High power impulse magnetron sputtering: fundamentals, technologies, challenges and applications 1st

Page 1


HighPowerImpulseMagnetronSputtering: Fundamentals,Technologies,Challengesand Applications1stEditionDanielLundin

https://ebookmass.com/product/high-power-impulse-magnetronsputtering-fundamentals-technologies-challenges-andapplications-1st-edition-daniel-lundin/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

High Power Microwave Sources and Technologies Using Metamaterials 1st Edition John W. Luginsland (Editor)

https://ebookmass.com/product/high-power-microwave-sources-andtechnologies-using-metamaterials-1st-edition-john-w-luginsland-editor/

ebookmass.com

Nanotechnology in Paper and Wood Engineering : Fundamentals, Challenges and Applications Rajeev Bhat

https://ebookmass.com/product/nanotechnology-in-paper-and-woodengineering-fundamentals-challenges-and-applications-rajeev-bhat/

ebookmass.com

Power System Protection: Fundamentals and Applications (IEEE Press Series on Power and Energy Systems) 1st Edition Ciufo

https://ebookmass.com/product/power-system-protection-fundamentalsand-applications-ieee-press-series-on-power-and-energy-systems-1stedition-ciufo/ ebookmass.com

Branding Between the

Ears:

Using

Cognitive Science to Build Lasting Customer Connections Sandeep Dayal

https://ebookmass.com/product/branding-between-the-ears-usingcognitive-science-to-build-lasting-customer-connections-sandeep-dayal/ ebookmass.com

The knowledge of experience: Exploring epistemic diversity in digital health, participatory medicine, and environmental research Dana Mahr

https://ebookmass.com/product/the-knowledge-of-experience-exploringepistemic-diversity-in-digital-health-participatory-medicine-andenvironmental-research-dana-mahr/

ebookmass.com

Health Disparities in the United States: Social Class, Race, Ethnicity, and the Social Determinants of Health 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/health-disparities-in-the-united-statessocial-class-race-ethnicity-and-the-social-determinants-of-health-3rdedition-ebook-pdf/ ebookmass.com

Bach against Modernity Michael Marissen

https://ebookmass.com/product/bach-against-modernity-michael-marissen/

ebookmass.com

Daddy for a Day Della Cain

https://ebookmass.com/product/daddy-for-a-day-della-cain/

ebookmass.com

Reencuentro (Libro 3) Robyn Hill

https://ebookmass.com/product/reencuentro-libro-3-robyn-hill/

ebookmass.com

https://ebookmass.com/product/law-and-economic-development-behavioraland-moral-foundations-of-a-changing-world-kaushik-basu/

ebookmass.com

HighPowerImpulseMagnetronSputtering

HighPowerImpulse MagnetronSputtering

Fundamentals,Technologies,Challenges andApplications

LaboratoiredePhysiquedesGazetPlasmas-LPGP UMR8578CNRS,UniversitéParis–Sud UniversitéParis–Saclay,OrsayCedex,France

TiberiuMinea

LaboratoiredePhysiquedesGazetPlasmas-LPGP UMR8578CNRS,UniversitéParis–Sud UniversitéParis–Saclay,OrsayCedex,France

JonTomasGudmundsson

DepartmentofSpaceandPlasmaPhysics

SchoolofElectricalEngineeringandComputerScience

KTHRoyalInstituteofTechnology

Stockholm,Sweden

ScienceInstitute,UniversityofIceland

Reykjavik,Iceland

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-812454-3

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MathewDeans

AcquisitionEditor: ChristinaGifford

EditorialProjectManager: GabrielaD.Capille

ProductionProjectManager: SelvarajRaviraj

Designer: ChristianBilbow

TypesetbyVTeX

CoverphotobyDr.MarcusMorsteindisplayingaHiPIMSplasmanearthesurfaceofacylindricalrotatable magnetroninsideaPLATITindustrialPVDcoatingchamberequippedwithanIonauticsHiPIMSpowersupply.

Contributors

1Introductiontomagnetronsputtering 1 JonTomasGudmundsson,DanielLundin

1.1Fundamentalsofsputtering1

1.1.1DCglowdischarge2

1.1.2Electricalbreakdown8

1.1.3Thecathodesheath10

1.1.4Secondaryelectronemission11

1.1.5Electronenergydistributionfunction14

1.1.6Electricpotentials15

1.1.7Sputteryield16

1.1.8Energydistributionofsputteredatoms18

1.1.9Collisionsingases19

1.1.10DCglowsputtersource22

1.2Magnetronsputtering23

1.2.1DCmagnetronsputtering25

1.2.2Additionofmagneticfields25

1.2.3Electronconfinementandtargetutilization26

1.2.4Electronheating27

1.3Magnetronsputteringconfigurations30

1.3.1Balancedandunbalancedmagnetrons31

1.3.2Rotatingmagnetrons31

1.4Pulsedmagnetrondischarges32

1.4.1Definitionofpulsedmagnetronsputteringdischarges33

1.4.2Asymmetricbipolarmid-frequencypulsing34

1.4.3Magnetronsputteringwithasecondarydischarge36

1.4.4Highpowerimpulsemagnetronsputtering37

1.4.5Modulatedpulsepowermagnetronsputtering38

1.4.6Summary38 References39

2Hardwareandpowermanagementforhighpowerimpulse magnetronsputtering 49 ZdenˇekHubiˇcka,JonTomasGudmundsson,PetterLarsson, DanielLundin

2.1Briefhistoryofhighpowerpulsedmagnetronsputtering49

2.2Pulsegenerators52

2.2.1Basicpulsegenerators52

2.2.2Thyristor-diode-basedpulsers55

2.2.3IGBT-basedpulsers57

2.2.4Pre-ionization63

2.2.5Pulsedelay63

2.3Substratebias64

2.3.1Biassolutions64

2.3.2SynchronizedpulsedHiPIMSbias68

2.4AdvancedHiPIMSconfigurations69

2.4.1Multicathodeconfigurations69

2.4.2Superposition71

2.4.3Pulsetrains/multipulses/choppedpulses74

2.4.4Summary75 References75

3Electrondynamicsinhighpowerimpulsemagnetronsputtering discharges 81

Martin ˇ Cada,JonTomasGudmundsson,DanielLundin

3.1Techniquesforcharacterizingplasmaelectrons81

3.1.1Langmuirprobe82

3.1.2Emissiveprobe86

3.1.3Tripleprobe88

3.2Fundamentalelectroncharacteristics91

3.2.1Electronenergy,density,andtemperature91

3.2.2Plasmaexpansionandreflection94

3.3Influenceoftargetmaterialandworkinggas95

3.3.1Electronenergy,densityandtemperature95

3.3.2Plasmapotential98

3.3.3Reactiveplasmas102

3.4Multiplesourcesandhybridsystems103

3.4.1Electronpropertiesinmultisourcesystems103

3.4.2Electronpropertiesinhybridsystems104 References106

4Heavyspeciesdynamicsinhighpowerimpulsemagnetron sputteringdischarges 111

Martin ˇ Cada,NikolayBritun,AnteHecimovic,JonTomasGudmundsson, DanielLundin

4.1Theplasmaions111

4.1.1Techniquesforcharacterizingplasmaions112

4.1.1.1 Energy-resolvedmassspectrometry 112

4.1.1.2 Retardingfieldenergyanalyzers 115 4.1.1.3 Modifiedquartzcrystalmicrobalance(ionmeter) 116

4.1.1.4 Laser-basedmethodsforiondetection 118

4.1.2Spatialandtemporaldistributionofionsinthebulkplasma118

4.1.3Ionenergydistributioninthevicinityofthesubstrate123

4.1.3.1 Time-averagedIEDF 124

4.1.3.2 Time-resolvedIEDF 127

4.1.3.3 ReactiveHiPIMS 127

4.1.3.4 Time-evolutionoftheionflux 130

4.1.4Ionizedfractionofdepositingparticles132

4.1.5IonizedfluxfractioninHiPIMS133

4.1.5.1 ReactiveHiPIMSdischarges 136

4.1.5.2 Hybridsystems 137

4.1.5.3 Influenceofthemagneticfield 138

4.1.5.4 Massspectrometryresults 139

4.1.6Ionizeddensityfraction140

4.2Theplasmaneutrals141

4.2.1Spatialandtemporalevolutionofplasmaneutrals141

4.2.2Gasrarefaction146 References151

5Modelingthehighpowerimpulsemagnetronsputteringdischarge

TiberiuMinea,TomášKozák,ClaudiuCostin,JonTomasGudmundsson, DanielLundin

5.1Modelingapproaches159

5.1.1Pathwaymodels160

5.1.2Steady-stateglobalmodels162

5.1.2.1 Ionizationandreturnofsputteredtargetmaterial

5.1.2.2 Depositionparameters

5.1.2.3 Limitationsofthisapproach

5.1.3Time-dependentglobalmodel,IRM165

5.1.3.1 Particlebalance

5.1.3.2

5.1.3.3

5.1.3.4

5.1.3.5

5.1.3.6

5.1.4Particle-in-cell177

5.1.4.1 ChallengesofHiPIMSPICsimulations

5.1.4.2 Pseudo-3DPIC

5.1.5MonteCarlosimulations184

5.1.5.1 MonteCarlocollisionsimulations

5.1.5.2 MonteCarlosimulationofneutralparticletransport

5.1.5.3 DirectsimulationMonteCarlo(DSMC)forneutral particlestransport

5.1.5.4 Aposteriori MonteCarlo

5.1.6Othermodels188

5.1.6.1 Afeedbackmodel

5.1.6.2 EEDFassolutionofBoltzmann’sequation

5.1.6.3 Modelsforspokes

5.2Importantmodelingresults192

5.2.1Depositionrate192

5.2.2Currentandvoltagewaveforms195

5.2.2.1 Time-dependentglobalmodels 196

5.2.2.2 Self-consistentPICmodel 201

5.2.3Time-dependentplasmaproperties202

5.2.3.1 Temporalevolutionofneutralandchargedspecies 202

5.2.3.2 Excitedstatesevolution 207

5.2.3.3 Electronenergydistributionfunction(EEDF) 208

5.2.3.4 Ionenergydistributionfunction(IEDF) 211

5.2.3.5 Electrontransportcoefficientsandplasma deconfinement 212

References214

6Reactivehighpowerimpulsemagnetronsputtering 223 TomášKubart,JonTomasGudmundsson,DanielLundin

6.1Introductiontoreactivesputterdeposition223

6.1.1Workingpoint224

6.1.2Processcontrol227

6.2Fundamentalsofreactivesputtering227

6.2.1Moleculargasandplasmachemistry228

6.2.2Secondaryelectronemission231

6.2.3Sputteryieldsforcompounds232

6.2.4Reactivegasimplantationandthicknessofthecompound layer235

6.2.5Balance(Berg)modelofhysteresisreactivesputtering236

6.3HysteresisinreactiveHiPIMS240

6.3.1Experimentalobservations241

6.3.2Dynamicsofthehysteresis244

6.3.3ModelsofhysteresisinreactiveHiPIMS245

6.4ImportantaspectsofreactiveHiPIMS246

6.4.1Dischargewaveforms247

6.4.2Processstabilityanddepositionrate249

6.4.3Dynamicsofthesputtertargetsurface250

6.4.4Plasmacharacteristicsinthemetalandcompoundmode253

6.4.5NegativeionsinR-HiPIMS256

References257

7Physicsofhighpowerimpulsemagnetronsputteringdischarges 265

DanielLundin,AnteHecimovic,TiberiuMinea,AndréAnders, NilsBrenning,JonTomasGudmundsson

7.1Thedischargecurrent265

7.1.1Thedischargecurrentcomposition266

7.2Dischargemodes269

7.2.1Thedischargecurrentamplitude270

7.2.1.1 Thegeneralizedrecyclingmodel(GRM) 272

7.2.1.2 Dischargeanalysis 276

7.2.2Temporalevolutionofthedischargecurrent280

7.2.3Ohmicheatingversussheathacceleration288

7.3Transportofchargedparticles289

7.3.1Classicalionandneutralspeciestransport291

7.3.1.1 Iontransport

7.3.1.2 Classicalelectrontransport 294

7.3.2Anomaloustransport296

7.3.2.1 Anomalouselectrontransport 296

7.3.2.2 Anomalousiontransport 298

7.4PlasmaInstabilities300

7.4.1Spokesandbreathinginstabilitiesinmagnetronsputtering discharges301

7.4.2Thepotentialstructure308

7.4.3Effectofspokesonchargedparticletransport311

7.4.3.1 Transportnearthetarget

7.4.3.2 Transportinthebulkplasma

7.4.3.3

7.5Depositionrate315

7.5.1Physicsofdepositionrateloss316

7.5.2Increasingthedepositionrate320

7.5.3DepositionratesinreactiveHiPIMS323 References323

8Synthesisofthinfilmsandcoatingsbyhighpowerimpulse magnetronsputtering 333

KostasSarakinos,LudvikMartinu

8.1Introductiontothefundamentalsofthinfilmgrowth333

8.1.1Thinfilmgrowthfromanatomisticpointofview333

8.1.2Effectofenergeticionsonthinfilmmicrostructuralevolution337

8.1.3Effectofpulsedvaporfluxesonthinfilmgrowthdynamics337

8.2Depositiononcomplex-shapedsubstrates339

8.3Interfaceengineering341

8.4Thinfilmmicrostructureandmorphology343

8.4.1Filmdensityandsurfaceroughness344

8.4.2Filmtextureandmorphologicalevolution345

8.4.3Synthesisofself-organizednanostructures348

8.5Stressgenerationandevolution349

8.5.1Atomisticviewonstressgenerationandevolution350

8.5.2Effectofhighlyionizedfluxesonstressgenerationevolution351

8.5.3TailoringofstressinopticalcoatingsbyHiPIMS353

8.6Phasecomposition354

8.6.1Phasecompositiontailoringinelementalthinfilmmaterials: theTacase355

8.6.2Phasecompositiontailoringinfunctionaloxidefilms355

8.6.3Phasecompositiontailoringinmetastableternaryceramic films357

8.6.4Phaseformationtailoringviacontrolofchemicalcomposition358

8.7Time-domaineffectofHiPIMSonfilmgrowth360

8.8Summary361

Contributors

AndréAnders

LeibnizInstituteofSurfaceEngineering(IOM),Leipzig,Germany

NilsBrenning

DepartmentofSpaceandPlasmaPhysics,SchoolofElectricalEngineeringandComputerScience,KTHRoyalInstituteofTechnology,Stockholm,Sweden

NikolayBritun

ChimiedesInteractionsPlasma-Surface(ChIPS),CIRMAP,UniversitédeMons, Mons,Belgium

Martin ˇ Cada

InstituteofPhysicsv.v.i.,AcademyofSciencesoftheCzechRepublic,Prague, CzechRepublic

ClaudiuCostin

AlexandruIoanCuzaUniversity,FacultyofPhysics,Iasi,Romania

JonTomasGudmundsson

DepartmentofSpaceandPlasmaPhysics,SchoolofElectricalEngineeringandComputerScience,KTHRoyalInstituteofTechnology,Stockholm,Sweden ScienceInstitute,UniversityofIceland,Reykjavik,Iceland

AnteHecimovic

Max-Planck-InstitutforPlasmaPhysics,Garching,Germany

Zden ˇ ekHubi ˇ cka

InstituteofPhysicsv.v.i.,AcademyofSciencesoftheCzechRepublic,Prague, CzechRepublic

TomášKozák

DepartmentofPhysicsandNTIS–EuropeanCentreofExcellence,UniversityofWest Bohemia,Plze ˇ n,CzechRepublic

TomášKubart

SolidStateElectronics,TheÅngströmLaboratory,UppsalaUniversity,Uppsala,Sweden

PetterLarsson

IonauticsAB,Linköping,Sweden

DanielLundin

LaboratoiredePhysiquedesGazetPlasmas-LPGP,UMR8578CNRS,Université Paris–Sud,UniversitéParis–Saclay,OrsayCedex,France

LudvikMartinu

DepartmentofEngineeringPhysics,PolytechniqueMontréal,Montréal,Quebec, Canada

TiberiuMinea

LaboratoiredePhysiquedesGazetPlasmas-LPGP,UMR8578CNRS,Université Paris–Sud,UniversitéParis–Saclay,OrsayCedex,France

KostasSarakinos

NanoscaleEngineeringDivision,DepartmentofPhysics,ChemistryandBiology, LinköpingUniversity,Linköping,Sweden

Preface

HighPowerImpulseMagnetronSputtering:Fundamentals,Technologies,Challenges andApplications isanin-depthintroductiontoHighPowerImpulseMagnetronSputtering(HiPIMS)withanemphasisonhowthisnovelsputteringtechniquediffersfrom conventionalmagnetronprocessesintermsofhardware,dischargephysics,thinfilm growth,andresultingthinfilmcharacteristics.Thebookisaresultofaninvitation fromElsevierin2016towriteafirstbookentirelydedicatedtoHiPIMS.Roughlytwo andahalfyearslaterthisistheresult.

Thereisundoubtedlyworkthathasbeenoverlookedornotsufficientlydealtwith inthisbook.Ourambition,however,hasbeentopresentacomprehensivetextonthe HiPIMSprocess,ratherthanacollectionoflooselyconnectedresultsfoundinthe scientificliterature.ThemainmotivationisthatHiPIMS,likesomanytopicsinscience,isafieldinrapiddevelopment.Withagreatnumberofnewfindingspresented everyyear,resultsaresometimesmisinterpretedorcontradictory.Inaddition,differentdescriptionsofHiPIMSusetheirownterminology,whichunfortunatelyvaries dependingonwhatsourceyouarelookingat.Altogetherthispresentsasignificant thresholdforsomeonenewtothefield.IfthisbookinanywaycanlowerthatthresholdandstimulatemoreworkonHiPIMS,thenwehavesucceededinourtask.

Sowhoshouldreadthisbook?Wehopethatanyoneinvolvedinionizedphysical vapordepositionwillbenefitfromreadingit,oratleastafewchapters,dependingon interestandexpertize.Thematerial,however,isaimedatabroaderaudienceofprofessionals,practitioners,andstudents,whoarefamiliarwithbasicconceptsofplasma physicsandthinfilms.Wehavetriedtointroducevarioustopicsinsuchawaythat someonenewtoHiPIMSwillstillbeabletofollowandpossiblybeevenmoremotivatedtotryoutthispromising(butchallenging)technology.

WestartthisbookbyanintroductiontomagnetronsputteringinChapter 1,where weintroducethebasicconceptsneededtoexploreHiPIMS.Chapter 2 presentsan overviewofthehistoricaldevelopmentoftheHiPIMStechniquealongwithvarious highpowerpulsersthathavebeendevelopedovertheyears.Chapters 3 and 4 arefocusedonexperimentalprocesscharacterizationinHiPIMSanddescribetheroleof electronsandheavyspecies(neutralsandions),respectively.Typicalcharacteristics ofthesespeciesarepresentedtoprovideasolidunderstandingofthemostimportantfundamentalpropertiesoftheHiPIMSdischarge.Thesefindingsarefollowed upinChapter 5 usingcomputationalmodeling.Themainmodelsarepresentedand comparedtoeachotherwhenpossible.Wealsohighlightsomeimportantmodeling results,whichhavebeenselectedtoemphasizetheaddedunderstandingbroughtby computationalmodeling,butalsotovalidatecertainmodelapproachesorhighlight model-specificresults.Chapter 6 extendsthefundamentalknowledgegainedinthe previouschapterstoreactiveHiPIMSprocesses,whichinvolvesanintroductionof

basicsputteringphysicsinreactivegasmixturesaswellasmorespecificaspectsof surfaceanddischargeprocessesrelatedtoreactiveHiPIMS.Chapter 7 isanattempt atunifyingandsummarizingthemostimportantconceptspresentedinmainlyChapters 3 – 6,anddescribestheunderlyingphysicalandchemicalmechanismsgivingrise totheobservedprocessresultsandtheconsequencesthereof.Finally,Chapter 8 discussestheuseofHiPIMStodepositthinfilms.Thechapterissubdividedintoseveral sections,eachfocusingonadifferentprocess-specificaspectrelatedtocertainfilm characteristics,whereHiPIMShavebeenshowntohaveagreatimpact.Eachchapter containsanextensivelistofreferencestostimulatefurtherreading.

Abooklikethisonewouldnotbepossiblewithoutthecontributionsandinvaluableinputbyalltheexpertcoauthorsandbymanycolleaguesandfriends.Wedo notlistalltheauthorsoftheindividualchapters,whohave,besidestheirowntexts, madegreatcontributionstothebookasawhole.Withtheriskofforgettingsomeone, wewouldstillliketomentionafewcolleaguesoutsidetheauthorlist,whodeserve specialrecognition.Inparticular,wearedeeplygratefultothetalentedT.J.Petty,who patientlylistenedtoourdescriptionsanddiscussionsandconvertedthemintofantastic illustrations.WealsoacknowledgeFelipeCemin,whoreadandcommentedsomeof thechapters,whilewritinghisPh.D.thesisatUniversitéParis-Sud.AdrienRevelis acknowledgedforhisinputonthenumericalmodeling,mainlyrelatedtothe2Dand 3DparticlesimulationsofshortHiPIMSpulses.

Finally,wewouldliketoconcludebythankingourfamiliesforallthesupportthey haveshownusduringthecourseofwritingthisbookand,inparticular,forunderstandingwhywehadtoworkallthoseevenings(andmostweekends).

DanielLundin TiberiuMinea

JonTomasGudmundsson Paris–Linköping–Stockholm,June2019

Introductiontomagnetron sputtering

1

a DepartmentofSpaceandPlasmaPhysics,SchoolofElectricalEngineeringandComputer Science,KTHRoyalInstituteofTechnology,Stockholm,Sweden, b ScienceInstitute, UniversityofIceland,Reykjavik,Iceland, c LaboratoiredePhysiquedesGazetPlasmasLPGP,UMR8578CNRS,UniversitéParis–Sud,UniversitéParis–Saclay,OrsayCedex,France

Plasma-basedphysicalvapordeposition(PVD)methodshavefoundwidespreadusein variousindustrialapplications.Inplasma-basedPVDprocesses,thedepositionspecies areeithervaporizedbythermalevaporationorbysputteringfromasource(thecathodetarget)byionbombardment.Sputterdepositionhasbeenknownfordecadesasa flexible,reliable,andeffectivecoatingmethod.Initially,thedcglowdischargeorthe dcdiodesputteringdischargewasusedasasputtersourcefollowedbythemagnetron sputteringtechnique,whichwasdevelopedduringthe1960sand1970s.Magnetron sputteringhasbeentheworkhorseofplasma-basedsputteringapplicationsforthepast fourdecades.Intheplanarconfiguration,themagnetronsputteringdischargeissimplyadiodesputteringarrangementwiththeadditionofmagnetsdirectlybehindthe cathodetarget.Withtheintroductionofmagnetronsputtering,thedisadvantagesof diodesputtering,suchaspoordepositionrate,wereovercomeastheoperatingpressurecouldbereducedwhilemaintainingtheenergyofthesputteredspecies,often resultinginimprovedfilmproperties.Herewediscussthebasicsofthesputtering process,giveanoverviewofthedcglowdischarge,andreviewthebasicphysics relevanttothemaintenanceofthedischargeandthesputterprocesses.Thenwediscussthedcglowdischargeanditsroleasasputtersourceandhowitevolvesinto themagnetronsputteringdischarge.Wealsodiscussvariousmagnetronsputtering configurationsinuseforawiderangeofapplicationsbothunderlaboratoryandindustrialarrangements.Finally,weintroducepulsedmagnetrondischargesincluding highpowerimpulsemagnetronsputtering(HiPIMS)discharges.

1.1Fundamentalsofsputtering

Animportantprocessthattakesplaceinaglowdischargeissputtering,whichcan occurifthevoltageappliedtothecathodeissufficientlyhigh.Whentheionsandfast neutralsfromtheplasmabombardthecathodetarget,theynotonlyreleasesecondary electrons,butalsoatomsofthecathodematerial.Thisisreferredtoassputtering. Whenspeciesaresputteredoffacathodetargetandsubsequentlyusedasfilmformingmaterial,theprocessbelongstowhatisreferredtoasaphysicalvapordeposition

(PVD).Sputteringismosteasilyperformedbyexposingacathodetargettoagas discharge:eitheradcdischarge(Kay, 1962)oramagnetronsputteringdischarge (Waits, 1978),whereasionbeamsputterdepositionisalsoawell-establishedPVD technique(BundesmannandNeumann, 2018).OtherPVDtechniquesincludeevaporation,pulsedlaserdeposition,cathodicarcdeposition,andionplating.Sputteringin gasdischargeswasdiscoveredinthemid-19thcentury(Grove, 1852).Filmformation utilizingsputterdeposition,wherethecathodetargetisthesourceofthefilmforming material,wasfirstreportedbyWrightinthe1870s(Wright, 1877a,b).Sputterdepositionofthinfilmshadalreadyfoundcommercialapplicationbythe1930s(Fruth, 1932, Hulburt, 1934),butgainedsignificantinterestinthelate1950sandearly1960swith improvedvacuumtechnologyandtherealizationthatawiderangeofmaterialscould bedepositedusingdcsputtering(Kay, 1962,Westwood, 1976)aswellasrfsputtering utilizedmainlyfordielectrics(Andersonetal., 1962).

Herewediscusssomeofthefundamentalsofdischargephysicsandsputtering.We introducethedcglowdischarge,includingitsvoltage–currentcharacteristicsandthe variousregionsobservedinitsoperation,andtheirpropertiesandrole.Wediscuss someofthefundamentalsofplasmaphysicsrelevanttosputteringdischarges,includingelectricalbreakdown,therelationbetweenthesheathvoltagedropandthesheath thickness,andthesecondaryelectronemission,essentialforthemaintenanceofthedc glowdischarge.ThesputteryieldisthendiscussedinSection 1.1.7,theenergydistributionofthesputteredatomsinSection 1.1.8,andcollisionswithinplasmadischarges inSection 1.1.9.Finally,weintroducethedcglowsputteringdischargeorthedcdiode sputteringdeviceinSection 1.1.10.Thisdiscussionisintendedtogiveanoverviewof thefundamentalconceptsandparametersthatareneededtounderstandtheoperation ofthemagnetronsputteringdischarge.

1.1.1DCglowdischarge

Thetermgasdischargereferstoaflowofelectriccurrentthroughagaseousmedium. Foracurrenttoflow,someofthegasatomsandmoleculeshavetobeionized.Furthermore,thiscurrent,thedischargecurrent,hastobedrivenbyanelectricfield. Thedischargecurrent,whichprovidespowertothedischarge,hastobecontinuous throughoutthelengthofthedischarge.Thereisatransitioninthedischargewithregardstowhichchargedspeciescarriesthedischargecurrent.Infrontofthecathode, thereisaregion,thecathodeglow,inwhichmostoftheionizationoccurs.Outside thisregionthedischargecurrentismainlycarriedbyelectronstowardtheanodeand byionstowardthecathode.Energyisneededfortheionizationinthecathodeglow. Inthedcdischarge,thisisresolvedbysecondaryelectronemissionfromthecathodetarget.Thiselectronemissionisessentialforthemaintenanceofthedischarge (seeSection 1.1.4).Thedischargecurrentisbuiltupbyionizationwithinthecathode sheath,whichisduetothesecondaryelectronsthatareacceleratedbythelargeelectricfieldsinthisregion.Thustodescribethecurrentinadcdischarge,theinteraction ofchargedparticleswiththeelectrodesurfaceshastobetakenintoaccount.

Letusassumetwoparallelelectrodesseparatedbyadistance L andwithapplied potential VD .Thegapbetweentheelectrodesisfilledwithgasatpressure p ,the

Figure1.1 Thedischargecurrent ID versusthedischargevoltage VD foralow-pressuredcdischarge. Thevariousoperatingregimesarenoted,withincreasingcurrent,Townsendregime,subnormalglow,normalglow,abnormalglow,andarcregime.ReprintedfromGudmundssonandHecimovic(2017).©IOP Publishing.Reproducedwithpermission.Allrightsreserved.

workinggaspressure.Thetypeofdischargethatisformedbetweenthetwoelectrodes dependsuponthepressureoftheworkinggas,thenatureoftheworkinggas,the appliedvoltage,andthegeometryofthedischarge.Inthefollowingdiscussionofthe dcdischarge,wefollowthediscussiongiveninarecentreviewonthefoundationsof thedcdischarge(GudmundssonandHecimovic, 2017).

Thedischargecurrentisshownversusthevoltageacrossalow-pressuredcdischargeinFig. 1.1.Adescriptionoftherelationbetweenthecurrentandvoltagefor thedcdischargecanbefoundinreviewpaperssuchasbyFrancis(1956)andIngold (1978)andinanumberoftextbooksincludingthoseofHowatson(1976,Chapter4), Raizer(1991,Section8.2),andRoth(1995,Chapter9)andcanbesummarizedas follows:Whenavoltageisfirstapplied,thedischargecurrentisverysmall.Thiscurrentconsistsofcontributionsfromvariousexternalsourcessuchascosmicradiation generatingfreeelectronsandions.Whenthevoltagehasbecomelargeenoughtocollectallthesechargedparticles,thiscurrentremainsnearlyconstantwithincreased voltage.Asthevoltageisfurtherincreased,thechargedparticleseventuallyachieve enoughenergytoproducemorechargedparticlesthroughcollisionswiththeworking gasatomsorbybombardmentoftheelectrodesleadingtogenerationofsecondary electrons.Asmorechargedparticlesarecreated,thecurrentincreases,whereasthe voltageislimitedbytheoutputimpedanceofthepowersupplyandremainsroughly constant.ThisregioniscommonlyreferredtoastheTownsenddischarge.ThecharacteristicsoftheTownsenddischargeareverysmalldischargecurrents.TheTownsend dischargeisnotluminoussincetheelectrondensityislow,andthereforethedensity ofexcitedatoms,whichemitvisiblelight,iscorrespondinglysmall.Furthermore,it

isnotaself-sustaineddischargeinthesensethatitdoesnotentirelyprovideitsown ionizationbutrequiressomeexternalassistancetoproduceelectronseitherwithinthe gasitselforfromanegativelybiasedelectrode.

Iftheappliedvoltageisincreasedfurther,thenthedischargecurrentincreases,and eventuallythisleadstoasituationwheretheplasmadensityishighenoughforthedischargetoreorganizethevacuumpotentialstructureandformacathodesheath,which enablesmoreefficientionizationandthereforeahighercurrentatagivenvoltage. Thenthecurrentincreasessharplybyseveralordersofmagnitudeandbecomesindependentoftheexternalseed.Thisiswhatisreferredtoasthebreakdownpoint VB (see Fig. 1.1)orsubnormalglowandoccursatvoltagesrangingfromtwoorthreehundred voltsandupward,dependingonthenatureoftheworkinggas,thegaspressure,and theseparationoftheelectrodes.

Oncebreakdownhasoccurred,thedischargebecomesself-sustainingandtakes theformofaglow,andthegasbecomesluminous.Asionsbombardtheelectrode, secondaryelectronsareemitted.Theseelectronsimpactandionizetheatomsofthe workinggas.Thusmoreionsareavailabletobombardthecathodeandcreatemore secondaryelectrons.Atthispoint,thevoltagedrops,andthedischargecurrentincreasesabruptly.Electronimpactexcitationcollisionsfollowedbydeexcitationwith theemissionofradiationareresponsibleforthecharacteristicglow.Thisregimeis referredtoasthenormalgloworthedcglowdischarge.

Theionbombardmentofthecathodesurfaceisinitiallynotuniform.Thedischarge currentarrangesanoptimumcurrentdensity,and,asthecurrentincreasesfurther, moreandmoreofthecathodetargetsurfaceissubjecttoionbombardment.This continueswithincreasedsuppliedpoweruntilanearlyuniformdensityisachieved coveringtheentirecathodearea.Whenthewholecathodeiscoveredbyionbombardment,furtherincreaseinthepowerleadstoadischargewithacurrentdensityatthe cathode,whichisnolongeroptimal.Highercurrentscanthereforeonlybeachieved withhighervoltagesoverthecathodesheath.Thereisthereforeanincreaseinboth voltageandcurrent.Thisoperationregimeisreferredtoastheabnormalglowandis theregimeusedforsputtering,whichisfurtherdiscussedinSection 1.1.10.Theabnormalglowdischargelooksmuchlikethenormalglowdischargebutismoreintensely luminous,andsometimesthestructuresnearthecathodemergeintooneanother.As thecurrentdensityatthecathodebecomeslargeenoughfortheformationofcathodespots,thedischargemakesatransitionintothearcregime.Thecathodespots can,throughacombinationoffieldemissionandthermoionicemission,emitelectronsmoreefficientlythanthesecondaryelectronemissionprocess,whichleadstoa secondavalanche,increaseddischargecurrent,andadropinthedischargevoltageas seeninFig. 1.1.Eventuallyalow-voltagehigh-currentarcdischargeforms.

Thedcglowdischargeisimportanthistoricallybothforstudyingthepropertiesof theplasmaandforvariousapplicationswherethedcdischargeisusedtoprovidea weaklyionizedplasma.Thesimplicityofthedcglowdischargegeometrymadeita commonlyusedplasmagenerationmethodforfundamentalresearchinbothdischarge physicsandatomicandmolecularphysics(GudmundssonandHecimovic, 2017).As seeninFig. 1.1,thedcglowdischargeoperatesinthecurrentrangefromµAtohun-

Figure1.2 Aschematicofthedcglowdischargeshowingseveraldistinctregionsthatappearbetween thecathodeandtheanode.Thecolorsofthevariousregionsassumeaneondischarge.Thedarkspacesare abbreviatedasDS.

dredsofmA(currentdensityrange10 5 –10 3 A/cm2 ),andtheworkinggaspressure istypicallyintherange0.5–300Pa.

Earlystudiesofthedcglowdischargerevealedthatitconsistsofseveraldifferentregionsbetweentheelectrodes,whichhavebeenillustratedinmoreorlessthe samewaybyseveralauthors(Francis, 1956,Ingold, 1978,Raizer, 1991,Roth, 1995, Nasser, 1971).InFig. 1.2,wepresentaschematicofthenormalglowdischargein a0.5mlongtubeusingneonat133Paastheworkinggas,whichisduetoNasser (1971).Thecathodeistypicallymadeofanelectricallyconductivemetal.Thecathode metalhasaninfluenceonthevoltagerequiredtomaintainthedischarge.Forametal thatisagoodemitterofelectrons(seediscussioninSection 1.1.4)lowervoltagesare sufficient.Immediatelynexttothecathodeisathindarklayer,theAstondarkspace. TheAstondarkspaceisfollowedbythecathodeglow,whichhasarelativelyhigh iondensity.Thesecondaryelectronsreleasedfromthecathodesurfaceareaccelerated awayfromthecathode.Thesehigh-energyelectronsundergocollisionswithneutral workinggasatomsatadistanceawayfromthecathodecorrespondingtotheionizationmeanfreepath.Inthisregionthesecondaryelectronsparticipateinexcitation andtherebygeneratethecathodeglow.Thecathodeglowisfollowedbythecathode (CrookesorHittorf)darkspace.TheregionsthatextendfromtheAstondarkspaceto thecathodedarkspacetogetherconstitutethecathodesheath.Heretheelectricfield isdirectedtowardthecathode,andthespacechargeispositiveandofrelativelyhigh density.Thecathodedarkspaceisfollowedbythenegativeglow(infact,aregionwith positivepotential),whichexhibitsasignificantlightintensity.Mostoftheionization occurshere.Theboundarytowardthecathodedarkspaceisratherabruptwhileitis diffuseontheanodesidetowardtheFaradaydarkspace.TheelectricfieldandtheenergyoftheelectronsarelowintheFaradaydarkspace.Theelectronenergyavailable forexcitationandionizationishereexhausted.Beforeenteringthisdarkregion,the potentialgradientisslightlynegativeasthespacechargereverses.Herethedensityof electronshasbecomehighenoughtocarrytheentiredischargecurrentandtomake thespacechargenegative.Theelectrondensityfallswithinthisdarkspaceregiondue torecombinationanddiffusionuntilthenetspacechargeiszeroandtheelectricfield approachesasmallconstantvalueandthepositivecolumnbegins.Thepositivecolumnisaquasineutralplasmawheretheelectricfieldisverylow.Thepositivecolumn issimplyalonguniformglow,exceptwhenstriationsareformed.Thepositivecolumn actsasaconductingpathbetweenthenegativeglowregionandtheanode.Theanode

Table1.1 Thecolorofselectedluminouszonesinthedcglowdischarge.

Gas Cathodelayers

He red pink red/pink

Ne yellow orange red/brown

Ar pink darkblue darkred

H2 red/brown paleblue pink

N2 pink blue red/yellow

Air pink blue red/yellow

BasedonFrancis(1956).

glowisabrightregionthatappearsattheendofthepositivecolumn.Oftenathindark spaceisobservedattheendofthepositivecolumn(theanodedarkspace),andaglow closetothesurfaceoftheanode(theanodeglow).

Thesize,intensity,andcolorofalltheregionsdescribedabovedependonthenatureoftheworkinggas,gaspressure,andappliedvoltage.Also,someofthefeatures maybeabsentoverparticularparameterranges.Thevariousgasesgiveadischargeof acharacteristiccolor.Thecolorsofthelightemittedfromthevariouszonesofthedc glowdischargearelistedinTable 1.1.Ifthepressureisreduced,thenthecathodedark spaceexpandsattheexpenseofthepositivecolumn.Thisisduethefactthatnowthe electronshavetotravelfarther(meanfreepathislonger)toproduceefficientionization.Forasecondaryelectronemissionyieldintherange0.05–0.1,eachsecondary electronmustinitiateanavalanchethatproducesroughly10–20ionstomaintain thedischarge.Anelectronavalancheispossiblewithinthecathodesheathofglow discharges,becausetheelectronmeanfreepathforionizingcollisionsisheresmaller thanthesheaththickness.AswewillseeinSection 7.2.3,ionizationavalancheswithin thesheathregionarenotpossibleinHiPIMSdischargesduetolowerpressuresand thinnercathodesheaths.Howmanyionseachsecondaryelectronactuallyproduces dependsontheionizationmeanfreepathandthedistancebetweentheanodeand cathode.ThisrelationisqualitativelythestatementofPaschen’slaw,whichrelates thebreakdownvoltage VB totheproductofgaspressureandelectrodeseparationand willbediscussedinSection 1.1.2.Thisalsoshowsthattheionizationprocessesinthe cathodedarkspaceareessentialforthemaintenanceofthedischarge.

Thepotentialdifferenceappliedbetweenthetwoelectrodesisgenerallynotequally distributedbetweencathodeandanode.Thespatialvariationsofthepotential,the electricfield,particledensities,spacecharge,andcurrentdensitiesalongtheaxisofa dcglowdischargeareshowninFig. 1.3.Thespatialvariationoftheplasmaparameters shownherewasfoundbyparticle-in-cellsimulationofanargondcdischargeat50Pa whenavoltageof400Visappliedacrossthe5cmdischargegap(Budtz-Jørgensen, 2001).Asthepotentialprofileindicates(Fig. 1.3A),theelectricfieldislargeinthe vicinityoftheelectrodesandalmostzerowithinthepositivecolumn.Thusalmostall theappliedvoltagedropscompletelywithinthefirstfewmillimetersinfrontofthe cathode.Thisregionadjacenttothecathode,whichisthuscharacterizedbyastrong electricfield,isthecathodefall,oroftenreferredtoasthecathodesheath.Weseein

Figure1.3 Spatialprofilesof(A)theplasmapotential,(B)theelectricfield,(C)ionandelectrondensity, (D)space-chargedensity,and(E)ionandelectroncurrentdensity.Fromparticle-in-cellsimulationofan argondcdischargeat50Pa,electrodeseparationof5cm,and 400Vappliedtothecathode.Reprinted fromBudtz-Jørgensen(2001).©Budtz-Jørgensen.Reproducedwithpermission.Allrightsreserved.

Fig. 1.3Cthatthesheathregionisdepletedofelectrons,andinFig. 1.3D,weseethat thenetspacechargeispositiveinthesheathregioninlinewithourpreviousdiscussion ofthedarkspace.ThespacechargeshowninFig. 1.3Disfoundbysubtractionofthe electrondensityfromtheiondensity.Intheplasmabulk,theplasmaisquasineutral, andtheelectronandiondensitiesarethesame.Thisspacechargedensityleadstothe electricfielddistributionseeninFig. 1.3B.

1.1.2Electricalbreakdown

Electricalbreakdownisanimportantphenomenonindischargephysics.Herewederivethebreakdownvoltageasafunctionoftheproduct pL,where p istheworking gaspressure,and L isthedistancebetweentheelectrodes,whichiscommonlyreferredtoasthePaschencurve.Asimilardiscussioncanbefoundinvarioustextbooks suchasbyLiebermanandLichtenberg(2005,Section14.3),Raizer(1991,Chapter7), andRoth(1995,Section8.6).

Theelectrondensityandfluxgrowexponentiallyaswemoveaxiallyawayfrom thecathode.Thustheincreaseintheelectronfluxisproportionaltotheflux,or

where e istheelectronflux,and α isknownasTownsend’sfirstionizationcoefficient andistheinverseofthemeanfreepathforionization,thatis, α(z) ≡ 1/λiz .The electronfluxinthedirectionalongthedischargeaxis(orthedirectionoftheelectric field)is

Duetothecontinuityofthetotalcharge(creationofequalnumbersofelectron–ion pairs),wecanwrite

where e (L) fromEq.(1.2)hasbeeninserted.Sincethedischargemustbeselfsustaining,wehave e (0) = γsee i (0) and i (L) = 0.Then

istheconditionforself-sustainability.Inavacuumregion,theelectricfield E isa constant,anditfollowsthattheelectrondriftvelocity μe E isalsoaconstant.Hence theelectronenergy Ee isaconstant,allowingustotreat α asaconstantinEq.(1.4). Inthatcase,takingthelogarithmofbothsidesofEq.(1.4)gives

whichisthebreakdownconditionforadcdischarge.Theionizationcoefficientis usuallyexpressedintheform

Table1.2 ConstantsfortheTownsendionizationcoefficient.

FromLiebermanandLichtenberg(2005).

where A and B aredeterminedexperimentallyandfoundtoberoughlyconstantovera rangeofpressuresandfieldsforagivengastype.Thecoefficients A and B forvarious commongasesarelistedinTable 1.2.

Iftheminimumvoltageatwhichthedischargeinitiates,thebreakdownvoltage,is writtenas VB = EL,then

whichsolvedfor VB gives

whichisafunctionoftheproduct pL.Theproductofpressureanddistancebetween theelectrodes(pL)isasuitableparametertocharacterizethedischarge.Thecurve thatshows VB asafunctionoftheproduct pL iscalledthePaschencurve.Thusfora fixeddischargelength L,thereisanoptimumgaspressureforplasmabreakdown.By differentiatingtheexpressionforthebreakdownvoltage,Eq.(1.8),withrespectto pL andsettingthederivativeequaltozero,wecanfindthevalueof pL thatcorresponds totheminimumbreakdownvoltage(Raizer, 1991,Chapter7)

andtheminimumvoltageis

whichisreferredtoastheminimumsparkingpotential,andistheminimumvoltage atwhichelectricalbreakdowncanoccurinagivengas.

AccordingtoEq.(1.8),thebreakdownvoltageishighforlowandhighpressure andaminimumat pL givenbyEq.(1.9).Atthelowerpressurestheionizationprocess isineffectiveduetothelowelectron-neutralcollisionprobability,whereasathigher pressureselasticcollisionspreventtheelectronsfromreachinghighenoughenergy forionizationtooccur.Thenumberofgasatomsormoleculesinthespacebetween

theelectrodesisproportionalto pL.Atlowerpressure,thedistancebetweencathode andanodehastobelongertocreateadischargewithpropertiescomparabletothose ofhighpressurewithsmalldistancebetweentheelectrodes.Forlowpressure,the electronmeanfreepathislarge,andmostelectronsreachtheanodewithoutcolliding withgasatomsormolecules.Thus,atlowpressure,ahighervalueof VB isrequired togenerateenoughelectronstocausethebreakdownofthegas.Athigherpressures, theelectronmeanfreepathisshort.Theelectronsdonotgainenoughenergyfromthe electricfieldtoionizethegasatomsormoleculesduetotheirfrequentcollisionswith thegasmolecules.Therefore VB increasesasthepressureincreases.

1.1.3Thecathodesheath

Allplasmasareseparatedfromthesurroundingwallsbyasheath.Wehaveseenin Section 1.1.1,andinparticularinFig. 1.3A,thatmostofthepotentialdropovera dcglowdischargeappearsacrossthecathodesheath.Therelationbetweenthesheath thickness dc ,thedischargecurrentdensity J ,andthevoltagedropacrossthecathode sheath Vc wasderivedbyChild(1911),assumingthattheinitialionenergyisnegligiblecomparedtothesheathpotential(seealsoLiebermanandLichtenberg(2005, Section6.2)),giving

where Mi istheionmass.Eq.(1.11)isreferredtoastheChildlaworthecollisionlessChild–Langmuirlaw.TheChildlawisvalidwhenthesheathpotentialislarge comparedtotheaverageenergyoftheelectrons.Asimilarrelationwasderivedby Langmuir(1913)forelectronsemittedfromahotcathodeapproachingacoldanode (nothermionicemission).Inthecollisionalregime,wherethepressureishighenough thatthechargedspeciesinteractfrequentlywithneutralgasspecies,wecanassume thattheion-neutralmeanfreepath λi isindependentoftheionvelocity(Lieberman andLichtenberg, 2005,Section6.6).ThisgivesthecollisionalChildlaw

Alternatively,assumingthatthediffusionofionsisnegligible,comparedtothedrift duetoanelectricfield,andassumingthattheionmobility μi isindependentoftheion velocity,weget

whichisreferredtoastheMott–Gurneylaw.Itwasderivedtodescribethecurrentat theinterfaceofasemiconductorandinsulator(MottandGurney, 1948,ChapterV)and lateradaptedtodescribethecurrentthroughthedischargesheathbyCobine(1958).

Equation(1.13)isvalidonlyatveryhighpressures(lowdriftvelocities).Therelation betweenthecurrentdensity,sheathvoltagedrop,andthesheaththicknessgivenby Eqs.(1.12)and(1.13)issometimesreferredtoasthecollisionalChild–Langmuir law.Wenoteherethatthescalingsofthecurrentdensitywithboth Vc and dc in Eq.(1.12)aredifferentfromEq.(1.13).Ithasbeendemonstratedbyexperiments thattheMott–Gurneylaw(Eq.(1.13))appliestoadcglowdischargeinhydrogen (Lisovskiyetal., 2016)andnitrogen(Lisovskiyetal., 2014)formostofthepressure rangefrom10to333Pa.

1.1.4Secondaryelectronemission

Theemissionofsecondaryelectronsasaresultofionsorneutralsbombardinga metallicsurfaceplaysanimportantroleindischargephysics.Thesecondaryelectron emissionyieldorcoefficient γsee isdefinedasthenumberofsecondaryelectronsemittedperincidentspecies.Thesecondaryelectronemissionyieldgenerallydependson thematerialbeingbombarded,itssurfacecondition,thetypeofbombardingspecies, andthekineticenergyofthebombardingspecies.Thesputtertargetsareheldathigh negativepotentials,andthusthesecondaryelectronsareacceleratedawayfromthe targetsurfacewithinitialenergyequaltothetargetpotential.Inmanycases,these electronssustainthedischargebyionizationoftheneutralworkinggas.Theseions thenbombardthecathodetargetandsubsequentlyreleasemoresecondaryelectrons.

Asafirstapproximation,thesecondaryelectronemissionyieldisindependentof thevelocityofthebombardingparticlewhiletheirenergyislow,sincetheelectron emissionoccursduetotransferofthepotentialenergyoftheincomingionoratom toanelectroninthetarget(Hagstrum, 1954,Abroyanetal., 1967).ThisconstantsecondaryelectronemissionyieldisattributedtoanAugerprocessandisreferredtoas potentialemission.Theenergy-dependentportionofthesecondaryelectronemission yieldiscalledkineticemission.Kineticemissionoccurswhenabombardingparticle transferssufficientkineticenergytoanelectroninthetarget.Typically,itstartscontributingtothetotalsecondaryelectronemissionyieldatathresholdenergyofaround afewhundredelectronvolts.Thisprocessdominatesathigherenergies.Bothexperimentaldataandtheorypredictalineardependenceofthesecondaryelectronemission yieldonthebombardingparticleenergyclosetothethresholdenergy,andlineardependenceonthebombardingvelocityathigherenergies(Abroyanetal., 1967,Parilis andKishinevskii, 1960,Cawthron, 1971,Baragiolaetal., 1979,Hasselkamp, 1992). Atmuchhigherenergies,experimentaldatashowthattheelectronyieldstartsdecreasingwithincreasingbombardingvelocity.Thisoccursforabombardingenergy ofaround100keVforH+ (Hasselkamp, 1992).Thetwodifferentmechanismsare consideredtobedetachable,sothetotalelectronemissionyieldiswrittenas

where γp and γk arethecontributionsfrompotentialandkineticemissiontothetotal yield,respectively.Inadditiontotheenergyoftheimpactingparticle,thesecondary

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
High power impulse magnetron sputtering: fundamentals, technologies, challenges and applications 1st by Education Libraries - Issuu