https://ebookmass.com/product/handbook-of-smartphotocatalytic-materials-fundamentals-fabrications-andwater-resources-applications-chaudhery-mustansar-hussain/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Handbook of Microbial Nanotechnology Chaudhery Mustansar Hussain
https://ebookmass.com/product/handbook-of-microbial-nanotechnologychaudhery-mustansar-hussain/
ebookmass.com
Handbook of Functionalized Nanomaterials for Industrial Applications 1st Edition Chaudhery Mustansar Hussain (Editor)
https://ebookmass.com/product/handbook-of-functionalizednanomaterials-for-industrial-applications-1st-edition-chaudherymustansar-hussain-editor/ ebookmass.com
Handbook of Analytical Techniques for Forensic Samples: Current and Emerging Developments Chaudhery Mustansar Hussain
https://ebookmass.com/product/handbook-of-analytical-techniques-forforensic-samples-current-and-emerging-developments-chaudherymustansar-hussain/
ebookmass.com
Mathematical Analysis: Volume II 1, January 1 2024 Edition
Teo Lee Peng
https://ebookmass.com/product/mathematical-analysis-volumeii-1-january-1-2024-edition-teo-lee-peng/
ebookmass.com
(eBook PDF) The Theatre Experience 14th Edition By Edwin
Wilson
https://ebookmass.com/product/ebook-pdf-the-theatre-experience-14thedition-by-edwin-wilson/
ebookmass.com
British Women's Writing from Brontë to Bloomsbury, Volume 2: 1860s and 1870s 1st ed. Edition Adrienne E. Gavin
https://ebookmass.com/product/british-womens-writing-from-bronte-tobloomsbury-volume-2-1860s-and-1870s-1st-ed-edition-adrienne-e-gavin/
ebookmass.com
Own Me (The Wolf Hotel Book 5) K.A. Tucker
https://ebookmass.com/product/own-me-the-wolf-hotel-book-5-k-a-tucker/
ebookmass.com
Value Creation for Owners and Directors: A Practical Guide on How to Lead your Business Massimo Massa
https://ebookmass.com/product/value-creation-for-owners-and-directorsa-practical-guide-on-how-to-lead-your-business-massimo-massa/
ebookmass.com
Principles of auditing & other assurance services 20. edition Edition Pany
https://ebookmass.com/product/principles-of-auditing-other-assuranceservices-20-edition-edition-pany/ ebookmass.com
The Web3 Era: NFTs, the Metaverse, Blockchain, and the
https://ebookmass.com/product/the-web3-era-nfts-the-metaverseblockchain-and-the-future-of-the-decentralized-internet-david-shin/ ebookmass.com
Editedby
ChaudheryMustansarHussain DepartmentofChemistryandEnvironmentalSciences, TheNewJerseyInstituteofTechnology,Newark,NJ,UnitedStates
NanotechnologyandWaterSustainabilityResearchUnit, UniversityofSouthAfrica,SouthAfrica
AjayKumarMishra
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2020ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
ISBN:978-0-12-819051-7
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
AcquisitionsEditor: KostasMarinakis
EditorialProjectManager: ReddingMorse
ProductionProjectManager: VigneshTamil
CoverDesigner: MarkRogers
TypesetbyMPSLimited,Chennai,India
Listofcontributorsxi
SectionIIntroduction(fundamentalsofphotocatalytic processes)1
1.Advancedmaterialsforphotocatalyticapplications: thechallengeahead3
V.N.LADANDZ.V.P.MURTHY
1.1Introduction3
1.2Photocatalyticmaterials3
1.3Factorsgoverningefficientphotocatalysis4
1.4Fieldsofapplicationsofphotocatalyticmaterials4
1.5Challengingissues5
1.6Summary5 References6
SectionIIGreensynthesisofphotocatalysts materials9
2.GreensynthesisofTiO2 anditsphotocatalyticactivity11
MANVIRIRANIANDUMASHANKER
2.1Introduction11
2.2Environmentalconcernoforganicpollutants12
2.3Limitationsoftraditionalmethodsandneedforgreen synthesis16
2.4CharacterizationofTiO2 nanoparticles17
2.5GreensynthesisofTiO2 17
2.6LaboratorysynthesisofTiO2 nanoparticles25
2.7Photocatalyticmechanism26
2.8ApplicationsofTiO2 nanomaterials26
2.9Summary40
2.10Conclusionsandfuturescope40 References41 Furtherreading54
SectionIIIMetaloxidesphotocatalyticmaterials63
3.Designandapplicationofvariousvisiblelightresponsive metaloxidephotocatalysts65
MILICAHADNADJEV-KOSTIC,TATJANAVULIC,JASMINADOSTANICAND DAVORLONCAREVIC
3.1Generalintroductionandobjectives65
3.2Photocatalysis mechanismsandkinetics66
3.3Metaloxide basedphotocatalystsandtheirapplication71
3.4Synthesisofmetaloxidephotocatalysts76
3.5Modificationofthemetaloxidesemiconductors82
3.6Conclusionandperspectives88 Acknowledgment89 References89
SectionIVMetal-organicframeworksphotocatalytic materials101
4.Immobilizationofsemiconductorphotocatalysts103
VIORICAPARVULESCU,MADALINACIOBANUANDGABRIELAPETCU
4.1Introduction103
4.2Whyimmobilizedsemiconductors?105
4.3Effectsofthesupportonsemiconductorproperties105
4.4Effectofimmobilizationonreactionmechanism125
4.5Effectofimmobilizationonphotocatalyticperformances129
4.6Conclusions132 References133
5.Plasmon-sensitizedTiO2 nanomaterialsas visiblelightphotocatalysts143
WEIZHOU
5.1Introduction143
5.2Noblemetalplasmon-sensitizedTiO2 nanomaterials145
5.3Nonnoblemetalplasmon-sensitizedTiO2 nanomaterials156
5.4Metal metalalloyplasmon-sensitizedTiO2 nanomaterials162
5.5Metalcompoundplasmon-sensitizedTiO2 nanomaterials163
5.6Conclusionandoutlook167 Acknowledgments168 References168
6.Plasmon-sensitizedsemiconductorsforphotocatalysis175
M.SAKARANDLEELAVATHIANNAMALAI
6.1Introduction175
6.2Mechanismofplasmonicphotocatalysis177
6.3Synthesisofplasmonicphotocatalysts178
6.4Applications185
6.5Conclusionandoutlook196 Acknowledgments197 References197
SectionVIPhotocatalyticmaterialsforwater resources207
7.Photocatalyticmaterials-basedmembranesforefficient watertreatment209
NURHASHIMAHALIAS,NORAZUREENMOHAMMADNOR, MOHAMADAZUWAMOHAMED,JUHANAJAAFARAND NURHIDAYATIOTHMAN
7.1Introduction209
7.2Variousfabricationandstructuremodificationof photocatalyticmembrane213
7.3Recentapplicationintreatingvarioushazardouspollutants219 7.4Conclusion224 References225
8.Currentphotocatalyticsystemsforintensifiedwater purificationapplications231
G.THEODORAKOPOULOS,C.ATHANASEKOU,G.EM.ROMANOSAND S.K.PAPAGEORGIOU
8.1Introduction231
8.2Usingpolymersforphotocatalyticsystemsfabrication234
8.3Morphologyofcurrentphotocatalyticsystems238
8.4Applicationsandperformance246
8.5Concludingremarks262 References262
9.Visiblelight drivenperovskite-basedphotocatalyst forwastewatertreatment265
NURSYAZWANIYAHYA,ATIKAHMOHDNASIR,NURATIQAHDAUB,FARHANA AZIZ,ARIFAIZAT,JUHANAJAAFAR,WOEIJYELAU,NORHANIZAYUSOF, WANNORHAYATIWANSALLEH,AHMADFAUZIISMAILANDMADZLANAZIZ
9.1Introduction265
9.2ConventionalmethodsofHAremovalinwastewater267
9.3Advancedoxidationprocessforwastewatertreatment270
9.4Perovskites278
9.5SelectionofsynthesismethodofLaFeO3 nanoparticles279
9.6Effectsofchelatingagents282
9.7Dualchelatingagents287
9.8Effectsofcalcinationtemperature290
9.9Parametersaffectingthephotocatalyticdegradation290
9.10Conclusion292 Acknowledgments292 References292
10.WastewatertreatmentusingTiO2-basedphotocatalysts303
SUMANDUTTA
10.1Introduction303
10.2Mechanismofphotocatalysis304
10.3Roleofoxygenaselectronscavenger305
10.4Modificationofphotocatalyst306
10.5Photoreactorsforwastewatertreatment313
10.6Reuseofphotocatalysts320 References321
11.Graphene-basedhybridphotocatalysts:apromising routetowardhigh-efficiencyphotocatalyticwater remediation325
CORRADOGARLISI,SAMARALJITAN,FRANCESCOPARRINOAND GIOVANNIPALMISANO
11.1Introduction325
11.2Grapheneproperties326
11.3Designstrategiesandsynthesismethods332
11.4Applications338
11.5Conclusionandoutlook350 References351
Listofcontributors
ArifAizat AdvancedMembraneTechnologyRe searchCentre(AMTEC),School ofChemicalandEnergyEngineering,FacultyofEngineering,Universiti TeknologiMalaysia,JohorBahru,Malaysia
NurHashimahAlias AdvancedMembraneTech nologyResearchCentre (AMTEC),SchoolofChemicalandEnergyEngineering,FacultyofEngineering, UniversitiTeknologiMalaysia,Skudai ,Malaysia;DepartmentofOilandGas Engineering,FacultyofChemicalEngineering,UniversitiTeknologiMARA,Shah Alam,Malaysia
LeelavathiAnnamalai DepartmentofChemicalandBiologicalEngineering, TuftsUniversity,Medford,MA,UnitedStates
C.Athanasekou InstituteofNanoscienceandNanotechnology,N.C.S.R. “ Demokritos ” ,Ag.Paraskevi,Athens,Greece
FarhanaAziz AdvancedMembraneTechnologyResearchCentre(AMTEC), SchoolofChemicalandEnergyEngineering,FacultyofEngineering,Universiti TeknologiMalaysia,JohorBahru,Malaysia
MadzlanAziz AdvancedMembraneTechnologyResearchCentre(AMTEC), SchoolofChemicalandEnergyEngineering,FacultyofEngineering,Universiti TeknologiMalaysia,JohorBahru,Malaysia
MadalinaCiobanu “ IlieMurgulescu ” InstituteofPhysicalChemistry, RomanianAcademy,Bucharest,Romania
NurAtiqahDaub AdvancedMembraneTec hnologyResearchCentre (AMTEC),SchoolofChemicalandEnergyEngineering,FacultyofEngineering, UniversitiTeknologiMalay sia,JohorBahru,Malaysia
JasminaDostanic DepartmentofCatalysisandChemicalEngineering, InstituteofChemistry,TechnologyandM etallurgy,Univer sityofBelgrade, Belgrade,Serbia
SumanDutta DepartmentofChemicalEngineering,IndianInstituteof Technology(ISM)Dhanbad,Dhanbad,India
CorradoGarlisi DepartmentofChemicalEngineering,KhalifaUniversityof ScienceandTechnology,AbuDhabi,UnitedArabEmirates;Centerfor MembraneandAdvancedWaterTechnology,KhalifaUniversityofScienceand Technology,AbuDhabi,UnitedArabEmirates
MilicaHadnadjev-Kostic FacultyofTechnologyNoviSad,UniversityofNovi Sad,NoviSad,Serbia
AhmadFauziIsmail AdvancedMembraneTechnologyResearchCentre (AMTEC),SchoolofChemicalandEnerg yEngineering,FacultyofEngineering, UniversitiTeknologiMalaysia,JohorBahru,Malaysia
JuhanaJaafar AdvancedMembraneTechnolo gyResearchCentre(AMTEC), SchoolofChemicalandEnergyEngineerin g,FacultyofEngineering,Universiti TeknologiMalaysia,Skudai,Malaysia
SamarAlJitan DepartmentofChemicalEngineering,KhalifaUniversityof ScienceandTechnology,AbuDhabi,UnitedArabEmirates
V.N.Lad ChemicalEngineeringDepartment,SardarVallabhbhaiNational InstituteofTechnology Surat,Surat,Gujarat,India
WoeiJyeLau AdvancedMembraneTechnologyResearchCentre(AMTEC), SchoolofChemicalandEnergyEngineerin g,FacultyofEngineering,Universiti TeknologiMalaysia,JohorBahru,Malaysia
DavorLoncarevic DepartmentofCatalysisandChemicalEngineering, InstituteofChemistry,Technologyand Metallurgy,UniversityofBelgrade, Belgrade,Serbia
MohamadAzuwaMohamed DepartmentofChemicalSciences,Facultyof ScienceandTechnology,UniversitiK ebangsaanMalaysia,Bangi,Malaysia
Z.V.P.Murthy ChemicalEngineeringDepartment,SardarVallabhbhai NationalInstituteofTechnology Surat,Surat,Gujarat,India
AtikahMohdNasir AdvancedMembraneTec hnologyResearchCentre (AMTEC),SchoolofChemicalandEnerg yEngineering,FacultyofEngineering, UniversitiTeknologiMalaysia,JohorBahru,Malaysia
NorAzureenMohammadNor AdvancedMembraneTechnologyResearch Centre(AMTEC),SchoolofChemicalandEnergyEngineering,Facultyof Engineering,UniversitiTeknologiMalaysia,Skudai,Malaysia
NurHidayatiOthman DepartmentofOilandGasEngineering,Facultyof ChemicalEngineering,UniversitiTeknologiMARA,ShahAlam,Malaysia
GiovanniPalmisano DepartmentofChemicalEngineering,KhalifaUniversity ofScienceandTechnology,AbuDhab i,UnitedArabEmirates;Centerfor MembraneandAdvancedWaterTechnolo gy,KhalifaUniversityofScienceand Technology,AbuDhabi,UnitedArabEmirates
S.K.Papageorgiou InstituteofNanoscienceandNanotechnology,N.C.S.R. “ Demokritos ” ,Ag.Paraskevi,Athens,Greece
FrancescoParrino DepartmentofIndustrialEngineering,Universityof Trento-ViaSommarive,Povo,Italy
VioricaParvulescu “ IlieMurgulescu ” InstituteofPhysicalChemistry, RomanianAcademy,Bucharest,Romania
GabrielaPetcu “ IlieMurgulescu ” InstituteofPhysicalChemistry,Romanian Academy,Bucharest,Romania
ManviriRani MalaviyaNationalInstituteofTechnologyJaipur,Jaipur,India
G.Em.Romanos InstituteofNanoscienceandNanotechnology,N.C.S.R. “ Demokritos ” ,Ag.Paraskevi,Athens,Greece
M.Sakar CentreforNanoandMaterialSciences,JainUniversity,Bangalore, India
WanNorhayatiWanSalleh AdvancedMembraneTechnologyResearch Centre(AMTEC),SchoolofChemical andEnergyEngineering,Facultyof Engineering,UniversitiTeknologiMalaysia,JohorBahru,Malaysia
UmaShanker DrBRAmbedkarNationalInstit uteofTechnologyJalandhar, Jalandhar,India
G.Theodorakopoulos InstituteofNanoscienceandNanotechnology,N.C.S. R. “ Demokritos ” ,Ag.Paraskevi,Athens,Greece;SchoolofChemical Engineering,NationalTechnicalUnive rsityofAthens,9IroonPolytechniou street,Zografou,Athens,Greece
TatjanaVulic FacultyofTechnologyNoviSad,UniversityofNoviSad,Novi Sad,Serbia
NursyazwaniYahya AdvancedMembraneTechnologyResearchCentre (AMTEC),SchoolofChemicalandEnergyEngineering,FacultyofEngineering, UniversitiTeknologiMalay sia,JohorBahru,Malaysia
NorhanizaYusof AdvancedMembraneTechnologyResearchCentre (AMTEC),SchoolofChemicalandEnerg yEngineering,FacultyofEngineering, UniversitiTeknologiMalaysia,JohorBahru,Malaysia
WeiZhou SchoolofChemistryandPharmaceuticalEngineering,Qilu UniversityofTechnology(ShandongAcademyofSciences),Jinan,P.R.China; KeyLaboratoryofFunctionalInorgan icMaterialChemistry,Ministryof EducationofthePeople ’ sRepublicofChina,HeilongjiangUniversity,Harbin, P.R.China
Advancedmaterialsfor photocatalyticapplications: thechallengeahead
V.N.Lad,Z.V.P.Murthy
CHEMICALENGINEERINGDEPARTMENT,SARDARVALLABHBHAINATIONALINSTITUTEOF
TECHNOLOGY SURAT,SURAT,GUJARAT,INDIA
1.1Introduction
Photocatalysisisassociatedwiththeexcitationofthevalenceelectronintotheconduction bandwheretheexcitedelectronscanreducethesurface-adsorbedspecies.Thevalence bandholesactasoxidizingagents.Separationofthephotogeneratedelectronsandholes governstheefficiencyofphotocatalysis [1].Theradiationofenergygreaterthanorequalto thebandgapofthesemiconductorisadsorbedinsemiconductorphotocatalysis.Someofthe photogeneratedelectronsandholesarerequiredtoreachthesurfaceofthesemiconductor wheretheymustreactwiththeadsorbedelectronacceptorandtheelectrondonor, respectively.
1.2Photocatalyticmaterials
Titaniumdioxide(TiO2)hasreceivedmuchattentionasaphotocatalyticmaterial.TiO2 particlesaswellasfilmshavebeenstudiedsincemorethanacoupleofdecadesduetoitshigher stability,photocatalyticactivity,andcapabilitytodegradevariousorganicpollutants [2].The twoimportantpolymorphsoftheTiO2,namelyanataseandrutile,havebandgapsof3.26 and3.06eVatlowtemperature,respectively [3 6].
ThevisibleregionphotocatalyticactivityofanataseTiO2 canbeenhancedbynitrogen doping [7,8].Carbon-doped [9],boron-doped [10],andsulfur-dopedTiO2 [11] havealso beenfoundtobeefficientphotocatalysts.Notonlythelargespecificsurfaceareabutthe remarkablechangeintheiropticalabsorptionspectramakesnanosizedsemiconductorparticlesasapromisingcandidatetobeusedasphotocatalysts [12].Althoughmanymaterials suchasTiO2 [13],SrTiO3 [4,14],WO3 [15],ZnO [16],ZnS [17],Bi2S3 [18],GaN [19],and CdS [20] havebeenevaluatedasheterogeneoussemiconductors,theoxide-basedmaterials havebeenfoundtobemorestable,active,andenvironmentallycompatible.Often,the 3 HandbookofSmartPhotocatalyticMaterials.DOI: https://doi.org/10.1016/B978-0-12-819051-7.00001-4 © 2020ElsevierInc.Allrightsreserved.
photocatalyticmaterialsareinterpretedtoofferoxidationabilitybutsomephotocatalysts alsoofferselectiveoxidationaswellasreduction [21].
1.3Factorsgoverningefficientphotocatalysis
Attributesoftheincreasedphotocatalyticactivityofthenanomaterialsare [22]:
• formationofp nheterojunctionswithsuitablebandedgepositions;
• promotionofinterfacialreactionbyprovisionoflargesurfacearea;and
• improvementoflightabsorptionwithasignificantredshiftintheabsorptionwavelength.
Primoetal. [23] havepresentedareviewontitania-supportedgoldnanoparticlesfortheir photocatalyticactivityandreportedbetterstabilityofthetitania-supportedgoldnanoparticles.Thechemicalmodificationofthegrapheneresultsinfunctionalizedmaterialsthatoffer distinctopticalandelectroniccharacteristics,whichmakethemsuitablematerialsforcatalysis,drugdelivery,energystorage,andsoon [24 27].Graphene-basedphotocatalystshave beendiscussedbyXiangetal. [28] intheirreview.Graphene-basedphotocatalyticmaterials havebeensynthesizedbyavarietyofmethodsincludinghydrothermalmethod [29 31], solutionmixing [32 34],andmicrowave-assistedsolution-phasesynthesis [35].Katayama etal.havereportedtheproductanalysismethodandthereactionrateanalysismethodfor theevaluationofphotocatalyticoxidationandreductionabilitiesofthephotocatalyticmaterials [21].
1.4Fieldsofapplicationsofphotocatalyticmaterials
Eventhoughthephotocatalyticmaterialsarebeingusedmainlyforenvironmentalpollution control,hydrogenproductionbysplittingthechemicals,waterdetoxification [36],anddegradationoforganicchemicalsforspecificapplications;theyarealsocommerciallyusedfor photocatalyticcoatingsforairpurification [37,38].Antimicrobialcoatings,airpurification materials,self-cleaningsurfaces,antifoggingglass,andwaterpurificationbyphotocatalysis arethemajorapplicationfieldsofoxidativephotocatalysis.Ontheotherhand,photoreductionofwaterandmetalionsarealsoimportantapplicationsofthephotocatalyticreduction.
1.4.1Dopednanomaterials
Ithasbeenobservedbymanyresearchersthatdopingmayresultinnewlyoccupiedstates abovethevalencebandmaximum,resultinginthereductionoftheeffectivebandgapand increasedabsorptioninthevisiblerange.Zimboneetal. [1] foundthatthedopingoftitaniumdioxidewithantimonyionsresultedinanincreaseddegradationphotoactivityofmethylenebluedyeofmorethanoneorder.They [1] alsoobservedtheincreaseoftheactivityin laser-irradiatedsampleduetothetrappingoftheholesnearthesurfaceofantimony-doped titaniumdioxide.
1.5Challengingissues
Therecombinationofthephotogeneratedelectronsandholesfollowedbybandgapilluminationisthelimitingfactorfortheefficacyofthephotocatalyticprocess [2].
Itisnowwellacceptedgloballythatthepredominantfactorresponsibleforclimatechange istheincreasedconcentrationofCO2 intheatmosphere [39].Inordertomeetthesolution forunwantedalterationintheclimaticconditions,itisdesirabletomaintaintheconcentrationofcarbondioxideintheatmosphere.Consideringthecarbonpresentintheexcesscarbondioxideintheatmosphere,asasourceofcarbonforproducingvaluablehydrocarbons, offersapromisingsolutionforcontrollingCO2 levelsintheatmosphere.Butthechemical potentialofcarbondioxidemakesitdifficulttoconvertitintovaluablehydrocarbons.Beinga verystablemolecule,itisdifficulttodoreductionofcarbondioxide [40].
Takingadvantageofthesunlightforthereductionofatmosphericcarbondioxidetovaluablehydrocarbonsisalsoachallenge.Hence,nontoxicphotocatalyticmaterialsinabundant existencemaybeanimportantvehicleforthetransformationoftheunwantedcarbondioxideintochemicalswithgoodenergypotential.Eventhoughthebandgapof3.2eVlimits theabsorptionoftitaniumdioxidetotheultravioletregion,whichmakesitutilizeonly4% oftheentiresolarspectrum,adecreaseinitsbandgapisessentialforitseffectiveuseasa photocatalyst [22].
Theenergyefficiencyandlowerquantumyieldofphotocatalyticprocessesarechallengingduetothereducedoverlapofthesolarspectrumwiththeactivationrangeofcommon materialsusedasphotocatalysts [13].Parketal. [22] haveproposedamesoporousp n heterojunctioncompositematerialwithoutmetalcocatalystsensitization.Theyusedp-type cuprousoxideandcupricoxide,coupledwithn-typetitaniumdioxide.Theysynthesized mesoporousCuxO TiO2 compositephotocatalystsusingafacileexperimentalapproach, synthesisofcopperoxidenanocomposites,followedbymixingwithtitaniumchlorideand oxidation.Theyfoundaredshiftinthelightabsorptionfortheircompositephotocatalyst materialwithincreasedopticalabsorption,whichresultedinahigheryieldofmethanewith 11.1and22timeshigherproductionratethanthatofpurecopperoxideandtitanium dioxide,respectively [22].Thelimitationintheabsorptionoflightintheultravioletregion, andpoorselectiveadsorptionofthephotodegradationreactionproductsontothesurfaceof thephotocatalyticmaterialsarealsochallengingissuestodesignefficientphotocatalytic materials.Thecompositephotocatalyticmaterialscontainingmagneticironoxidenanoparticlesneedtobestudiedforenhancedphotocatalyticperformanceandstabilityinaqueous media.Recoveryofphotocatalyticmaterialsafterthephotocatalyticreactionsisalso importantforsomeenvironmentalpollutioncontrollingandhygienicreasons,especiallyfor food,pharmaceuticals,andcosmeticproducts.
1.6Summary
Beinghighlyappealingandhavingwideapplicabilityofthephotocatalysisprocess,the photocatalyticmaterialshaveverymuchpotentialforthefuturecatalystsforgreensynthesis.
Environmentalcompatibilityofmanyphotocatalyticmaterialsmakesthempotential candidatesaseco-friendlycatalysts.Dopingofsuitablematerialsalsomakesthemuniquein characteristicfeaturessuitableforavarietyofapplications.Thegrowinginterestofthetechnologicaladvancementtendstowardtheuseofsolarenergyandparadigmaticrenewable energy;suchphotocatalyticnanomaterialswillserveasaveryusefultoolforprocessing manymaterialswithbetterconversionandselectivityindifferentprocesses.
References
[1] M.Zimbone,G.Cacciato,L.Spitaleri,R.G.Egdell,M.G.Grimaldi,A.Gulino,Sb-dopedtitaniumoxide:a rationaleforitsphotocatalyticactivityforenvironmentalremediation,ACSOmega3(2018) 11270 11277.
[2]H.Zhang,G.ChenandD.W.Bahnemann,Photoelectrocatalyticmaterialsforenvironmentalapplications,J.Mater.Chem.19,2009,5089 5121.
[3] H.Tang,F.Lévy,H.Berger,P.E.Schmid,UrbachtailofanataseTiO2,Phys.Rev.B52(1995)7771.
[4] F.E.Oropeza,K.H.L.Zhang,R.G.Palgrave,A.Regoutz,R.G.Egdell,J.P.Allen,etal.,Electronicstructure ofepitaxialSn-dopedanatasegrownonSrTiO3 (001)bydipcoating,J.Phys.Chem.C117(2013) 15221 15228.
[5] R.L.Clendenen,H.G.Drickamer,Latticeparametersofnineoxidesandsulfidesasafunctionofpressure,J.Chem.Phys.44(1966)4223.
[6] K.V.K.Rao,S.V.N.Naidu,L.Iyengar,Thermalexpansionofrutileandanatase,J.Am.Ceram.Soc.53 (1970)124 126.
[7] F.Napoli,M.Chiesa,S.Livraghi,E.Giamello,S.Agnoli,G.Granozzi,etal.,Thenitrogenphotoactive centreinN-dopedtitaniumdioxideformedviainteractionofNatomswiththesolid.Natureandenergy levelofthespecies,Chem.Phys.Lett.477(2009)135 138.
[8] S.Livraghi,M.R.Chierotti,E.Giamello,G.Magnacca,M.C.Paganini,G.Cappelletti,etal.,Nitrogendopedtitaniumdioxideactiveinphotocatalyticreactionswithvisiblelight:amulti-techniquecharacterizationofdifferentlypreparedmaterials,J.Phys.Chem.C112(2008)17244 17252.
[9] H.Irie,Y.Watanabe,K.Hashimoto,Carbon-dopedanataseTiO2 powdersasavisible-lightsensitive photo-catalyst,Chem.Lett.32(2003)772 773.
[10] S.In,A.Orlov,R.Berg,F.García,S.Pedrosa-Jimenez,M.S.Tikhov,etal.,Effectivevisiblelight-activated B-dopedandB,N-codopedTiO2 photocatalysts,J.Am.Chem.Soc.129(2007)13790 13791.
[11] J.C.Yu,J.Yu,H.Yip,P.K.Wong,J.Zhao,W.Ho,Efficientvisible-light-inducedphotocatalyticdisinfectiononsulfur-dopednanocrystallinetitania,Environ.Sci.Technol.39(2005)1175 1179.
[12] A.P.Alivisatos,Semiconductorclusters,nanocrystals,andquantumdots,Science271(1996)933 937.
[13] M.D.Hernández-Alonso,F.Fresno,S.Suárez,J.M.Coronado,Developmentofalternativephotocatalysts toTiO2:challengesandopportunities,EnergyEnviron.Sci.2(2009)1231 1257.
[14] S.Ouyang,H.Tong,N.Umezawa,J.Cao,P.Li,Y.Bi,etal.,Surface-alkalinization-inducedenhancement ofphotocatalyticH2evolutionoverSrTiO3-basedphotocatalysts,J.Am.Chem.Soc.134(2012) 1974 1977.
[15] C.A.Bignozzi,S.Caramori,V.Cristino,R.Argazzi,L.Meda,A.Tacca,Nanostructuredphotoelectrodes basedonWO3:applicationstophotooxidationofaqueouselectrolytes,Chem.Soc.Rev.42(2013) 2228 2246.
[16] A.B.Djuri ˇ si ´ c,X.Chen,Y.H.Leung,A.ManChingNg,ZnOnanostructures:growth,propertiesand applications,J.Mater.Chem.22(2012)6526 6535.
[17] A.S.Barnard,C.A.Feigl,S.P.Russo,Morphologicalandphasestabilityofzincblende,amorphousand mixedcore shellZnSnanoparticles,Nanoscale2(2010)2294 2301.
[18] L.Huang,X.Wang,J.Yang,G.Liu,J.Han,C.Li,DualcocatalystsloadedtypeICdS/ZnScore/shell nanocrystalsaseffectiveandstablephotocatalystsforH2 evolution,J.Phys.Chem.C117(2013) 11584 11591.
[19] A.Y.Polyakov,S.J.Pearton,P.Frenzer,F.Ren,L.Liu,J.Kim,RadiationeffectsinGaNmaterialsand devices,J.Mater.Chem.C1(2013)877 887.
[20] A.Efrati,O.Yehezkeli,R.Tel-Vered,D.Michaeli,R.Nechushtai,I.Willner,Electrochemicalswitchingof photoelectrochemicalprocessesatCdSQDsandphotosystemI-ModifiedElectrodes,ACSNano6(2012) 9258 9266.
[21]K.Katayama,Y.Takeda,K.Shimaoka,K.Yoshida,R.Shimizu,T.Ishiwata,etal.,Novelmethodof screeningtheoxidationandreductionabilitiesofphotocatalyticmaterials,Analyst,139,2014, 1953 1959.
[22] S.Park,A.Razzaq,Y.H.Park,S.Sorcar,Y.Park,C.A.Grimes,etal.,HybridCuxO TiO2 heterostructured compositesforphotocatalyticCO2 reductionintomethaneusingsolarirradiation:sunlightintofuel, ACSOmega1(2016)868 875.
[23]A.Primo,A.CormaandH.Garcia,Titaniasupportedgoldnanoparticlesasphotocatalyst,Phys.Chem. Chem.Phys.13,2011,886 910.
[24] O.Akhavan,E.Ghaderi,A.Esfandiar,Wrappingbacteriabygraphenenanosheetsforisolationfrom environment,reactivationbysonication,andinactivationbynear-infraredirradiation,J.Phys.Chem.B 115(2011)6279 6288.
[25] Y.Sun,Q.Wu,G.Shi,Graphenebasednewenergymaterials,EnergyEnviron.Sci.4(2011)1113 1132.
[26] S.Stankovich,D.A.Dikin,G.H.B.Dommett,K.M.Kohlhaas,E.J.Zimney,E.A.Stach,etal.,Graphenebasedcompositematerials,Nature442(2006)282 286.
[27] W.Cai,X.Chen,W.B.Cai,Nanoplatformsfortargetedmolecularimaginginlivingsubjects,Small3 (2007)1840 1854.
[28] Q.Xiang,Y.Jiaguo,M.Jaroniec,Graphene-basedsemiconductorphotocatalysts,Chem.Soc.Rev.41 (2012)782 796.
[29] J.Shen,B.Yan,M.Shi,H.Ma,N.Li,M.Ye,OnestephydrothermalsynthesisofTiO2-reducedgraphene oxidesheets,J.Mater.Chem.21(2011)3415 3421.
[30] C.Zhu,S.Dong,Synthesisofgraphene-supportednoblemetalhybridnanostructuresandtheirapplicationsasadvancedelectrocatalystsforfuelcells,Nanoscale5(2013)10765 10775.
[31] Y.Fu,X.Wang,MagneticallyseparableZnFe2O4 graphenecatalystanditshighphotocatalyticperformanceundervisiblelightirradiation,Ind.Eng.Chem.Res.50(2011)7210 7218.
[32] O.Akhavan,E.Ghaderi,PhotocatalyticreductionofgrapheneoxidenanosheetsonTiO2 thinfilmfor photoinactivationofbacteriainsolarlightirradiation,J.Phys.Chem.C113(2009)20214 20220.
[33] S.-M.Paek,E.Yoo,I.Honma,EnhancedcyclicperformanceandlithiumstoragecapacityofSnO2/graphenenanoporouselectrodeswiththree-dimensionallydelaminatedflexiblestructure,NanoLett.9 (2009)72 75.
[34] N.J.Bell,Y.H.Ng,A.Du,H.Coster,S.C.Smith,R.Amal,UnderstandingtheenhancementinphotoelectrochemicalpropertiesofphotocatalyticallypreparedTiO2-reducedgrapheneoxidecomposite,J.Phys. Chem.C115(2011)6004 6009.
[35] L.Pan,X.Liu,Z.Sun,C.Q.Sun,Nanophotocatalystsviamicrowave-assistedsolution-phasesynthesisfor efficientphotocatalysis,J.Mater.Chem.A1(2013)8299 8326.
[36] O.Carp,C.L.Huisman,A.Reller,Photoinducedreactivityoftitaniumdioxide,Prog.SolidStateChem. 32(2004)33 177.
8HandbookofSmartPhotocatalyticMaterials
[37]M.D.Hernández-Alonso,F.Fresno,S.SuárezandJ.M.Coronado,DevelopmentofalternativephotocatalyststoTiO2:challengesandopportunities,EnergyEnviron.Sci.2,2009,1231 1257.
[38] A.Mills,S.-K.Lee,Aweb-basedoverviewofsemiconductorphotochemistry-basedcurrentcommercial applications,J.Photochem.Photobiol.AChem152(2002)233 247.
[39] B.Hu,C.Guild,S.L.Suib,Thermal,electrochemical,andphotochemicalconversionofCO2 tofuelsand value-addedproducts,J.CO2 Util.1(2013)18 27.
[40] C.Maeda,Y.Miyazaki,T.Ema,Recentprogressincatalyticconversionsofcarbondioxide,Catal.Sci. Technol.4(2014)1482 1497.
GreensynthesisofTiO2 andits photocatalyticactivity
ManviriRani1,UmaShanker2
1 MALAVIYANATIONALINSTITUTEOFTECHNOLOGYJAIPUR,JAIPUR,INDIA
2 DRBRAMBEDKARNATIONALINSTITUTEOFTECHNOLOGYJALANDHAR,JALANDHAR,INDIA
2.1Introduction
Anexponentialdevelopmentofexplorationgoings-on(synthesisandcharacterization)in nanotechnology [1 4] ledtothethoughtfulutilizationoftheirprospectiveapplications. Propertiesofmaterialschangeonsmallerthescale-sizeandontheshape;hence,several reviewsareavailableofsynthesisalongwithpropertiesofnanomaterials(NMs) [2 8].In viewofcommercialapplications,metaloxidesweregreatlyconsideredespeciallytitanium dioxide(TiO2,titania:aninorganicmaterialcommerciallyproducedintheearly20thcentury)owingtoitsuniquepropertiesfordiverseapplications(dielectrics,pigmentandin sunscreens,paints,ointments,toothpaste).Havingthepropertiesofbiocompatibility,nontoxicityandantimicrobialactivity,TiO2 ispreferentiallyusedinthefieldofbiomedical sciences [9,10].Ultrafinetitaniapowderhasbeenpreparedbymethodssuchassol gel, hydrothermal,solvothermal,flamecombustion,emulsionprecipitation,andfungusmediatedbiosynthesis.
TiO2 existsinthreephasesnamed,rutile,anatase,andbrookite.Ofthem,rutileisthe moststablewhilethelattertwophasescouldbechangedtorutilephaseviaheatingapplication [11 16].Bothanataseandrutilearetetragonalcrystallinewhilebrookiteisorthorhombic.ThisdiscussionclearlyindicatesthateachformofTiO2 hasdistinguishedmorphologyas wellasdiverseapplications.Forexample,anatasephaseisusedasopticalcatalystsdueto sensitizationoflightandrutilephaseiswidelyusedasdielectricsandhigh-temperature oxygensensors [17].In1972,FujishimaandHondadiscoveredthephenomenonofphotocatalyticsplittingofwateronaTiO2 electrodeunderultraviolet(UV)light [5,18].Sincethen,it showedbetterimprovementintheareasofphotovoltaics,photo/electrochromics,andsensors [19,20,21] andphotocatalyticapplicationsfortheremovalofvariousorganictoxinsfrom airandwater [11,22,23].TiO2 hasbeenconsideredasapromisingandpotentialmaterialfor theproductionofphotoelectrochemicalenergy [24,25] (Fig.2 1).
ThehighsurfaceareaeasesreactionaswellasinteractionofTiO2-baseddevicesandthe interactingmedia.TiO2 isthemostpromisingphotocatalyst [20,26 28] formanyserious 11 HandbookofSmartPhotocatalyticMaterials.DOI: https://doi.org/10.1016/B978-0-12-819051-7.00002-6 © 2020ElsevierInc.Allrightsreserved.
FIGURE2–1 VariousformsofTiO2 WithpermissionfromD.Dambourne,I.Belharouak,K.Amine,Tailored preparationmethodsofTiO2 anatase,rutile,brookite:mechanismofformationandelectrochemicalproperties, Chem.Mater.22(2009)1173 1179.
environmentalpollutionchallengesandenergycrisisthrougheffectiveutilizationofsolar energy [29 31].Anumberofreviewshavebeenavailableonenvironmental(photocatalysis andsensing)andenergyapplicationsofTiO2,indicatingmodificationsofitsproperties(optical)bydopingorsensitization.ThechemicalmethodsofTiO2 fabricationinvolvetheuseof highlysuperior,toxic,andhazardouschemicalsthatcouldindirectlycreateagraveecotoxicologicalconcern.Therefore,greenroutes(simple,eco-friendly,andlesstoxicway)involving biodegradablematerials(plantextracts,microbes,andenzymes)havereceivedattentionfor thesynthesisofTiO2 nanoparticles.Moreover,plantextracts-basedstrategyrequireslesser timeandalsoreducesthepossibilityofassociatedcontamination.Furthermore,greensynthesizednanoparticleshavebecomepromisingmaterialsforthetreatmentofwastewater andcombatingwithenvironmentalpollution.Thoughavastliteratureisavailableonthe photocatalyticapplicationofchemicallypreparedTiO2 butthesameobtainedfromgreen processwasnotexploredsomuchforthephotoactivityinwastewatertreatment.
2.2Environmentalconcernoforganicpollutants
Theextensiveuseofindustrialchemicalsandunsafematerialsgoingtowaterbodiesare causingenvironmentalandliving-lifechallenges(Table2 1).Freshorcleanwaterusedby humansisveryless(0.0008%isavailableandrenewable)andthatisqualityisalsodeclining duetoincreasedpopulationgrowth(estimatedas4 5billionpeoplebytheyear2025). Hence,themanagementofenvironmentisnecessaryforasustainableandbetterlife.Among theconstituentsofwastewater,syntheticdyes,pesticides,amines,phenolsandsubstituted phenols,andpolycyclicaromatichydrocarbons(PAHs)areabundantlypresent [32] (Table2 1).
Duringthelastfewdecades,pollutionbyorganicsubstanceshasbecomeaglobalthreat anditslevelisincreasingcontinuouslyduetourbanization,fastdevelopment,andvarying wayoflifeofpublic [33].Thehighstabilitytowardheat,light,andoxidizingagentsledto theirpersistenceandaccumulationintheenvironment [34].Variousindustriessuchas
Table2–1 Constituentsofwastewater [32]
TypeComponentsEffects
MicroorganismsPathogenicbacteria,virus,etc.Riskwhilebathingandeatingfish Organic materials Oxygendepletioninrivers,lakes,andfjordsEutrophication,aquaticdeath,may containdisease-causing microorganisms
Synthetic organic materials
Pesticides,fat,oilandgrease,dyes,phenols,amines, polycyclicaromatichydrocarbons,pharmaceuticals,etc.
Toxiceffect,estheticinconveniences, bioaccumulation
NutrientsN,P,ammonium,Ca,Na,Mg,K,etc.Eutrophication,oxygendepletion,toxic effects
Inorganic materials
Acids,bases,heavymetals(Hg,Pb,Cd,Cr,Cu,Ni,etc.)Corrosion,toxiceffect,hardness,aquatic death,bioaccumulation
RadioactivityVariousradioactiveelementsToxiceffect,accumulation Chapter2 • GreensynthesisofTiO2 anditsphotocatalyticactivity13
Fabric,cosmetics,pulpandpaper,foodprocessing,pharmaceuticalandpesticideindustries dischargeduntreatedeffluentstothewaterbodies [35] andposesanenormoushazardtothe hydrosphereandlivingorganisms [36 38].Theaccidentsrelatedtothesepollutantshave causedseveredamagetotheenvironment(Table2 2).
Suchpollutantscomestohumancontactviaair,food,water,soil,anddust.Dyeschange thequalityofwaterbyjustasmallconcentration(B1ppm) [48 52].Azodyesaremajorly used [53] andbenzidinearecarcinogenic.Pesticidesreleasedfromvariousindustries, anthropogenicactivities,andsurfaceexcessfromagriculturalareasarethemostabundant pollutantsinwastewatersofgrowingnations [54 56].
Mostofthepollutantsaretoxicandallegedcancercausingwithendocrinedisruptor potential [57 60].Aromaticaminessuchasbenzidine,toluidine,andchloroanilinesand manymorewitnessedasgenerationordegradationintermediatesofthoserecalcitrantcompoundsareextremelynoxious [61 65].Phenolsandtheirderivativeshavebeennominated asprioritypollutantswithprotein-degeneratingeffectandaredifficulttodegradetoconventionalwastewatertreatments.AnotheremergingproblemisPAHs(releasedintoduetovolcaniceruptions,accidentaloilspilling,inadequateburningoffuel,coal,etc.).Duringthelast fewdecades,theconcentrationofPAHshavebeenincreasedtremendouslyandsensedinall thecompartmentsoftheecosystemsuchasair,soil,sediments,water,oil,tars,andfoodstuffsaswellasinthetissuesofvariousaquaticcreaturesandbirds [66,67].Ithasbeen reportedbyseveralresearchersthatover80,000tonsofPAHsarebeingdischargedintothe waterbodieseveryyear [68] Thelowwatersolubilitypromptedtheirresistancetodegradationandtoxicityincreaseswithmolecularweight.Duetotheirextensivecontaminationand beingrecalcitrantandpotentiallypersistent bioaccumulation,17unsubstitutedPAHshave beencategorizedasprioritypollutantsbyUSEPA.
Presently,morethan10,000typesoforganicdyesofamountapproximately700,000tons annuallyhavebeenproducedasperstatisticstotheColorIndex.Chinaistheworld’sbiggest consumeroforganiccolorpigments,whileIndiaaccountingfornearly10%ofthetotal
Table2–2 Someimportantorganicpollutants-relatedaccidentsworldwide (Rani,2012).
PesticidePlaceYearCausesReference
ParathionIndia1958Contaminatedfoodduetoleakage [39]
India1962Inhalationinmanufacturingplant
HCHIndia1963Contaminatedrice
EndrinIndia1964Contaminatedfood
HCHIndia1963Contaminatedrice
EndrinIndia1964Contaminatedfood
DDTIndia1965Contaminatedchutney
DiazinonIndia1968Contaminatedfood
HCHIndia1976Mixedwithwheat
EndrinIndia1977Contaminatedcrabsinricefield
AluminumphosphideIndia1983Contaminatedfoodgrain
MethylisocyanateIndia1984Storagetankleakage
CartaphydrochlorideIndia1988mishandlingoffactoryworker
EndosulfanIndia1997Contaminationduetoaerialspray
PhorateIndia2001Spraydriftfrombananafield
EndosulfanIndia2002Contaminatedwheatflour
2,3,7,8-tetrachlorobenzo10-dioxin
Italy1976Airpollutionduetopoisonousgas [40]
SarinJapan1985 95Masspoisoning [41]
PesticidesUnitedStates1968 78Contaminatedfood [42]
PhenolUnitedStates1974Accidentalspillage [43]
PhenolIndia1999Accidentaloverdoseofphenol [44]
PhenolNewZealand1980Absorptionofphenolthroughskin [45]
2,4-DinitrophenolChina2009nonoralexposuretoworkersinachemical factory [46]
2,4-DinitrophenolUnitedStates1933 38Poisoningduetoweightlosspill [47] PhenolUnitedStates1974Accidentalspillageof37,900L [43]
PAHs(LakeviewGusher)UnitedStates19101200tonsofcrudeoilreleased [7]
PAHs(Kuwaitioillakes)Kuwait1991Kuwaitioillakesaccidentalspillage PAHs(Kuwaitioilfires)Kuwait1991136,000tonsofcrudeoilreleased PAHsSouthKorea2007MTHebeiSpiritoilspill
PAHsUnitedStates2010DeepwaterHorizonoilspill PAHs(Sundarbansoilspill)Bangladesh2014Accidentalspillage
PAHs(Ennoreoilspill)Chennai2017Accidentalspillage
PAHs(LakeviewGusher)UnitedStates19101200tonsofcrudeoilreleased
consumption [69].ThelargestconsumptionofpesticidesisreportedinEurope,followedby Asia.InAsia,ChinaistheleadingmanufacturerofpesticidesandIndiastandssecondwith anannualproductof100,000MT.Withthisamount,Indiastands12thglobally(Annual reportGovtofIndia,2015).Outof415carcinogenicchemicals,12%recognizedtobearomaticamines.Anilineislistedasahigh-prioritychemicalinthestudyofwastesfromcoalconversionprocesses(HarrisonandMallon,1982).Arecentreportonanilineestimatedthat
by2019,theinsulationsectorwillbethelargestend-userofaniline(B46%),followedby rubberproducts(11.5%)andconsumertransportation(10.3%)worldwide.Duetothesharp increaseinautomotiveandinfrastructureindustries,anilineconsumptionwas6.6million tons(MT)intheyear2016andisexpectedtoreachupto8.1MTin2019 [31].Owingtotheir widespreadutilization,toxicity,andresistancetodegradation,itistheneedofpresenttime todevelopcheapand/oreasy-to-handleandeffectiveremovalofsuchpollutantsfromthe environment.NMsareplayingabetterroleintheremovalofpollutantsandremediationof pollutant-affectedsiteowingtoincreasedspecificsurfacearea,roughness,andenhanced surfaceproperties [69 72]
Growingpopulation,rapidindustrialization,modernizationofdevelopments,agronomic anddomesticwastesaredeterioratingthequalityofwaterandsoilaroundtheworld. Syntheticdyes,pesticides,aromaticaminesandphenols,andemergingPAHsareextensively pollutingthewaterbodies.Theserecalcitrantshavetoxicityintheformofsecondarywaste, persistence,andsometimesmetabolites [73 76].Azodyesandbenzidinearehighlycancercausingandevenanexplosive [49].Theiruntreateddischargetowaterbodiesmustbeprohibitedasitmightcontaincarcinogens [50].EuropeanCommissionhasdisqualifiedseveral noxiousazodyessuchasnavyblueusedintheleatherindustry [77].Presently,Chinaisproducing40% 45%oftheworld’stotaldyeconsumption [78] Ithasbeenreportedthatafter processingaround12 20tonsoftextiles,3000m3 ofwaterisletoutperday [79,80] Another bigproblemisthepesticides(dispersedoff:85% 90%),thatanestimateduseof5.5 3 108 kg intheUnitedStatesand2.59 3 109 kggloballyisreportedin1995 [81].Regardlessofstern conventions,priorityhazardoussubstancesarestillfoundinriversandseafood,indicating theirlongpersistenceorcurrentuse [82,83].TherehavebeenseveralcasesofpesticidespoisoningreportedindevelopingcountriessuchasIndia,andbyvirtueifthatmanyfarmers loosingtheirliveseveryyear,forexample,intheyear1997 2002,severalfarmersdieddue toendosulfanpoisoning.
PAHswith80,000tons/yearofuntreateddischargetothewaterstreamsareevolvingand documentedubiquitouslypresentintheenvironmentascarcinogensandmutagens [68].It hasbeenreportedthat46% 90%massofindividualPAHsemittedbymotorvehiclesinthe cities [84].Indooremissioncontributesto B16%ofPAHsintheUnitedStates,29%inSweden, and33%inPoland [85,86].Individualsexpend80% 93%oftheirtimeindoorandinhalePAHs [87].Oil-spillingincoastalregionsisthemainreasontoincreasePAHpollutionthatcauses lossofvariousmarinelives [88].Atotalof17unsubstitutedPAHshavebeenidentifiedasprioritycarcinogensbyUSEPA [89].
Aromaticphenolsandaminesaremajororganicconstituentsordinarilyfoundinwastewater (range:1 100mgL 1) [90,91].TheUSEPAhasdeterminedthatexposuretophenolindrinking waterataconcentrationof4mgL 1 forupto10daysisnotexpectedtocauseanyadverse effectsinachild [92].Phenolisdangerousforthelifeofaquaticbodiesat9 25mgL 1 [93]. Consequently,phenolsarelistedintoEPA-specificprioritypollutants [94,95].BisphenolAis anothercommonpollutantfoundinwastewaterduetoitsextensiveuseandbulkproduction asaplasticantioxidant.bisphenolAcanaffectmarinecreaturesanddistressphysiologicalfunctionsevenatpicogramconcentrations.Theannualgrowthratewasfoundtobe4.6%from2013 to2019owingtoworldwidedemandaround6.5milliontons.Theabovediscussedorganic