofvirtuallyanybookis nonlinear,andinmanycasescan bevisualizedbyadiagramconnectingthechaptersthat(logically)followfromoneanother.

9 Millionsofdegrees.

10 Noneofthisiscertain.Muchofelementaryparticleresearchreliesonlargeparticleaccelerators.Thisresearch resemblesdiscerningthecomponentsofacarbydroppingitfromincreasingheightsfromalargebuilding. Droppingitfromthefirstflooryieldsfivetiresandajack.Droppingfromthesecondfloorrevealsanengine and11screwsofsimilarappearance.Eventuallyaproblememerges:afterlandingfromaveryhighfloornew componentsappear(havingnothingtodowiththecar)andrevealthatsomeofthecollisionenergyhasbeen convertedtothenewparticles!

11 ThefactthatUncleJohnlikestodrinkcoffeewithcreamat5p.m.possiblyfollowsfromthefirstprinciples,but itwouldbeverydifficulttotracethatdependence.

Introduction

Suchadiagramallowsformultiplebranchesemanatingfromagivenchapter,particularlyif thebranchesareplacedlogicallyonanequalfooting.Suchlogicalconnectionsareillustrated inthisbookasaTREEdiagram(beginningofthebook).ThisTREEdiagramplaysavery importantroleinourbookandisintendedtobeastudyguide.Itisusedtoleadthereader inacertaindirection;fromtheTREEdiagram,thereadercanobservewhatthisdirectionis, whyhe/sheneedsthisdirection,whatwillfollow,andwhatbenefitshe/shewillgainafter suchstudy.Ifstudyingwereeasyanddidnotrequiretime,aTREEdiagrammightbeoflittle importance.However,theoppositeisusuallytrue.Inaddition,knowledgerepresentsmuch morethanaregistryoffacts.Anyunderstandinggainedfromseeingrelationshipsamongthose factsandmethodsplaysakeyrole.12 TheprimaryfunctionoftheTREEdiagramistomake theserelationshipsclear.

AthicklineinthecenteroftheTREEdiagramseparatesvolume1(bottompart)fromvolume2 (upperpart).

Theuseofhypertextininformationscienceissuperiortoatraditionallinearpresentation.It reliesonatreestructure.However,ithasaseriousdrawback.Sittingonabranch,wehave noideawhatthatbranchrepresentsinthewholediagram,whetheritisanimportantbranch oraremotetinyone,whetheritleadsfurthertoimportantpartsofthebookorwhetheritis justadeadend,andsoon.Atthesametime,aglimpseattheTREEdiagramshowsusthat thethicktrunkisthemostimportantstructure.Whatdowemeanbyimportant?Atleasttwo criteriamaybeused.Importantforthemajorityof readers,orimportantbecausethematerial isfundamentalforanunderstandingofthe lawsofNature.Ihavechosenthefirst.13 Thus,the trunkoftheTREEdiagramcorrespondstothepragmaticwaytostudythisbook. Thetrunkisthebackboneofthisbook.

• Itbeginsbypresentingpostulates,whichplayavitalroleinformulatingthefoundationof quantummechanics.

• Next,itcontinueswiththeSchrödingerequationforstationarystates,sofarthemostimportantequationinquantumchemicalapplications,and

• theseparationofnuclearandelectronicmotion(throughtheadiabaticorBorn–Oppenheimer approximation, thecentralideaofthepresentbookandchemistryingeneral).

12 Thisadvicecomesfromantiquity:“knowledgeismorepreciousthanfacts,understandingismorepreciousthan knowledge,wisdomismorepreciousthanunderstanding.”

13 Forexample,relativitytheoryplaysapivotalroleasafoundationofthephysicalsciences,butforthevast majorityofchemistsitspracticalimportanceandimpactaremuchsmaller.Shouldrelativityberepresented thereforeasthebaseofthetrunk,orasaminorbranch?Contemporaryinorganicchemistryandmetallo-organic chemistryconcentratecurrentlyonheavyelements,whererelativityeffectsareimportant.Wehavedecidedto makethesecondchoice,to not createtheimpressionthatthistopicisabsolutelynecessaryforthestudent.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.