Handbook of small modular nuclear reactors 2nd edition mario d. carelli (editor) - Download the eboo

Page 1


Handbookofsmallmodularnuclearreactors2nd EditionMarioD.Carelli(Editor)

https://ebookmass.com/product/handbook-of-small-modularnuclear-reactors-2nd-edition-mario-d-carelli-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Physics of nuclear reactors K. Umasankari

https://ebookmass.com/product/physics-of-nuclear-reactors-kumasankari/

ebookmass.com

Resonance Self-Shielding Calculation Methods in Nuclear Reactors Liangzhi Cao

https://ebookmass.com/product/resonance-self-shielding-calculationmethods-in-nuclear-reactors-liangzhi-cao/

ebookmass.com

Nuclear safety 2nd ed Edition Petrangeli

https://ebookmass.com/product/nuclear-safety-2nd-ed-editionpetrangeli/

ebookmass.com

The

Sunset Shores (Small Town Hearts Book 2) Ivory Fields

https://ebookmass.com/product/the-sunset-shores-small-town-heartsbook-2-ivory-fields/

ebookmass.com

https://ebookmass.com/product/spss-statistics-a-practicalguide-5e-5th-edition-kellie-bennett/

ebookmass.com

Essentials of Nuclear Medicine and Molecular Imaging 7th Edition

https://ebookmass.com/product/essentials-of-nuclear-medicine-andmolecular-imaging-7th-edition/

ebookmass.com

British Autobiographies: An Annotated Bibliography of British Autobiographies Published or Written before 1951

https://ebookmass.com/product/british-autobiographies-an-annotatedbibliography-of-british-autobiographies-published-or-writtenbefore-1951-william-matthews/ ebookmass.com

Kutuzov: A Life in War and Peace Alexander Mikaberidze

https://ebookmass.com/product/kutuzov-a-life-in-war-and-peacealexander-mikaberidze-2/

ebookmass.com

Relive it with C. Earl East; stirring stories which really happened, some near Indiana University and others elsewhere, with four coffee breaks of old-fashioned verse East

https://ebookmass.com/product/relive-it-with-c-earl-east-stirringstories-which-really-happened-some-near-indiana-university-and-otherselsewhere-with-four-coffee-breaks-of-old-fashioned-verse-east/ ebookmass.com

Hitlers Revolution: Ideologie, Sozialprogramme, Außenpolitik (German Edition) Richard Tedor [Tedor

https://ebookmass.com/product/hitlers-revolution-ideologiesozialprogramme-ausenpolitik-german-edition-richard-tedor-tedor/

ebookmass.com

HandbookofSmallModular NuclearReactors

ModularNuclearReactors

SecondEdition

FormerDirectorofResearchCollaborationsat

FormerChiefScientistforResearch&Technology

WoodheadPublishingisanimprintofElsevier

TheOfficers’ MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright©2021ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-823916-2(print)

ISBN:978-0-12-823917-9(online)

ForinformationonallWoodheadpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: BrianRomer

AcquisitionsEditor: MariaConvey

EditorialProjectManager: ChiaraGiglio

ProductionProjectManager: AnithaSivaraj

CoverDesigner: MarkRogers

TypesetbySPiGlobal,India

Dedication

Thisbookisdedicatedtoallpioneers,practitioners,andfirstadoptersof smallmodularreactorswhoarecollaboratingtocreatethefutureof nuclearenergy.

Contributors

KathleenArau ´ jo EnergyPolicyInstitute,BoiseStateUniversity,Boise,ID, UnitedStates

RobertA.Bari BrookhavenNationalLaboratory,Upton,NY,UnitedStates

NicholasJ.Barron ReactorCoreTechnology,NationalNuclearLaboratory, Sellafield,UnitedKingdom

RandallJ.Belles OakRidgeNationalLaboratory,OakRidge,TN,UnitedStates

GeoffreyBlack DepartmentofEconomics,CollegeofBusinessandEconomics, BoiseStateUniversity,Boise,ID,UnitedStates

RichardL.Black Consultant,McLean,VA,UnitedStates

S.Boarin PolitecnicodiMilano,Milan,Italy

ShannonM.Bragg-Sitton IdahoNationalLaboratory,IdahoFalls,ID,UnitedStates

M.D.Carelli FormerlyofWestinghouseElectricCo.,Pittsburgh,PA,USA

Lap-YanCheng BrookhavenNationalLaboratory,Upton,NY,UnitedStates

SuhnChoi KoreaAtomicEnergyResearchInstitute,Daejeon,RepublicofKorea

DaraCummins IndependentContractor,Loudon,TN,UnitedStates

DarioF.Delmastro NationalAtomicEnergyCommissionandUniversidadNacional deCuyo,SanCarlosdeBariloche,Rı´oNegro,Argentina

D.Goodman Consultant,USA

KevinW.Hesketh FuelandCore,NationalNuclearLaboratory,Preston,United Kingdom

JacquesHugo JacquesHugoAssociates,Pretoria,SouthAfrica

DanielT.Ingersoll NuScalePowerLLC(retired),OakRidge,TN,UnitedStates

VladimirKuznetsov Consultant,Austria

S.Lawler Rolls-Royceplc,Derby,UK

G.Locatelli UniversityofLincoln,Lincoln,UK

M.Mancini PolitecnicodiMilano,Milan,Italy

GaryMays OakRidgeNationalLaboratory,OakRidge,TN,UnitedStates

TsutomoOkubo JapanAtomicEnergyAgency(retired),Oarai-Machi,Japan

BojanPetrovic GeorgiaInstituteofTechnology,Atlanta,GA,UnitedStates

Edward(Ted)Quinn TechnologyResources,DanaPoint,CA,UnitedStates

M.Ricotti PolitecnicodiMilano,Milan,Italy

DavidShropshire NuclearScienceandTechnologyDirectorate,IdahoNational Laboratory,IdahoFalls,ID,UnitedStates

DanrongSong NuclearPowerInstituteofChina,Chengdu,People’sRepublicof China

NeilTodreas MassachusettsInstituteofTechnology,Cambridge,MA,UnitedStates

N.Town Rolls-Royceplc,Derby,UK

AndrewWorrall OakRidgeNationalLaboratory,OakRidge,TN,UnitedStates

MetinYetisir AdvancedReactorTechnologies,CanadianNuclearLaboratories, ChalkRiver,ON,Canada

Preface

Themoderneraofsmallmodularnuclearreactorsbeganroughlyattheturnofthe millennium.Smallersizednuclearreactorshavebeenapartofthenuclearheritage fromitsbeginninginthe1950s.However,designingofnewnuclearplants,small andlarge,waslargelysuspendedduringthe1990swhencountriessuchastheUnited Statesexperiencedalowdemandfornewgeneratingcapacityandothercountriessuch asFrance,Japan,andtheRepublicofKoreaproceededtodeploystandardizedplant designs.Neartheconclusionofthe1990s,theUSgovernmentinitiatedaresearchprogramtostimulatetheidlednuclearindustryandspecificallytargetedthedevelopment ofsmaller,morerobustnuclearplantdesigns.

OneofthedesignsthatemergedfromtheUSresearchinitiativewastheInternationalReactorInnovativeandSecure(IRIS)design,whichwasdevelopedbyaninternationalconsortiumofpartnersthateventuallyspannedmorethan20organizationsin 10countries.TheteamwasledbyDr.MarioCarelli,ChiefScientistatWestinghouse ElectricCompany(WEC),andconsistedofadiversesetofacademic,research,and industrialpartners.OneofthosepartnerswasOakRidgeNationalLaboratory (ORNL).Dr.DanielIngersoll,aSeniorProgramManageratORNL,ledORNL’sparticipationintheIRISprojectuntil2008whenhewasassignedtechnicalleadershipofa newprograminitiatedbytheUSDepartmentofEnergyfocusedonresearchand developmentofsmallmodularreactors.

Bytheendof2010,severalnewSMRdesignshademergedintheUnitedStatesand globally,andcustomerinterestinanewgenerationofdesignswasexpandingrapidly. Inlate2011CarelliwasapproachedbyWoodheadPublishingtoserveasEditorfora newprojecttopublishahandbookonsmallmodularnuclearreactors.Giventhesize oftheprojectandthedynamicnatureofthetopic,CarelliinvitedIngersolltojoinas coeditor.Atthesametime,IngersollleftORNLandmovedtoNuScalePower,arelativelynewcompanydedicatedtothedesignofanespeciallyinnovativeSMR.Carelli andIngersollcollaboratedtodevelopthescopeandorganizationoftheHandbookand amassedacollectionof20expertstocontributespecificchaptersfocusedonmany differentaspectsofSMRs.Thefirsteditionofthe HandbookofSmallModular NuclearReactors wasreleasedattheendof2014.

AsecondeditionoftheHandbookwasrequestedbythepublisherin2019.The resultisthisnewlyupdatedandexpanded HandbookofSmallModularNuclearReactors.Significantchangesincorporatedintothissecondeditionincludethefollowing:

– ThecreationofafinalPartVdevotedtobroadinternationalmarketsandperspectives.

– Theupdatingofmostchapterstoincludenewdevelopmentsoccurringduringthe5years sincereleaseofthefirstedition.

Theadditionofthreenewchapters:twoinPartIV(R&DactivitiesinCanadaandtheUnited Kingdom)andoneinPartV(globalmarketassessment).

Theenergylandscapeandespeciallythenuclearenergylandscapecontinuestoevolve inaverydynamicandsomewhatunpredictablefashionasenergydemandchanges, oldtechnologiesareabandoned,newtechnologiesareintroduced,andsociopolitical policiesfluctuate.ItisourhopethatthisupdatedHandbookwillprovidethereader withthebest,mostaccurateunderstandingofthestateoftheartinsmallmodular nuclearreactors.

TheEditors

Introduction

Thishandbookprovidesathoroughandauthoritativeintroductiontotoday’shottest newdevelopmentinnuclearplantdesignanddeployment:smallmodularreactors (SMRs).Buildingontheglobalsuccessoflargenuclearplants,SMRsofferthepotentialtoexpandtheuseofclean,reliablenuclearenergytoabroaderrangeofcustomers andenergyapplications.

Theearlycommercialnuclearpowerreactorsdesignedandbuiltfromthe1950s and1960swerelow-powerplants(uptoafewhundredmegawatts)andwerebuilt todemonstratethecommercialviabilityofnuclearenergy.Theseplantswerecomparablewiththeirfossil-fueledcounterparts,bothinoutputandconstructiontime(afew years).Theyweremoderatelysuccessful;however,theirunitcapitalcosts($/kW) weresubstantiallyhigherthanforcomparablefossilplants.Asthenuclearplantcost keptincreasingtoimproveperformanceandsafety,itbecamenecessarytoalso increasetheoutputpowertomaintaincompetitiveenergyprices;thustheplantsize increasedrapidlyfromafewhundredsofmegawattstonearly2000MWtoday.Sucha drasticincreasehadseveraleffects:Onlyafewmanufacturers,eitherlargeconglomeratesorstate-ownedenterprises,remainedinoperationworldwide;plantcosts becamestratospheric,creepingintotensofbillionsdollars;andthetimefromcontract signingtoinitiatingpowerproductionexceededadecade.

Startinginthe1990snewSMRdesignsemergedworldwideandhavegained increasingmomentuminthenewmillenniumwiththeintenttocomplementlarge plantsandofferamorediverseoptiontopotentialcustomers.Thenewsmallplants haveseveraltraitsincommonwithearlierdesigns,suchassize(fromtenstoafew hundredsofmegawatts),relativesimplicity,andashorterconstructiontimeowing toincreasedfactory-basedfabrication.Also,SMRscancoverawiderangeofapplicationsanddeploymenttimes.Thoseproposedforpower-producingapplicationsin theshorttermaredesignsofthelightwaterreactor(LWR)type,whileSMRsbest suitedforotherapplicationssuchasfuelbreedingandwasteburningemploydifferent coolantsandaredeployableoverthelongterm.

ManydevelopersofSMRs,eventhenear-termLWRs,arequitedifferentfromthe largeLWRmanufacturers.Theyincludesmaller-sizedmanufacturersandnewenterprises.Forexample,thetwoLWR-basedSMRvendorsintheUnitedStatesarecurrentlyNuScalePower,anentirelynewenterprisededicatedtoaspecificSMRdesign, andHoltecInternational,arecognizedleaderinfuelstoragefacilitiesbutnewtoreactordesign.TheinternationalSMRdevelopmentcommunityreflectsasimilardemographicwithmanydesignsevolvingfromtheresearchcommunityornontraditional suppliers.

Thishandbookiscomposedof23chaptersstructuredintofiveparts,eachchapter beingauthoredbyarecognizedexpertinthefield.

l PartI(FundamentalsofSMRs)providesacomprehensiveintroductiontoSMRtechnologies,existingcommercialdesigns,andfundamentaldesignstrategies.ThethreeauthorscontributingtothissectionhavebeeneminentproponentsofSMRssincethe1990sandhaveled thedevelopmentofintegralpressurizedwaterreactor(iPWR)designs,whicharetheprevailingdesignstrategyforSMRsandthefocusofthishandbook.PartIisarticulatedover threechapters:overviewofSMRfeaturesandtechnologies,reviewofseveralcurrentSMRs beingdevelopedanddeployedworldwide,andanintroductiontoiPWRsasaspecificSMR designcategory.

l PartII(SMRtechnologies)reviewsthekeytechnologiesthatarefundamentaltotheiPWR design,focusingonwhatisnewanddifferentwhilealsoprovidinginsightonpotential opportunitiesandchallenges.Sixchapters,writtenbyinternationallyrecognizedauthorities intheirfield,addressseveralbasicSMRtechnologies:thereactorcoreandfuel,reactorsystemcomponents,performancemonitoringandcontrol,human-systeminterfaces,safety,and proliferationresistanceandphysicalprotection.

l PartIII(Implementationandapplications)addressesfourkeyareascriticaltosuccessful deploymentofSMRs:economicsandfinancing,hybridenergysystemsusingSMRs,licensing,andmanufacturingmethods.AswithPartIIthefourauthorsofPartIIIarerecognized authoritiesintheirfield.

l PartIV(InternationalR&Danddeployment)reviewsstate-of-the-artprojectsandprograms forSMRdevelopmentanddeployment.Eightchaptersfocusoncountriesthataremost activeinthedevelopmentanddeploymentofSMRs,presentedinalphabeticalorder:Argentina,Canada,China,Japan,RepublicofKorea,Russia,theUnitedKingdom,andtheUnited States.Theauthorsareaccomplishedresearchersanddirectlyinvolvedintheircountry’s SMRactivities.

l PartV(Globalperspectives),composedofjusttwochapters,providesatimelysnapshotof theglobalmarketforSMRsandalsooffersatimelessperspectiveonhowSMRdeployment mightimpacteconomicgrowthandenvironmentalconditionsindevelopingcountries.Itisa reminderthatSMRspromisenotonlytobeabetterandmoreeconomicalsolutionfornew energybutalsopromoteimprovedopportunitiesandqualityoflifeinemergingeconomies.

ThishandbookisintendedtobeusefultothosewithageneralinterestinSMRs,aswell astothoselookingfordetailedtechnicalinformation.Itisfurtherintendedthatthis handbookservesasaguide,throughitscopiousreferences,tofurtherlearningonthe subject.

Smallmodularreactors(SMRs)

forproducingnuclearenergy: Anintroduction

NeilTodreas

MassachusettsInstituteofTechnology,Cambridge,MA,UnitedStates

1.1Introduction

1

Justwhataresmallmodularreactors(SMRs)?Thisquestionisfirstansweredsimply alongwithabriefhistoryoftheevolutionofthisclassofreactors.Subsequentsections detailtheincentivesandchallengestoachievingsuccessfulcommercialdeployments, thedifferenttypesofSMRsbasedoncoolantsemployed,and,finally,thecurrent statusandfuturetrendsintheworldwideefforttodevelopanddeploythisreactortype.

1.1.1DefiningSMRs

“Small”referstothereactorpowerrating.Whilenodefinitiverangeexists,apower ratingfromapproximately10–300MWehasgenerallybeenadopted.Theminimum ratingassuresthatthereactordeliverspowersuitableforthepracticalindustrialapplicationofinterest.Themaximumratingconstrainsthesedesignstopowerlevels atwhichtheexpectedadvantagesofserialproductionandincrementaldeployment aswellasthematchtoelectricgridsitingopportunitiesandconstraintscanbe realized.InadditiontoagrowinginterestinSMRs,therehasbeenarecentsurge ofinterestinnuclearreactorswithoutputbelow10MWe,whicharecommonly referredtoasmicroreactors.

“Modular”referstotheunitassemblyofthenuclearsteamsupplysystem(NSSS), which,whencoupledtoapowerconversionsystemorprocessheatsupplysystem, deliversthedesiredenergyproduct.Theunitassemblycanbeassembledfrom oneorseveralsubmodules.Thedesiredpowerplantcanthenbecreatedfromone orseveralmodulesasnecessarytodeliverthedesiredpowerrating.Importantly thedeploymentofmodulescanalsobesequencedovertimebothtomatchregional loadgrowthandtolevelizethetimingofcapitalspendingoveraprescribedtimehorizon.Constructionoftheplantbyassemblyoffactory-builtelementsormodulesisthe techniqueofmodularconstruction.Althoughitisanintegralpartoftheconstruction strategyenvisionedforallSMRs,thistechniqueisnotuniquelyappliedtoSMRs. Rather,itisnowbeingemployedforrelevantconstructionelementsofnuclearpower plantsofallpowerratings,althoughthemodulesforlargeplantsareconsiderablydifferentinsize,nottypicallyamenabletorapidassemblyasisbeingproposedforSMRs.

“Reactor”isatermmorebroadlyappliedtovesselsinwhichallmannerofchemicalprocessesareconducted.However,inourcase,reactorreferstoasysteminwhich acontrollednuclearfissionprocessisconducted.

1.1.2StrategyfordevelopmentofSMRs

Smallreactorsandthemodularconstructionofreactorsarenotnew.Historically, earlyreactorsforcommercialproductionofelectricitywereofsmallsize,aconsequenceoftheprudentengineeringprocessofconstructingplantsstartingatsmall ratingstogaintheneededconstructionandoperatingexperiencenecessarytomove confidentlytolargerratings.Now,afterahalf-centuryofexperience,commercial civilreactorsarebeingdeployedwithratingsupto1660MWe.Additionally,small unitswerebuiltforterrestrialdeploymenttoprovideelectricpowerforremote, vulnerablemilitarysites;foroceandeployment;forpropulsionofsubmarines,naval, andcommercialships;andforaircraftpropulsion.Modularconstructiontechniques historicallyhavealsobeenusedforserialproductionofselectedproducts.However, whatisnewisthevisionofsmallratedpowerreactorscomposedofasingleormultiplemodulessizedtomarketsofsmall-orlarge-sizedelectricgrids,therebycreating newnucleargeneratingsites,whichrequiresignificantlyreducedcapitalinvestments andcapitalinvestmentrates.Thefurthereconomicpremiseisthatelectricgeneration costcanbemadesufficientlycomparabletothatofexistinglarge-sizedplants byemployingastrategyofeconomyofnumbers(manufactureofmultipleidentical modules)andsimplificationofdesignversusthetraditionaleconomyofscale.

1.1.3EvolutionofSMRs

Commercialelectricpowerbeganwithsmallreactorsoflightwater-cooleddesign.Key examplesaretheShippingport,60-MWereactordesignedbytheWestinghouseoperatedBettisNavalAtomicPowerLaboratory,whichstartedoperationin1958; theYankeeRowereactor,185MWe(Westinghouse)in1960;theIndianPointOne reactor,275MWe(B&W)in1962(allpressurizedwaterreactor[PWR]designs); andDresden210MWe(GeneralElectric)in1960(aboiling-waterreactor(BWR) design).

TheeightmilitaryreactorsforterrestrialapplicationdevelopedbytheUSArmy NuclearPowerProgramincluded(1)thestationaryplantsoperatedatFortBelvoir,Virginia,whichstartedoperationinApril1957,7monthsbeforeShippingportand5years beforecriticalityoftheFt.Greely,Alaskareactor;(2)theportablereactoroperatedat McMurdoSoundattheSouthPolein1962;and(3)abarge-mountedreactoroperatedoff thecoastofPanamaCity,Panama,in1967.Theseplantsrangedfrom1.75to10MWe andperformedeitheraheatingordesalinizationfunctioninadditiontothegenerationof electricity.AnotherexampleofaportablereactoristheRussianPAMIRreactor designedprimarilytopowerremotemilitaryradaroutposts.ThefirstwastheTES-3, a2MWenuclearplantcompletedin1961.Thedesignwasmodifiedinthe1980sto asmaller,moremobile630kWreactor. 4

ThemuchlargerUSnavalprogram,whichpioneeredtheapplicationofnuclear powerforthepropulsionofsubmarinesandsurfaceships,hasproducedmultiple pressurizedwaterreactorsandonesodium-cooledreactorofsmallratings.Additionally, severalcountrieshavefollowedsuitwithnavalpropulsion—mostnotablyRussia, whichexpandeditsdevelopmentofwater-cooledsubmarinereactorstosubmarines usinglead-bismuthcoolantandhasalsobuiltnuclearpowerednavalsurfaceships andicebreakers.

Commercial(merchantmarine)propulsionhasalsobeenexploitedthroughthe developmentofoceanfreightersandicebreakers.Fourfreighters,allwithreactors oflightwaterdesign,havebeenbuiltandoperatedalbeitwithoutcommercialsuccess: (1)the USSavannah,74MWt,ineffectiveservicestarting1962;(2)theGerman Otto Hahn,38MWt,1968;(3)theJapanese Mutsu,36MWt,1972;and(4)theonlyvessel stillinoperationundernuclearpower,theRussian Sevmorput,135MWt,deliveredin 1988,whichalsohasice-breakingcapability.

The OttoHahn reactordesignisofspecialinterestsinceitsintegraldesigncharacteristicisthetypicalconfigurationbeingexploitedbyseveralmodernPWRSMR vendors.Asextensivelyelaboratedin Chapter3,thetermintegraldesignmeansthe colocationofallcomponentsandpipingoftheprimarycoolantsysteminthesingle pressurevessel.Bycontrastthetypicallarge-ratedPWRsareloopsystemswiththe primarysystemcomponents,forexample,thesteamgenerators,primarycoolant pumpsandpressurizerconnectedbypipingtoeachother,andthepressurevessel, whichhousesthereactorcoreandthecontrolelements.

TodateRussiaalonehasconstructedandoperatedninenuclear-poweredicebreakers,startingin1959withthe Lenin.Twovesselclasseshavebeenbuilt:theArktika class,eachvesselwithtwoOK-900Areactorseachof171MWt,andtheTaymyclass, eachvesselwithasingleKLT-40Mreactorof135MWt.(NB:Allreactorsofthe oceanvesselsnotedpreviouslydrivepropulsionshafts;thustheirratingsareonly inMWt.)Also,Russiahasconstructedanonself-propelledfloatingnuclearpower station,theAkademikLomonosov,toprovidepowersupplytoremotecoastaltowns. ThereactorstationwhichachievedcommercialoperationinMay2020consistsof twomodifiedice-breakerreactors,eachaKLT-40Sreactorof35MWe.Withthese reactorsthestationcanprovideeither70MWeofpower,300MWtofdistrictheating, or240,000m3/dayoffreshwater.

Thedevelopmentofanuclearpropulsionsystemformilitaryaircraftwasinitiated in1946astheUSNuclearEnergyforthePropulsionofAircraft(NEPA)projectand continuedunderthenameoftheAircraftNuclearPropulsion(ANP)program.Two differentsystemsfornuclear-poweredjetengineswerepursued—adirectaircycle conceptdevelopedbyGeneralElectricandanindirectaircyclebyPrattandWhitney. Onlythedirectaircycleprogramadvancedsufficientlytoproducereactors.Thefirst productoftheGEprogramwastheAircraftReactorExperiment(ARE),whichoperatedfor1000hin1954.Itwasa2.5-MWtnuclearreactorexperimentusingmolten fluoridesalt(NaF-ZrF4-UF4)asfuel,aberylliumoxide(BeO)moderator,andliquid sodiumasasecondarycoolant.In1955thisprogramproducedthesuccessfulX-39 enginewithheatsuppliedbytheHeatTransferReactorExperiment-1(HTRE-1). TheHTRE-1wasreplacedbytheHTRE-2andeventuallytheHTRE-3unitpowering

thetwojetturbines.Additionally,anoperatingreactornamedtheaircraftshieldtest reactor(ASTR)wasflownaboardamodifiedB-36bombertotestshieldingratherthan poweringtheplane.TheHTRE-3usedashieldsystemofflight-typedesignbutwas nottakentopowerbeforetheprogramwascanceledin1961.

Experiencewiththeseearlierreactorshasledtothecurrentinterestinreducedsize modularpowerplants. Table1.1 listsseveralcurrentSMRsunderdevelopment,which encompassallcoolanttechnologiesbeingexploitedforlargernuclearreactors.

Additionalreactordesignsnotincludedin Table1.1 areunderdevelopmentby nationalresearchinstitutionsbuthavenotyetreachedthecommercializationstage. Forexample,thefluoride-salt-cooledhigh-temperaturereactor(FHR)(Forsberg

Table1.1 Examplesofcurrentsmall(>10MWe)modularreactorsproposedbycommercial industries.

Reactor design Powerrating (MWe)CountryVendor/AE

Lightwater-cooled(PWR)

ACP100100 China CNNC/Guodian CAREM27 Argentina CNEA/INVAP

KLT-40S35 Russia OKBM NuScale60 UnitedStatesNuScalePower/Fluor RITM-20050 Russia OKBM

SMART100 S.Korea KAERI SMR-160160 UnitedStatesHoltec

Lightwater-cooled(BWR)

BWRX-300300 UnitedStates/JapanGE-Hitachi VK-300250 Russia NIKIET

Gas-cooled

EM2 265 UnitedStatesGeneralAtomics GT-MHR288 Russia OKBM HTR-PM105 China INETTsinghuaUniversity Xe-10075 UnitedStatesXEnergy,LLC

Sodium-cooled

4S 10/50 Japan Toshiba PRISM311 UnitedStatesGE-Hitachi

Lead-cooled

SVBR-100100 Russia JSCEDB BREST300 Russia AKME-engineering

Moltensalt-cooled

IMSR190 Canada TerrestrialEnergy,Inc. LFTR250 UnitedStatesFlibeEnergy,Inc.

etal.,2013)isa180-MWereactorwith700°Cpeakoperatingtemperaturecoupledto anair-Braytoncombinedcyclesystem.

1.2Incentivesandchallengesforachievingcommercial

deploymentsuccess

ThequestionariseswhyinterestinSMRshasreemergedandburgeonedoverthelast decade.ThereasonisthatSMRsofferanattractivevehicletosurmountthecurrent barrierstodeploymentofthecurrentgenerationoflarge-ratedadvancedlightwater plants(theGenerationIII+designs)andalternativecoolant(GenerationIV)plants. Principalamongthesebarriersisthelargeinitialinvestmentrequiredtoconstructa reactor,theattendantsignificantfinancialrisktotheinvestor,andthemismatchof reactorsizetotheelectricpowergridservicedbymanyelectricity-generatingentities.

GiventheincentivesforSMRdeployment,whatarethechallenges?Themajor uncertaintiesaretheabilitytoreducethefinancialrisksufficientlytoattractinvestors, theabilitytoreducetheprojectedlevelizedunitelectricitycost(LUEC)differential betweenthatofSMRsandthecompetitionofferedbylower-costnaturalgaspower plantsandlargenuclearplants,andcompatibilityoffuelcycleswithexistingfacilities. Theseincentivesandchallengesareelaboratednext.

1.2.1Incentives

ThetwomajorincentivesforSMRdeploymentareasfollows.

1.2.1.1Reductionofinitialinvestmentandassociated financialrisk

Themodularconceptallowstheinvestortoachievetheleveloftotalpowersupply desiredbytime-sequencedconstructionincrements.Eachmoduleincrementnotonly doescostlessthanthatofthelargemonolithiccompetitorplant,butalsothetimeprofileofcapitalinvestmentscanbesomewhatoffsetbyrevenuesfromtheearliestmoduledeploymentsastheyachievecommercialoperation.However,whenmodule constructionisstaggered,greatcaremustbetakentoinsurethatconstructiondoes notadverselyimpactthesafetyoftheoperatingSMR.

1.2.1.2Improvedmatchtosmallerelectricpowergrids

Asignificantnumberofpotentialnuclearpowerplantcustomershaveconstraintsonthe sizeofallowableandneededincrementsofpowercapacityadditions,whicharesmaller thanthe1000MWeandlargerratingsofcurrentlyofferedadvancedreactors.The allowablesizeofadditionsreflectsthesomewhatcontortedgridlayoutand interconnectionsinseveralUSregions.Neededsizeincrementsreflectanticipated growthinloaddemandandincentivestoreplaceolder,smallgeneratingstations,mostly coalburning,withthoseusingotherfuels.Also,sincethesmallerSMRsshouldtakeless timetobuildthan1000MWeunits,demandforecastsneedtobeprojectedforfewer

yearsoutthanarepresentlyneeded.Furthermarketsforsmallnuclearunitsareemerginginsmallerdevelopingcountries,whichhavenotpreviouslyembarkedonnuclear powerutilization.Indevelopedcountrieswithwell-establishednuclearpowerprograms,remoteregionsandsitesvitalfornationalsecurityexist,whichhavepowerneeds thatcanideallybesuppliedbySMRs.Additionally,SMRsinthesecountriescansupply processheatonthescaleappropriatetocommercialchemicalprocessingplantneeds. ThesemajorincentivesforSMRsarebuttressedbyseveralotherdesirablefactors derivingfromthesmallSMRcharacteristics:

l effectiveprotectionofplantinvestmentfromthepotentialtoachieveareactordesignwith enhancedsafetycharacteristics;

l possiblereductionofthecurrent10-mileemergencyplanningzonebyvirtueofthesmaller coreinventoryandpotentialforaddedsafetydesignfeatures;

l reductionoftransmissionrequirementsandamorerobust,morereliablegrid;

l useofcomponentsthatdonotrequiretheultraheavyforgingsoftoday’sgigawatt-scale nuclearpowerplantsandarerailshippable,whichcouldbesuppliedbyareinvigorated USheavyindustry;and

l suitabilityforthedistrictheatingmission.

1.2.2Challenges

ThethreemajorchallengesforSMRdeploymentareasfollows.

1.2.2.1Sufficientreductionoffinancialrisk

Theinvestor-perceivedfinancialriskarisesfromthreekeyfactors:

l NRClicensingrequirements,whichcouldaffectthecapitalandoperatingcostofthese SMRsregardingplantstaffing,securityrequirements,insuranceandlicensingfees,and decommissioningfunding;

l thevalidityoftheexpectedlearningcurvetoreducecapitalcoststhroughfactory manufacture;

l themoretypicalnuclearconstructionconcerns,suchasthefollowing: constructionandcommercialoperationscheduledelayduetoregulatoryrelateddelays, constructioncostoverrunduetoconstructorinexperiencesuchastherecentEPRFinnish andFrenchconstructionactivitiesandunforeseenmandateddesignenhancementssuch asthosearisingfromtheFukushimaaccident, lossofinvestmentduetooperationalandmaintenancecostescalationoroccurrenceofa severereactoraccident.

Allreactorsareequallydesignedtoatoplevelsetofregulatoryrequirements,which howeverarenotfullyharmonizedinternationally.IntheUnitedStates,theserequirementshavebeenmademuchmoreexplicitforwater-cooledreactors,sinceamongthe othercoolants,onlytheFortSt.Vrainhelium-cooledreactorreceivedaUSNuclear RegulatoryCommission(NRC)(commercial)operatinglicense.Theexplicitexisting definitionofwater-cooledreactorregulatoryrequirementsisamajorbenefittolight waterreactor(LWR)SMRsincomparativelyassessingthelicensabilityofotherSMR coolanttypes.However,evenforLWRSMRs,thefollowingfactorssignificantto

potentialcostreductionscomparedwithcurrentGWestationsandregulatoryacceptancewillneedtoberesolved:

l thereactorcontrolstrategyleadingtoreductioninthenumberofrequiredoperators,

l thereactivitycontrolissuesrelatedtothedesiredlongdurationoftheirradiationcycletobe accomplishedbysomedesignswithouttheuseofsolublepoisons,

l thedefinitionofthemechanisticsourcetermforfissionproductreleaseinasevereaccident,

l thepotentialforandconsequencesofmultimoduleinteractions,

l establishmentofemergencyplanningandpreparednessconsistentwiththereducedpower ratingandfootprintofSMRs.

Finally,LWRplantvendorsareassumingthattheirdesignswillbeacceptedina timelymannerbytheregulator.Theybasetheiroptimismonthecontentionthat theirdesignsemployproven,currentlicensedconceptsusingprovencomponents andsystemsconfigurationsatpowerlevelssufficientlylowtoallowtheenhanced useofpassivesafetyfeatures,whichhavealreadybeenreviewedandapprovedfor thelargerGenerationIII+advancedlightwaterreactor(ALWRs).Thisassumption, evenifprovencorrect,needstoreflectregulatoryacceptanceofatleastsomeof thefactorsnotedpreviouslycastinamanneryieldingeconomicbenefittotheSMR.

ForSMRsusingnontraditionalcoolantssuchashelium,sodium,lead-bismuth,or moltensalts,theregulatorychallengeismoredifficultsincetheNRCstafflackfamiliaritywiththesereactordesigns.Additionally,giventhestilllargelyprescriptive natureoflightwater-basedregulationsintheUnitedStates,thelicensingprocessis notamenabletothenewermoreinnovativedesigns.Therehavebeencallsforusing atechnology-neutrallicensingprocesstolicensethesenewreactorconceptssuchthat theinherentdesignfeaturescanberecognizedbytheregulator.Thedevelopmentof suchaprocessisunderwaybutisproceedingslowly.

1.2.2.2ProjectedLUEC

Theimpactoftheconceptofmodularityinreducingthecostofsmall,replicated,and mostlyfactory-builtunitsisparamount.Proponentsrefertothisasthecompetition betweenthetraditionaleconomyofscale,whichhasledtoGWe-sizedplantsand theneweconomyofnumbers,whichcharacterizestheconstructionofSMRs.

FurtherthedramaticallyreducedpowerratingofSMRsprovidessignificantpotentialforpassivesafetysystems,whichsimplifyoreliminateactivesafetysystemscomparedwiththoseofcurrent-generationreactors.AlsotheSMRscaneliminate theirrelianceuponsupportsystemsascomparedwiththecurrentLWRs’needforsuch systems.TheAmericanNuclearSociety’sreportonSMRgenericlicensingissues (see Tables1.3and1.4 in AmericanNuclearSociety,2010)identifiesspecificcandidatesafetyandsupportsystemsforsuchsimplificationsandeliminations.However, projectionsamonganalystsvaryastowhetherSMRscanachievelowerLUECsthan traditionallargeplants.Forexample,theOECDhasreported(OECD,2011)that theinvestmentcomponentofLUECfromanSMRwouldprobablybehigherthan thatofalargeplant,eventakingintoaccounttheSMRreducedconstructionschedule, shopfabrication,andlearningcurve.FurthertheOECDconcludedthatSMRs,

includingtwin-unitandmultimoduleplants,generallyhavehighervaluesofLUEC thannuclearpowerplantswithlargerreactors.Thusachievementofacompetitive SMRLUECwillbeverydifficulttoaccomplish:referencetoindependentlyvalidated projectionsisessentialfordevelopingrealisticcostestimates.

1.2.2.3Fuelcyclecompatibilitywithfacilitiesandstrategy

TheSMRsofdifferentcoolanttypesemployverydifferentfueltypes.Thewatercooledandthelead-/bismuth-cooledSMRsuseuraniumdioxide(UO2)ceramicfuel; thegas-cooledSMRsusegraphiteandsiliconcarbide-coatedUO2 particlesingraphite compactsorpebbles;thesodium-cooledreactorusesmetallicUZrwithminoractinides;andthelead-cooledSMRusesmononitride-mixedfuel(UN-PuN).The water-cooledSMRfuelisthesameasthatoftheoperatingplantsandoftheGEN III+plantscurrentlybeingdeployed.Alltheliquidmetal-cooledreactorfuelswill haveanenrichmentsignificantlymorethanthe5%ofcurrentwater-cooledfuel.

AlthoughaUSnationalrepositoryisnotyetidentified,thiswater-cooledSMRfuel willbehandledconsistentwiththeanticipatedUSpolicyyettobefinalized.ThegascooledSMRfuel,thesameasthatusedintheFortSt.Vrainreactor,hassignificantly morevolumeperunitenergygenerationbutlowerheatloadperunitvolumethanLWR UO2 fuel.Thecharacteristicofthisfuelwillrequireadifferentoveralldisposalstrategy, althoughitwouldlikelybecompatiblewiththestrategyofthenationalrepositoryfor ceramicUO2-zircaloycladfuelsincethetristructuralisotropic-type(TRISO)fuelparticlesformgoodbarriersthatprovideexcellentfissionproductretention.

Thefuelofsodium-andlead-cooledSMRreactorsexploitstheinherentincentiveof thesefastneutronspectrumreactorstoundergoreprocessingandrecycling.Thisfuel cyclewillentailconstructionandoperationofreprocessingandfuelfabricationfacilities,whilemostlikelyitwouldalsobeintegratedwithreprocessingofsomelightwater fleetfuelsasfeedstockfortheplutoniumneededforinitialloadingofagrowingfleetof fastreactors.Thespentfuelconstituentsultimatelyrequiringdisposalwillbepredominantlyfissionproductsofmuchlessvolumethanthespentfuelbundlesofthermalspectrumwaterreactorsperequivalentunitofenergygenerated.However,thedeployment offastspectrumSFRsbasedontheclosedfuelcyclewouldrequiresignificantexpansionofreprocessingandfuelfabricationfacilitiescomparedwiththeneedsfortheexistingLWRfleetandLWRSMRsoperatingontheonce-throughfuelcycle.

1.3OverviewofdifferenttypesofSMRs

Aswiththecurrentlarge-ratedreactors,SMRcoolantscanbelightwater,gas,orliquidmetal.KeySMRexamplesoftheseprimarysystemcoolanttypeswiththeirprincipaldesignparametersarepresentedin Table1.2.Thecoolantpropertiesthatdictate thedifferentdesigncharacteristicsoftheseSMRsarepresentedin Table1.3.Principal amongthemareasfollows:

l theveryhighoutlettemperature(750–950°C)ofthehigh-temperaturegasreactor(HTGR) possiblewiththeuseofheliumascoolantandgraphiteastheprincipalcorematerial,

Table1.2 Reactorcharacteristicsbycoolant.

Powerdensity(kWt/lcore)6939.53.2

FuelgeometryRodsRodsPebblesPrismatic graphiteblocks RodsRodsRods

Fuelmaterial/claddingUO2/Zr-4UO2/ZrUO2/TRISOUCO/TRISO(U+Pu)/SS(U+Pu)N/SSUO2 1,h

Primarysystemtemperature inlet/outlet(°C) 295/319190/285250/750325/750360/499420/540340/490

Plantthermalefficiency(%)3433.3424537432

NA,notapplicablesincetheBWRonlyhasaprimarysystem. Numericalvaluesofcharacteristicsarerounded.

a Pers.Comm,D.Langley(mPower)toN.Todreas(MIT),January2013.

b VK-300—Gabaraevetal.(2004); Kuznetsovetal.(2001).

c PRISM—Triplettetal.(2012).

d HTR-PM—Zhangetal.(2009); Zhang(2012).

e SC-HTGR—AREVA(2012)

f BREST—Smirnov(2012); Glazovetal.(2007)2.

g SVBR-100—ToshinskyandPetrochenko(2012);MOXandNfueloptionsproposed1

h LikelyEP823orEP450.

Table1.3 Reactorcoolantpropertiesofsignificancea.

a Typicalreactorvalues.

b PropertyvaluesatPWRaverageandBWRinletconditionsfrom TodreasandKazimi(2012).

c Propertyvaluesat537°Cand6MPafrom Petersen(1970)

d Propertyvaluesat450°Cfrom Hejzlaretal.(2009).

yieldingahighplantthermalefficiencyandsupplyofreactorheatforprocessesrequiring hightemperatureheat;

l thelowprimaryoperatingpressureoftheliquidmetalreactorspermittedbythelowvapor pressureoftheirprimarycoolantattheirhighoperatingtemperature;

l thehighpowerdensityofthesodium-cooledreactorpossiblebecauseofitsoperationwitha fastneutronspectrumcoupledwithaveryhighheattransfercoefficientthatallowstight packingofitsfuelpins.

Thepredominantuseoflightwaterinbothpressurizedandboiling-waterlarge-rated reactorscurrentlyinusecanbereadilyreplicatedforSMRapplication.Thesmaller primarysystemcomponentsofpressurizedwaterSMRsallowstheirarrangement withinthepressurevesselasisalreadydoneevenforlargepowerratedBWRs.This PWRconfiguration,theintegralreactor,waspioneered(asdiscussedin Section1.1.3) inthecommercialmerchantvessel,theGerman OttoHahn,andisaprincipalconfigurationofcurrentPWRSMRsaselaboratedin Chapter3

HeliumhasbeenthegascoolantofSMRchoice,althoughcarbondioxideisused inadvancedgasreactors(AGRs)operatingintheUnitedKingdom,whicharecurrentlyslatedforretirement.TheliquidmetalcoolantsofSMRchoicearesodium,lead, andlead-bismuth.Sodiumhasbeenexploitedsignificantlyforlarge-ratedreactors basedonearlyworkwithsodium-potassiumandsodium,whilemoreexoticcoolants suchaslithiumhavebeenusedforelectricity-generatingspacereactors,forexample, theSystemsforNuclearAuxiliaryPower(SNAP)series.ForSMRs,attention isfocusedonsodiumandthevariantsofleadcooling—bothpureleadandlead-bismutheutectic.

Differentiationamongreactortypesandspecificreactordesignswithinacoolanttypedesignisbasedontheirsatisfactionofaselectedmissionandthenasetofcriteria includingoperationalreliability,protectionofpublichealthandsafety,and finallyeconomiccompetitiveness.ThesalientcharacteristicsoftheSMRreactors astheyrelatetothesefactorsarepresentednext. Chapter2 andthechapters inPartFourelaboratethedetailedtechnicalfeaturesofSMRscoveringthisrange ofprimarycoolants.

1.3.1Reactormission

TheprincipalmissionadoptedforcommercialSMRshasbeenthegenerationofelectricity.Allreactorcoolanttypesaddressthismission.Forthoseplantsdesignedtobe deployabletoremotelocations,whetherplacedterrestriallyordispatchedasbargemountedreactors,theaddedcogenerationcapabilitiesfordesalinizationanddistrict heatingexist.Ofthewater-cooledSMRs,theRussianPWRandBWRsystemshave beendesignedfortheseadditionalmissions.Additionally,propulsionasaccomplished byRussianice-breakervesselsusingtheKLT-40Sreactoranditsplannedreplacement,theRITM-200reactor,isafurtherreactormission.

Theheliumgas-cooledreactorcanoperateathighenoughoutletcoolanttemperature,750°Cininitialdesigns,toprovideaprocessheatcapability.Thisprocessheat canbeuseddirectlyforvariousindustrialprocessessuchasshaleoilrecoveryandthe productionofhydrogenbyrelativelyhigh-temperaturethermochemicalcycles.

Hydrogenproductionfromwaterbyelectrolysiscanbeaccomplishedattheloweroutlettemperatureofthesodium-andlead-cooledreactors,ontheorderof500–550° C,buttheseSMRshavenotembracedthismissionduetocurrentshrinking USinterest.

1.3.2Operationalreliability

Certainly,thiscriterionisbestmetbyreactorconceptsusingconventionalcomponentsandsystemsoperatingatcoolanttemperaturesandpressureswithintheenvelope ofsignificantoperatingexperience.WaterasacoolantforSMRshasbeenselected explicitlybecauseofthesatisfactionoftheseconditions.Experiencewithwaterreactorsusingtheessentialdesignfeaturesselectedforwater-cooledSMRsgoesback tothebeginningsofthenuclearelectricitygenerationandpropulsionage.Themajor caveatregardingtheachievablereliabilityofwater-cooledSMRsrelatestothose havingselectedtheintegralconfiguration,theplacementofallNSSScomponents, andpipingwithinasinglepressurevessel.Whilethe OttoHahn merchantvesselsuccessfullyusedthisreactorconfigurationandoperatedcommerciallyfor9years,the potentialreductioninoperationalreliabilityofthisconfigurationduetoitslimited accessibilityforprimarysystemcomponentmonitoring,maintenance,andrepair canbeconfidentlyassessedonlythroughmanymoreyearsofoperatingreactor experience.

Sodium-cooledreactorshavegenerallyhadamixed,albeitlimited,recordofoperatingexperience.TheUSExperimentalBreederReactorII(EBR-II)andBritish DounreayFastReactor(DFR)recordswereexemplary,theRussianBOR-60and BN-600andtheFrenchPhenixreactorexperiencewasonbalancesatisfactory,while theJapaneseMonjuexperiencehasbeenverytroubled,principallyduetoasodium leakageeventaswastheSuperphenixexperience.Similarlythelead-/bismuth-cooled Russiansubmarinereactorsoperatedreliablybutwiththeneedforcarefulattentionto coolantchemistrycontrolandfreezepreventionafterthemajoraccidentin1968 beforeadequateunderstandingexistedoftheneedforrigorouscontrolofcoolantoxygenconcentrationtopreventleadoxideslagformation(ToshinskyandPetrochenko, 2012).Helium-cooledreactors,forexample,theexperimentalreactorsAVRand THTRinGermanyandthecommercialFortSt.VrainunitintheUnitesStates,also havehadamixedoperatingrecord.

Hence,itcanbeconcludedthat,basedonoperatingexperience,thewater-cooled SMRclasshasasignificantadvantageovertheothercoolanttypeswithregardtoits promiseofoperationalreliability.Theoperationalreliabilityofnonwatercooledreactorswillbeuncertainuntilsufficientdemonstrationplantoperationalexperienceis accumulated.

Theprincipalcoolantcharacteristicsinfluencingthisoperationalexperience—for example,coolanttoxicity,corrosioneffectonboundingsurfaces,andcoolantfreezing andboilingtemperatures—areshownin Table1.4.Coolanttoxicityhasbeen expressedintermsofradiological,biological,andchemicalfactors.

Biologicalconsequencesarisefromdecayof 210Bi,whichyields 210Po.ThepoloniumthenchemicallycombineswithleadasPbPo(s).Shouldwaterentertheprimary

Table1.4 Inherentcoolantcharacteristicsaffectingoperationalreliability.

Radiological 16O(n,p)16N

16N ! 16O+5to7MeVγ

(T1/2 ¼ 7.1s)

Nonebuterosion createddust liftofffrom sudden depressurization cancause mechanical clogging

23Na(n, γ )24Na (T1/2 ¼ 15h)

1.38,2.76MeV γ s

23Na(n,2n)22Na (T1/2 ¼ 2.6year) 1.28MeV γ

204Pb(n, γ )205Pb (T1/2 ¼ 51.5days) 1.28MeV γ

Sameasleadplus

209Bi(n, γ )

210Bi(e) 210Po

210Po(α, γ low prob.) 206Pb (T1/2 ¼ 138days)

5.3MeV α; 805keV γ

Toxicity

Biological 6Li(n, α)3T

10B(n,2α)3T

10B(n, α)7Li(n,nα)3T (T1/2 ¼ 12.3years)

NoneNoneTraceamountsofPo from 205Pbto 210Poby neutroncaptureand β decay

ChemicalNoneAsphyxiation hazard

NoneExposuretohighlevels ofleadthrough inhalation,ingestionor occasionallyskincontact canleadtothemedical conditionknownaslead poisoning

PbPo(s)

+H2O ¼ PbO

+H2Po(g) (volatilealphaemittingaerosol)

Sameasforlead

Continued

Table1.4 Continued

CorrosionPreventionofstress corrosioncrackingof stainlesssteelrequires significantattention.Also significantcorrosioninducedcrudformation potential

NoneSodiumis practically noncorrosivewith respecttostainless steel.Corrosionis lowerthanforlead orwater

Aggressivecorrosionby: P directdissolutionbya surfacereaction P intergranularattack Oxidefilmformation tendstoinhibitthe corrosionrates.Needto limitvelocitytoabout 3m/stoavoidcladding corrosion

Sameasforlead

Melting (freezing)/ boiling points (°C)

a Lin(1996).

b Todreasetal.(2008)

0/100NA98/883327/1737

Highfreezingtemp— needtraceheating 125/1670

Lowerfreezing temperature advantageous versuslead

systemduetoafailureoftheingresspenetrationbarriercoincidentwithasteamgeneratortubeleak,itwouldreactwiththePbPo(s)toproduceH2Po(g),avolatilealphaemittingaerosolofbiologicalinhalationconcern.Thedesignersofthelead-/bismuthcooledSVBR-100reactor(see Table1.2),whoarewellversedinRussiansubmarine experience,citethatoperatingexperiencehasresultedinthedevelopmentofmeasures forprovidingadequateradiationsafety.Forwater-cooledreactors,waterchemistry measurestypicallyincludeintroductionofboronandlithiumintheformofboricacid andlithiumhydroxideforcorrosioncontrol,althoughsomeSMRs,forexample,the B&WmPowerdesign,haveeliminatedtheuseofsolubleboronforreactivitycontrol. Neutronactivationof 6Liand 10Bproducestritium, 3T,albeitinsmallquantities, whichneverthelessisabiologicalhazardifingested.

Occupationalcontacthazardsofachemicalnatureexistforleadthroughhigh levelsofexposureduetoinhalationandoccasionallyskincontact.Similarly,asphyxiationduetoaccidentalimmersioninhelium(orinnitrogentypicallyusedtoinert BWRcontainments)isapotentialhazard.Themoresignificant,well-recognized chemicaloxidationreactionsofzirconiumcladdingandsodiumarecoveredasa safetyconcernunderpotentialenergyreleasein Section1.4.1.

Ofallthecoolants,helium,becauseitisaninertgas,posestheleastcorrosion potential,anditsactivationisminimalas demonstratedbytheFortSt.Vrainexperiencethatshowedverylowactivityinthecoolantcomparedtolightwaterreactors. Theaggressiveattackofleadandlead-bismuthonmetalcladding(e.g.,inHT-9and theRussianequivalentsEP823andEP450)hasforcedthelimitationofcoolant velocityinlead-andlead-/bismuth-c ooledcoredesignsto3m/s.Thisinturnhas necessitatedthepr ovisionofalargecoolantflowareatoboundcorecoolanttemperaturerise.Hence,leadandlead-bismuthcoreshavefuelpinsspacedwithalarge pitch/diametersquarelatticearray.However,thedevelopment(ShortandBallinger, 2012)ofacompositematerialforcladdingandstructuralapplicationmaymitigate suchlimitations.

Finallytheoperabilityofliquidmetalcoolantsystemsrequirestraceheaters aroundpipingandcomponentsofsodium,leadandlead-bismuthreactorstopreventcoolantfreezingwheninsufficientheatisavailablefrompoweroperationor decayheat.Thehighfreezingtemperatureoflead,327 ° C,comparedwiththemodestvaluesforsodium,98 °C,andlead-bismuth,125 °C,rendersleaddisadvantageousasareactorcoolantinthisregard.However,withthesehighfreezing temperaturesbothleadandlead-bismutheutecticwillsolidifyinambientair,providingameansforsealingsmallleaks intheprimarycoolantboundary.Onthe otherhandthehighboilingpointswiththeattendantlowvaporpressuresofthese liquidmetalcoolantsallow reactoroperationatatmosp hericpressurewithoutthe sourceofstoredenergyassociatedwithahigh-pressurecoolant.Operationatlow pressureallowsreductionoftherequiredthicknessofthepressurevesselandother primarypressureboundarycomponents.Nevertheless,fortheheavyleadcoolant, thedimensioningofthesevesselsmustbecarefullyevaluatedtosatisfyseismic designcriteria.

1.3.3EconomicimplicationsofSMRtechnologies

Theeconomiccharacteristicsoflargewaterpowerreactorsareknownfromyearsof constructionandoperatingexperience.Thecostofsodium-cooledreactorsbasedon deploymentsofdemonstrationunitsinthelate1900shasledtocapitalcostestimates of110%–125%thatofwater-cooledreactors(Waltaretal.,2012).Experiencewith gas-cooledandcertainlylead/lead-/bismuth-cooledreactorshasnotbeensufficient toallowacomparableprojectionofovernightcapitalcostscomparedwithwatercooledreactorexperience.Hence,whileitisacceptedthatthecapitalcostofindividualSMRunitswillbefarlowerthanthatofthelarge-ratedreactorsemployingthe samecoolant,thecapitalcostperKWeforSMRscomparedwithlarge-ratedreactors, althoughlikelylarger,isasyetnotestablished.Wecanonlyprojectcomparativecosts ofSMRsemployingthevariouscoolantsonthebasisofthepreviouslynotedlargeratedreactorexperience.

Otherpotentialmeasuresofcomparativeeconomiccharacteristicsofvariously cooledSMRsarethefundamentalparametersofcorepowerdensityandspecific power.Thepowerdensity,kilowatts/liter,reflectsthecorevolumeandhenceisoften ameasureofthevesselcontainmentandplantsizenecessaryforagivenpowerrating. Exceptionsdoexistifthereactorvesselorcontainmentsizeisdictatedbyconsiderationsotherthancorepowerdensity.Forexample,theSPRISMsodium-cooledfast reactorvesselissizedtoaccommodatedecayheatremovalthroughanair-cooled chimneyoutsidetheguardvessel:BWRcontainmentsbyvirtueoftheiruseofincontainmentcoolantpoolsforpressuresuppressionaremuchsmallerthanthoseof PWRs,whichcontrolpressurebylargeair-filledcontainmentvolume.Thepowerdensityisthusarelativeindicationofcapitalcost,albeitforplantsusingcomparable designstrategiesandprincipalmaterials.Thespecificpower,kW/kgIHM,reflects themassofinitialheavymetal(IHM)orfuelneededforagivenpowerrating.The specificpoweristhusarelativeindicationoffuelcyclecost,butforplantsusing comparablefuels.

However,itisclearthatnotallSMRsemployingthevariouscoolantsofinterest usecomparablematerialsorfuels.Hencetherelativevaluesofpowerdensityand specificpowerpresentedin Table1.5 forvariouscoolantsdonotnecessarilyforecast thecomparativeeconomiccharacterofreactorsemployingvariouscoolants.Nevertheless,theseparametersprovideaninsightregardingthesignificantbenefitto sodium-cooledreactorsfromtheirhighrelativeparametricvalues,abenefitwhich likelykeepstheircostsclosetowater-cooleddesignseventhoughtheyuseanexotic liquidmetalcoolantrequiringconsiderablecostlyinstrumentationandpurification systems,andtheirenrichmentismuchhigherthanthatofwater-cooleddesigns.

Table1.5 NominalaveragepowerdensityandspecificpowerofSMRsofvariouscoolants.

PWRBWRHeliumSodiumLead

Powerdensity(kW/l)100516280110 Specificpower(kW/kgIHM)38271006045

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.