Hybrid and combined processes for air pollution control: methodologies, mechanisms and effect of key

Page 1


HybridandCombinedProcessesforAirPollution Control:Methodologies,MechanismsandEffectof KeyParametersAymenAmineAssadi

https://ebookmass.com/product/hybrid-and-combined-processesfor-air-pollution-control-methodologies-mechanisms-andeffect-of-key-parameters-aymen-amine-assadi/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Catalytic Air Pollution Control: Commercial Technology

https://ebookmass.com/product/catalytic-air-pollution-controlcommercial-technology/

ebookmass.com

Air Pollution Control: A Design Approach 4th Edition –Ebook PDF Version

https://ebookmass.com/product/air-pollution-control-a-designapproach-4th-edition-ebook-pdf-version/

ebookmass.com

Fresh-Cut Fruits and Vegetables: Technologies and Mechanisms for Safety Control Mohammed Wasim Siddiqui

https://ebookmass.com/product/fresh-cut-fruits-and-vegetablestechnologies-and-mechanisms-for-safety-control-mohammed-wasimsiddiqui/

ebookmass.com

Nobody’s Girl Friday: The Women Who Ran Hollywood J.E. Smyth

https://ebookmass.com/product/nobodys-girl-friday-the-women-who-ranhollywood-j-e-smyth/

ebookmass.com

Rayne: A True Lover's Story (True Lover's Stories Book 3)

A.E. Via

https://ebookmass.com/product/rayne-a-true-lovers-story-true-loversstories-book-3-a-e-via/

ebookmass.com

A Crown of Ivy and Glass Claire Legrand

https://ebookmass.com/product/a-crown-of-ivy-and-glass-claire-legrand/

ebookmass.com

CRISC Certified in Risk and Information Systems Control

All-in-One Exam Guide, Second Edition, 2nd Edition Peter H. Gregory & Bobby E. Rogers & Dawn Dunkerley

https://ebookmass.com/product/crisc-certified-in-risk-and-informationsystems-control-all-in-one-exam-guide-second-edition-2nd-editionpeter-h-gregory-bobby-e-rogers-dawn-dunkerley/ ebookmass.com

A Witch's Guide to Fake Dating a Demon Sarah Hawley

https://ebookmass.com/product/a-witchs-guide-to-fake-dating-a-demonsarah-hawley/

ebookmass.com

Search Through The Ashes (Joe Higgins Book 1) Irene Hill

https://ebookmass.com/product/search-through-the-ashes-joe-higginsbook-1-irene-hill/

ebookmass.com

Fire Pump Arrangements at Industrial Facilities 3rd ed

https://ebookmass.com/product/fire-pump-arrangements-at-industrialfacilities-3rd-ed-edition-nolan/

ebookmass.com

HYBRIDANDCOMBINED PROCESSESFORAIR POLLUTIONCONTROL

HYBRIDANDCOMBINED PROCESSESFORAIR POLLUTIONCONTROL

Methodologies,Mechanisms andEffectofKeyParameters

Editedby

AYMENAMINEASSADI

UniversityofRennes,ENSCR/UMRCNRS,Alléede Beaulieu,Rennes,France

ABDELTIFAMRANE

UniversityofRennes1,InstituteofChemicalSciencesof Rennes,Rennes,France

TUANANHNGUYEN

InstituteforTropicalTechnology,VietnamAcademyof ScienceandTechnology,Hanoi,Vietnam

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’s permissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-88449-5

ForInformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnitaKoch

EditorialProjectManager: KathrineEsten

ProductionProjectManager: ManjuThirumalaivasan

CoverDesigner: MarkRogers

TypesetbyAptara,NewDelhi,India

Contributors....................................................................xi Foreword.......................................................................xv

Chapter1Roleofnanomaterialsinsensingairpollutants1 KomalRizwan,MuhammadBilalandHafizM.N.Iqbal

1.1Introduction1

1.2Roleofnanomaterialsinsensingairpollutants3

1.3Conclusionandoutlook11 Conflictofinterests13 References13

Chapter2Anoverviewoftheadvancesinporousandhybrid materialsresearchforairpollutionmitigation17

A.Antony,H.Saini,K.Vinayakumar,S.N.Kumar,N.S.KumarandS.Sil

2.1Introduction17

2.2Carbon-basedadsorbents21

2.3Metal–organicframeworksandhybridmetal–organic frameworks24

2.4Mesoporoussilicananomaterials31

2.5Zeolites34

2.6LayeredDoubleHydroxides37

2.7CovalentOrganicFrameworks39

2.8Computationalstudyoftheporousmaterials43

2.9Conclusion46 References47

Chapter3Chemicalandbiologicalairremediationby photocatalyticbuildingmaterials63

FedericoSalvadores,SilviaMercedesZacarías,OrlandoM.Alfanoand MaríadelosMilagrosBallari

3.1Introduction63

3.2Outdoorairremediation64

3.3Indoorairremediation72

3.4Biologicalairremediation80

3.5Conclusions87 Acknowledgments87 References88

Chapter4Advancedoxidationprocessesforairpurification95 WibawaHendraSaputeraandAntoniusIndarto

4.1Nonthermalplasma95

4.2Photocatalysis101 References113

Chapter5Integratedprocessesinvolvingadsorption,photolysis, andphotocatalysis117

NarminaO.BalayevaandZaminMamiyev

5.1Introduction117

5.2Generaloverviewofadsorption,photolysis,and photocatalysis119

5.3Advancementsintheintegratedprocessinvolving adsorption–photocatalysis:nanomaterialsprospects124

5.4Isotherms,kineticsmodels,andmechanicsof adsorption–PCOhybridprocesses138

5.5Reactors144

5.6Conclusionsandfutureperspectives145 References146

Chapter6Biologicalprocessesforairpollutioncontrol153

ElhamFaroukMohamedandGamalAwad

6.1Introduction153

6.2Airpollutioncontroltechnologies154

6.3Biologicalremediationofairpollutants155

6.4Futuretrendsinbiofuelproduction162

6.5Conclusions162 References163

Chapter7Functionalizedmembranesformultipollutantsbearing airtreatment167

YutangKang,ZhaoxiangZhongandWeihongXing

7.1Introduction167

7.2Membraneforgas–solidseparation170

7.3Membranematerialsforairpurification178

7.4Functionalmembranematerialsforintegratedpurification ofairmultipollutants186

7.5Conclusionandoutlook192 Acknowledgment194 References194

Chapter8Hybridmaterialstoreducepollutioninvolving photocatalysisandparticulatematterentrapment201

AntonellaCornelio,AlessandraZanoletti,LauraEleonoraDepero andElzaBontempi

8.1Introductiontoparticulatematter201

8.2ConventionalmethodstoremoveairbornePM203

8.3Photodegradationprocess205

8.4Nanoparticlesentrapment206

8.5Photodegradationoforganicpollutants216

8.6Conclusions225 Acknowledgment225 References225

Chapter9Advancesinphotocatalytictechnologiesforair remediation229

ZhiyuZhang,YongRen,JunHeandJingWang

9.1Introduction229

9.2Classificationandenhancementofphotocatalysts230

9.3Photocatalytictechnologiesforthetreatmentof variousgases231

9.4Conclusionsandoutlook249 Acknowledgments250 References250

Chapter10Indoorairpollutionandtreatmentstrategies—Hybrid catalysisandbiologicalprocessestotreatvolatileorganic compounds257

HamzaRafeeq,MuhammadAnjumZia,AsimHussain,MuhammadBilaland HafizM.N.Iqbal

10.1Introduction257

10.2Sourcesofpollution259

10.3Eliminationofindoorairpollutants265

10.4VOCremovalbycatalyticoxidation266

10.5HybridcatalysisfortheremovalofVOCs266

10.6Catalyticoxidativedegradationmechanisms (adsorption/desorption)269

10.7Methodsofpurificationbasedonbiologicalprocesses271

10.8Conclusionandfuturestandpoints274 Acknowledgments275 Conflictofinterests276 References276

11.1Introduction283

11.2Fabricationofvanadiumpentoxide/tyrosinecomposite285

12.1Introduction:indoorairpollutionanditsongoingsignificance291

14.1Filtrationprocessforairtreatment345

14.2Absorptionprocessforairtreatment348

14.3Adsorptionforairtreatment350

Contributors

OrlandoM.Alfano

InstituteofTechnologicalDevelopmentfortheChemicalIndustry,National UniversityoftheLitoralandCONICET,SantaFe,Argentina

PrashantAnand

DepartmentofArchitectureandRegionalPlanning,IITKharagpur,West Bengal,India

A.Antony

DepartmentofEnvironmentalProtection,DefenceBioengineering& ElectromedicalLaboratory(DEBEL),Bangalore,India

AchrafAmirAssadi

ResearchUnitAdvancedMaterials,AppliedMechanics,Innovative ProcessesandEnvironment,HigherInstituteofAppliedSciencesand TechnologyofGabes(ISSAT),UniversityofGabes,Tunisia

AymenAmineAssadi

UniversityofRennes,ENSCR/UMRCNRS,AlléedeBeaulieu,Rennes, France

GamalAwad

ChemistryofNaturalandMicrobialProductsDepartment,Pharmaceutical andDrugIndustriesResearchDivision,NationalResearchCentre,Dokki, Giza,Egypt

AhmedAmineAzzaz

UniversitySavoieMont-Blanc,CNRS,EDYTEM,Chambéry,France

NarminaO.Balayeva

InstituteofTechnicalChemistry,GottfriedWilhelmLeibnizUniversityof Hannover,Hannover,Germany

MaríadelosMilagrosBallari

InstituteofTechnologicalDevelopmentfortheChemicalIndustry,National UniversityoftheLitoralandCONICET,SantaFe,Argentina

MuhammadBilal

SchoolofLifeScienceandFoodEngineering,HuaiyinInstitute ofTechnology,Huai’an,China

ElzaBontempi

INSTMandChemistryforTechnologiesLaboratory,UniversityofBrescia, Brescia,Italy

AntonellaCornelio

INSTMandChemistryforTechnologiesLaboratory,UniversityofBrescia, Brescia,Italy

LauraEleonoraDepero

INSTMandChemistryforTechnologiesLaboratory,UniversityofBrescia, Brescia,Italy

AbrahamGeorge

DepartmentofArchitectureandRegionalPlanning,IITKharagpur,West Bengal,India

JunHe

DepartmentofChemicalandEnvironmentalEngineering,Universityof NottinghamNingboChina,Ningbo,China

AsimHussain

DepartmentofBiochemistry,RiphahInternationalUniversity,Faisalabad, Pakistan

AntoniusIndarto

DepartmentofChemicalEngineering,InstitutTeknologiBandung,Labtek X,Jl.Ganeshano.10Bandung,Indonesia;DepartmentofBioenergy EngineeringandChemurgy,InstitutTeknologiBandung,KampusITB Jatinangor,Indonesia

HafizM.N.Iqbal

TecnologicodeMonterrey,SchoolofEngineeringandSciences, Monterrey,Mexico

YutangKang

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering, NationalEngineeringResearchCenterforSpecialSeparationMembrane, NanjingTechUniversity,Nanjing,China

B.Karthikeyan

AnnamalaiUniversity,AnnamalaiNagar,TamilNadu,India

N.S.Kumar

DepartmentofEnvironmentalProtection,DefenceBioengineering& ElectromedicalLaboratory(DEBEL),Bangalore,India

S.N.Kumar

DepartmentofEnvironmentalProtection,DefenceBioengineering& ElectromedicalLaboratory(DEBEL),Bangalore,India

ZaminMamiyev

InstituteofPhysics,ChemnitzUniversityofTechnology,Reichenhainer, Chemnitz,Germany

ElhamFaroukMohamed

AirPollutionDepartment,EnvironmentalResearchDivision,National ResearchCentre,Dokki,Giza,Egypt

HamzaRafeeq

DepartmentofBiochemistry,RiphahInternationalUniversity,Faisalabad, Pakistan

SanjuRani

DepartmentofPhysics,SRMInstituteofScienceTechnology,Ramapuram Campus,Chennai,India

YongRen

DepartmentofMechanical,MaterialsandManufacturingEngineering, UniversityofNottinghamNingboChina,Ningbo,China;ResearchGroup forFluidsandThermalEngineering,UniversityofNottinghamNingbo China,Ningbo,China

KomalRizwan

DepartmentofChemistry,UniversityofSahiwal,Sahiwal,Pakistan

SomnathC.Roy

SemiconductingOxideMaterials,NanostructuresandTailored Heterojunction(SOMNaTH)Lab,DepartmentofPhysics,IITMadras, Chennai,India

H.Saini

DepartmentofEnvironmentalProtection,DefenceBioengineering& ElectromedicalLaboratory(DEBEL),Bangalore,India

VigneshSajeev

DepartmentofArchitectureandRegionalPlanning,IITKharagpur,West Bengal,India

FedericoSalvadores

InstituteofTechnologicalDevelopmentfortheChemicalIndustry,National UniversityoftheLitoralandCONICET,SantaFe,Argentina

WibawaHendraSaputera

DepartmentofChemicalEngineering,InstitutTeknologiBandung,Labtek X,Jl.Ganeshano.10Bandung,Indonesia;CentreforCatalysisand ReactionEngineering,InstitutTeknologiBandung,Jl.Ganeshano.10 Bandung,Indonesia;ResearchCentreforNewandRenewableEnergy, InstitutTeknologiBandung,Jl.Ganeshano.10,Bandung,Indonesia

S.Sil

DepartmentofEnvironmentalProtection,DefenceBioengineering& ElectromedicalLaboratory(DEBEL),Bangalore,India

M.Sivanathan

AnnamalaiUniversity,AnnamalaiNagar,TamilNadu,India

K.Sivasankari

AnnamalaiUniversity,AnnamalaiNagar,TamilNadu,India

K.Vinayakumar

DepartmentofEnvironmentalProtection,DefenceBioengineering& ElectromedicalLaboratory(DEBEL),Bangalore,India

JingWang

DepartmentofElectricalandElectronicEngineering,Universityof NottinghamNingboChina,Ningbo,China

WeihongXing

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering, NationalEngineeringResearchCenterforSpecialSeparationMembrane, NanjingTechUniversity,Nanjing,China

SilviaMercedesZacarías

InstituteofTechnologicalDevelopmentfortheChemicalIndustry,National UniversityoftheLitoralandCONICET,SantaFe,Argentina

AlessandraZanoletti

INSTMandChemistryforTechnologiesLaboratory,UniversityofBrescia, Brescia,Italy

ZhiyuZhang

DepartmentofMechanical,MaterialsandManufacturingEngineering, UniversityofNottinghamNingboChina,Ningbo,China;ResearchGroup forFluidsandThermalEngineering,UniversityofNottinghamNingbo China,Ningbo,China

ZhaoxiangZhong

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering, NationalEngineeringResearchCenterforSpecialSeparationMembrane, NanjingTechUniversity,Nanjing,China

MuhammadAnjumZia

DepartmentofBiochemistry,UniversityofAgriculture,Faisalabad, Pakistan

Foreword

Airpollutionisthereleaseoftoxicfumesintotheatmosphere,which couldbethroughnaturalcausesormanmadeevents.Theformerrelatestotheeruptionofvolcanosthatcanreleaseamixtureofgases composedofmostlyCO2 ,H2 S,andSO2 ornatural-occurringfiresin driedvegetationthatreleasesCO2 .Thelatterrelatestothecombustion offuelincarengines,factories,ships,andothersimilarcombustion processes.Theartificialexpansionofcattleraisingovertallvegetation tomakeroomforgrassandwalkingspaceforfeedstockisanotherfactorthatcontributestoairpollutionsince,duringthedigestiveprocess ofruminants,thereissomereleaseofCH4 .Eventhoughtheseissues seemlocalized,airpollutionispresentinthegreatmajorityofsocieties spreadaroundtheglobe;accordingtotheWorldHealthOrganization (WHO),99%ofthepopulationbreathesairofpoorqualityduetothe highconcentrationofpollutants.Thisfactorcontributestotheemergenceofrespiratorydiseasessuchastheobstructionofthelungs,acute respiratoryinfection,lungcancer,andevenmoreseverecasesrelated toheartdiseasesandstroke.Thereareothermajorenvironmental implicationsofairpollution,whichincludeacidrainfromtherelease ofNO2 andSO2 .Also,globalwarmingcausedbytheexcessofCO2 ,CH4 , andothergasesintheatmosphereiswidelydebatedasitcanleadto climatechangeduetotheincrementofthegreenhouseeffect.Based onthat,addressingthecausesofairpollutionisamuch-desiredneed forsocietytolivehealthilyandsustainably.Severaltechnologiesare arisingtoaddressthissituation.Chemicalandbiologicalairremediationprocessesaregettingscientificandindustrialattention.Themost commononereliesontheuseofhighlyporousmaterialstoabsorb suchtoxicgasses.Eventhoughitisalow-costandconvenientalternative,theprocessingtechnologyofthesecompoundsoftenrequires aggressivechemicaltreatments.Afollow-uptypeoftechnologyforthat istheuseofmetaloxidestosynthesizehybridnanomaterialsthatare gainingvisibilityontheairpurificationmatter.Thesehybridmaterials canbefunctionalizedtoselectivelycapturespecificgases,whichcover commonlyknowntoxicsubstancesaswellaschemicalwarfaregases. Henceitisconvenientforaircleaningandtheremovaloftoxicfumes. Anothertechnologyusedtocapturetoxicgasesistheuseofbiological agents,whichcanadsorbthesegasesandconvertthemintoenergy throughabiochemicalprocess.Thistypeoftechnologyisalsovery attractivebecauseitnotonlyusesgasesresponsibleforenvironmental issuessuchasCO2 asfeedstockbutalsoconvertsitintoenergy,making

theoverallprocesshighlysustainable.Yetfurtherresearchisrequired toreachanefficientprocessthatcanbescalable.Hence,alongthose lines,severalapproachescanbeadoptedtosolvetheissueofairpollution,whichcanbedividedintoadsorption,biofixation,absorption, membranepurification,chemicallooping,hydration,andcryogenic technologiesforCO2 capture.Thuseventhoughairpollutionisamajor concernaroundtheglobe,therearefeasibletechnologiesavailableto tackleit.Thisbookcoversthefundamentalconcepts,materials,and technologiesusedtocontrolairpollution.Itprovidesadetailedinsight intothesignificantadvancementinhybridmaterialsforairpollution controlandwillbeverysuitableforscientists,students,andindustries workinginthisarea.

KansasPolymerResearchCenter

PittsburgStateUniversity

Pittsburg,Kansas,UnitedStates

Roleofnanomaterialsin sensingairpollutants

KomalRizwan a,MuhammadBilal b andHafizM.N.Iqbal c a DepartmentofChemistry,UniversityofSahiwal,Sahiwal,Pakistan. b School ofLifeScienceandFoodEngineering,HuaiyinInstituteofTechnology, Huai’an,China. c TecnologicodeMonterrey,SchoolofEngineeringand Sciences,Monterrey,Mexico.

1.1Introduction

Environmentalpollution–relatedissueshavegarneredmuchattentionfromscientistsinrecentyears.Environmentalpollutantspresent intheenvironmentadverselyaffecttheecosystemandareresponsibleforcausinghealthissues(LeeandLee,2001).Airpollutantsare definedaspollutantsthatarepresentintheatmosphereandareinjurioustoplant,human,andanimallife.Theinfluenceofairpollutants dependsonvariousfactorslikethetypeofpollutant,speedofwind, temperature,sunlight,andeventheheightatwhichthepollutantis beingreleased.Thereforeitisimportanttoobtaintimelyandcomplete informationaboutairpollutantstocontrolairpollution.Inrecent decades,scientistshavepaidalotofattentiontocontrollingoutdoor airpollutants(Curtis,Rea,Smith-Willis,Fenyves,andPan,2006).Since ahealthyhumanbeingspends90%ofthetimeinadayinanindoor environment,itisequallyimportanttocontrolindoorairpollutants (Kar,2020).Variousindoorandoutdoorairpollutantsalongwiththeir respectivehazardouseffectsarepresentedin Fig.1.1.Animalsand plantshaveinbuiltsensorstodetectandfeelthesurroundingenvironment.Inplantsnaturalelectromagneticsensorsarepresenttodetect externalattacks,whileanimalspossessfivesensingorgans,namely, nose,ears,eyes,skin,andtongue,tosense.Thesensingofharmfultoxic pollutantsaboveaspecificthresholdlimitcancauseseriousissueslike vomiting,suffocation,andskinrashes.Thereforeitisbettertodetect airpollutantsbeforetheyinteractwithlivingbeings.

Asensorisatypeofdevicethatoutputsanobservablesignal throughinteractionwithspecificanalytes, viz.,chemical,physical, andbiochemical.Physicalsensorsareemployedtodetectphysical parameterslikepressure,mass,temperature,anddistance.Chemicals

HybridandCombinedProcessesforAirPollutionControl:Methodologies,MechanismsandEffectofKeyParameters. DOI: https://doi.org/10.1016/B978-0-323-88449-5.00001-2 Copyright c 2022ElsevierInc.Allrightsreserved.

Greenhouse effect

Responsible for global warming

Affectsreproductive system

Responsible for several disease

Affects animal and plant growth

Infections

Affects weather Affects ozone layer

Respiratory issues

Skin issues

Mucous issues

Affects nervous system

Cardiovascular issues

Figure1.1. Variousindoorandoutdoorairpollutantswiththeirhazardouseffects.

reanalyzedbychemicalsensorsandbiomoleculesaredetected throughbiosensors.Chemicalsensorsarefurtherdividedintothree differentgroupskeepinginviewtheiroperatingprinciple:(1)optical sensors,(2)masssensors,and(3)electrochemicalsensors.Sensors havetheadvantagethattheycanmeasureaphysicalquantityand transformitintoasignalthattheobserver/instrumentcanread. Radiationsarecollectedbysensorsandtransformedintovarious suitableinformationindifferentpatterns.Thereforewiththeuseof acost-effectivesensor,theindoorandoutdoorairpollutantscanbe determined.Asensorconsistsofareceptorelement,atransducing element,andasignalprocessingelement.Togeneratearesponse, gaseouspollutantsinteractwiththedetectionelement.Theresponse obtainedfromthesensor/receptorisreadbythetransducerelement, followedbytheamplificationandtransformationofthesignalintoan interpretableformbythesignalprocessingelement.

Variousmetals,metaloxides,polymericmaterials,nanocomposites,andelectrolytesareusedassensingmaterialsinchemicalsensors.Inorganicsemiconductorsandpolymericmaterials havebeenusedassensorymaterialsindifferentsensorsbutthey possessseveraldisadvantageslikebadselectivity,poorrecovery, andincompleterecoveryandresponse.(Adhikari,Kar,andKorotcenkov,2010; Kar,Choudhury,andVerma,2015).Nanohybridshave beenwidelyusedassensingmaterialsinsensorsforthedetectionofenvironmentalpollutants.Inthischapterwedescribethe roleofinorganicnanomaterials,organicnanomaterials,andorganic/

inorganicnanocompositesinsensingairpollutants,includingtoxic gasesandvapors.

1.2Roleofnanomaterialsinsensingair pollutants

1.2.1Inorganicnanomaterialsforsensingair pollutants

Gasesarebecomingextremelysignificantduetothegreatdevelopmentinelectronicdevicesthatareusedtodetectairpollutants. Materialsobtainedfrommineralsandrocksinnanosizearecalled inorganicnanomaterials.Inorganicmaterialsincludesmetal/metal oxides.Metalnanomaterialsarewidelyusedtodetectdifferentair pollutants(JohnandRubanKumar,2021).Semiconductingmetaloxidesarethemostpromisingmaterialsforthechemicalsensingof environmentalgaseouspollutants.Therearetwotypesofmetaloxidesemiconductors:p-typeandn-type.N-typesemiconductorsincludetitaniumdioxide,zincoxide,andferricoxide,whosecarriersaremostlyelectrons,whilep-typesemiconductorsincludenickel andcobaltoxides, whosecarriersareholes(Pearce,Schiffman,Nagle,andGardner,2003).Chemiresistivemetaloxide–basedsensors responseisobservedathightemperatures.Theabsorbanceofoxygenoccursonthefilmofmetaloxides,followedbytheformationofionicspecies,andthen,athightemperatures,itisdesorbed (Labidi,Gillet,Delamare,Maaref,andAguir,2006).Theresistance ofn-typesemiconductingmetaloxidesincreasesbecauseofreductioninelectronconcentrationduetothetransferofelectronsfrom theconductionbandtotheabsorbedoxygen,whileadecreasein theresistanceofp-typemetaloxidesoccursduetotheformation ofholesduetothetransferofelectronsfrom theconductionbandtotheabsorbedoxygen. Gaseouspollutantsmaybeoxidizing(NO, NO2 ,CO2 )orreducing(CO,H2 S,CH4 ,SO2 ) innature.Reductioninelectronconcentrationoccursonthemetaloxidesurfaceduringthedetectionofoxidizingairpollutants. Thereforeanincreaseintheresistanceofthe n-typemetaloxidelayeroccursandadecrease intheresistanceofthep-typemetaloxidesurfacehappens.Bylimitingtheanalyte,thesensingefficacyofmetaloxidescanalsobelimited.Thesensingmechanismofindiumoxide nanobriks(Han,Zhai,Gu,andWang,2018)for nitrogendioxidegasispresentedin Fig.1.2.

Figure1.2. Theschematic diagramofnitrogendioxide (NO2 )gassensingbyusing indiumoxidenanobricks(Han, Zhai,Gu,andWang,2018).

Figure1.3. Pd–SnO2 nanocompositeforsensing methanegas(Yaoetal.,2020).

Wangandcolleaguessynthesizedcerium-dopedSnO2 nanocompositebyusingthegreenPechiniprotocol.Thesynthesizedmaterial wasusedasasensorforsensingethanolgas.Ce-dopinganSnO2 -based sensorshowedexcellentsensingofethanolwitharesponseof69.4at 50ppm.Thisresponsevalueis2.4timeshigherincomparisontothat withpristineSnO2 .Moreover,alowoperatingtemperature,greatsensitivity,selectivity,andlinearitywereobservedinsensoroperation.So cerium-dopedSnO2 nanocompositeshavegreatpracticalapplication insensinggases(Wangetal.,2022).Recently,aPd–SnO2 nanocompositewasfabricatedviathehydrothermalmethod.Tofacilitatethe fabricationofnanoporousstructures,theweakacidglucosemethodis proposed.Thefabricatednanocompositeshowedgreatsensingtoward methanegasincomparisontopristineSnO2 .Thesensor,whichis basedona2.5mol.%Pd–SnO2 nanocompositearchitecture,exhibited anultrafastresponseof17.6at3000ppmin3s.Recoverywasobtained in5satatemperatureof340°C.Thesensorshowedgreatstability andrepeatability.Theexcellentresponseofthesensormaybedue tothenovelnanoporousframeworkofthecompositeandthechemicalandelectronicsensitizationofpalladium,whichoffersapotential strategytoobtainpromisingmethanegassensing(Fig.1.3)(Yaoetal., 2020).

Gas-sensingfeaturescanbeinfluencedbyadjustingthecrystal phaseframeworkofthesensingmaterial.Inthiswaythebandgap andadsorptionpotentialofoxygenareoptimized.Thereforedifferent crystalphasestructuresoftitaniumdioxide,likerutileTiO2 nanorods (R-TiO2 NRs),brookiteTiO2 nanorods(B-TiO2 NRs),andanatase TiO2 nanoparticles(A-TiO2 NRs),werefabricatedusingthesingle-pot hydrothermalprocess.TheR-TiO2 NRs–basedsensorshowedagreat responseof12.3inthedetectionofacetonevaporsat100ppmat320°C incomparisontoA-TiO2 NRs(4.1)andB-TiO2 NRs(2.3),aswellasgreat

selectivityandrepeatability.Thegreatperformanceoftherutilesensor maybeattributedtothenarrowbandgapandgreatoxygenvacanciesof therutilephaseandthisshowsaroutetodesigningmetaloxide–based sensorsbyengineeringcrystalphases(Cao,Sui,Zhang,Zhou,Tu,and Zhang,2022).

Recently,porousZnOnanosheetsweresynthesizedbyusingthe solvothermalprotocol.Thesynthesizedmaterialwasusedforsensing NO2 .ZnOnanosheetsdetectedNO2 gaswithgreatsensitivitywitha responseof74.68at10ppm.Theobservedtemperaturewas200°C. Becauseofthehighsurfacearea,agreatresponsewasobtained.The morphologyofthematerialplaysagreatroleinsensingefficacy.Previously,ZnOnanoflowers(Kim,Porte,Ko,Kim,andMyoung,2017), ZnONRs(Jiao,Chien,VanDuy,Hao,VanHieu,Hjort,andNguyen, 2016),andZnOthinfilms(Patil,Nimbalkar,andPatil,2018)wereused tosenseNO2 gasandsignificantresultswereobtained,butporousZnO nanosheetsshowedgreatsensingperformanceintermsoflowsensing temperatureandagreatresponseatevenlowconcentrations.Recently, FanandcolleaguessynthesizedCo3 O4 nanoparticlesthroughtheelectrospraymethodtosenseacetonegas.Thesensorshowedaresponse of8.61at100ppmconcentrationat200°Cwithresponseandrecovery timesof43sand92s,respectively,towardsacetoneeveninthepresenceofbenzene,ethanol,andethylacetate(Fan,Xu,Ma,andHe,2021). Differentinorganicnanomaterialsusedforsensingairpollutantsare presentedin Table1.1.

1.2.2Organicnanomaterialsforsensingair pollutants

Organicmaterialsareobtainedfromanimalandplantsources. Organicnanomaterialsincludenanopolymericmaterialsandsmall organiccompounds.Organicpolymersareextensivelyusedacrossthe worldbecausetheyhaveadvantageslikefacileprocessing,flexibility, stability,cost-friendliness,lightweightandtailorability.Polymersare madeupofmanyrepeatingunitsarrangedinaspecificsequence,like polyethylene,inwhichethaneisthemonomericunit.Polymercharacteristicsdependonmoleculararchitecture,weight,andchemical compositionandmorphology.Anopticalsensingprinciplebasedon colorimetric,luminescence,andfluorescenceeffectsandachangein lightrefractiononthesurfaceofthepolymerinthepresenceofgases hasbeenexplainedby Adhikarietal.(2010).Organic-basedsemiconductingnanomaterialsmaybeincorporatedassensinglayersusing thesamesensingmechanism.Uponinteractionoftheconducting polymerswiththegaseousanalytes,p-typeconjugatedpolymersgive electronstogaseousspecieswhilen-typepolymersacceptelectrons fromgaseousspecies.Consequently,thepolymer’sholeconductivity

Table1.1Inorganicnanomaterialsforsensingairpollutants.

Ce-dopedSnO2 Ethanol69.450ppm23s13s265°C(Wangetal.,2022)

Pd–SnO2 nanoporous composites Methane17.63000ppm5s3s340°C(Yaoetal.,2020)

Au/SnO2 /ZnO nanosheets Ethanol36.2100ppm59s2s300°C(Li,Zhang,Han,Wang,Zhang,and He,2021)

ZnO–SnO2 Ethanol20.2100ppm5s87s250°C(Feng,Ma,Yu,Dong,Wang,and Liu,2020)

WO3 nanowireFormaldehydeSignificant5–15ppm--100°C(Bouchikhi,Chludzi ´ nski,Saidi, Smulko,Bari,Wen,andIonescu, 2020)

RutileTiO2 nanorodsAcetone12.3100ppm3s421s300°C(Caoetal.,2022)

PorousZnO nanosheets NO2 74.6810ppm--200°C(SikChoietal.,2021)

ZnOthinfilmsNO2 12.3100ppm3s37s200°C(Patiletal.,2018)

In2 O3 –SnO2 N-butanol76.550ppm--140°C(Anetal.,2021)

CuONPsTolueneSignificant240ppm194s297s160°C(ThangamaniandPasha,2021c)

(continuedonnextpage)

WO3 nanosheetsXylene24.5100ppm150s-200°C(Liangetal.,2019)

In2 O3 Ozone44200ppb70°C(Sui,Zhang,Zhou,andZhang, 2021)

CuAlO2 Ozone1.9200ppb--200°C(ThirumalairajanandMastelaro, 2016)

Co3 O4 @TiO2 CO15.99100ppm--140°C(Li,Wei,Zhu,Zhou,andGui,2021)

Co3 O4 NPsAcetone8.61,100ppm43s92s200°C(Fanetal.,2021)

h-MoO3 nanorodAmmonia0.35500ppm210s241sRT(Chua,Yaacob,Tan,andOng,2021)

MoSe2 nanoflakesH2 S18.5750ppb15s43s200°C(Jha,D’Costa,Sakhuja,andBhat, 2019)

α -Fe2 O3 LPGSignificant90ppm52s107s-(Choudhary,Annapoorni,and Malik,2021)

Au-sensitized SnO2 film LPG57780ppm60s-598K(Nakateetal.,2017)

ZnFe2 O4 NPsSO2 Significant10ppm15s15sRT(Vinhetal.,2021)

ZnOnanoflakesCO2 Significant200–1025ppm9–17s9–17s250°C(KanaparthiandSingh,2019)

WO3 nanoparticlesCl2 72.61ppm58s28s140°C(Wangetal.,2018)

CdO–ZnOnanoricesFormaldehyde34.5300ppm10s6s350°C(Umar,etal.,2021)

Sm-dopedSnO2 Ethanol138.950ppm--160°C(An,Liu,Li,Zhou,Wang,Zou,and Lian,2021)

isenhancedasitdonateselectronstogases,andsimilarly,adecrease inconductivityisobservedaftertheacceptanceofelectronsfrom gases.Thisisthemainreasonforthedecreaseoftheconductivityof conjugatedpolymers(polyaniline[PANI],polypyrrole[PPy],polythiophenes,etc.)uponexposuretodifferentnucleophilicgasesasethanol, ammonia,H2 S,methanol,andhydrazine,whileelectrophilicgaseslike oxygen,nitrogendioxide,andphosphorustrichlorideexhibittheoppositephenomenon.Theinteractionofpolymerswithpollutantsmay alsooccurthroughsomekindofweakinteractionsandsomecharge inductiontoaffecttheconductingcharacteristicsduringthesensing process.

Recently,ananosensorbasedonalignedsingle-walledcarbon nanotubes(SWNTs)wasfabricatedforsensingNO2 gasatroom temperature.Thesensorwasfoundtobehighlystableandsensitive anddisplayedashortrecoverytime,eveninthepresenceofUV light.ThealignedSWNTswerefabricatedbyemployingtheAC-DEP (Alternatingcurrent-dielectrophoresis)technique.Sensorsemploying randomnetworkedSWNTswerealsousedandtheefficaciesofthe twosensorswerecompared.Bothsensors,(randomandaligned)were usedtosenseNO2 atroomtemperatureandthealignednetworkbasedsensorshowed3.5timeshighersensitivityincomparisonto therandomlynetworkedsensor.Therecoverytimeforrandomand alignedSWNTsat0.5ppmofNO2 wasfoundtobe124sand50s, respectively(Chauhan,Kumar,Chaturvedi,andRahman,2019).A PANI-basedsensorwassynthesizedforsensingammoniagas.The filmsofPANIweredepositedonPET(polyethyleneterephthalate)basedsubstratethroughafacileinsitupolymerizationtechnique. PANIfilmswereusedtosenseammoniagasatroomtemperature. Functioningofthesensoratroomtemperaturebutitfacilitates operationatlowpowerandalsoenhancesthesensorlifetime. Thesensorshowedexcellentstabilityandreproducibilityatwide concentrationrange(5to1000ppm).Itwasmechanicallyrobust andcanbebentwithoutdamage,showinggreatstability,andits efficacywasnotaffectedevenaftervariouscyclesofbending.Conclusively,PANIfilmsmaybeusedasefficientportablesensorsforon-site detectionpurposes(Kumar,Rawal,Kaur,andAnnapoorni,2017).Yang andcolleaguesdevelopedporouspolyaniline/polyvinylidenefluoride (PANI/PVDF)compositefilmusingtheoxidativepolymerization method.Thesynthesizedfilmexhibiteda3Dporousframework, whichincreasedthesensingpotentialofthePANIsensor.Great sensitivityat25°Cwasexhibitedbythesensorforsensingammonia. Thesensorcansenseammoniaat1ppmwith27%responsealong withgreatreproducibilityandstability.ThePANI/PVDfilmexhibiteda responseof6.5%with0.2ppmammoniaat25°C.Bendingstabilitywas alsoexhibitedbyfilmandlittlevariationinresponsewasobservedat

variousbendingangles.ThePANI/PVDFfilmcanbeusedforreal-time monitoringoftheenvironment(Yangetal.,2020).Theroleofdifferent organicnanomaterialsforsensingairpollutantsispresentedin Table1.2.

1.2.3Organic-inorganicnanocompositesfor sensingofairpollutants

Fortheformationofnanohybrids,variousorganicandinorganic nanomaterialshavebeenintroduced.Innanohybrids,onecomponent ofthemixtureshouldbeinthenanodimension.Nanomaterial-based compositesincludeacombinationofpolymersormetaloxideswith carbon,metal,graphene,andmetaloxides.Nanocompositesplaya significantroleinsensingairpollutants.Huangandcolleaguessynthesizedthenanocompositeofpoly(4-styrenesulfonicacid)(PSSA)dopedPPy/tungstenoxide(WO3 )/reducedgrapheneoxide.The compositewassynthesizedbydispersinganappropriatequantityof respectivematerialsinaqueousmedium.Thesynthesizednanocompositewasspincoatedonthesurfaceofanacousticwaveresonatorto formasynthesizednitricoxidegassensor.Theas-fabricatedsensordetectednitricoxidegasatroomtemperatureataconcentrationof1–110 ppbwithasensitivityof12Hz/ppb.Therecoveryandresponsetimes werefoundtobe <2min.TheLOD(limitofdetection)valuewasfound tobe0.31ppb.Thesensorshowedquickresponse,repeatability,and greatrecoveryatroomtemperature.Thesensingefficacyofthesensor remainedstableover30dayswitha6.3%reductioninsensitivity.It wasfoundhighlyselectiveforNOgaseveninthepresenceofcarbon dioxide,ammonia,andnitrogendioxide.Thismaybeduetothesynergisticeffectofreducedgrapheneoxide,tungstenoxidenanoparticles, andPPymaterial(Hung,Chung,Chiu,Yang,Tien,andShen,2021).

Recently,Shanavasandcolleaguessynthesizedanickeloxide andreducedgrapheneoxide(NiO/rGO)nanocompositeviatheeasy single-potmicrowaveirradiationmethod.Themorphologicalcharacteristicsofthenanocompositeincludeasizeof50–60nm.Nickel oxidenanoparticleswerefoundcoveredbythesheetsofreduced grapheneoxidethoroughly,whichexhibitsexcellentsynthesisofthe binarynanoarchitecture.Thepresenceoffunctionalmoietieswas analyzedbyusingFouriertransforminfraredspectroscopy(FTIR). Thefabricatedsensorwasusedtodetectacetoneandcarbondioxidegas.TheNiO/rGO-basedsensorshowedagreatsensingresponse forcarbondioxidegaswithasensitivityof83counts/ppm.Theresponseandrecoverytimeswerefoundtobe16sand22s,respectively(Shanavas,Ahamad,Alshehri,Acevedo,andAnbarasan,2021). Khanandcolleaguessynthesizedanammoniagassensorbasedon PVP/WO3 nanocomposite.Todepositthesensorymaterialonthe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Hybrid and combined processes for air pollution control: methodologies, mechanisms and effect of key by Education Libraries - Issuu