Handbook of smart photocatalytic materials: fundamentals, fabrications and water resources applicati

Page 1


https://ebookmass.com/product/handbook-of-smartphotocatalytic-materials-fundamentals-fabrications-andwater-resources-applications-chaudhery-mustansar-hussain/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Handbook of Microbial Nanotechnology Chaudhery Mustansar Hussain

https://ebookmass.com/product/handbook-of-microbial-nanotechnologychaudhery-mustansar-hussain/

ebookmass.com

Handbook of Functionalized Nanomaterials for Industrial Applications 1st Edition Chaudhery Mustansar Hussain (Editor)

https://ebookmass.com/product/handbook-of-functionalizednanomaterials-for-industrial-applications-1st-edition-chaudherymustansar-hussain-editor/ ebookmass.com

Handbook of Analytical Techniques for Forensic Samples: Current and Emerging Developments Chaudhery Mustansar Hussain

https://ebookmass.com/product/handbook-of-analytical-techniques-forforensic-samples-current-and-emerging-developments-chaudherymustansar-hussain/

ebookmass.com

Mathematical Analysis: Volume II 1, January 1 2024 Edition

Teo Lee Peng

https://ebookmass.com/product/mathematical-analysis-volumeii-1-january-1-2024-edition-teo-lee-peng/

ebookmass.com

(eBook PDF) The Theatre Experience 14th Edition By Edwin

https://ebookmass.com/product/ebook-pdf-the-theatre-experience-14thedition-by-edwin-wilson/

ebookmass.com

British Women's Writing from Brontë to Bloomsbury, Volume 2: 1860s and 1870s 1st ed. Edition Adrienne E. Gavin

https://ebookmass.com/product/british-womens-writing-from-bronte-tobloomsbury-volume-2-1860s-and-1870s-1st-ed-edition-adrienne-e-gavin/

ebookmass.com

Own Me (The Wolf Hotel Book 5) K.A. Tucker

https://ebookmass.com/product/own-me-the-wolf-hotel-book-5-k-a-tucker/

ebookmass.com

Value Creation for Owners and Directors: A Practical Guide on How to Lead your Business Massimo Massa

https://ebookmass.com/product/value-creation-for-owners-and-directorsa-practical-guide-on-how-to-lead-your-business-massimo-massa/

ebookmass.com

Principles of auditing & other assurance services 20. edition Edition Pany

https://ebookmass.com/product/principles-of-auditing-other-assuranceservices-20-edition-edition-pany/ ebookmass.com

The Web3 Era: NFTs, the Metaverse, Blockchain, and the

https://ebookmass.com/product/the-web3-era-nfts-the-metaverseblockchain-and-the-future-of-the-decentralized-internet-david-shin/ ebookmass.com

Editedby

ChaudheryMustansarHussain DepartmentofChemistryandEnvironmentalSciences, TheNewJerseyInstituteofTechnology,Newark,NJ,UnitedStates

NanotechnologyandWaterSustainabilityResearchUnit, UniversityofSouthAfrica,SouthAfrica

AjayKumarMishra

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-819051-7

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: KostasMarinakis

EditorialProjectManager: ReddingMorse

ProductionProjectManager: VigneshTamil

CoverDesigner: MarkRogers

TypesetbyMPSLimited,Chennai,India

Listofcontributorsxi

SectionIIntroduction(fundamentalsofphotocatalytic processes)1

1.Advancedmaterialsforphotocatalyticapplications: thechallengeahead3

1.1Introduction3

1.2Photocatalyticmaterials3

1.3Factorsgoverningefficientphotocatalysis4

1.4Fieldsofapplicationsofphotocatalyticmaterials4

1.5Challengingissues5

1.6Summary5 References6

SectionIIGreensynthesisofphotocatalysts materials9

2.GreensynthesisofTiO2 anditsphotocatalyticactivity11

MANVIRIRANIANDUMASHANKER

2.1Introduction11

2.2Environmentalconcernoforganicpollutants12

2.3Limitationsoftraditionalmethodsandneedforgreen synthesis16

2.4CharacterizationofTiO2 nanoparticles17

2.5GreensynthesisofTiO2 17

2.6LaboratorysynthesisofTiO2 nanoparticles25

2.7Photocatalyticmechanism26

2.8ApplicationsofTiO2 nanomaterials26

2.9Summary40

2.10Conclusionsandfuturescope40 References41 Furtherreading54

SectionIIIMetaloxidesphotocatalyticmaterials63

3.Designandapplicationofvariousvisiblelightresponsive metaloxidephotocatalysts65

MILICAHADNADJEV-KOSTIC,TATJANAVULIC,JASMINADOSTANICAND DAVORLONCAREVIC

3.1Generalintroductionandobjectives65

3.2Photocatalysis mechanismsandkinetics66

3.3Metaloxide basedphotocatalystsandtheirapplication71

3.4Synthesisofmetaloxidephotocatalysts76

3.5Modificationofthemetaloxidesemiconductors82

3.6Conclusionandperspectives88 Acknowledgment89 References89

SectionIVMetal-organicframeworksphotocatalytic materials101

4.Immobilizationofsemiconductorphotocatalysts103

VIORICAPARVULESCU,MADALINACIOBANUANDGABRIELAPETCU

4.1Introduction103

4.2Whyimmobilizedsemiconductors?105

4.3Effectsofthesupportonsemiconductorproperties105

4.4Effectofimmobilizationonreactionmechanism125

4.5Effectofimmobilizationonphotocatalyticperformances129

4.6Conclusions132 References133

5.Plasmon-sensitizedTiO2 nanomaterialsas visiblelightphotocatalysts143

WEIZHOU

5.1Introduction143

5.2Noblemetalplasmon-sensitizedTiO2 nanomaterials145

5.3Nonnoblemetalplasmon-sensitizedTiO2 nanomaterials156

5.4Metal metalalloyplasmon-sensitizedTiO2 nanomaterials162

5.5Metalcompoundplasmon-sensitizedTiO2 nanomaterials163

5.6Conclusionandoutlook167 Acknowledgments168 References168

6.Plasmon-sensitizedsemiconductorsforphotocatalysis175

M.SAKARANDLEELAVATHIANNAMALAI

6.1Introduction175

6.2Mechanismofplasmonicphotocatalysis177

6.3Synthesisofplasmonicphotocatalysts178

6.4Applications185

6.5Conclusionandoutlook196 Acknowledgments197 References197

SectionVIPhotocatalyticmaterialsforwater resources207

7.Photocatalyticmaterials-basedmembranesforefficient watertreatment209

NURHASHIMAHALIAS,NORAZUREENMOHAMMADNOR, MOHAMADAZUWAMOHAMED,JUHANAJAAFARAND NURHIDAYATIOTHMAN

7.1Introduction209

7.2Variousfabricationandstructuremodificationof photocatalyticmembrane213

7.3Recentapplicationintreatingvarioushazardouspollutants219 7.4Conclusion224 References225

8.Currentphotocatalyticsystemsforintensifiedwater purificationapplications231

G.THEODORAKOPOULOS,C.ATHANASEKOU,G.EM.ROMANOSAND S.K.PAPAGEORGIOU

8.1Introduction231

8.2Usingpolymersforphotocatalyticsystemsfabrication234

8.3Morphologyofcurrentphotocatalyticsystems238

8.4Applicationsandperformance246

8.5Concludingremarks262 References262

9.Visiblelight drivenperovskite-basedphotocatalyst forwastewatertreatment265

NURSYAZWANIYAHYA,ATIKAHMOHDNASIR,NURATIQAHDAUB,FARHANA AZIZ,ARIFAIZAT,JUHANAJAAFAR,WOEIJYELAU,NORHANIZAYUSOF, WANNORHAYATIWANSALLEH,AHMADFAUZIISMAILANDMADZLANAZIZ

9.1Introduction265

9.2ConventionalmethodsofHAremovalinwastewater267

9.3Advancedoxidationprocessforwastewatertreatment270

9.4Perovskites278

9.5SelectionofsynthesismethodofLaFeO3 nanoparticles279

9.6Effectsofchelatingagents282

9.7Dualchelatingagents287

9.8Effectsofcalcinationtemperature290

9.9Parametersaffectingthephotocatalyticdegradation290

9.10Conclusion292 Acknowledgments292 References292

10.WastewatertreatmentusingTiO2-basedphotocatalysts303

SUMANDUTTA

10.1Introduction303

10.2Mechanismofphotocatalysis304

10.3Roleofoxygenaselectronscavenger305

10.4Modificationofphotocatalyst306

10.5Photoreactorsforwastewatertreatment313

10.6Reuseofphotocatalysts320 References321

11.Graphene-basedhybridphotocatalysts:apromising routetowardhigh-efficiencyphotocatalyticwater remediation325

CORRADOGARLISI,SAMARALJITAN,FRANCESCOPARRINOAND GIOVANNIPALMISANO

11.1Introduction325

11.2Grapheneproperties326

11.3Designstrategiesandsynthesismethods332

11.4Applications338

11.5Conclusionandoutlook350 References351

Listofcontributors

ArifAizat AdvancedMembraneTechnologyRe searchCentre(AMTEC),School ofChemicalandEnergyEngineering,FacultyofEngineering,Universiti TeknologiMalaysia,JohorBahru,Malaysia

NurHashimahAlias AdvancedMembraneTech nologyResearchCentre (AMTEC),SchoolofChemicalandEnergyEngineering,FacultyofEngineering, UniversitiTeknologiMalaysia,Skudai ,Malaysia;DepartmentofOilandGas Engineering,FacultyofChemicalEngineering,UniversitiTeknologiMARA,Shah Alam,Malaysia

LeelavathiAnnamalai DepartmentofChemicalandBiologicalEngineering, TuftsUniversity,Medford,MA,UnitedStates

C.Athanasekou InstituteofNanoscienceandNanotechnology,N.C.S.R. “ Demokritos ” ,Ag.Paraskevi,Athens,Greece

FarhanaAziz AdvancedMembraneTechnologyResearchCentre(AMTEC), SchoolofChemicalandEnergyEngineering,FacultyofEngineering,Universiti TeknologiMalaysia,JohorBahru,Malaysia

MadzlanAziz AdvancedMembraneTechnologyResearchCentre(AMTEC), SchoolofChemicalandEnergyEngineering,FacultyofEngineering,Universiti TeknologiMalaysia,JohorBahru,Malaysia

MadalinaCiobanu “ IlieMurgulescu ” InstituteofPhysicalChemistry, RomanianAcademy,Bucharest,Romania

NurAtiqahDaub AdvancedMembraneTec hnologyResearchCentre (AMTEC),SchoolofChemicalandEnergyEngineering,FacultyofEngineering, UniversitiTeknologiMalay sia,JohorBahru,Malaysia

JasminaDostanic DepartmentofCatalysisandChemicalEngineering, InstituteofChemistry,TechnologyandM etallurgy,Univer sityofBelgrade, Belgrade,Serbia

SumanDutta DepartmentofChemicalEngineering,IndianInstituteof Technology(ISM)Dhanbad,Dhanbad,India

CorradoGarlisi DepartmentofChemicalEngineering,KhalifaUniversityof ScienceandTechnology,AbuDhabi,UnitedArabEmirates;Centerfor MembraneandAdvancedWaterTechnology,KhalifaUniversityofScienceand Technology,AbuDhabi,UnitedArabEmirates

MilicaHadnadjev-Kostic FacultyofTechnologyNoviSad,UniversityofNovi Sad,NoviSad,Serbia

AhmadFauziIsmail AdvancedMembraneTechnologyResearchCentre (AMTEC),SchoolofChemicalandEnerg yEngineering,FacultyofEngineering, UniversitiTeknologiMalaysia,JohorBahru,Malaysia

JuhanaJaafar AdvancedMembraneTechnolo gyResearchCentre(AMTEC), SchoolofChemicalandEnergyEngineerin g,FacultyofEngineering,Universiti TeknologiMalaysia,Skudai,Malaysia

SamarAlJitan DepartmentofChemicalEngineering,KhalifaUniversityof ScienceandTechnology,AbuDhabi,UnitedArabEmirates

V.N.Lad ChemicalEngineeringDepartment,SardarVallabhbhaiNational InstituteofTechnology Surat,Surat,Gujarat,India

WoeiJyeLau AdvancedMembraneTechnologyResearchCentre(AMTEC), SchoolofChemicalandEnergyEngineerin g,FacultyofEngineering,Universiti TeknologiMalaysia,JohorBahru,Malaysia

DavorLoncarevic DepartmentofCatalysisandChemicalEngineering, InstituteofChemistry,Technologyand Metallurgy,UniversityofBelgrade, Belgrade,Serbia

MohamadAzuwaMohamed DepartmentofChemicalSciences,Facultyof ScienceandTechnology,UniversitiK ebangsaanMalaysia,Bangi,Malaysia

Z.V.P.Murthy ChemicalEngineeringDepartment,SardarVallabhbhai NationalInstituteofTechnology Surat,Surat,Gujarat,India

AtikahMohdNasir AdvancedMembraneTec hnologyResearchCentre (AMTEC),SchoolofChemicalandEnerg yEngineering,FacultyofEngineering, UniversitiTeknologiMalaysia,JohorBahru,Malaysia

NorAzureenMohammadNor AdvancedMembraneTechnologyResearch Centre(AMTEC),SchoolofChemicalandEnergyEngineering,Facultyof Engineering,UniversitiTeknologiMalaysia,Skudai,Malaysia

NurHidayatiOthman DepartmentofOilandGasEngineering,Facultyof ChemicalEngineering,UniversitiTeknologiMARA,ShahAlam,Malaysia

GiovanniPalmisano DepartmentofChemicalEngineering,KhalifaUniversity ofScienceandTechnology,AbuDhab i,UnitedArabEmirates;Centerfor MembraneandAdvancedWaterTechnolo gy,KhalifaUniversityofScienceand Technology,AbuDhabi,UnitedArabEmirates

S.K.Papageorgiou InstituteofNanoscienceandNanotechnology,N.C.S.R. “ Demokritos ” ,Ag.Paraskevi,Athens,Greece

FrancescoParrino DepartmentofIndustrialEngineering,Universityof Trento-ViaSommarive,Povo,Italy

VioricaParvulescu “ IlieMurgulescu ” InstituteofPhysicalChemistry, RomanianAcademy,Bucharest,Romania

GabrielaPetcu “ IlieMurgulescu ” InstituteofPhysicalChemistry,Romanian Academy,Bucharest,Romania

ManviriRani MalaviyaNationalInstituteofTechnologyJaipur,Jaipur,India

G.Em.Romanos InstituteofNanoscienceandNanotechnology,N.C.S.R. “ Demokritos ” ,Ag.Paraskevi,Athens,Greece

M.Sakar CentreforNanoandMaterialSciences,JainUniversity,Bangalore, India

WanNorhayatiWanSalleh AdvancedMembraneTechnologyResearch Centre(AMTEC),SchoolofChemical andEnergyEngineering,Facultyof Engineering,UniversitiTeknologiMalaysia,JohorBahru,Malaysia

UmaShanker DrBRAmbedkarNationalInstit uteofTechnologyJalandhar, Jalandhar,India

G.Theodorakopoulos InstituteofNanoscienceandNanotechnology,N.C.S. R. “ Demokritos ” ,Ag.Paraskevi,Athens,Greece;SchoolofChemical Engineering,NationalTechnicalUnive rsityofAthens,9IroonPolytechniou street,Zografou,Athens,Greece

TatjanaVulic FacultyofTechnologyNoviSad,UniversityofNoviSad,Novi Sad,Serbia

NursyazwaniYahya AdvancedMembraneTechnologyResearchCentre (AMTEC),SchoolofChemicalandEnergyEngineering,FacultyofEngineering, UniversitiTeknologiMalay sia,JohorBahru,Malaysia

NorhanizaYusof AdvancedMembraneTechnologyResearchCentre (AMTEC),SchoolofChemicalandEnerg yEngineering,FacultyofEngineering, UniversitiTeknologiMalaysia,JohorBahru,Malaysia

WeiZhou SchoolofChemistryandPharmaceuticalEngineering,Qilu UniversityofTechnology(ShandongAcademyofSciences),Jinan,P.R.China; KeyLaboratoryofFunctionalInorgan icMaterialChemistry,Ministryof EducationofthePeople ’ sRepublicofChina,HeilongjiangUniversity,Harbin, P.R.China

Advancedmaterialsfor photocatalyticapplications: thechallengeahead

CHEMICALENGINEERINGDEPARTMENT,SARDARVALLABHBHAINATIONALINSTITUTEOF

TECHNOLOGY SURAT,SURAT,GUJARAT,INDIA

1.1Introduction

Photocatalysisisassociatedwiththeexcitationofthevalenceelectronintotheconduction bandwheretheexcitedelectronscanreducethesurface-adsorbedspecies.Thevalence bandholesactasoxidizingagents.Separationofthephotogeneratedelectronsandholes governstheefficiencyofphotocatalysis [1].Theradiationofenergygreaterthanorequalto thebandgapofthesemiconductorisadsorbedinsemiconductorphotocatalysis.Someofthe photogeneratedelectronsandholesarerequiredtoreachthesurfaceofthesemiconductor wheretheymustreactwiththeadsorbedelectronacceptorandtheelectrondonor, respectively.

1.2Photocatalyticmaterials

Titaniumdioxide(TiO2)hasreceivedmuchattentionasaphotocatalyticmaterial.TiO2 particlesaswellasfilmshavebeenstudiedsincemorethanacoupleofdecadesduetoitshigher stability,photocatalyticactivity,andcapabilitytodegradevariousorganicpollutants [2].The twoimportantpolymorphsoftheTiO2,namelyanataseandrutile,havebandgapsof3.26 and3.06eVatlowtemperature,respectively [3 6].

ThevisibleregionphotocatalyticactivityofanataseTiO2 canbeenhancedbynitrogen doping [7,8].Carbon-doped [9],boron-doped [10],andsulfur-dopedTiO2 [11] havealso beenfoundtobeefficientphotocatalysts.Notonlythelargespecificsurfaceareabutthe remarkablechangeintheiropticalabsorptionspectramakesnanosizedsemiconductorparticlesasapromisingcandidatetobeusedasphotocatalysts [12].Althoughmanymaterials suchasTiO2 [13],SrTiO3 [4,14],WO3 [15],ZnO [16],ZnS [17],Bi2S3 [18],GaN [19],and CdS [20] havebeenevaluatedasheterogeneoussemiconductors,theoxide-basedmaterials havebeenfoundtobemorestable,active,andenvironmentallycompatible.Often,the 3 HandbookofSmartPhotocatalyticMaterials.DOI: https://doi.org/10.1016/B978-0-12-819051-7.00001-4 © 2020ElsevierInc.Allrightsreserved.

photocatalyticmaterialsareinterpretedtoofferoxidationabilitybutsomephotocatalysts alsoofferselectiveoxidationaswellasreduction [21].

1.3Factorsgoverningefficientphotocatalysis

Attributesoftheincreasedphotocatalyticactivityofthenanomaterialsare [22]:

• formationofp nheterojunctionswithsuitablebandedgepositions;

• promotionofinterfacialreactionbyprovisionoflargesurfacearea;and

• improvementoflightabsorptionwithasignificantredshiftintheabsorptionwavelength.

Primoetal. [23] havepresentedareviewontitania-supportedgoldnanoparticlesfortheir photocatalyticactivityandreportedbetterstabilityofthetitania-supportedgoldnanoparticles.Thechemicalmodificationofthegrapheneresultsinfunctionalizedmaterialsthatoffer distinctopticalandelectroniccharacteristics,whichmakethemsuitablematerialsforcatalysis,drugdelivery,energystorage,andsoon [24 27].Graphene-basedphotocatalystshave beendiscussedbyXiangetal. [28] intheirreview.Graphene-basedphotocatalyticmaterials havebeensynthesizedbyavarietyofmethodsincludinghydrothermalmethod [29 31], solutionmixing [32 34],andmicrowave-assistedsolution-phasesynthesis [35].Katayama etal.havereportedtheproductanalysismethodandthereactionrateanalysismethodfor theevaluationofphotocatalyticoxidationandreductionabilitiesofthephotocatalyticmaterials [21].

1.4Fieldsofapplicationsofphotocatalyticmaterials

Eventhoughthephotocatalyticmaterialsarebeingusedmainlyforenvironmentalpollution control,hydrogenproductionbysplittingthechemicals,waterdetoxification [36],anddegradationoforganicchemicalsforspecificapplications;theyarealsocommerciallyusedfor photocatalyticcoatingsforairpurification [37,38].Antimicrobialcoatings,airpurification materials,self-cleaningsurfaces,antifoggingglass,andwaterpurificationbyphotocatalysis arethemajorapplicationfieldsofoxidativephotocatalysis.Ontheotherhand,photoreductionofwaterandmetalionsarealsoimportantapplicationsofthephotocatalyticreduction.

1.4.1Dopednanomaterials

Ithasbeenobservedbymanyresearchersthatdopingmayresultinnewlyoccupiedstates abovethevalencebandmaximum,resultinginthereductionoftheeffectivebandgapand increasedabsorptioninthevisiblerange.Zimboneetal. [1] foundthatthedopingoftitaniumdioxidewithantimonyionsresultedinanincreaseddegradationphotoactivityofmethylenebluedyeofmorethanoneorder.They [1] alsoobservedtheincreaseoftheactivityin laser-irradiatedsampleduetothetrappingoftheholesnearthesurfaceofantimony-doped titaniumdioxide.

1.5Challengingissues

Therecombinationofthephotogeneratedelectronsandholesfollowedbybandgapilluminationisthelimitingfactorfortheefficacyofthephotocatalyticprocess [2].

Itisnowwellacceptedgloballythatthepredominantfactorresponsibleforclimatechange istheincreasedconcentrationofCO2 intheatmosphere [39].Inordertomeetthesolution forunwantedalterationintheclimaticconditions,itisdesirabletomaintaintheconcentrationofcarbondioxideintheatmosphere.Consideringthecarbonpresentintheexcesscarbondioxideintheatmosphere,asasourceofcarbonforproducingvaluablehydrocarbons, offersapromisingsolutionforcontrollingCO2 levelsintheatmosphere.Butthechemical potentialofcarbondioxidemakesitdifficulttoconvertitintovaluablehydrocarbons.Beinga verystablemolecule,itisdifficulttodoreductionofcarbondioxide [40].

Takingadvantageofthesunlightforthereductionofatmosphericcarbondioxidetovaluablehydrocarbonsisalsoachallenge.Hence,nontoxicphotocatalyticmaterialsinabundant existencemaybeanimportantvehicleforthetransformationoftheunwantedcarbondioxideintochemicalswithgoodenergypotential.Eventhoughthebandgapof3.2eVlimits theabsorptionoftitaniumdioxidetotheultravioletregion,whichmakesitutilizeonly4% oftheentiresolarspectrum,adecreaseinitsbandgapisessentialforitseffectiveuseasa photocatalyst [22].

Theenergyefficiencyandlowerquantumyieldofphotocatalyticprocessesarechallengingduetothereducedoverlapofthesolarspectrumwiththeactivationrangeofcommon materialsusedasphotocatalysts [13].Parketal. [22] haveproposedamesoporousp n heterojunctioncompositematerialwithoutmetalcocatalystsensitization.Theyusedp-type cuprousoxideandcupricoxide,coupledwithn-typetitaniumdioxide.Theysynthesized mesoporousCuxO TiO2 compositephotocatalystsusingafacileexperimentalapproach, synthesisofcopperoxidenanocomposites,followedbymixingwithtitaniumchlorideand oxidation.Theyfoundaredshiftinthelightabsorptionfortheircompositephotocatalyst materialwithincreasedopticalabsorption,whichresultedinahigheryieldofmethanewith 11.1and22timeshigherproductionratethanthatofpurecopperoxideandtitanium dioxide,respectively [22].Thelimitationintheabsorptionoflightintheultravioletregion, andpoorselectiveadsorptionofthephotodegradationreactionproductsontothesurfaceof thephotocatalyticmaterialsarealsochallengingissuestodesignefficientphotocatalytic materials.Thecompositephotocatalyticmaterialscontainingmagneticironoxidenanoparticlesneedtobestudiedforenhancedphotocatalyticperformanceandstabilityinaqueous media.Recoveryofphotocatalyticmaterialsafterthephotocatalyticreactionsisalso importantforsomeenvironmentalpollutioncontrollingandhygienicreasons,especiallyfor food,pharmaceuticals,andcosmeticproducts.

1.6Summary

Beinghighlyappealingandhavingwideapplicabilityofthephotocatalysisprocess,the photocatalyticmaterialshaveverymuchpotentialforthefuturecatalystsforgreensynthesis.

Environmentalcompatibilityofmanyphotocatalyticmaterialsmakesthempotential candidatesaseco-friendlycatalysts.Dopingofsuitablematerialsalsomakesthemuniquein characteristicfeaturessuitableforavarietyofapplications.Thegrowinginterestofthetechnologicaladvancementtendstowardtheuseofsolarenergyandparadigmaticrenewable energy;suchphotocatalyticnanomaterialswillserveasaveryusefultoolforprocessing manymaterialswithbetterconversionandselectivityindifferentprocesses.

References

[1] M.Zimbone,G.Cacciato,L.Spitaleri,R.G.Egdell,M.G.Grimaldi,A.Gulino,Sb-dopedtitaniumoxide:a rationaleforitsphotocatalyticactivityforenvironmentalremediation,ACSOmega3(2018) 11270 11277.

[2]H.Zhang,G.ChenandD.W.Bahnemann,Photoelectrocatalyticmaterialsforenvironmentalapplications,J.Mater.Chem.19,2009,5089 5121.

[3] H.Tang,F.Lévy,H.Berger,P.E.Schmid,UrbachtailofanataseTiO2,Phys.Rev.B52(1995)7771.

[4] F.E.Oropeza,K.H.L.Zhang,R.G.Palgrave,A.Regoutz,R.G.Egdell,J.P.Allen,etal.,Electronicstructure ofepitaxialSn-dopedanatasegrownonSrTiO3 (001)bydipcoating,J.Phys.Chem.C117(2013) 15221 15228.

[5] R.L.Clendenen,H.G.Drickamer,Latticeparametersofnineoxidesandsulfidesasafunctionofpressure,J.Chem.Phys.44(1966)4223.

[6] K.V.K.Rao,S.V.N.Naidu,L.Iyengar,Thermalexpansionofrutileandanatase,J.Am.Ceram.Soc.53 (1970)124 126.

[7] F.Napoli,M.Chiesa,S.Livraghi,E.Giamello,S.Agnoli,G.Granozzi,etal.,Thenitrogenphotoactive centreinN-dopedtitaniumdioxideformedviainteractionofNatomswiththesolid.Natureandenergy levelofthespecies,Chem.Phys.Lett.477(2009)135 138.

[8] S.Livraghi,M.R.Chierotti,E.Giamello,G.Magnacca,M.C.Paganini,G.Cappelletti,etal.,Nitrogendopedtitaniumdioxideactiveinphotocatalyticreactionswithvisiblelight:amulti-techniquecharacterizationofdifferentlypreparedmaterials,J.Phys.Chem.C112(2008)17244 17252.

[9] H.Irie,Y.Watanabe,K.Hashimoto,Carbon-dopedanataseTiO2 powdersasavisible-lightsensitive photo-catalyst,Chem.Lett.32(2003)772 773.

[10] S.In,A.Orlov,R.Berg,F.García,S.Pedrosa-Jimenez,M.S.Tikhov,etal.,Effectivevisiblelight-activated B-dopedandB,N-codopedTiO2 photocatalysts,J.Am.Chem.Soc.129(2007)13790 13791.

[11] J.C.Yu,J.Yu,H.Yip,P.K.Wong,J.Zhao,W.Ho,Efficientvisible-light-inducedphotocatalyticdisinfectiononsulfur-dopednanocrystallinetitania,Environ.Sci.Technol.39(2005)1175 1179.

[12] A.P.Alivisatos,Semiconductorclusters,nanocrystals,andquantumdots,Science271(1996)933 937.

[13] M.D.Hernández-Alonso,F.Fresno,S.Suárez,J.M.Coronado,Developmentofalternativephotocatalysts toTiO2:challengesandopportunities,EnergyEnviron.Sci.2(2009)1231 1257.

[14] S.Ouyang,H.Tong,N.Umezawa,J.Cao,P.Li,Y.Bi,etal.,Surface-alkalinization-inducedenhancement ofphotocatalyticH2evolutionoverSrTiO3-basedphotocatalysts,J.Am.Chem.Soc.134(2012) 1974 1977.

[15] C.A.Bignozzi,S.Caramori,V.Cristino,R.Argazzi,L.Meda,A.Tacca,Nanostructuredphotoelectrodes basedonWO3:applicationstophotooxidationofaqueouselectrolytes,Chem.Soc.Rev.42(2013) 2228 2246.

[16] A.B.Djuri ˇ si ´ c,X.Chen,Y.H.Leung,A.ManChingNg,ZnOnanostructures:growth,propertiesand applications,J.Mater.Chem.22(2012)6526 6535.

[17] A.S.Barnard,C.A.Feigl,S.P.Russo,Morphologicalandphasestabilityofzincblende,amorphousand mixedcore shellZnSnanoparticles,Nanoscale2(2010)2294 2301.

[18] L.Huang,X.Wang,J.Yang,G.Liu,J.Han,C.Li,DualcocatalystsloadedtypeICdS/ZnScore/shell nanocrystalsaseffectiveandstablephotocatalystsforH2 evolution,J.Phys.Chem.C117(2013) 11584 11591.

[19] A.Y.Polyakov,S.J.Pearton,P.Frenzer,F.Ren,L.Liu,J.Kim,RadiationeffectsinGaNmaterialsand devices,J.Mater.Chem.C1(2013)877 887.

[20] A.Efrati,O.Yehezkeli,R.Tel-Vered,D.Michaeli,R.Nechushtai,I.Willner,Electrochemicalswitchingof photoelectrochemicalprocessesatCdSQDsandphotosystemI-ModifiedElectrodes,ACSNano6(2012) 9258 9266.

[21]K.Katayama,Y.Takeda,K.Shimaoka,K.Yoshida,R.Shimizu,T.Ishiwata,etal.,Novelmethodof screeningtheoxidationandreductionabilitiesofphotocatalyticmaterials,Analyst,139,2014, 1953 1959.

[22] S.Park,A.Razzaq,Y.H.Park,S.Sorcar,Y.Park,C.A.Grimes,etal.,HybridCuxO TiO2 heterostructured compositesforphotocatalyticCO2 reductionintomethaneusingsolarirradiation:sunlightintofuel, ACSOmega1(2016)868 875.

[23]A.Primo,A.CormaandH.Garcia,Titaniasupportedgoldnanoparticlesasphotocatalyst,Phys.Chem. Chem.Phys.13,2011,886 910.

[24] O.Akhavan,E.Ghaderi,A.Esfandiar,Wrappingbacteriabygraphenenanosheetsforisolationfrom environment,reactivationbysonication,andinactivationbynear-infraredirradiation,J.Phys.Chem.B 115(2011)6279 6288.

[25] Y.Sun,Q.Wu,G.Shi,Graphenebasednewenergymaterials,EnergyEnviron.Sci.4(2011)1113 1132.

[26] S.Stankovich,D.A.Dikin,G.H.B.Dommett,K.M.Kohlhaas,E.J.Zimney,E.A.Stach,etal.,Graphenebasedcompositematerials,Nature442(2006)282 286.

[27] W.Cai,X.Chen,W.B.Cai,Nanoplatformsfortargetedmolecularimaginginlivingsubjects,Small3 (2007)1840 1854.

[28] Q.Xiang,Y.Jiaguo,M.Jaroniec,Graphene-basedsemiconductorphotocatalysts,Chem.Soc.Rev.41 (2012)782 796.

[29] J.Shen,B.Yan,M.Shi,H.Ma,N.Li,M.Ye,OnestephydrothermalsynthesisofTiO2-reducedgraphene oxidesheets,J.Mater.Chem.21(2011)3415 3421.

[30] C.Zhu,S.Dong,Synthesisofgraphene-supportednoblemetalhybridnanostructuresandtheirapplicationsasadvancedelectrocatalystsforfuelcells,Nanoscale5(2013)10765 10775.

[31] Y.Fu,X.Wang,MagneticallyseparableZnFe2O4 graphenecatalystanditshighphotocatalyticperformanceundervisiblelightirradiation,Ind.Eng.Chem.Res.50(2011)7210 7218.

[32] O.Akhavan,E.Ghaderi,PhotocatalyticreductionofgrapheneoxidenanosheetsonTiO2 thinfilmfor photoinactivationofbacteriainsolarlightirradiation,J.Phys.Chem.C113(2009)20214 20220.

[33] S.-M.Paek,E.Yoo,I.Honma,EnhancedcyclicperformanceandlithiumstoragecapacityofSnO2/graphenenanoporouselectrodeswiththree-dimensionallydelaminatedflexiblestructure,NanoLett.9 (2009)72 75.

[34] N.J.Bell,Y.H.Ng,A.Du,H.Coster,S.C.Smith,R.Amal,UnderstandingtheenhancementinphotoelectrochemicalpropertiesofphotocatalyticallypreparedTiO2-reducedgrapheneoxidecomposite,J.Phys. Chem.C115(2011)6004 6009.

[35] L.Pan,X.Liu,Z.Sun,C.Q.Sun,Nanophotocatalystsviamicrowave-assistedsolution-phasesynthesisfor efficientphotocatalysis,J.Mater.Chem.A1(2013)8299 8326.

[36] O.Carp,C.L.Huisman,A.Reller,Photoinducedreactivityoftitaniumdioxide,Prog.SolidStateChem. 32(2004)33 177.

8HandbookofSmartPhotocatalyticMaterials

[37]M.D.Hernández-Alonso,F.Fresno,S.SuárezandJ.M.Coronado,DevelopmentofalternativephotocatalyststoTiO2:challengesandopportunities,EnergyEnviron.Sci.2,2009,1231 1257.

[38] A.Mills,S.-K.Lee,Aweb-basedoverviewofsemiconductorphotochemistry-basedcurrentcommercial applications,J.Photochem.Photobiol.AChem152(2002)233 247.

[39] B.Hu,C.Guild,S.L.Suib,Thermal,electrochemical,andphotochemicalconversionofCO2 tofuelsand value-addedproducts,J.CO2 Util.1(2013)18 27.

[40] C.Maeda,Y.Miyazaki,T.Ema,Recentprogressincatalyticconversionsofcarbondioxide,Catal.Sci. Technol.4(2014)1482 1497.

GreensynthesisofTiO2 andits photocatalyticactivity

ManviriRani1,UmaShanker2

1 MALAVIYANATIONALINSTITUTEOFTECHNOLOGYJAIPUR,JAIPUR,INDIA

2 DRBRAMBEDKARNATIONALINSTITUTEOFTECHNOLOGYJALANDHAR,JALANDHAR,INDIA

2.1Introduction

Anexponentialdevelopmentofexplorationgoings-on(synthesisandcharacterization)in nanotechnology [1 4] ledtothethoughtfulutilizationoftheirprospectiveapplications. Propertiesofmaterialschangeonsmallerthescale-sizeandontheshape;hence,several reviewsareavailableofsynthesisalongwithpropertiesofnanomaterials(NMs) [2 8].In viewofcommercialapplications,metaloxidesweregreatlyconsideredespeciallytitanium dioxide(TiO2,titania:aninorganicmaterialcommerciallyproducedintheearly20thcentury)owingtoitsuniquepropertiesfordiverseapplications(dielectrics,pigmentandin sunscreens,paints,ointments,toothpaste).Havingthepropertiesofbiocompatibility,nontoxicityandantimicrobialactivity,TiO2 ispreferentiallyusedinthefieldofbiomedical sciences [9,10].Ultrafinetitaniapowderhasbeenpreparedbymethodssuchassol gel, hydrothermal,solvothermal,flamecombustion,emulsionprecipitation,andfungusmediatedbiosynthesis.

TiO2 existsinthreephasesnamed,rutile,anatase,andbrookite.Ofthem,rutileisthe moststablewhilethelattertwophasescouldbechangedtorutilephaseviaheatingapplication [11 16].Bothanataseandrutilearetetragonalcrystallinewhilebrookiteisorthorhombic.ThisdiscussionclearlyindicatesthateachformofTiO2 hasdistinguishedmorphologyas wellasdiverseapplications.Forexample,anatasephaseisusedasopticalcatalystsdueto sensitizationoflightandrutilephaseiswidelyusedasdielectricsandhigh-temperature oxygensensors [17].In1972,FujishimaandHondadiscoveredthephenomenonofphotocatalyticsplittingofwateronaTiO2 electrodeunderultraviolet(UV)light [5,18].Sincethen,it showedbetterimprovementintheareasofphotovoltaics,photo/electrochromics,andsensors [19,20,21] andphotocatalyticapplicationsfortheremovalofvariousorganictoxinsfrom airandwater [11,22,23].TiO2 hasbeenconsideredasapromisingandpotentialmaterialfor theproductionofphotoelectrochemicalenergy [24,25] (Fig.2 1).

ThehighsurfaceareaeasesreactionaswellasinteractionofTiO2-baseddevicesandthe interactingmedia.TiO2 isthemostpromisingphotocatalyst [20,26 28] formanyserious 11 HandbookofSmartPhotocatalyticMaterials.DOI: https://doi.org/10.1016/B978-0-12-819051-7.00002-6 © 2020ElsevierInc.Allrightsreserved.

FIGURE2–1 VariousformsofTiO2 WithpermissionfromD.Dambourne,I.Belharouak,K.Amine,Tailored preparationmethodsofTiO2 anatase,rutile,brookite:mechanismofformationandelectrochemicalproperties, Chem.Mater.22(2009)1173 1179.

environmentalpollutionchallengesandenergycrisisthrougheffectiveutilizationofsolar energy [29 31].Anumberofreviewshavebeenavailableonenvironmental(photocatalysis andsensing)andenergyapplicationsofTiO2,indicatingmodificationsofitsproperties(optical)bydopingorsensitization.ThechemicalmethodsofTiO2 fabricationinvolvetheuseof highlysuperior,toxic,andhazardouschemicalsthatcouldindirectlycreateagraveecotoxicologicalconcern.Therefore,greenroutes(simple,eco-friendly,andlesstoxicway)involving biodegradablematerials(plantextracts,microbes,andenzymes)havereceivedattentionfor thesynthesisofTiO2 nanoparticles.Moreover,plantextracts-basedstrategyrequireslesser timeandalsoreducesthepossibilityofassociatedcontamination.Furthermore,greensynthesizednanoparticleshavebecomepromisingmaterialsforthetreatmentofwastewater andcombatingwithenvironmentalpollution.Thoughavastliteratureisavailableonthe photocatalyticapplicationofchemicallypreparedTiO2 butthesameobtainedfromgreen processwasnotexploredsomuchforthephotoactivityinwastewatertreatment.

2.2Environmentalconcernoforganicpollutants

Theextensiveuseofindustrialchemicalsandunsafematerialsgoingtowaterbodiesare causingenvironmentalandliving-lifechallenges(Table2 1).Freshorcleanwaterusedby humansisveryless(0.0008%isavailableandrenewable)andthatisqualityisalsodeclining duetoincreasedpopulationgrowth(estimatedas4 5billionpeoplebytheyear2025). Hence,themanagementofenvironmentisnecessaryforasustainableandbetterlife.Among theconstituentsofwastewater,syntheticdyes,pesticides,amines,phenolsandsubstituted phenols,andpolycyclicaromatichydrocarbons(PAHs)areabundantlypresent [32] (Table2 1).

Duringthelastfewdecades,pollutionbyorganicsubstanceshasbecomeaglobalthreat anditslevelisincreasingcontinuouslyduetourbanization,fastdevelopment,andvarying wayoflifeofpublic [33].Thehighstabilitytowardheat,light,andoxidizingagentsledto theirpersistenceandaccumulationintheenvironment [34].Variousindustriessuchas

Table2–1 Constituentsofwastewater [32]

TypeComponentsEffects

MicroorganismsPathogenicbacteria,virus,etc.Riskwhilebathingandeatingfish Organic materials Oxygendepletioninrivers,lakes,andfjordsEutrophication,aquaticdeath,may containdisease-causing microorganisms

Synthetic organic materials

Pesticides,fat,oilandgrease,dyes,phenols,amines, polycyclicaromatichydrocarbons,pharmaceuticals,etc.

Toxiceffect,estheticinconveniences, bioaccumulation

NutrientsN,P,ammonium,Ca,Na,Mg,K,etc.Eutrophication,oxygendepletion,toxic effects

Inorganic materials

Acids,bases,heavymetals(Hg,Pb,Cd,Cr,Cu,Ni,etc.)Corrosion,toxiceffect,hardness,aquatic death,bioaccumulation

RadioactivityVariousradioactiveelementsToxiceffect,accumulation Chapter2 • GreensynthesisofTiO2 anditsphotocatalyticactivity13

Fabric,cosmetics,pulpandpaper,foodprocessing,pharmaceuticalandpesticideindustries dischargeduntreatedeffluentstothewaterbodies [35] andposesanenormoushazardtothe hydrosphereandlivingorganisms [36 38].Theaccidentsrelatedtothesepollutantshave causedseveredamagetotheenvironment(Table2 2).

Suchpollutantscomestohumancontactviaair,food,water,soil,anddust.Dyeschange thequalityofwaterbyjustasmallconcentration(B1ppm) [48 52].Azodyesaremajorly used [53] andbenzidinearecarcinogenic.Pesticidesreleasedfromvariousindustries, anthropogenicactivities,andsurfaceexcessfromagriculturalareasarethemostabundant pollutantsinwastewatersofgrowingnations [54 56].

Mostofthepollutantsaretoxicandallegedcancercausingwithendocrinedisruptor potential [57 60].Aromaticaminessuchasbenzidine,toluidine,andchloroanilinesand manymorewitnessedasgenerationordegradationintermediatesofthoserecalcitrantcompoundsareextremelynoxious [61 65].Phenolsandtheirderivativeshavebeennominated asprioritypollutantswithprotein-degeneratingeffectandaredifficulttodegradetoconventionalwastewatertreatments.AnotheremergingproblemisPAHs(releasedintoduetovolcaniceruptions,accidentaloilspilling,inadequateburningoffuel,coal,etc.).Duringthelast fewdecades,theconcentrationofPAHshavebeenincreasedtremendouslyandsensedinall thecompartmentsoftheecosystemsuchasair,soil,sediments,water,oil,tars,andfoodstuffsaswellasinthetissuesofvariousaquaticcreaturesandbirds [66,67].Ithasbeen reportedbyseveralresearchersthatover80,000tonsofPAHsarebeingdischargedintothe waterbodieseveryyear [68] Thelowwatersolubilitypromptedtheirresistancetodegradationandtoxicityincreaseswithmolecularweight.Duetotheirextensivecontaminationand beingrecalcitrantandpotentiallypersistent bioaccumulation,17unsubstitutedPAHshave beencategorizedasprioritypollutantsbyUSEPA.

Presently,morethan10,000typesoforganicdyesofamountapproximately700,000tons annuallyhavebeenproducedasperstatisticstotheColorIndex.Chinaistheworld’sbiggest consumeroforganiccolorpigments,whileIndiaaccountingfornearly10%ofthetotal

Table2–2 Someimportantorganicpollutants-relatedaccidentsworldwide (Rani,2012).

PesticidePlaceYearCausesReference

ParathionIndia1958Contaminatedfoodduetoleakage [39]

India1962Inhalationinmanufacturingplant

HCHIndia1963Contaminatedrice

EndrinIndia1964Contaminatedfood

HCHIndia1963Contaminatedrice

EndrinIndia1964Contaminatedfood

DDTIndia1965Contaminatedchutney

DiazinonIndia1968Contaminatedfood

HCHIndia1976Mixedwithwheat

EndrinIndia1977Contaminatedcrabsinricefield

AluminumphosphideIndia1983Contaminatedfoodgrain

MethylisocyanateIndia1984Storagetankleakage

CartaphydrochlorideIndia1988mishandlingoffactoryworker

EndosulfanIndia1997Contaminationduetoaerialspray

PhorateIndia2001Spraydriftfrombananafield

EndosulfanIndia2002Contaminatedwheatflour

2,3,7,8-tetrachlorobenzo10-dioxin

Italy1976Airpollutionduetopoisonousgas [40]

SarinJapan1985 95Masspoisoning [41]

PesticidesUnitedStates1968 78Contaminatedfood [42]

PhenolUnitedStates1974Accidentalspillage [43]

PhenolIndia1999Accidentaloverdoseofphenol [44]

PhenolNewZealand1980Absorptionofphenolthroughskin [45]

2,4-DinitrophenolChina2009nonoralexposuretoworkersinachemical factory [46]

2,4-DinitrophenolUnitedStates1933 38Poisoningduetoweightlosspill [47] PhenolUnitedStates1974Accidentalspillageof37,900L [43]

PAHs(LakeviewGusher)UnitedStates19101200tonsofcrudeoilreleased [7]

PAHs(Kuwaitioillakes)Kuwait1991Kuwaitioillakesaccidentalspillage PAHs(Kuwaitioilfires)Kuwait1991136,000tonsofcrudeoilreleased PAHsSouthKorea2007MTHebeiSpiritoilspill

PAHsUnitedStates2010DeepwaterHorizonoilspill PAHs(Sundarbansoilspill)Bangladesh2014Accidentalspillage

PAHs(Ennoreoilspill)Chennai2017Accidentalspillage

PAHs(LakeviewGusher)UnitedStates19101200tonsofcrudeoilreleased

consumption [69].ThelargestconsumptionofpesticidesisreportedinEurope,followedby Asia.InAsia,ChinaistheleadingmanufacturerofpesticidesandIndiastandssecondwith anannualproductof100,000MT.Withthisamount,Indiastands12thglobally(Annual reportGovtofIndia,2015).Outof415carcinogenicchemicals,12%recognizedtobearomaticamines.Anilineislistedasahigh-prioritychemicalinthestudyofwastesfromcoalconversionprocesses(HarrisonandMallon,1982).Arecentreportonanilineestimatedthat

by2019,theinsulationsectorwillbethelargestend-userofaniline(B46%),followedby rubberproducts(11.5%)andconsumertransportation(10.3%)worldwide.Duetothesharp increaseinautomotiveandinfrastructureindustries,anilineconsumptionwas6.6million tons(MT)intheyear2016andisexpectedtoreachupto8.1MTin2019 [31].Owingtotheir widespreadutilization,toxicity,andresistancetodegradation,itistheneedofpresenttime todevelopcheapand/oreasy-to-handleandeffectiveremovalofsuchpollutantsfromthe environment.NMsareplayingabetterroleintheremovalofpollutantsandremediationof pollutant-affectedsiteowingtoincreasedspecificsurfacearea,roughness,andenhanced surfaceproperties [69 72]

Growingpopulation,rapidindustrialization,modernizationofdevelopments,agronomic anddomesticwastesaredeterioratingthequalityofwaterandsoilaroundtheworld. Syntheticdyes,pesticides,aromaticaminesandphenols,andemergingPAHsareextensively pollutingthewaterbodies.Theserecalcitrantshavetoxicityintheformofsecondarywaste, persistence,andsometimesmetabolites [73 76].Azodyesandbenzidinearehighlycancercausingandevenanexplosive [49].Theiruntreateddischargetowaterbodiesmustbeprohibitedasitmightcontaincarcinogens [50].EuropeanCommissionhasdisqualifiedseveral noxiousazodyessuchasnavyblueusedintheleatherindustry [77].Presently,Chinaisproducing40% 45%oftheworld’stotaldyeconsumption [78] Ithasbeenreportedthatafter processingaround12 20tonsoftextiles,3000m3 ofwaterisletoutperday [79,80] Another bigproblemisthepesticides(dispersedoff:85% 90%),thatanestimateduseof5.5 3 108 kg intheUnitedStatesand2.59 3 109 kggloballyisreportedin1995 [81].Regardlessofstern conventions,priorityhazardoussubstancesarestillfoundinriversandseafood,indicating theirlongpersistenceorcurrentuse [82,83].TherehavebeenseveralcasesofpesticidespoisoningreportedindevelopingcountriessuchasIndia,andbyvirtueifthatmanyfarmers loosingtheirliveseveryyear,forexample,intheyear1997 2002,severalfarmersdieddue toendosulfanpoisoning.

PAHswith80,000tons/yearofuntreateddischargetothewaterstreamsareevolvingand documentedubiquitouslypresentintheenvironmentascarcinogensandmutagens [68].It hasbeenreportedthat46% 90%massofindividualPAHsemittedbymotorvehiclesinthe cities [84].Indooremissioncontributesto B16%ofPAHsintheUnitedStates,29%inSweden, and33%inPoland [85,86].Individualsexpend80% 93%oftheirtimeindoorandinhalePAHs [87].Oil-spillingincoastalregionsisthemainreasontoincreasePAHpollutionthatcauses lossofvariousmarinelives [88].Atotalof17unsubstitutedPAHshavebeenidentifiedasprioritycarcinogensbyUSEPA [89].

Aromaticphenolsandaminesaremajororganicconstituentsordinarilyfoundinwastewater (range:1 100mgL 1) [90,91].TheUSEPAhasdeterminedthatexposuretophenolindrinking waterataconcentrationof4mgL 1 forupto10daysisnotexpectedtocauseanyadverse effectsinachild [92].Phenolisdangerousforthelifeofaquaticbodiesat9 25mgL 1 [93]. Consequently,phenolsarelistedintoEPA-specificprioritypollutants [94,95].BisphenolAis anothercommonpollutantfoundinwastewaterduetoitsextensiveuseandbulkproduction asaplasticantioxidant.bisphenolAcanaffectmarinecreaturesanddistressphysiologicalfunctionsevenatpicogramconcentrations.Theannualgrowthratewasfoundtobe4.6%from2013 to2019owingtoworldwidedemandaround6.5milliontons.Theabovediscussedorganic

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.