High-risk pollutants in wastewater 1st edition hongqiang ren (editor) - The ebook with rich content

Page 1


https://ebookmass.com/product/high-risk-pollutants-inwastewater-1st-edition-hongqiang-ren-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The

High Stakes Rescue: A K9 Handler Romance (Disaster City Search and Rescue, Book 29) 1st Edition Jenna Brandt

https://ebookmass.com/product/the-high-stakes-rescue-a-k9-handlerromance-disaster-city-search-and-rescue-book-29-1st-edition-jennabrandt/ ebookmass.com

Arias' Practical Guide to High-Risk Pregnancy and Delivery 5th Edition Glennis Zilm

https://ebookmass.com/product/arias-practical-guide-to-high-riskpregnancy-and-delivery-5th-edition-glennis-zilm/

ebookmass.com

An Innovative Role of Biofiltration in Wastewater Treatment Plants (WWTPs) Maulin P. Shah

https://ebookmass.com/product/an-innovative-role-of-biofiltration-inwastewater-treatment-plants-wwtps-maulin-p-shah/

ebookmass.com

La redención de David 1ª Edition Sarah Rusell

https://ebookmass.com/product/la-redencion-de-david-1a-edition-sarahrusell/

ebookmass.com

Human and Animal Minds: The Consciousness Questions Laid to Rest Peter Carruthers

https://ebookmass.com/product/human-and-animal-minds-theconsciousness-questions-laid-to-rest-peter-carruthers/ ebookmass.com

Enhanced adsorption of bromate from aqueous solutions on ordered mesoporous Mg-Al layered double hydroxides (LDHs)

Huashun Ji & Wenhao Wu & Feihu Li & Xiaoxue Yu & Jingjing Fu & Luyao Jia

https://ebookmass.com/product/enhanced-adsorption-of-bromate-fromaqueous-solutions-on-ordered-mesoporous-mg-al-layered-doublehydroxides-ldhs-huashun-ji-wenhao-wu-feihu-li-xiaoxue-yu-jingjing-fuluyao-jia/ ebookmass.com

Forget Me Not Cowboy: Enemies to Lovers, Second Chance, Small Town, Mistaken Identity, Amnesia, Clean Romance

Skylar White

https://ebookmass.com/product/forget-me-not-cowboy-enemies-to-loverssecond-chance-small-town-mistaken-identity-amnesia-clean-romanceskylar-white/ ebookmass.com

eTextbook 978-0137062706 Bioprocess Engineering: Basic Concepts (3rd Edition)

https://ebookmass.com/product/etextbook-978-0137062706-bioprocessengineering-basic-concepts-3rd-edition/

ebookmass.com

Assessment Procedures for Counselors and Helping Professionals (Merrill Counselling) 8th Edition – Ebook PDF Version

https://ebookmass.com/product/assessment-procedures-for-counselorsand-helping-professionals-merrill-counselling-8th-edition-ebook-pdfversion/

ebookmass.com

Pharm Phlash! Pharmacology Flash Cards 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/pharm-phlash-pharmacology-flashcards-3rd-edition-ebook-pdf/

ebookmass.com

High-RiskPollutants inWastewater

ProfessorandtheDean

SchooloftheEnvironment

NanjingUniversity

Nanjing,China

XuxiangZhang

Professor

SchooloftheEnvironment

NanjingUniversity

Nanjing,China

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

High-RiskPollutantsinWastewater

Copyright © 2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compoundsorexperimentsdescribed herein.Becauseofrapidadvancesinthemedicalsciences,inparticular,independent verificationofdiagnosesanddrugdosagesshouldbemade.Tothefullestextentofthe law,noresponsibilityisassumedbyElsevier,authors,editorsorcontributorsforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

ISBN:978-0-12-816448-8

Publisher:AndreGerhardWolff

AcquisitionEditor:LouisaMunro

EditorialProjectManager:RubySmith

ProductionProjectManager:KiruthikaGovindaraju

CoverDesigner:AlanStudholme

Contributors

JinjuGeng,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

XiweiHe,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

HaidongHu

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

HuiHuang,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

KailongHuang,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

ShuyuJia

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

XiaofengJiang

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

KanLi

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

MeiLi,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

RuxiaQiao

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

HongqiangRen,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

ChengSheng

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

JinfengWang

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

BingWu,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

GangWu

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

KeXu

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

LinYe,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

JinbaoYin,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

XuxiangZhang,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

YanZhang,PhD

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

HuajinZhao

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

Introduction 1

StateKeyLaboratoryofPollutionControlandResourceReuse,Schoolofthe Environment,NanjingUniversity,Nanjing,China

Chapteroutline

1.1Environmentalhigh-riskpollutants........................................................................

1.1 Environmentalhigh-riskpollutants

Inrecentyears,inadditiontolargequantitiesofpollutantssuchasCODand ammonianitrogen,newproblemsregardingthetoxicsubstancesintheenvironment havebeenhighlighted.InChina,nearly50,000kindsofchemicalsareproducedand usedfordifferentpurposes,andthisnumberisstillincreasing,asmanynewdrugs, antibiotics,andpesticidesarebeingcontinuouslysynthesizedforuse.Besidesthe chemicals,somebiologicalsubstances(e.g.,bacterialpathogen,viruses,andantibioticresistancegenes)comingfromlivingorganismscanalsoleadtoadverseeffectsonbothhumanandtheenvironment.Notably,wastewaterisanimportant environmentalreservoirforboththechemicalandbiologicalsubstances,which canintroducethemintoreceivingwaterbodyalongwithwastewaterdischarge. Manyofthechemicalsarestructurallycomplexandarestableanddifficultto degrade.Owingtothecumulativeandpersistentcharacteristics,thesubstances cannotbecompletelyremovedintheexistingconventionalwastewatertreatment systems;thus,considerableamountofthesubstancesortheirtransformedproducts enterwaterandsoilenvironmentsthroughthedischargefromindustrialorurban pointsources,aswellasurbanoragriculturalnonpointsources.Thesubstances enteringtheenvironmentarecalled“pollutants,”andavarietyofthemhavebeen frequentlydetectedinnaturalwaterssuchasrivers,lakes,oceans,andgroundwater inrecentyears.Ithasbeenestimatedthatover4000kindsoftraceorganicpollutants arepresentinwaterenvironmentinChina,whichhavebecomeanimportantfactor endangeringhumanandenvironmentalhealth.

Althoughmostofthepollutantshavelowconcentrationsorabundanceinthe environment,manyofthemcanaccumulateinorganismsandspreadandenrich throughthefoodchain,leadingtochronicpoisoningofanimalsorhuman.Theother

High-RiskPollutantsinWastewater. https://doi.org/10.1016/B978-0-12-816448-8.00001-0 Copyright © 2020ElsevierInc.Allrightsreserved.

partofpollutantsisnotstable,buttheyarecontinuouslydischargedintonaturalwaterduetocontinuousproductionandextensiveuseforhumanlivingandanimalhusbandry.Afterlong-termevenfull-lifecycleexposure,thephenomenonof “pseudopersistence”isformedinanimalorhumanbodiestoinducetoxicities. Therefore,thechronictoxicity,microbialresistance,andsynergistictoxicitycaused bythesubstanceshavereceivedgrowingconcerns.

High-riskpollutants(HRPs)aredefinedasthehighlydiversechemicalandbiologicalmatterswithhightoxicityandcomplicatedtoxicologicalmechanismsthat canposeseriousriskstoecosystemsandhumanhealthevenatlowconcentrations. HRPpollutionisregardedbytheUnitedNationsEnvironmentProgramasanurgent issuethatneedstobedealtwiththroughglobalcooperation,andsincethe1990s manydevelopedcountrieshaveintroducedregulationstocontrolHRPs.In2014, Chinaalsoissuedthe“High-RiskPollutantsReductionActionPlan”.European legislationfollowstheprecautionaryprincipleandhasintroducedstringent thresholdlimits(100ng/L)formanychemicalHRPsinwaterenvironments.IndustrialandmunicipalwastewatercontainsavarietyofHRPsincludinghighlydiverse chemicalandbiologicalsubstanceswithhightoxicities,posingseriousriskstoecosystemsandhumanhealthevenatlowconcentrations.

1.2 ControlofHRPsinwastewater

Watershortageisoneoftoday’sgrandchallengesasmanyoftheriversorlakesin theworldbecomepolluted,andwastewaterreuseordeepcleaningisconsidered effectiveinsolvingtheproblem.PresenceofavarietyofHRPsinindustrialand municipalwastewaterconstrainstheadvancedtreatmentandreuseofthewastewater.EvaluationandcontrolofHRPsinwastewaterisanimportantissueforwater pollutioncontrol,andonlymeasuringquantitativeintegratedindices,suchasCODCr andBOD5,isnotsufficientforassessingandcontrollingtheriskinducedbywastewaterdischarge,sobiotoxicityindicesandstandardshavebeenrecommendedasalternativesinmanycountries.

Recently,advancedtreatmentandreuseofwastewaterhavebeenincreasingly implementedinmanycountriestosolvetheproblemsofseriouswatershortage andpollution.Theadvancedphysicochemicaltechnologiesincludemembranefiltration,activatedcarbonabsorption,andadvancedoxidation,buttheyareneitherenvironmentallynoreconomicallysustainable,whichseriouslyconstrainstheirpractical application.Asasustainableandcost-efficientalternative,biodegradationofHRPs eitherbyendogenousorbioaugmentedmicrobiotaisconsideredaspromisingtechnologies.However,variousbottleneckshampertheimplementationofbiodegradationasarobustHRPremovaltechnologythatcombinesremovalefficacy,energy efficiency,andriskreduction,andthekeyproblemtobesolvedishowtoeliminate themicrobialconstraintsthatlimitbiodegradationofHRPspresentasmixturesin wastewater.Therefore,applicationofappropriatehazard/riskassessmentandtreatmenttechnologies,whichareeffective,lowcost,andsimpletooperate,isakey

componentinanystrategyaimedatreducingecologicalandhealthrisksarising fromwastewaterdischargeandreuse.

1.3 Objectiveandcontentsofthisbook

Currently,manybooksonthemarkethavebeenfocusedonthetreatmenttechnology andengineeringofwastewatertomeetthedischargeorreusestandardsrequiredby thegovernmentsofdifferentcountries,butprovidelittleinformationregarding HRPsandtheirriskassessmentandcontroltechnologies.Therefore,themajorobjectivesofthisbookentitled“High-RiskPollutantsinWastewater”areasfollows:

(1) Thisbookpresentsthebasicknowledgeregardingthediversity,concentrations, andhealthandenvironmentalimpactsofHRPsinwastewater.Thebook summarizestheinformationofthetypes(e.g.,heavymetals,toxicorganics, andpathogens)andtoxicitiesofHRPsinwastewater,andalsodescribes ecologicalandhealthhazardsorrisksarisingfromthelivingthings’direct/ indirectcontactswiththeHRPsduringtheirfulllifecycles(generation, disposal,discharge,andreuse)inwastewaterorwaterenvironments.

(2) ThisbookpresentstheconceptsofappropriatetechnologyforHRPhazard/risk assessmentandwastewatertreatment/reuseandtheissuesofstrategyand policyforincreasingtheriskcontrolcoverage.Thebookfocusesontheresolutionofwaterqualitymonitoringandwastewatertreatmentanddisposal problemsinbothdevelopedanddevelopingcountries,andtheconceptspresentedarewishedtobevalidandapplicableinriskwarningandcontrolfor wastewaterdischargeintotheenvironmentandreuseforanypurposes.

Thisbookmainlyincludes11chapters:(1)Introduction;(2)ChemicalHRPsin wastewater;(3)BiologicalHRPsinwastewater;(4)Technologiesfordetectionof HRPsinwastewater;(5)Humanhealthhazardsofwastewater;(6)Ecologicalsafety hazardsofwastewater;(7)Assessmenttechnologiesforhazards/risksofwastewater; (8)PhysicochemicaltechnologiesforHRPsandriskcontrol;(9)BiologicaltechnologiesforHRPsandriskcontrol;(10)Wastewaterdisinfectiontechnologies;and(11) RiskmanagementpolicyforHRPsinwastewater.

Thisbookdeliverstheideaofrecognition,assessment,andcontrolofHRPs, includinghighlydiversechemicalandbiologicalmatterswithhightoxicityatlow concentrations.Thebookwastechnologicallywritten,anddoesnotinvolvetraditionalpollutantsthatalsoaffectenvironmentalandecologicalhealth,suchasnitrogenandphosphorusinwastewater.Thisbookisexpectedtobeusedasatextbookor referencebookforthegraduatestudentsmajoringinenvironmentalscience,environmentalengineering,andcivilengineering,andwillalsoprovideausefulreferenceforwastewatertreatmentplantpersonnel,industrialwastewatertreatment professionals,governmentagencyregulators,environmentalconsultants,andenvironmentalattorneys.

ChemicalHRPsin wastewater 2

GangWu,JinfengWang,JinjuGeng,PhD StateKeyLaboratoryofPollutionControlandResourceReuse,SchooloftheEnvironment,Nanjing University,Nanjing,China

Chapteroutline

2.1Heavymetals....................................................................................................... 6

2.1.1Sourcesofheavymetalsinwastewater.................................................6

2.1.2Occurrenceandconcentrationsofheavymetalsinwastewater................7

2.1.3Migrationandtransformationofheavymetalsinwastewater.................10

2.2Persistentorganicpollutants.............................................................................. 10

2.2.1SourcesofPOPsinwastewater..........................................................12

2.2.2OccurrenceandconcentrationsofPOPsinwastewater.........................16

2.2.3MigrationandtransformationofPOPsinwastewater...........................16

2.3Pharmaceuticalandpersonalcareproducts........................................................ 18

2.3.1SourcesofPPCPsinwastewater........................................................18

2.3.2OccurrenceandconcentrationsofPPCPsinwastewater.......................19

2.3.3MigrationandtransformationofPPCPsinwastewater..........................19

2.4Endocrine-disruptingchemicals.......................................................................... 22

2.4.1SourcesofEDCsinwastewater..........................................................22

2.4.2OccurrenceandconcentrationsofEDCsinwastewater.........................23

2.4.3MigrationandtransformationofEDCsinwastewater...........................23

2.5OtherHRPs........................................................................................................ 23

2.5.1SourcesofotherHRPsinwastewater.................................................26

2.5.2OccurrenceandconcentrationsofotherHRPsinwastewater................26

2.5.3MigrationandtransformationofotherHRPsinwastewater...................27

2.6Summary........................................................................................................... 27 References............................................................................................................... 28 FurtherReading........................................................................................................ 39

Inrecentyears,moreandmorechemicalsaresynthesizedandusedtomeetpeople’s risinglivingstandards.ItisreportedthatthechemicalsregisteredundertheChemicalAbstractService(CAS)havebeenover140million(LiandSuh,2019).Once theyareusedanddischarged,thesechemicalswillexistinvariousenvironmentmedium.Humanbeingscanbeexposedtothesechemicals.Thisraisesaseriousissue forpeopletopaymoreattentionontheadverseeffectofthesechemicalson

High-RiskPollutantsinWastewater. https://doi.org/10.1016/B978-0-12-816448-8.00002-2 Copyright © 2020ElsevierInc.Allrightsreserved.

ecosystem.However,itisimpracticaltofocusonallthechemicalsregisteredinCAS (Whaleyetal.,2016).Someprioritizedchemicals,especiallyforthechemicalswith highrisk,shouldbegivenenoughattentionfirstly.

Chemicalhigh-riskpollutants(HRPs)refertothechemicalswithhighecological risktoecosystem(Rasheedetal.2019; Zhouetal.,2019).TheseHRPs(anthropogenicornatural)includebutarenotlimitedtoheavymetals,persistentorganicpollutants(POPs),pharmaceuticalsandpersonalcareproducts(PPCPs),andendocrine disruptingchemicals(EDCs)(LiandSuh,2019).Generally,wastewaterisoneofthe majorsinkfortheseHRPsoncetheybecomeconsumerproducts.Theoccurrenceof theseHRPsinwastewaterwillposesomepotentialadverseeffectonthedownside ecosysteminevitably(Tranetal.2017).Therefore,chemicalHRPsinwastewater shouldbegivenenoughattention.Understandingtheenvironmentalbehaviorand transformationcharacteristicsofchemicalHRPsisimportantfortheirremoval andriskreductioninenvironment.Inthischapter,thecategory,source,concentrations,migration,andtransformationofchemicalHRPsinwastewateraresummarizedindetail.ThisisbeneficialtofilltheknowledgegapofchemicalHRPsin wastewater.

2.1 Heavymetals

Heavymetalsrefertoanymetallicelementthathasarelativelyhighatomicmass(> 5g/cm3)andaretoxicorpoisonousevenatalowconcentration(Nagajyotietal., 2010).Heavymetals,whicharesignificantlytoxictoenvironmentalecology,mainly includecadmium(Cd),chromium(Cr),nickel(Ni),mercury(Hg),lead(Pb),manganese(Mn),copper(Cu),andzinc(Zn).Thesource,occurrenceandcontamination level,andfateofheavymetalsinwastewater,whichwillprovideaclearunderstandingonecologicalriskofmetalsinwastewatertoreaders,aresummarizedasfollows.

2.1.1 Sourcesofheavymetalsinwastewater

Industrialactivitiesareasignificantsourceofheavymetals(SantosandJudd,2010). Miningoperationsandoreprocessing,textiles,metallurgyandelectroplating,dyes andpigments,papermills,tannery,andpetroleumrefiningarethemainsourcesof heavymetalsinwastewater.Minewastewaterareoftenacidicandcontaindissolved heavymetals,suchasCd,Cr,Zn,andMn(HedrichandJohnson,2014),which mainlycomefrommineralprocessingandwashing(Zaranyikaetal.,2017).Plating rinsingprocessoftenintroducesCr,Cu,andHgintometallurgyandelectroplating wastewater(Hideyukietal.,2003).Metallizedcomplexedazodyeproductioncontributesthepresenceofmostoftheheavymetalsintextileswastewater(Edwards andFreeman,2010).Heavymetalsindyesandpigmentsmainlyarederivedfrom textilewarpsize,dye,andsurface-activeagents(HalimoonandGohsooYin, 2010).PapermillscontributetoahighconcentrationofHginwastewater(ElShafey,2010).Cristhedominantheavymetalintannerywastewater(Mella

etal.,2015).Heavymetalsfrompetroleumrefiningarederivedfromwasteoilrefiningcatalyst,whichmainlyincludeNi,Hg,Pb,Cr,andCd.Inaddition,some heavymetals,suchasCd,Cr,Hg,Ni,Pd,andAshavealsobeenrecognizedin municipalwastewatertreatmentplants.

2.1.2 Occurrenceandconcentrationsofheavymetalsin wastewater

Convergingfromdifferentsources,heavymetals,forexample,Cd,Cr,Ni,Hg,Pb, Mn,Cu,andZn,havebeenfrequentlydetectedinmunicipalandindustrialwastewater.Forexample, Ustun(2009) investigatedninemetals(Al,Cd,Cr,Cu,Fe, Mn,Ni,Pb,andZn)inwastewatertreatmentplants(WWTPs)inBursa(Turkey) for23monthsin2002and2007andfoundthatallthemetalsweredetectable. Teijon etal.(2010) assessedthecontaminantsleveloffourheavymetals(Cd,Ni,Hg,and Pb)inWWTPsandonlyAgwasoccasionallyunderthedetectionlimit.Despiteof thewidedistributionofdifferentheavymetalsinWWTPsingeologicallydifferent regions,theconcentrationlevelsofheavymetalsshowgreatvariation. Tables2.1 2.6 listthemainheavymetalsandtheirconcentrationsinbothmunicipal wastewaterandindustrialwastewaterlocatedindifferentcountries.

Aslistedin Table2.1,CdandPbshowhighdetectionfrequencyintheWWTPs of13countries.ConcentrationsofCdrangefromnotdetected(ND)to220 mg/L, withthehighestconcentrationintheWWTPsofTurkey.Meanwhile,concentrations ofPbrangefromNDto6860 mg/L,withthehighestconcentrationintheWWTPsof China.Inaddition,NiandCrwerefoundtohavehighlevelsinthewastewaterfrom GreeceandItaly,respectively.

Aslistedin Table2.2,Cdoftenoccursintheindustrialwastewatergeneratedfrom miningoperationsandoreprocessing,petroleumrefining,textilesproduction,metallurgyandelectroplating,dyesandpigments,papermills,andtannery.Concentrations ofCdinindustrialwastewaterrangefromNDto200mg/L,andmetallurgyandelectroplatingwastewateroftencontainshighconcentrationsofCd(upto200mg/L).

Asshownin Table2.3,Croftenoccursintheindustrialwastewatergenerated fromminingoperations,oreprocessing,petroleumrefining,textilesproduction, metallurgyandelectroplating,papermills,andtannery.ConcentrationsofCrinindustrialwastewatersvarygreatly,rangingfrom12 mg/Ltoover1700mg/L.Among thedifferenttypesofindustrialwastewater,tannerywastewateroftencontainsthe highestconcentrationsofCr(sometimesover500mg/L).

Hgoftenoccursintheindustrialwastewatergeneratedfromminingoperations,ore processing,metallurgy,andelectroplating. ConcentrationsofHginindustrialwastewater arenotveryhigh,usuallybelow1mg/L(Rahmanetal.,2017;Chojnackaetal.,2004).

Asshownin Table2.4,Nioftenoccursintheindustrialwastewatergenerated fromminingoperations,oreprocessing,petroleumrefining,textilesproduction, metallurgyandelectroplating,papermills,andtannery.ConcentrationsofNiinindustrialwastewaterrangefromNDtoover50mg/L,andmetallurgyandelectroplatingwastewateroftencontainhighconcentrationsofNi.

Table2.1 Concentrationsofheavymetalsinmunicipalwastewaterfromdifferentcountries.

Country

Poland7 70 <20n.d.10 2010 150 a Chipasa(2003);Kulbatetal.(2003)

Greece0.8 320 275n.d.11 77037 103 a Karvelasetal.(2003);Spanosetal.(2016)

Turkey20 22020 212 <0.120 2026 358 a Arslan-Alatonetal.(2007;Ustun(2009)

Italy0.2

31 Busettietal.(2005);Carlettietal.(2008);Hu etal.(2016)

Spain5 a 0.447.55.2 a Teijonetal.(2010)

USA0.4238.69n.d.7.397.055.05 Shaferetal.(1998);Raheemetal.(2017)

Cheng,2003;(Fengetal.,2018)

a daSilvaOliveiraetal.(2007)

France0.39 0.67

<

a -:nodatainthereference.

Buzieretal.(2006)

Edokpayietal.(2015)

AlEnezietal.(2004)

Chanpiwatetal.(2010)

Table2.2 ConcentrationsofCdinindustrialwastewaterfromdifferent countries.

SourceCodea Country

Mining operations andore processing

Petroleum refining

Textiles production

CACzech Republic

Concentrations(mg/ L)Reference

0.227

Sweden1.0

Egypt0 1

China0.002 0.022

MATunisia0.6

HAPakistan0.07 0.51

Malaysia0.409

Iran0.28

Rwanda0.05 0.14

Egypt40.65

Pakistan0.004 0.51

Metallurgy and electroplating

Dyesand pigments

SAPoland3.81

Dousova ´ etal.(2005)

HedrichandJohnson (2014)

Nosier(2003)

ChongyuLan(1992); Huetal.(2014)

BenHarizetal.(2013)

Alietal(2009); (Noreenetal.,2017)

Al-Zoubietal.(2015)

Ghorbaniand Eisazadeh(2013)

Sekomoetal.(2012)

Mahmouedetal., 2010

Alietal.(2009); Mahmouedetal. (2010)

Chojnackaetal. (2004)

Egypt100 200 Nosier(2003)

IARwanda0.05 0.14

PapermillsLAIndia0.01 0.78

TanneryJAPakistan0.02 0.59

Mexico22

India1.22

a CategorizingaccordingtoISO22447.

Sekomoetal.(2012)

Arivolietal.(2015); Chandraetal.(2017); Kumaretal.(2016)

Alietal.(2009);Tariq etal.(2006,2009)

Contreras-Ramos etal.(2004)

Chandraetal.(2009)

Asshownin Table2.5,Pboftenoccursintheindustrialwastewatergenerated fromminingoperations,oreprocessing,petroleumrefining,textilesproduction, metallurgyandelectroplating,papermills,andtannery.ConcentrationsofPbinindustrialwastewaterrangefromNDtoover60mg/L,andmetallurgyandelectroplatingwastewatercontainshighconcentrationsofPd.

Asoftenoccursintheindustrialwastewatergeneratedfromminingoperations, oreprocessing,andtextilesproduction.ConcentrationsofAsinindustrial

wastewatersrangefromNDto54mg/L(Dousova ´ etal.,2005;Sekomoetal.,2012; HedrichandJohnson,2014;Limetal.,2010).

2.1.3 Migrationandtransformationofheavymetalsinwastewater

Whenheavymetalsaredischargedintowastewater,thedistributionofmetalsbetweentheaqueousandthesolidphaseofwastewateroccursinevitably(Karvelas etal.,2003;Shaferetal.,1998). Karvelasetal.(2003) investigateddistributionof metalsbetweentheaqueousandthesolidphaseofwastewater,revealinghighexponentialcorrelationbetweenthemetalpartitioncoefficient(logKp)andthesuspendedsolidsconcentration.Inaddition,differenttransformationreactionscan occurinwastewatertreatmentprocesses.Methylationisacommontransformation reactionofheavymetalsbymicroorganisms.Forexample, Maoetal.(2016) investigatedthefateofHginWWTPsandfoundinfluentMeHgmasswasdegraded,indicatingthatWWTPsareanimportantsinkforsewage-borneHg.Inaddition, chelationreactionisanothercommonreactioninWWTPs.Heavymetalsinwastewatermayoccurasattachedtosuspendedsolidsviasurfaceboundorganicligands oradsorbedontoamajorinsolublematrixcomponent(e.g.,iron(III)oxide, aluminumhydroxideetc.),insolublesalts,inorganiccomplexsolids,orasfreeor organicallyboundsolubleforms.Theirspeciationmaydependontheinfluentmetal concentration,influentchemicaloxygendemand,hardness,alkalinity,andpHofthe wastewater(SantosandJudd,2010). Wangetal.(2003) investigatedtheinteractions ofsilverinwastewaterconstituentsandfoundthatchloride,sludgeparticulates,and dissolvedorganicmatter(DOM)hadaninteractionwithsilverandthevolumeof adsorptiontoDOMsubstantiallyaffectedbythevalueofpH.

Duetothetoxicityeffectofheavymetalstowardecosystem,theremovalofheavy metalsinWWTPsisneeded(Qureshietal.,2016).Generally,heavymetalsareresistanttobiodegradeinWWTPs,andsomephysicochemicaltreatmentmethodsrather thantraditionalbiologicaltreatmenthavebeenverifiedtobeeffectiveinremovalof heavymetalsfromwastewater(Karvelasetal.,2003).Forexample, FuandWang (2011) evaluatedthecurrentmethodsthathavebeenusedtotreatheavymetalwastewaterincludingchemicalprecipitation,ion-exchange,adsorption,membranefiltration, coagulation-flocculation,flotation,andelectrochemicalmethods.Theyfoundthat adsorptionandmembranefiltrationarethemostfrequentlystudiedprocessesforthe treatmentofheavymetalsinwastewater.Inaddition,biosorptionisanotherpromising methodtoeliminateheavymetalsinwastewater(VeglioandBeolchini,1997).

2.2 Persistentorganicpollutants

POPsrefertoonegroupoforganiccompoundscharacterizedwithhightoxicity,environmentalpersistence,transportingoveralongdistancethroughvariousenvironmentalmedium,andaccumulatinginbiologicalbodieseasily(Tieyuetal.,2005). ThewidelyknownadverseeffectsofPOPstowardhumanbeingsarecarcinogenesis,

Table2.3 ConcentrationsofCrinindustrialwastewaterfromdifferent countries.

SourceCode

Petroleum refining

India1.3 2.0

Spain0.2

China0.6 2.08

MATunisia3.3

Textiles production HAPakistan0.023 1.67

India0.0152 7.854

Turkey45.7 66.6

Metallurgyand electroplating

Shabalalaetal.(2017)

Mishraetal.(2008); Saha etal.(2017)

Jime ´ nez-Rodrı´guez etal. (2009)

Maetal.(2015)

BenHarizetal.(2013);Hu etal.(2014)

Alietal.(2009); Manzoor etal.(2006)

SanmugaPriyaand SenthamilSelvan(2017)

Ertugruletal.(2009)

Malaysia0.056 Al-Zoubietal.(2015)

Rwanda1.27 2.83

Sekomoetal.(2012)

SASaudi Arabia 93.2 Al-Shannagetal.(2015)

Argentina0.012 1.45

Maineetal.(2017) China1.6 16.7 Wuetal.(2017)

PapermillsLAIndia0.11

Chandraetal.(2017) TanneryJAPakistan0.037 592.2

Alietal.(2009); Tariqetal. (2006,2009); Tariqetal. (2005)

Mexico1475

India9.38

Contreras-Ramosetal. (2004)

Chandraetal.(2009)

Northern Ireland 49 Boshoffetal.(2004)

USA1.7 55

a CategorizingaccordingtoISO22447.

PolatandErdogan(2007)

tetratogenesis,andmutagenesiseffects(Dietzetal.,2018;Raffettietal.,2018). Generally,POPsincludepolychlorinatedbiphenyls(PCBs),polycyclicaromatichydrocarbons(PAHs),perfluorooctanoicacids(PFOA)andperfluorooctanesulfonate (PFOS),short-chainchlorinatedparaffins(SCCPs),andorganicpesticides(OCPs) (Baoetal.,2012;Gallistletal.,2017;Mremaetal.,2013).Furthermore,28substances orsubstancegroupsofPOPslistedintheStockholmconventiondeservemoreattention(Fernandesetal.,2019;MagulovaandPriceputu,2016;Weietal.,2007;Zapata etal.,2018).Inthissection,thesource,occurrenceandcontaminationlevel,andfate

Table2.4 ConcentrationsofNiinindustrialwastewaterfromdifferent countries.

SourcesCode a Country

Mining operations andore processing

CASouth Africa

Concentration

0.6 1.3

Sweden0.3

India <0.001

China1.03

Shabalalaetal.(2017)

HedrichandJohnson (2014)

Sahaetal.(2017)

Huetal.(2014)

Petroleum refining MATunisia4 BenHarizetal.(2013)

Textiles production

Metallurgyand electroplating

HAPakistan0.67 Alietal.(2009)

Malaysia <0.001 Limetal.(2010)

India0.5 3 SanmugaPriyaand SenthamilSelvan(2017)

Turkey38.1 47.9 Ertugruletal.(2009)

Poland0.0693 0.11 Al-Zoubietal.(2015, CempelandNikel(2005)

SASaudi Arabia 57.6 Al-Shannagetal.(2015)

Argentina0.004 0.101

Maineetal.(2017)

Poland0.218 Chojnackaetal.(2004)

India6.704 Radhakrishnanetal. (2014)

PapermillsLAIndia0.06 3.30

Arivolietal. (2015);,Chandraetal. (2017); Kumaretal. (2016)

TanneryJAPakistan0.116 0.671 Tariqetal.(2006,2009); Tariqetal.(2005)

India0.44 Chandraetal.(2009)

a CategorizingaccordingtoISO22447.

ofPOPsinwastewater,whichwillprovideaclearunderstandingonecologicalriskof POPsinwastewatertoreaders,aresummarizedasfollows.

2.2.1

SourcesofPOPsinwastewater

ThesourcesofdifferentcategoriesofPOPsaregenerallydifferent.Thepresenceof pesticidesinWWTPsismainlyduetononagriculturalusages,suchasgrassmanagement(golfcourses,educationalfacilities,parks,andcemeteries),industrial vegetationcontrol(industrialfacilities,electricutilities,roadways,railroads,pipelines),publichealth(mosquito-abatementdistricts,rodent-controlareas,andaquatic areas),andnonagriculturalcropssuchascommercialforestryandhorticultureand plantnurseries(Kock-Schulmeyeretal.,2013).

Table2.5 ConcentrationsofPbinindustrialwastewaterfromdifferent countries.

SourceCode a

Miningoperations andore processing

CASouth

Africa <0.03

Ghana0.140

China0.087 1.57

Shabalalaetal.(2017)

Acheampongetal. (2010)

ChongyuLan(1992); Maetal.(2015)

PetroleumrefiningMATunisia5 BenHarizetal.(2013)

TextilesproductionHAPakistan0.1 0.49 Alietal.(2009); Noreenetal.(2017)

Malaysia0.08 0.643

Metallurgyand electroplating

Al-Zoubietal.(2015); Limetal.(2010)

Rwanda0.25 0.67 Sekomoetal.(2012)

SAPoland1.52 10 3 Chojnackaetal. (2004)

China67.8 Wuetal.(2017)

PapermillsLAIndia0.22 1.05

TanneryJAPakistan0.196 0.872

Mexico9.1

Chandraetal.(2017); Kumaretal.(2016)

Tariqetal.(2006, 2009);Tariqetal. (2005)

Contreras-Ramos etal.(2004)

India0.34 Chandraetal.(2009)

a CategorizingaccordingtoISO22447.

ThewideuseofPCBsaspaints,inks,lubricants,andotheradditives,aswellas insulationfluidsintransformersandcapacitorsduring1950 1983isthedominant sourceofPCBsintovariousenvironmentalmedium,especiallyinwastewater (Rodenburgetal.,2011).IthasbeenindicatedthatoldWWTPsremainadominant sourceofPCBstotheenvironmentalthoughtheproductionhasbeenbannedfor 4decades(NeedhamandGhosh,2019).

ThesourcesofPAHsarecomplexandcanbedividedintonaturalandanthropogenicones.Generally,PAHsareformedbytheincompletecombustionofcoal,oil,tar, gas,wood,garbage,andcharbroiledmeatduringnaturaloranthropogenicprocesses. OthersourcesofPAHsincludeheavypetroleum,dieselfuels,kerosene,aviationfuel, heavyhome-heatingoils,oils,wasteoil,andmanylubricants(Khadharetal.,2010). Inapresentstudy,cokeproductionhasbeenidentifiedasoneofthemajorsourcesof China,whichcontributes16%ofthetotalPAHsinChina(Zhangetal.,2012).

PFOAandPFOSarewidelyusedintextile,fire-fightingfoam,leather,foodpackaging,carpet,floorgrinding,andshampoo.Theproduction,marketing,anduseof

Table2.6 ConcentrationsofPOPsinwastewaterfromdifferentcountries.

OCPsAldrinGreeceMunicipal wastewater 10 a Katsoyiannisand Samara(2004)

SpainMunicipal wastewater n.d.120 Barco-Bonilla etal.(2013)

DieldrinGreeceMunicipal wastewater 278.9 Katsoyiannisand Samara(2004)

CyprusMunicipal wastewater 12n.d. Fattaetal.(2007)

p,p’-DDDChinaMunicipal wastewater 2.42n.d. Lietal.(2008)

p,p’-DDTChinaMunicipal wastewater 13.55.23 Lietal.(2008)

DiuronSpainMunicipal wastewater n.d.250 Barco-Bonilla etal.(2013)

SpainMunicipal wastewater 93127Kock-Schulmeyer etal.(2013)

PAHsNaphtaleneSpainMunicipal wastewater 45003490 Sanchez-Avila etal.(2009)

AcenaphtylSpainMunicipal wastewater 30n.d. Sanchez-Avila etal.(2009)

FluoreneSpainMunicipal wastewater n.d.250 Barco-Bonilla etal.(2013)

SpainMunicipal wastewater 1150200 Sanchez-Avila etal.(2009)

ChinaCokingwastewater700,000350,000 Zhangetal.(2012)

ChinaPetrochemical wastewater n.d.1080 Wangetal.(2007)

PCBsPentachlorobiphenylUSAMunicipal wastewater 0.5950.397 PhamandProulx (1997)

TetrachlorobiphenylUSAMunicipal wastewater 0.6300.229 PhamandProulx (1997)

NaphthaleneChinaMunicipal wastewater 205.656.7 Tianetal.(2012)

AcenaphtheneChinaMunicipal wastewater 5.30.4 Tianetal.(2012)

FluoreneChinaMunicipal wastewater 23028.9 Tianetal.(2012)

PFOASingaporeMunicipal wastewater 16.35 Yuetal.(2009)

ChinaMunicipal wastewater 46,0002,200,000 Chenetal.(2012)

DenmarkMunicipal wastewater 18.62 Bossietal.(2008)

PFOSSingaporeMunicipal wastewater 13.97.3 Yuetal.(2009)

ChinaMunicipal wastewater 88.937.9 Chenetal.(2012)

DenmarkMunicipal wastewater 3.31.5 Bossietal.(2008)

a -:nodatainthereference.

commercialproductscontainingPFOAandPFOSmaterials,aswellastheuseof productscontainingPFOAandPFOSwillcausethesechemialsoccurinwastewater treatmentsystemthroughsurfacerunoffandsewernetworks(Guoetal.,2010).

SCCPsareaclassofhighlycomplextechnicalmixtures,andcontainagreatvarietyofisomers,diastereomers,andenantiomers.Generally,SCCPsareproducedin polyvinylchloride,flameretardant,andmetalcuttingfluidindustries(Weietal., 2016).DischargeofSCCPsintowastewatercanoccurduringproduction,usage, anddisposalorrecyclingoftheseproducts(Zengetal.,2012).

2.2.2 OccurrenceandconcentrationsofPOPsinwastewater

TheconcentrationsofPOPsindifferentWWTPsvarygreatly. Table2.6 summarizes theinformationregardingtheoccurrenceandconcentrationsofPPCPsinwastewaterindifferentcountries.

TheconcentrationsofmostofPOPssuchasOCPs,PAHs,PCBs,andPFOSlisted in Table2.6 rangefromng/Lto mg/L.OnlyPFOAreportedby Chenetal.(2012) in municipalwastewaterinChinaisuptotheconcentrationof2.2mg/L.Comparingthe concentrationofPOPsinmunicipalwastewaterwiththeminindustrialwastewater, themarkedlyhigherconcentrationdetectedinindustrialwastewatercanbefound. Forexample,theconcentrationofPAHsinmunicipalwastewaterrangesfromND to1150ng/L.However,theconcentrationofPAHsincokingwastewateris 700,000ng/Land35,000ng/Lforinfluentandeffluent,respectively.Inpetrochemical wastewater,theconcentrationofPAHsineffluentisupto1080ng/L.Moreover,the concentrationsofPOPsinwastewateraregeographicallydifferent.Forexample,dieldrinhastheconcentrationsof27and12ng/Lintheinfluentofmunicipalwastewater inGreeceandCyprus,respectively,whilePFOShastheconcentrationsof7.3,37.9, and1.5ng/LineffluentinSingapore,China,andDenmark,respectively.Higherlevels ofPFOScanbedetectedinWWTPsofChinathanintheothercountries,becauseindustrialwastewaterisoftendischargedintoWWTPsafterpretreatmentinChina.Itis worthnotedthatsomePOPs,suchasdiuron,aldrin,fluorene,andPFOA,havehigher concentrationsineffluentthanthoseininfluent,whichcouldbeexplainedbythat POPsarestoredintheactivatedsludgeofWWTPsandthenreleasedintotheaqueous phaseduringwastewatertreatmentprocess(Chenetal.,2012).

2.2.3 MigrationandtransformationofPOPsinwastewater

Inwastewater,hydrolyzation,volatilizationtogasphase,photolysis,adsorptionto activatedsludgeorsuspendedparticles,andbiodegradationprocessarethemajor migrationandtransformationroutesforPOPs(Kwonetal.,2014).Dependingon thechemicalpropertiesofPOPs,differenttypesofPOPsundergodifferentmigrationandtransformationprocesses.

BiodegradationandadsorptionarethemainremovalroutesforOCPsinwastewater.Forexample, Kwonetal.(2014) investigatedthefateoflindaneinthe WWTPsandfoundthatsorptiononprimarysludgesolidswasthemajorremoval

mechanism.Asignificantlinearcorrelationbetweenthecompound’spartitioncoefficientandtheorganicfractionofprimarysludgewasfound. Stasinakisetal.(2009) investigateddiuronbiodegradationinactivatedsludgebatchreactorsunderaerobic andanoxicconditions.Theresultsindicatedthatalmost60%ofdiuronisbiodegradedunderaerobicconditions,andtheexistenceofanoxicconditionsincreased diuronbiodegradationtomorethan95%.

PCBscanbeadsorbed,biodegraded,andbioaccumulatedduringwastewater treatmentprocesses.Becaus eoftheirhighlipidsolubility,PCBshavemuchhigher concentrationsinsedimentsandsuspendedsubstancesthaninwastewater(Balasubramanietal.,2014).AccordingtotheKow,(thevalueisgenerallylargerwhen PCBsiswithahighnumberofchlorineatoms)PCBswithalownumberofchlorineatomspresentedloweradsorptionstrengthinsedimentscomparedwithahigh numberofchlorineatoms.ItisnoteworthythatPCBsinsedimentscanberereleasedintowaterbodiesthroughthemethodofbiodegradation(Balasubramani etal.,2014).PlentyofstudieshaveinvestigatedthebiodegradationofPCBsby aerobicmicroorganismsinactivatedsl udge,andtheresultsindicatedthatPCBs withone,two,three,andfourchlorineatomshavegoodbiodegradationperformance,whileothercounterpartPCBs areresistanttobebiodegraded( Bergqvist etal.,2006 ).Thecounterpartswithhighcontentchlorineatomcanbedegraded inanaerobicconditionsth roughreduceddechlorina tion,whichisbeneficialto theformationoflowchlorinatedbiphenyls.Furthermore,lowchlorinatedbiphenylswillbedegradedbyaerobicdegradation( Balasubramanietal.,2014 ).Due tothehighlipidsolubilityofPCBs,theyt endtoaccumulateinfattytissues.The accumulationofPCBsinfattytissueisinfluencedbyexposurelevel,exposure time,molecularstructureofthecompound,andtypeofsubstitution.Generally, PCBswithmorechlorineatomsare conductivetotheaccumulation( Dinn etal.,2012).

PAHsgenerallyareremovedpartiallyinwastewatertreatmentsystem.Themain mechanismsforPAHsremovalintheseprocessesincludeadsorptionontosuspended solidsandsludge,biotransformation(biodegradation),andvolatilization.Other abioticdegradationroutes,suchasphotolysisandhydrolyzation,mayalsooccur naturally.Inconventionalactivatedsludgesystem,significantamountsofPAHs removalratehavebeenobserved(Caoetal.,2018).AdsorptionofPAHstobacterial cells,includingactivesurfacereactionandnonspecificpartitioningphenomena,has beenconsideredasthemostlikelyremovalprocess(Zhangetal.,2019).BiotransformationofPAHsmainlyincludesmetabolicreactiononmixedsubstrateandcometabolicreaction.Inmetabolicreaction,microorganismsusetargetpollutants togetherwithothercompoundsasenergyand/orcarbonsourceforcellmaintenance, growth,andreproduction.Microorganismsutilizeothersubstratesastheirenergy and/orcarbonsourceforcometabolicreaction.Furthermore,unspecificenzymes, suchasmonooxygenases,dioxygenases,andhydrolases,orcofactors,producedduringtransformationofgrowthsubstratecoulddegradethemicropollutantsbysidereactions.Generally,themechanismofaerobicbiodegradationofPAHsisthat dioxygenaseenzymesinitiallyoxidizethebenzeneringsofPAHsfortheformation

ofcis-dihydrodiols,andthenbioconvertedtodehydroxylatedintermediatesbydehydrogenationandendedwithCO2 andH2Oproductions(Gongetal.,2017).

Accordingtothepreviousstudies,PFOAandPFOSseemnottobeconsistently removedduringsecondarybiologicaltreatmentduetothehydrophobicandoleophobic(Arvanitietal.,2012).Insomecases,theconcentrationsofspecificPFOAand PFOSintreatedwastewaterarehighercomparedtorawsewage(Loganathanetal., 2007),indicatingtheirformationviabiotransformationofprecursorcompounds.In apreviousstudy, Keyetal.(1998) reportedthatPFOSismicrobiologicallyinertunderaerobicconditionsbyapurebacterialculture.Recently, Kwonetal.(2014) foundthatPFOScanbedecomposedupto67%byaspecificmicroorganism(Pseudomonasaeruginosa),buttheformationoffluorideionfromPFOSdegradationwas notobserved.However,PFBSandPFHxSweredetectedasminorproducts.The biodegradationandtransformationofPFOAhavebeenexaminedby Liouetal. (2010) employingfivedifferentanaerobicmicrobialcommunities,whichoriginated fromWWTPs,industrialsediment,agriculturalsoil,andsoilsoftwofiretraining areas,separately.Moreover,theresultsindicatedthatPFOAisbiologicallyinactive underalltheexaminedconditions.Sorptioncouldbeanotherimportantmechanism forPFOAsremovalduringwastewatertreatment.Generally,distributioncoefficients (Kd)andorganiccarbondistributioncoefficients(Koc)forPFOSandPFOAare recognizedasimportantfactorsonadsorptionvolume(SinclairandKannan,2006).

2.3 Pharmaceuticalandpersonalcareproducts

PPCPscontainawiderangeoforganiccompounds,includingpharmaceuticalssuch asantibiotics,hormones,analgesics,andantiinflammatorydrugs,antiepileptic drugs,bloodlipidregulators, b-blockers,contrastmedia,cytostaticdrugs,licitstimulants,andillicitdrugs.Moreover,personalcareproductsmainlyconsistofantimicrobialagents/disinfectants,syntheticmusks/fragrances,insectrepellants, preservatives,andsunscreenUVfilters(LiuandWong,2013).Theyhaveraisedsignificantconcernsinrecentyearsfortheirpersistentinputandpotentialthreatto ecologicalenvironmentandhumanhealth(Daietal.,2014;Wuetal.,2019).This sectionintroducesthesource,occurrence,concentrations,migration,andtransformationofthesePPCPsinwastewater,whichwillprovideaclearunderstanding onecologicalriskofPPCPsinwastewatertoreaders.

2.3.1 SourcesofPPCPsinwastewater

Aspeoplepaymoreattentiontotheirownhealth,pharmaceuticalsareproducedin largequantities.Generally,thepharmaceuticalfactoryisanimportantsourcefor pharmaceuticalintoenvironmentwaterbodies(Leietal.,2010).Inaddition,alarge volumeofpharmaceuticalsisusedasveterinarydrug,whichareoftenoverusedto keeppoultryhealthy.Therefore,someproportionofpharmaceuticalsareexcretedin poultrydroppingsandthenreleasedintothesurroundingwater(Jiangetal.,2013).

Inanalogy,forhumanbeings,manydrugsareexcretedwithoutmetabolismand consequentlyenterwastewatereitherintheirparentormetabolizedform(FattaKassinosetal.,2011). VienoandSillanpaa(2014) pointedthatonly6% 7%of diclofenacisabsorbedwhiletherestiswashedofftheskinorgluedtotheclothing. Furthermore,65% 67%ofdiclofenacisexcretedbyurine,and20% 30%ispresentinfeceswithaparentdrugormetaboliteforms.

Forpersonalcareproducts,differentusedpersonalcareproductscomefrom differentsourcesgenerally.Antimicrobials/disinfectantsaregenerallyusedforthe therapeutictreatmentofbacterialdiseasesforhumanbeings,andsomearealso usedforanimals,suchascattle,fish,andpoultryforgrowthpromotionandfordiseasetherapyandtreatment(Miaoetal.,2004).Therefore,thesourceofantimicrobials/disinfectantsisbasicallythesameasthesourceofpharmaceuticalsin wastewater.Forsyntheticmusks/fragrances,thelow-costsubstitutesfornatural muskshavebeenlargelyusedasfragrancesinmostofcleaningagentsandcosmetic products(Liuetal.,2014).Forpreservatives,theygenerallyareusedinawiderange oftoothpastes,cosmetics,hairstylingproducts,andsunscreens(Kimuraetal., 2014).MostofPPCPsarereleasedintothewastewaterthroughsewerlinessystem.

2.3.2

OccurrenceandconcentrationsofPPCPsinwastewater

Aspresentedin Table2.7,theconcentrationofPPCPsinwastewaterrangedbetween ng/Land mg/Llevel.Generally,theconcentrationofPPCPsinhospitalwastewater orpharmaceuticalwastewaterismarkedlyhigherthanthatitinmunicipalwastewater.SimilartrendfortheconcentrationofPPCPs,suchasciprofloxacin,diclofenac,andnaproxen,inmunicipalwastewater,hospitalwastewater,and pharmaceuticalwastewatercanalsobefound.Indifferentcountries,theconcentrationofdifferentPPCPsinwastewaterisdifferent.Forexample,theconcentrationof sulfamethoxazoleinwastewaterinSingaporeandChinawaswithsignificantdifference.TheconcentrationofciprofloxacininwastewaterinKoreaandCroatiaisatthe samelevel.However,theconcentrationofatenololintheUnitedKingdomisobviouslyhigherthanthatinGermany.Similartrendcanbefoundforbezafibratein ChinaandGermany.TheconcentrationofPPCPsdecreasesduringwastewatertreatmentprocess,whichdemonstratesthatwastewatertreatmentplantsplayaconsiderablerolefortheremovalofPPCPs.

2.3.3 MigrationandtransformationofPPCPsinwastewater

PPCPscanberemovedorberetainedinWWTPsafterenteringthewastewater.Generally,biodegradation,adsorption,volatilization,hydrolyzation,andphotolysisarethe likelytransformationroutesinwastewatertreatmentprocess(LiandZhang,2010). FormostofPPCPs,removalcausedbyvolatilizationisinsignificantattributedto therelativelygreatermolecularweight(Yangetal.,2017a).Similarly,photolysis generallycannotaccountforamentionableproportionofremovalforPPCPsin WWTPs.ThiscanbeexplainedbytheturbidityinWWTPsthatisunbeneficialto

Table2.7 ConcentrationofPPCPsinwastewaterindifferentcountries.

CategoryCompoundCountry

AntibioticsSulfamethoxazoleSingaporeMunicipal wastewater 1172311.3 Tranetal.(2016)

ChinaMunicipal wastewater 340.764.1 Benetal.(2018)

FranceHospital wastewater a 2100 Dinhetal.(2017)

ChinaBreeding wastewater a 40 Zhietal.(2018)

Republic ofKorea Pharmaceutical wastewater 166,000137,000 Simetal.(2011)

SulfamethazineSingaporeMunicipal wastewater 802.8135.9 Tranetal.(2016)

CiprofloxacinRepublic ofKorea Hospital wastewater 19803080 Simetal.(2011)

Republic ofKorea Pharmaceutical wastewater 87101860 Simetal.(2011)

CroatiaMunicipal wastewater 2610 a Sentaetal.(2013)

Nonsteroidal antiinflammatory drugs

DiclofenacChinaMunicipal wastewater 290190 Suietal.(2011)

USAMunicipal wastewater 28012 Yuetal.(2013)

Canada216,000214,000 Lajeunesseand Gagnon(2007)

NaproxenUKMunicipal wastewater 838370 KasprzykHordernetal. (2009)

FinlandMunicipal wastewater 4900840 Lindqvistetal. (2005) Republic ofKorea Pharmaceutical wastewater 59,70013,300 Simetal.(2011)

AntiepilepticdrugsCarbamazepineGermanyMunicipal wastewater 660740 Wicketal.(2009)

UKMunicipal wastewater 950826 KasprzykHordernetal. (2009)

b-blockersAtenololGermanyMunicipal wastewater 540300 Wicketal.(2009)

UKMunicipal wastewater 12,9132870 KasprzykHordernetal. (2009)

ContrastmediaIohexolChinaMunicipal wastewater 8.28.16 Yangetal. (2017b)

LicitstimulantsCaffeineChinaMunicipal wastewater 1083.65 Yangetal. (2017b)

IndiaMunicipal wastewater 75913 Mohapatraetal. (2016)

LipidregulatorsBezafibrateChinaMunicipal wastewater 72.611.4 Mohapatraetal. (2016)

GermanyMunicipal wastewater 1500500 Gurkeetal.(2015)

a ,nodatainthereference.

phototransformation.Biodegradationgenerallyplaysacrucialroleindegrading PPCPs.Forexample,biodegradationofdiclofenacaccountedforabout80%forthe totalremovalvolumeinactivatedsludge(Wuetal.,2019).ForotherPPCPssuch asantibiotic,theremovalattributedtoadsorption,hydrolyzation,volatilization,and biodegradationprocesshasbeenexploredby LiandZhang(2010) andtheresults demonstratedthatotherthanbiodegradation,otherremovalroutesplayedalimited role(less20%)fortheremovalofantibioticinwastewater.ItisnotedthatPPCPs generallycannotbeeliminatedcompletelybybiologicaltreatmentmethods(Tran etal.2017).Someadvancedtreatmentmethodssuchasadvancedoxidationprocesses (Zhangetal.,2016b;Fuetal.,2019a)anddisinfection(Zhangetal.,2015b)arepromisingapproachestoeffectivelyremovePPCPsinwastewatereffluents.

DuetoPPCPscannotbemetabolizedcompletelyinwastewatertreatmentsystem, someintermediateproductsaregeneratedinwastewatertreatmentprocess(Gulde etal.,2016;Helblingetal.,2010).Withthedevelopmentoftechnologyinidentifying transformationproducts,microbialmediatedtransformationproductsofPPCPshave increasinglyreceivedattention.Sometransformationproductshavebeendetectedand quantifiedinWWTPsconcurrentwithparentPPCPs(Beretsouetal.,2016).Inaddition,sometransformationproductshavebeenfoundtobemoretoxicantthanparent compounds(Gaoetal.,2018;EscherandFenner,2011).Therefore,transformation productsandparentcompoundsshouldreceiveequivalentattention.

2.4 Endocrine-disruptingchemicals

Endocrine-disruptingcompoundsreferto‘‘exogenoussubstancesthatalterfunction(s)oftheendocrinesystemandconsequentlycauseadversehealtheffectsin anintactorganism,oritsprogeny,or(sub)-populations’’(WHO/IPCS,2002).Therefore,anycompoundsthatcantriggerreproductivechangecanberegardedasEDCs. Generally,EDCsconsistofestrogensandsomeplantmetabolites,somepesticides suchasdichlorodiphenyltrichloroethanedieldrin,andlindane,industrialchemical productssuchasdioxinsanddioxin-likecompounds,theformerlywidelyused shipantifoulingagenttributyltin,organotincompoundsusedinpolyvinylchloride waterpipemanufacture(Aurioletal.,2006).Inthissection,themainsources,concentration,andfateofEDCsinwastewaterareintroduced.

2.4.1 SourcesofEDCsinwastewater

ThesourceofEDCscategorizedaspesticideisgenerallyagriculturalareasandsurfacerunoff.Inaddition,innonagriculturalcropssuchascommercialforestryand horticultureandplantnurseries,pesticidecanalsobewidelyusedanddischarged intowastewater(Kock-Schulmeyeretal.,2013).ForEDCslikehormones,pharmaceuticalfactoriesareanimportantpointsource.Inaddition,hospitalwastewaterand humanandanimalexcretionarealsoimportantsources(HamidandEskicioglu, 2012).ForEDCslikeindustrialchemicalproducts,themajorsourceforthemis

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.