Acronyms,Abbreviations,andSymbols
A Massnumber
A Ampere(1A ¼ 1C/s),amplifier
a Year(s)
Å Angstrom(10 10 m ¼ 0.1nm)
AABW AntarcticBottomWater
AAIW AntarcticIntermediateWater
AAS Atomicabsorptionspectrometry
AASI Advancedalpha-spectrometricsimulation
ATTA Atomtraptraceanalysis
ABACC Brazilian ArgentineAgencyforAccountingandControl ofNuclearMaterials
ABEC aqueousbiphasicextractionchromatography
AC Alternatingcurrent
ACC AntarcticCircumpolarCurrent
ACFM Actualcubicfeetperminute(28.3L/min.)
ADC Analog-to-digitalconverter
ADF Advanceddigital filter
ADME Absorption,distribution,metabolism,andexcretion
ADS Accelerator-drivensubcriticalreactor
AEC Automaticefficiencycompensation,AtomicEnergy Commission
AES Atomicemissionspectrometry,Augerelectronspectroscopy
AF AgulhasFront
AFM Atomicforcemicroscope
AFS Atomic fluorescencespectrometry
a Alphaparticle,internalconversioncoefficient
f Proportionalto
ag Attogram ¼ 10 18 g
AGeV GeVpernucleon
AkeV keVpernucleon
A2LA AmericanAssociationforLaboratoryAccreditation
AM b-artemether,arithmeticmean
AMAD Activitymedianaerodynamicdiameter
AMANDA AntarcticMuonandNeutrinoDetectorArray,South Pole
AMANDE AcceleratorforMetrologyandNeutronApplicationsin ExternalDosimetry,IRSN,France
AMAP ArcticMonitoringandAssessmentProgramme
AMeV MeVpernucleon
AMP Adenosinemonophosphate,ammoniummolybdophosphate, amplifier
amp. Amplifier
AMS Acceleratormassspectrometry
amu Atomicmassunits
ANDA 7-Amino-1,3-naphthalenedisulfonicacid
ANFESH Ferricpotassiumhexacyanoferrateonacellulosecarrier
ANITA ANtarcticImpulsiveTransientAntenna
ANL ArgonneNationalLaboratory
ANN Arti ficialneuralnetwork
ANSI AmericanNationalStandardsInstitute
ANSTO AustralianNuclearScienceandTechnologyOrganisation
ANTARES ANTArcticRESearch,AstronomywithaNeutrino TelescopeandAbyssEnvironmentalRESearch,Mediterranean Sea
ANZECC AustralianandNewZealandEnvironmentConservation Council
APCI Atmosphericpressurechemicalionization
APD Avalanchephotodiode
APDC Ammoniumpyrrolidinedithiocarbamate
APE Alkylphenolethoxylate
APMP Asia PacificMetrologyProgram
APS AdvancedPhotonSource,ArgonneNationalLaboratory
AQC Automaticquenchcompensation
AQCS AnalyticalQualityControlServices(ofIAEA)
AQP(I) Asymmetricquenchparameteroftheisotope
ARC AgulhasReturnCurrent
ARMCANZ AgricultureandResourceManagementCouncilof AustraliaandNewZealand
AS Alphaspectrometry
ASTAR Alphastoppingpowerandrange
ASTM AmericanSocietyforTestingandMaterials
atm Atmosphere(standard) ¼ 1.01325 105 Pa
at% Atompercent
ATP Adenosinetriphosphate
ATSDR AgencyforToxicSubstancesandDiseaseRegistry
AUV Autonomousunderwatervehicle
AWCC ActiveWellCoincidenceCounter
AWE UnitedKingdomAtomicWeaponsEstablishment
b Particlerelativephasevelocity,betaparticle
bb Double-betadecay
b Negatron,negativebetaparticle
bþ Positron,positivebetaparticle
b Barn ¼ 10 28 m 2 ¼ 10 24 cm 2
BAC N,N0 -bisacrylylcystamine
bar 105 N/m2 ¼ 100 103 Pa
BBD 2,5-Di-(4-biphenylyl)-1,3,4-oxadiazole
BBO 2,5-Di(4-biphenylyl)oxazole
BBOT 2,5-Bis-2-(5-t-butyl-benzoxazolyl)thiophene
BCC Burstcountingcircuitry,Braggcurvecounter
BDs Bubbledetectors
BDE Bonddissociationenergy
BE Bindingenergy
BEAGLE BlueOceanGlobalExpedition
BEGe Broad-energygermaniumdetector
BGO Bismuthgermanate(Bi4Ge3O12)
BIPM Bureauinternationaldespoidsetmesures,Sèvres,France
bis-MSB p-Bis-(o-methylstyryl)benzene
BK K-shellelectronbindingenergy
bkg,BKG Background
BNCT boronneutroncapturetherapy
BNL BrookhavenNationalLaboratory,Upton,NewYork
BOD Biologicaloxygendemand
BOMARC BoeingMichiganAeronauticalResearchCenter
BOREXINO BOronEXperiment,solarneutrinodetector,Italy
Bq Becquerel ¼ 1dps
BQM Bqmeter(ConsortiumBQM,CzechRepublic)
BR Branchingratio
BS Backscatter
BSA Bovineserumalbumin
BSI TheBritishStandardsInstitute
BSO Bismuthsilicate(Bi4Si3O12)
BSS Bonnerspherespectrometer,BoardofSafetyStandards
BT Boundtritium
BTP Bistriazinylpyridine
butyl-PBD 2-(4-t-Butylphenyl)-5-(4-biphenylyl)1,3,4-oxadiazole
BWR Boilingwaterreactor
c Speedoflightinvacuum(2.9979 108 m/s)
C Coulomb(1C ¼ 1As)
o C DegreesCelsius
CAI Calcium aluminum-richinclusions
CaF2(Eu) Europium-activatedcalcium fluoride
CALEX CalorimetryExchangeProgram
CAM Continuousairmonitoring
CAMAC Computer-automatedmeasurementandcontrol
CANDLES CAlcium fluorideforthestudyofNeutrinosandDark matterbyLowEnergySpectrometer
CANDU Canadiandeuteriumuraniumreactor
CART Classificationandregressiontreealgorithm
CAVE CountinglAboratoryforenVironmentalradionuclidEs, Monaco
CC Chargedcurrent(interaction),chargecomparison,carbonate carbon
CCD Charge-coupleddevice
CCRI ConsultativeCommitteeforIonizingRadiation
CDROM Compactdiscread-onlymemory
CDW CircumpolarDeepWater
CE Chemicaletching,capillaryelectrophoresis
CEA Commissariatàl’EnergieAtomique
CEFAS CentreforEnvironment,FisheriesandAquacultureScience(UK)
CE-ICP-MS Capillaryelectrophoresis inductivelycoupledplasma massspectrometry
CELLAR CollaborationofEuropeanLow-levelUnderground Laboratories
CENTA CentreforNuclearandAcceleratorTechnologies, Bratislava
CERN EuropeanOrganizationforNuclearResearch,Geneva
CET Comptonefficiencytracingmethod
CF Feedbackcapacitor
CF Calibrationfactor,correctionfactor
CFD Constantfractiondiscriminator
cfm Cubicfeetperminute
CFN Cross-flownebulizer
CGE ChamberGramEstimator
Ch Channel
CHEREN2 AnisotropydetectionmodelforCherenkovcounting efficiency
CHU Centrehospitalieruniversitaire
Ci Curie ¼ 2.22 1012 dpm ¼ 3.7 1010 dps ¼ 37GBq
CIAE ChinaInstituteofAtomicEnergy
CICM Conventionalintegralcountingmethod
CID Collision-induceddissociation
CIEMAT CentrodeInvestigacionesEnergéticas,Medioambientales yTechnológicas,Madrid
CIRIA ConstructionIndustryResearchandInformation Association
cm Centimeter
cm/d Unitof fluxfromcm3/cm2 perday
CMB Cosmicmicrowavebackground
CMOS Complementarymetal-oxide-semiconductor
CMPO Octyl(phenyl)-N,N-di-isobutylcarbamoylmethylphosphine oxide
CMX-4 CollaborativeMaterialsExercise(fourthbytheITWG)
C/N CIEMAT/NIST(efficiencytracingmethod)
CN Cellulosenitrate
CN* Unstablecompoundnucleus
CNC Condensationnucleicounter
CNET CIEMAT/NISTefficiencytracing
CNRS CentreNationaldelaRechercheScientifique,France
CNS Centralnervoussystem
COG Centerofgravity
COMPASS CommunityPentascaleProjectforAcceleratorScience andSimulation
COTS Commercialoff-the-shelf(system)
cph,CPH Countsperhour
cpm,CPM Countsperminute,channelphotomultiplier
cps,CPS Countspersecond
CR-39 PolyallyldiglycolcarbonateplasticSSNTD
CRESST CryogenicRareEventSearchwithSuperconducting Thermometers
CRL Compoundrefractivelens
CRM Certifiedreferencematerial
CS Calibrationsource
CSDA ContinuousSlowingDownApproximationrange
CSIC InstitutodeFísicaFundamental,Madrid
CsI(Na) Sodium-activatedcesiumiodide
CsI(Tl) Thallium-activatedcesiumiodide
CT Computerizedtomography
CTBT ComprehensiveNuclear-Test-BanTreaty
CTBTO ComprehensiveNuclear-Test-BanTreatyOrganization
CTD Conductivity/temperature/densitydetector
CTF Contrasttransferfunction
CTFE Chlorotri fluoroethylene
CTR Controlledthermonuclearreactor
cts Counts
CV Corevalence
cv Columnvolume
CWOSL Continuouswaveopticallystimulatedluminescence
CZT Cadmiumzinctelluride(semiconductordetectors)
D Deuterium
d Days,deuteron,downquark
d Antidownquark
2D Two-dimensional
DA Destructiveanalysis
Da Dalton(unifiedatomicmassunit,alsoabbreviatedasu)
DAC Derivedairconcentration
DAP Diallylphthalate
DASE LeDépartementanalyse,surveillance,environnement, France
DATDA Diallyltartardiamide
DBD Double-betadecay
DC Directcurrent
DCC Digitalcoincidencecounting
dc-GDMS Directcurrent glowdischargemassspectrometry
DDCP Dibutyl-N,N-diethylcarbamylphosphonate
DDTC Diethyldithiocarbamate
DE Doubleescape
DEF Delayedettringiteformation
d Deltarays
DEMO DemonstrationPowerPlant(fusion)
DESR Doubleexternalstandardrelation
DESY DeutschesElektronenSynchrotron
Det. Detector
DF Decontaminationfactor
DF-ICP-MS DoublefocusingICP-MS
DGA Diglycolamide
DIC Dissolvedinorganiccarbon
DIHEN Directinjectionhigh-efficiencynebulizer
DIM Datainterpretationmodule
dimethylPOPOP 1,4-Bis-2-(4-methyl-5-phenyloxazolyl)benzene
DiMF Decayinamagnetic field(method)
DIN Diisopropylnaphthalene
DIPE Diisopropylether
DIPEX Bis(2-ethylhexyl)methane-diphosphonicacid
DIRC DetectorofinternallyreflectedCherenkovlight
DJD Diffusedjunctiondetector
DLU Digitallightunits
DMCA Digitalmultichannelanalyzer
DMF Digitalmicrofluidics
DMG Dimethylglyoxime
DMM Directmatricesmultiplication
DMSO Dimethylsulfoxide
DNA Deoxyribonucleicacid
D2O Heavywater
DOC Dissolvedorganiccarbon
DOE USDepartmentofEnergy
DOELAP DepartmentofEnergyLaboratoryAccreditationProgram
DOM Digitalopticalmodule
DOP Dioctylphthalate
DOT Digitaloverlaytechnique
dpm,DPM Disintegrationsperminute
dps,DPS Disintegrationspersecond
DPSD Digitalpulseshapediscrimination
dpy,DPY Disintegrationsperyear
DQP Doublequenchparameter
DRAM Dynamicrandomaccessmemory
DSA Definedsolidangle
DSES Deepseaechosounder
DSP Digitalsignalprocessing
DT Deadtime
DTPA Diethylenetriaminepentaaceticacid
DTSA Desktopspectrumanalyzer(software)
DU Depleteduranium
DWL Drinkingwaterlimit
DWPF Defensewasteprocessingfacility
E Countingefficiency,energy
Eb Bindingenergy
e D Positron
e Electron,negatron
e hD ore h Electron holepair
EBq Exabecquerel(1018 Bq)
EC Electroncapture,extractionchromatography,EuropeanCommunity,elementalcarbon
ECD Effectivecutoffdiameter
ECDL Extendedcavitydiodelaser
ECE Electrochemicaletching
ECR Electroncyclotronresonance
ED Exponentialdecrease
EDS Energydispersivespectrometer
EDTA Ethylenediaminetetraaceticacid
EDX EnergydispersiveX-ray(spectrometer)
EDXRF EnergydispersiveX-ray fluorescence
EESI-MS Extractiveelectrosprayionizationtandemmass spectrometry
EeV Exaelectronvolts(1018 eV)
EF Fermilevel
EF Enrichmentfactor
Eh Oxidationpotential
EI Electronimpact(e.g.,inmassspectrometry)
EIA Enzymeimmunoassay
EM Electromagnetic
EMA Extramuralabsorber
EMCCD ElectronmultiplierCCD
EML EnvironmentalMeasurementLaboratory,USA
EMPA Electronmicroprobeanalysis
ENEA ItalianNationalAgencyforNewTechnologies,Energyand SustainableEconomicDevelopment
ENSDF EvaluatedNuclearStructureDataFile
EO Ethyleneoxide
EPA USEnvironmentalProtectionAgency
EPCRA EmergencyPlanningandCommunityRight-to-KnowAct
EPR Electronparamagneticresonance
ERBSS Extended-rangeBonnerspherespectrometer
erg Energyunit(1erg ¼ 6.2415 1011 eV ¼ 10 7 J)
ES Elasticscattering,externalstandard
ESA EuropeanSpaceAgency,Paris;electrostaticanalyzer
ESCR Externalstandardchannelsratio
ESI Electrosprayionization
ESIRWG ExtendedSIRWorkingGroup
ESP Externalstandardpulse
ESTAR Electronstoppingpowerandrange
esu Electrostaticunit
ET Efficiencytracing
ET-DPM Efficiencytracingdisintegrationsperminute(method)
ETH EidgenössischeTechnischeHochschule,Zurich
ETV-ICP-MS Electrothermalvaporization inductivelycoupled plasmamassspectrometry
Eav Averageenergy(betaparticle)
Emax Maximumenergy(betaparticle),Comptonelectronenergy maximum
Ea Alpha-particleenergy
Ep Protonenergy
Eth Thresholdenergy
EU EuropeanUnion
EUChemS EuropeanChemicalSociety
EURACHEM Europeanorganizationfortraceabilityofchemical measurements
EURADOS EuropeanRadiationDosimetryGroup
EURATOM EuropeanAtomicEnergyCommunity
EUROMET EuropeanCollaborationinMeasurementStandards
eV Electronvolt ¼ 1.602176 10 19 J ¼ 1.602176 10 12 erg)
EXAFS X-rayabsorption finestructure
o F DegreesFahrenheit
FADC Fastanalogdigitalconverter
fC Fractionofcontemporarycabon
FDA USFoodandDrugAdministration
FDG Fluorodeoxyglucose
FDNPP FukushimaDai-ichiNuclearPowerPlant,Japan
FDNPS FukushimaDai-ichiNuclearPowerStation,Japan
FEP Fullenergypeak
FET Fieldeffecttransistor
FFF Field flowfractionation
fg Femtogram(10 15 g)
FGRM Flow-throughgaseousradiochemicalmethod
FI Flowinjection
fm Fermiorfemtometer(10 15 m)
fM Fractionofmoderncarbon
fmol Femtomole(10 15 mol)
FNTD Fluorescentnucleartrackdetector
FOM Figureofmerit
fov Fieldofview
fp Fissionproducts
FPGA Fieldprogrammablegatearray
FSA Flowscintillationanalysis
FS-DPM Full-spectrumdisintegrationsperminute(method)
FT Fissiontrack
FTD Fissiontrackdating
FT-ICR Fouriertransform ioncyclotronresonance
FTIR Fouriertransforminfraredspectroscopy
FWHM Fullwidthathalf-maximum
FWT Freewatertritium
FWTM Fullwidthat10thmaximum
g Gram,gluon
G# G-number(Grau’s-number,quench-indicatingparameter)
g Gammaradiation
G-8 GroupofEightCountries(IAEAMemberStates)
GBq Gigabecquerels(109 Bq)
GC Gaschromatography
GC/MS Gaschromatography/massspectrometry
GCR Galacticcosmicrays
GD Glowdischarge
GDMS Glowdischargemassspectrometry
GEANT GeometryANdTrackingMonteCarlocode
Ge(Li) Lithium-compensatedgermanium
GEM Gaselectronmultiplier
GEOSECS GeochemicalOceanSectionsProgramme
GEOTRACES InternationalStudyonMarineBiogeochemical CyclingofTraceElementsandtheirIsotopes
GERDA GERmaniumDetectorArray
GeV Gigaelectronvolts(109 eV)
GHz Gigahertz(109 Hz)
GICNT GlobalInitiativetoCombatNuclearTerrorism
GIS GeographicalInformationSystem
GISP GreenlandIceSheetProjects
GLOMARD GlobalMarineRadioactivityDatabase
GLP Goodlaboratorypractice
GM Geiger Müller
GM-APD Geiger-modeavalanchephotodiode
GPa Gigapascal
GPC Gasproportionalcounting(counter)
GPD Geometricprogressiondecrease
CPG Coplanargrid
GPS Globalpositioningsystem
GRB Gammarayburst
GS-20 Glassscintillator
GSD Geometricstandarddeviation
GSI GesellschaftfürSchwerionenforschungmbH,Darmstadt, Germany
GSO:Ce Cerium-activatedgadoliniumorthosilicate(Gd2SiO5:Ce)
GUM GuidetotheExpressionofUncertaintyinMeasurement
GW Groundwater,gatewidth
GWe Gigawattelectrical(109 We)
Gy Gray(1Gy ¼ 1J/kg ¼ 6.24 1012 MeV/kg)
GZK Greisen-Zatsepin-Kuz ’minprocessof proton-photon interactions
h Hours
h Plank’sconstant(6.626 10 34 Js),hours
h Plank’sconstantreduced(h/2p)
H # Horrock’snumber(quenchindicatingparameter)
HBT 2-(2-Hydroxyphenyl)-benzothiazole
HDE Heatdistributionerror
HDEHP Bis(2-ethylhexyl)phosphoricacid
HDPE High-densitypolyethylene(moderator)
HEDPA 1-Hydroxyethane-1,1-diphosphonicacid
HEN Highefficiencynebulizer
HEP High-energyparticle
HEPES N-2-hydroxyethylpiperazine-N 0 -2-ethanesulfonicacid
HERA-BRICH ParticledetectoroftheHadron-Elektron-Ringanlage,Hamburg,Germany
HERM High-energyradiomonitor
HEU Highlyenricheduranium
HEX-ICP-MS HexapolecollisioncellICP-MS
HEX-ICP-QMS Hexapolecollisioncellquadrupolemass spectrometry
3HF 3-Hydroxy flavone
hg Hectograms(102 g)
h-index Hirshindex
HIBA Hydroxy-i-butyricacid
HKG Housekeepinggene
HLNC High-levelneutroncoincidencecounter
HLW High-levelwaste
HPB High-pressureBridgman
HPGe High-puritygermanium
HPIC High-performanceionicchromatography
HPLC High-performanceliquidchromatography
HPMT Hybridphotomultipliertube
HRAS High-resolutionalphaspectrometry
HRGS High-resolutiongammaspectrometry
HR-ICP-MS High-resolutioninductivelycoupledplasmamass spectrometry
HT Hightension
HV Highvoltage
HWHM Halfwidthathalf-maximum
HWZPR Heavywaterzeropowerreactor
Hz Hertz(cyclespersecond)
iin Currentpulse
IAEA InternationalAtomicEnergyAgency,Vienna
IAEA-EL IAEAMarineEnvironmentLaboratory,Monaco
IC Internalconversion,ionchromatography
ICC Icecondenserchamber
IC-ICP-MS Ionchromatography inductivelycoupledplasmamass spectrometry
IC# Isotopecenternumber
IceCube NeutrinoObservatory,SouthPole
IceTop SurfacearrayofstationsforIceCube
ICF Inertialconfinementfusion
ICP Inductivelycoupledplasma
ICP-CC-QMS Quadrupoleinductivelycoupledplasmamassspectrometrywithhexapolecollisioncell
ICP-FT-ICR-MS InductivelycoupledplasmaFouriertransform ioncyclotronresonancemassspectrometry
ICP-MS Inductivelycoupledplasmamassspectrometry
ICP-OES Inductivelycoupledplasmaopticalemissionspectrometer(spectra)
ICP-QMS Inductivelycoupledplasmaquadrupolemass spectrometry
ICP-SFMS Double-focusingsector fieldinductivelycoupled plasmamassspectrometry
ICRP InternationalCommissiononRadiologicalProtection
ICRU InternationalCommissiononRadiationUnitsand Measurements
IDori.d. Innerdiameter,innerdetector
IDA Isotopedilutionanalysis
IDMS Isotopedilutionmassspectrometry
ID-TIMS Isotopedilutionthermalionizationmassspectrometry
IE Ionexchange
IEC InternationalElectrotechnicalCommission,inertialelectrostatic confinement
IECF Inertialelectrostaticconfinementfusion
IEEE InstituteofElectricalandElectronicsEngineers
IEF Isoelectricfocusinggelelectrophoresis
IFIN-HH HoriaHulubeiNationalInstituteofPhysicsandNuclear Engineering,Romania
IGPC Internalgasproportionalcounting
IL-5 Interleukin-5
IMS InternationalMonitoringSystemoftheCTBT in. Inch ¼ 2.54cm ¼ 25.4mm
INES InternationalNuclearandRadiologicalEventScale
INFN InstitutoNazionalediFisicaNucleare(Italy)
Acronyms,Abbreviations,andSymbols
INGE InternationalNobleGasExperiment
INP InstituteofNuclearPhysics,Tirana,Albania
IN2P3 InstitutNationaldePhysiqueNucléaireetdePhysiquedes Particules,France
INSERM Institutnationaldelasantéetdelarecherchémédicale. France
I/O Input/output
IPA Instrumentperformanceassessment,isopropylalcohol
IPRI LaboratoirePrimairedesRayonnementsIonisants,France
IPT Intramolecularprotontransfer
IR Infrared(spectroscopy)
IRA InstitutUniversitairedeRadiophysique,Lausanne,Switzerland
IRMM InstituteforReferenceMaterialsandMeasurements,Geel
IRMS Isotoperatiomassspectrometry
IRSN InstituteofRadiationProtectionandNuclearSafety,France
IS Internalstandard
ISH Insitu hybridization
ISO InternationalOrganizationforStandardization
ISOCS In-Situobjectcalibrationsoftware
IS-SCR Internalstandardandsamplechannelsratio
IT Isomericorinternaltransition
ITER InternationalThermonuclearExperimentalReactor
ITU InstituteforTransuraniumElements,Europe
ITWG NuclearForensicsInternationalTechnicalWorkingGroup
IUPAC InternationalUnionofPureandAppliedChemistry
IUPAP InternationalUnionofPureandAppliedPhysics
J Joule ¼ 1Nm ¼ 1kgm2/s2 ¼ 1Ws
JAERI JapanAtomicEnergyResearchInstitute
JET JointEuropeanTorusreactor
JFET Junction fieldeffecttransistor
JCGM JointCommitteeforGuidelinesinMetrology
JINR JointInstituteforNuclearResearch,Dubna,MoscowOblast
JRC JointResearchCentre(ofEuropeanCommission)
K particlekineticenergy
KD , K , K0 Kaonsor K mesons
K DegreesKelvin
ka Kiloannum(103 years)
KamLAND KamiokaLiquidScintillatorAnti-NeutrinoDetector, Japan
KATRIN KarlsruheTRItiumNeutrinoexperiment
kBq Kilobecquerels(103 Bq)
KCFC Potassiumcobaltferrocyanide
kcps Kilocountspersecond
KCRV Keycomparisonreferencevalue
KEK TheHighEnergyAcceleratorResearchOrganization,Japan
keV Kiloelectronvolts(103 eV)
kg Kilograms
kGy Kilogray
kHz Kilohertz
km.w.e km-water-equivalent
KNN knearestneighboralgorithm
KRISS NationalMetrologyInstituteofKorea
KSTAR KoreaSuperconductingTokamakAdvancedResearch fusionreactor
kt Kilotons
kV Kilovolts(103 V)
kW Kilowatts(103 W)
ky Kiloyears(103 y)
L,l Liters
LA Linearanode
LAAPD Largeareaavalanchephotodiode
LAB Linearalkylbenzene,dodecylbenzene
LA-ICP-MS Laserablationinductivelycoupledplasmamass spectrometry
LA-MC-ICP-MS LaserablationmultiplecollectorICP-MS
l Wavelength,decayconstant,microliter(10 6 L),freeparameter
lnr Nonrelativisticwavelength
lr Relativisticwavelength
LAMMA Lasermicroprobemassanalysis
LAN Localareanetwork
LANL LosAlamosNationalLaboratory
LAr Liquidargon
LARA laser-assistedisotoperatioanalysis
LAW Low-activitywaste
LBD Ligand-bindingdomain
LBNL LawrenceBerkeleyNationalLaboratory
LC Liquidchromatography
LCDW Lowercircumpolardeepwater
LCMS Liquidchromatographymassspectrometry
LD50 Medianlethaldose
LED Light-emittingdiode
LEGE Low-energygermaniumdetector
LENA Low-energyneutrinoastrophysicsdetector
LET Linearenergytransfer
LEU Lowenricheduranium
LHCbRICH LargeHadronColliderbeautyexperimentdetectorat CERN
LHD LargeHadronCollider
LiI(Eu) Europium-activatedlithiumiodide
LIMS LaboratoryInformationManagementSystem
LINACorlinac Linearaccelerator
LIST Laserionsourcetrap
LL Lowerlevel
LL-BSS Large 6LiI(Eu)Bonnerspherespectrometer
LLC Liquid(mobile) liquid(onsolidphase)chromatography
LLCM Low-levelcountmode
LLD Lowerlimitofdetection,lowerleveldiscriminator
LLE Liquid liquidextraction
LLNL LawrenceLivermoreNationalLaboratory
LLR Long-livedradionuclide
LMD Lasermicrodissection
LM-OSL Linearmodulationopticallystimulatedluminescence
LN2 Liquidnitrogen
LNE LaboratoireNationaldeMétrologieetdeE’ssais,France
LNGS LaboratoriNazionalidelGranSasso,Italy
LNHB LaboratoireNationalHenriBecquerel,Saclay
LNMRI NationalMetrologyLaboratoryofIonizingRadiation, Brazil
LOD Limitofdetection
LOV lab-on-valve(system)
lp Linepairs
LPB Low-pressureBridgman
LPI low-pressurecascadeimpactor
LPRI LaboratoirePrimairedesIonizants,Paris
LPS Lipopolysaccharide
LRAD Long-rangealphadetector
LS Liquidscintillation,liquidscintillator, “linear-to-square” curve
LSA Liquidscintillationanalysis(analyzer)
LSC Liquidscintillationcounting(counter)
LSO Cerium-activatedlutetiumoxyorthosilicate(Ce:Lu2SiO5)
LSS Liquidscintillationspectrometer
LTC Live-timecorrection
LuAP Cerium-activatedlutetiumaluminumperovskite(Ce:LuAlO3)
LY Lightyield
LXe Liquidxenon
M Molar(solutionconcentration)
m Particlemass
m0 Particlerestmass
mr Speed-dependentparticlemass
m Mass,meters,minutes
mA Milliampere(10 3 ampere)
Ma Megayear(106 years)
mAbs Monoclonalantibodies
MACS Magneticallyassistedchemicalseparations
MALDI Matrix-assistedlaserdesorption/ionization
MAPD Micropixelavalanchephotodiode
MAPMT Multianodephotomultipliertube
MARG Microautoradiography
MARIS Marineinformationsystem
MARSSIM Multi-AgencyRadiationSurveyandSiteInvestigation Manual
MATLAB MATrixLABoratory(numericalcomputingandprogramminglanguage)
mb Millibarn(10 3 b)
mBq Millibecquerels(10 3 Bq)
MBq Megabecquerels(106 Bq)
mCi Millicurie(10 3 Ci) ¼ 2.22
MBq
MC Multipleioncounting
MCA Multichannelanalyzer
MCF Movingcurve fitting
MC-ICP-MS Multipleioncollector-ICP-MS
MCN Microconcentricnebulizer
MCNP MonteCarloN-Particlecode
MCNP-CP MonteCarloN-Particle-CorrelatedParticlecode
MCP Microchannelplate
MCP-PM Microchannelplatephotomultiplier
MC-TIMS Multiplecollectorthermalionizationmassspectrometry
MD Moleculardynamics
MDA Minimaldetectableactivity
MDOA Methyldiooctylamine
METAS FederalInstituteofMetrology,Berne-Wabern, Switzerland
METEPC Multielementtissue-equivalentproportionalcounter
MeV Megaelectronvolts
MeVee Electronequivalentenergy
MHSP Microholeandstripplate(imager)
MHz Megahertz(106 Hz)
MIBK Methylisobutylketone
MICAD MicrochannelArrayDetector
MICM Modifiedintegralcountingmethod
MICROMEGAS Micromeshgasdetector
mg Milligram(10 3 g)
mGy Milligray
MIBK Methylisobutylketone
min Minutes
mK MilliKelvin(10 3 K)
mL,ml Milliliter(10 3 L)
MLR Multiplelinearregression
mM Millimolar(10 3 M)
mm Millimeter(10 3 m)
MM Magneticmonopoles
MMAD Massmedianaerodynamicdiameter
MMC Metallicmagneticcalorimeter
mmol Millimole(10 3 mol)
MNP Magneticnanoparticle
mol Mole(gram-molecularweight)
MU Megaohm(106 U)
MOX Mixedoxidefuel
MP Multipurpose
M-P MandelandPaulemean
MPa Megapascal(106 Pa)
MPGD Micropatterngasdetector
MPPC Multipixelphotoncounter
mrad Millirad(1mrad ¼ 10 mGy)
MRI Magneticresonanceimaging
mRNA MessengerRNA
MS Massspectrometry
ms,msec Milliseconds(10 3 s)
MSAP Microscalesampleautomationplatform
MSB Methylstyrylbenzene
MSC Microplatescintillationcounting
MSD Meanstandarddeviation
MSE Multisiteevents
MSGC Microstripgascounter
MSI Massspectrometryimaging
MS/MS Tandemmassspectrometry
mSv Millisievert
MW Megawatt(106 W)
Mt Megaton(106 t)
MTO Magnetoopticaltrap
m D , m Muons
m Attenuationcoefficient
mA Microampere(10 6 A)
mCi Microcurie(10 6 Ci) ¼ 2.22 106 dpm ¼ 3.7 104 dps ¼ 37kBq
mg Microgram(10 6 g)
mL Microliter(10 6 L)
mm Micrometer(10 6 m)
mPIC Micropixelgaschamber
ms, msec Microseconds(10 6 s)
m-XANES MicrofocusedX-rayabsorptionnearedgestructure
m-XRF MicrofocusedX-ray fluorescence
MEK Methylethylketone
MW Megawatt(106 W)
MWe Megawattelectrical
m.w.e. Meterwaterequivalent
MWPC Multiwireproportionalchamber
MV Megavolts(106 V)
MVC Multivariatecalibration
N Newton ¼ 1kgm/s2
N Neutronnumber
n Neutron
n Indexofrefraction
NA Avogadro’sconstant(6.022 1023/mol)
nA Nanoampere(10 9 A)
NAA Neutronactivationanalysis
NAC N-acetylcystein
NADW NorthAtlanticDeepWater
NaI(Tl) Thallium-activatedsodiumiodide
NARC NeutrinoArrayRadioCalibration
NASA NationalAeronauticsandSpaceAdministration,Washington,D.C.
NBL NewBrunswickLaboratoryoftheUSDOE
NBR Naturalbackgroundrejection
NBS NationalBureauofStandards(nowNIST)
NC Neutralcurrent(interaction)
NCD Neutralcurrentdetector
nCi Nanocurie(10 9 Ci)
NCM Normalcountmode
NCRP NationalCouncilonRadiationProtectionand Measurements
NDA Nondestructiveanalysis
NEA NuclearEnergyAgencyoftheOECD
Ne/h Numberofelectron holepairs
NEMO NauticEnvironmentMarineObservatoire
NE-OBT Nonexchangeableorganicallyboundtritium
NF-LA-ICP-MS Near- fieldlaserablationinductivelycoupled plasmamassspectrometry
ng Nanograms(10 9 g)
NHMRC NationalHealthandMedicalResearchCouncil,Australia
NIDW NorthIndianDeepWater
NIM Nuclearinstrumentmodule
NIMH Nickelmetalhydride
NIST NationalInstituteofStandardsandTechnology,Gaithersburg
nm Nanometer(10 9 m)
NMI NationalMetrologyInstitute
NMM Neutronmoisturemeter
NMR Nuclearmagneticresonance
NNDC NationalNuclearDataCenter
NOI Nuclideofinterest
NORM Naturallyoccurringradioactivematerials
NP Nanoparticle
NPD 2-(1-Naphthyl)-5-phenyl-1,3,4-oxadiazole
NPE Nonylphenolethoxylate
NPL NationalPhysicalLaboratory,UK
NPO 2-(1-Naphthyl)-5-phenyloxazole
NPP Nuclearpowerplant
NRC UnitedStatesNuclearRegulatoryCommission
n Neutrino,photonfrequency,particlevelocity
n Antineutrino
0nbb Neutrinolessdouble-betadecay
2nbb Two-neutrinodouble-betadecay
nM Nanomolar(10 9 M)
nm Nanometer(10 9 m)
NMM Neutronmoisturemeter
NMR Nuclearmagneticresonance
NNDC NationalNuclearDataCenter,BNL,Upton,NewYork
NNFL Nationalnuclearforensicslibrary
NORM Naturallyoccurringradioactivematerial
NPT NonproliferationTreaty
NRC NuclearRegulatoryCommission
ns,nsec Nanosecond(10 9 s)
NSTAR Neutronsandwichtransmitter/activation- g radiator
NT200 Neutrinotelescope,LakeBaikal,Siberia
NTD-Ge Neutrontransmutation-dopedGe
N-TIMS Negativeionthermalionizationmassspectrometry
NTP Normaltemperatureandpressure
NTS Nevadatestsite
NU Naturaluranium
NUDAT NuclearDatabaseoftheNNDC
NWT Nuclearweaponstest
N/Z Neutron/protonratio
OC Organiccarbon
ODoro.d. Outerdetector,outerdiameter
OECD OrganizationforEconomicCooperationandDevelopment
OES Opticalemissionspectrometry
OFHC Oxygen-freehighthermalconductivity
OGE Optogalvaniceffect
OHM NationalOfficeofMeasurement,Budapest
OLLSC Onlineliquidscintillationcounting
OM Opticalmodule
OSL Opticallystimulatedluminescence
OTPC Opticaltimeprojectionchamber
P Parityquantumnumber
p Particlemomentum
p,pD Proton
Pa Pascal ¼ 1N/m2 ¼ 1kg/m,s 2
PAC Pulseamplitudecomparison(comparator)
PADC Polyallyldiglycolcarbonate
PAGE Polyacrylamidegelelectrophoresis
PAN Polyacrylonitrile
PANDA Particlesandnondestructiveanalysis
PAW PhysicsAnalysisWorkstation
PAZ Partialannealingzone
PBBO 2-(40 -Biphenylyl)-6-phenylbenzoxazole
PBD 2-Phenyl-5-(4-biphenylyl)-1,3,4-oxadiazole
PBO 2-(4-Biphenylyl)-5-phenyloxazole
PBq Petabecquerel(1015 Bq)
PBS Phosphatebufferedsaline
PC Proportionalcounter(ing),personalcomputer,paperchromatogram,polycarbonate
PCA Principalcomponentanalysis
PCB Polychlorinatedbiphenyl
pCi Picocurie(10 12 Ci)
PCR Principlecomponentregression
PD Photodiode
PDA Pulsedecayanalysis
PDB PeeDeeBelemnite(standard)
PDD Pulsedecaydiscriminator
PE Phosphateester,polyethylene
PEC Powerandeventcontroller
PENELOPE PENetrationandEnergyLossofPositronsandElectronsMonteCarlocode
PERALS PhotonElectronRejectingAlphaLiquidScintillation
PET Positronemissiontomography,polyethyleneterephthalate
PETAC Pentaerythritoltetrakisallylcarbonate
PeV Petaelectronvolts(1015 eV)
pF Picofarad(10 12 F)
PF Polarfront
PFA Perfluoroalkoxy
PFZ Polarfrontalzone
pg Picogram(10 12 g)
PGA Pulsegradientanalysis
ph Photons
PHA Pulseheightanalysis
PHITS Particleandheavyiontransportcodesystem
PHOSWICH PHOSphorsandWICH(detector)
p Piconstant ¼ 3.14159
pD , p , p 0 Pionsorpimesons
PI Polyimide,pressurizedinjection
PID Particleidentification
PIM Parallelionizationmultiplier
PIMS Positive-ionmassspectrometry
PIPS,PIPSi Passivatedimplantedplanarsilicon
PIXE Proton-inducedX-rayemission
PKC ProteinkinaseC
PLC Proportionallongcounter
PLI Pulselengthindex
PLS Partialleastsquares
PLS-DA Partialleastsquaresdiscriminantanalysis
PLSR Partialleastsquaresregression
PM Photomultiplier,particulatematter
PMM Power-moderatedweightedmean
PMBP 1-Phenyl-3-methyl-4-benzoylpyrazolone-5
pMC Percentmoderncarbon
PMMA Polymethylmethacrylate
PMP 1-Phenyl-3-mesityl-2-pyrazoline
PMT Photomultipliertube
PN Pneumaticnebulizers
PNNL PacificNorthwestNationalLaboratory
PNX PacificNorthwesteXtractionsystem
POM Polyoxymethylene
POPOP 1,4-Bis-2-(5-phenyloxazolyl)benzene
PPAC Parallelplateavalanchechamber
ppb Partsperbillion
PPC P-typepointcontact
PPD 2,5-Diphenyl-1,3,4-oxadiazole
PPE Personalprotectiveequipment
ppm Partspermillion
ppmw Partspermillionbyweight
PPO 2,5-Diphenyloxazole
PS Plasticscintillator,polystyrene
ps Picosecond(10 12 s)
PSA Pulseshapeanalysis
PSD Pulseshapediscrimination
PSf Plasticscintillatorfoils
psi 6.895 103 Pa ¼ 68.95 10 3 bar ¼ 51.715torr
PSL Photostimulablelight(orluminescence)
PSm Plasticscintillatormicrospheres
PSPC Position-sensitiveproportionalcounter
PSr Plasticscintillatorresins
PSUP PhotomultiplierSUPportstructure
P/T Peak-to-totalratio
PTB Physikalisch-TechnischeBundesanstalt,Braunschweig
PTBT PartialTest-BanTreaty
PTFE Polytetrafluoroethylene
P-TIMS Positiveionthermalionizationmassspectrometry
PTP p-Terphenyl
PUR Pileuprejector
PUREX PlutoniumURaniumEXtraction
PVC Polyvinylchloride
PVD Physicalvapordeposition
PVDF Polyvinyldifluoride
PVT Polyvinyltoluene
PWR Pressurizedwaterreactor
PXE Phenyl-ortho-xylylethane
Q Q valueofnuclearreactions
QA Qualityassurance
QC Qualitycontrol
QC-CPM Quench-correctedcountrate
QCD Quantumchromodynamics
QD Quadrupole
QDC Charge-to-digitalconverter
QE Quantumefficiency
QIP Quench-indicatingparameter
QWBA Quantitativewhole-bodyautoradiography
R Roentgen(1R ¼ 2.58 10 4 C/kg)
RAC Radonactivityconcentration
rad Radiation-absorbeddose(1rad ¼ 10mGy ¼ 100erg/g)
RAD Radon-in-airmonitor
RAST Radioallergosorbenttest
RBE Relativebiologicaleffectiveness
RDC Remotedetectorchamber
RDD Radiologicaldispersaldevice(“dirtybomb”)
RE Recoveryefficiency
REE Rareearthelements
REFIT Radialelectron fluencearoundiontracks
REGe Reverse-electrodecoaxialGedetector
REL Restrictedenergyloss
rem Roentgenequivalentmammal(1rem ¼ 10mSv)
RF Radiofrequency
RF Feedbackresister
RFQ Radiofrequencyquadruple
RH Relativehumidity
r Density(gcm 3),neutronabsorptioncrosssection,resistivity
RIA Radioimmunoassay
RICE RadioIceCherenkovExperiment
RICH RingimagingCherenkov(counters/detectors)
RIMS Resonanceionizationmassspectrometry
RIS Resonantionization
RM Referencematerial
RMS Rosettemultibottlesamplers
RMT Radiometrictechnique
RNA Ribonucleicacid
Ro5 RingofFive(Europeanradionuclidemonitoringlabs)
ROI Regionofinterest(spectral)
ROSEBUD TheRareObjectsSearchwithBolometersUndergrounDcollaboration
ROV Remotelyoperatingvehicle
RPC Resistiveplatechamber
RPH Relativepulseheight
RSC Renewableseparationcolumn,relativesensitivitycoefficient
RSD Relativestandarddeviation
RSF Relativesensitivityfactor
RST Reversespectraltransform
s Seconds
SAF Subantarcticfront
SAH S-adenosyl-homocysteine
SalSa Saltsensorarray
SAM Standardanalysismethod, S-adenosyl-methionine
SAMAD Surfaceareameanaerodynamicdiameter
SAS Semiconductor a-spectrometry
SBD Surfacebarrierdetector
SCA Singlechannelanalyzer
SCC Softwarecoincidencecounting,squamouscellcarcinoma
SCI ScienceCitationIndex
SCR Samplechannelsratio,solarcosmicrays
SCX Strongcationexchange
SD Standarddeviation
SDCC Simplifieddigitalchargecomparison
SDD Silicondriftdetector
SDP Silicondriftphotodiode
SDT Shareddeadtime
SE Singleescape,secondaryelectron
sec Seconds
SEC Sizeexclusionchromatography
SEGe StandardelectrodecoaxialGedetector
SEM Scanningelectronmicroscopy
SF Spontaneous fission
SFC Supercritical fluidextraction
SFD Scintillation fiberdetector
SF-ICP-MS Sector field inductivelycoupledplasmamass spectrometry
SFU Stacked filterunit
SGD Submarinegroundwaterdischarge
SHE Superheavyelements
SHOTS SouthernHemisphereOceansTracerStudies
SHRIMP Sensitivehighmassresolutionionmicroprobe
SI InternationalSystemofUnits,sequentialinjection,spray ionization
SIA Sequentialinjectionanalysis
SIE Spectralindexoftheexternalstandard
s Reactioncrosssection,thermalneutroncrosssection
Si(Li) Lithium-compensatedsilicon
SIMS Secondaryionizationmassspectrometry
SiPIN Siliconp-i-ndiode
SiPM Siliconphotomultiplier
SIR InternationalReferenceSystem(SystèmeInternationalede Référence)
SI-RSC Sequentialinjectionrenewableseparationcolumn
SIS Spectralindexofthesample
SJD Siliconjunctiondetector
SLAC StanfordLinearAcceleratorCenter
SLIM SystemforLaboratoryInformationManagement
SLM Standardlaboratorymodule
SLSD Scintillator-Lucitesandwichdetector
SMAD Surfacemedianaerodynamicdiameter
SMDA Speci ficminimumdetectableactivity
S/N Signal-to-noise
SNAP SystemsNuclearAuxiliaryPower
SNICS SourceofNegativeIonsbyCesiumSputtering
SNF Spentnuclearfuel
SNM Specialnuclearmaterial
SNMS Secondaryneutralmassspectrometry
SNO SudburyNeutrinoObservatory,Canada
SNR Signal-to-noiseratio
SNS Spallationneutronsource
SNTS Semipalatinsknucleartestsite,EasternKazakhstan
SOA Secondaryorganicaerosol
SOI Silicon-on-insulator
SOP Standardoperatingprocedure
SPA Scintillationproximityassay
SPC Singlephotoncounting
SPD Self-powereddetector
SPE Singlephotonevent,solidphaseextraction,solidpolymer electrolyte
SPECT Singlephotonemissioncomputedtomography
SPME Solidphasemicroextraction
SQM Strangequarkmatter
SQP(E) Spectralquenchparameteroftheexternalstandard
SQP(I) Spectralquenchparameteroftheisotope
SQS Self-quenchedstreamer
SQUID Superconductingquantuminterferencedevice
SR Superresolution,synchrotronradiation
sr Steradian
SRAM Staticrandomaccessmemory
SRM Standardreferencematerial
SRS SavannahRiverSite
SSB Siliconsurfacebarrierdetector
SSDD Segmentedsilicondriftdetector
SSE Singlesiteevents
SSM Standardservicemodule,selectivescintillatingmicrosphere
SSNTD Solid-statenucleartrackdetector
ST Supersensitive
STD Shareddeadtimeconcept
STE Self-trappedexcitation
STF Subtropicalfront
STM Scanningtunnelingmicroscope
STNTD Solid-statenucleartrackdetection(detectors)
STP Standardtemperatureandpressure
STS Semipalatinsktestsite
STUK RadiationandNuclearSafetyAuthority,Finland
Sv Sievert(1Sv ¼ 1Gy ¼ 100rem ¼ 1J/kg)
SVOC Semivolatileorganiccarbon
t Ton(s)
t½, T½ Half-life
T Particlekineticenergy
T Tritium,tesla ¼ 1Vs/m2
TAEK TurkishAtomicEnergyAuthority
TALSPEAK TrivalentActinide LanthanideSeparationbyPhosphorusExtractantsandAqueousKomplexantsprocess
TAR Tissue airratio
TAT Targetedalphatherapy
TBP Tributylphosphate
TBq Terabecquerel(1012 Bq)
TC Totalcarbon
TCA Trichloroaceticacid
TCS Truecoincidencesumming
TD Timediscriminator
TDCR Triple-to-doublecoincidenceratio(method)
TDS Totaldissolvedsolids
TEA Triethylamine
TEM Transmissionelectronmicroscopy
TENORM Technologicallyenhancednaturallyoccurringradioactivematerials
TEPC Tissue-equivalentproportionalcounter
TES Transitionedgesensor
TBAB Tetrabutylammoniumbromide
TeV Teraelectronvolts(1012 eV)
Tf Transferfactor(radionuclide)
TFTR Tokamakfusiontestreactor
TFWT Tissue-freewatertritium
THGEM Thickgaselectronmultiplier
THM Travelingheatermethod
tHMy 1 Metrictonsofheavymetalperyear
TI Transferinstrument
w Approximately
TIMS Thermalionizationmassspectrometry
TINCLE Track-in-cleavage(technique)
TINT Track-in-track(technique)
TIOA Triisooctylamine
TL Thermoluminescence
TLA Trilaurylamine
TLC Thin-layerchromatography(chromatogram)
TLD Thermoluminescencedosimeter
TMA Trimethylamine
TMI ThreeMileIsland
TMOS Tetramethoxysilane
TMS Tetramethylsilane
TNOA Tri-n-octylamine
TNSA Targetnormalsheathacceleration
TNT Trinitrotoluene
TOA Topoftheatmosphere,trioctylamine
TOF Time-of- flight
TOP Time-of-propagation
TOPO Trioctylphosphineoxide
torr 133.3224Pa
TP p-Terphenyl
TPPS Triphenylphosphinesulfide
TR Tritiumsensitive
TRACOS Automaticsystemfornucleartrackevaluations
TRE 12-O-Tetradecanoylphorbol-13-acetateresponsiveelement
TRI Toxicreleaseinventory
TR-LSC Time-resolvedliquidscintillationcounting
TR-PDA Time-resolvedpulsedecayanalysis
TRPO Trialkylphosphineoxide
TSC Tasksequencecontroller
TSCA ToxicSubstanceControlAct
TSEE Thermallystimulatedexoelectronemission
tSIE Transformedspectralindexoftheexternalstandard
tSIS Transformedspectralindexofthesample
TSP Totalsuspendedparticle
TTA Tenoyl-tri- fluoroacetone
TTL Transistor transistorlogic
TU Tritiumunit(0.119Bq 3Hkg 1 H2Oor7.14DPMof 3HL 1 H2Oorratioof1atom 3H:1018 atomsof 1H)
u Atomicmassunit(1/12massof 12C ¼ 1.66054 10 27 kg),up quark
u Antiupquark
u Particlespeed
unr Nonrelativisticparticlespeed
ur Relativisticparticlespeed
UCN Ultracoldneutrons
UHE Ultrahighenergy
UL Upperlevel
ULB Ultralowbackground
ULD Upperleveldiscriminator
ULEGE Ultralow-energyGe
UNSCEAR UNScienti ficCommitteeontheEffectsofNuclear Radiation
UOC Uraniumoreconcentrate
U.S.A.E.C. USAtomicEnergyCommission(nowNRC)
U.S.DOE USDepartmentofEnergy
USEPA USEnvironmentalProtectionAgency
USN Ultrasonicnebulizers
UV Ultraviolet
V Volts
V0 Stepvoltage
VAX DigitalEquipmentCorporationtradename
VCCI Variableconfigurationcascadeimpactor
VHPLC Very-high-pressureliquidchromatography
VMEbus VersaModuleEuropabus
VSiPMT Vacuumsiliconphotomultipliertube
VUV Vacuumultraviolet(spectralregion)
VYNS Vinylacetateandvinylchloridecopolymer
W Watt(1W ¼ 1J/s)
w/w Weight/weight
WAK Wiederaufarbeitungsanlage(nuclealfuelreprocessingplant), Karlruhe
WBA Whole-bodyautoradiography
WBEC Weakbaseextractionchromatography
WCVB Wasteconcentrationvaporbody
WDS Wavelengthdispersivespectrometer
WDX WavelengthdispersiveX-ray(analyzer)
WHO WorldHealthOrganization
WIMP Weaklyinteractingmassiveparticle
WIPP WasteIsolationPowerPlant
WM Weightedmean
WMO WorldMeteorologicalOrganization,Geneva
WNO WorldNuclearOrganization,London
WOCE WorldOceanCirculationExperiment
WOMARS WorldwideMarineRadioactivityStudies
WRA Warfareradioactiveagent
WSF Wavelengthshifting fiber
WSOC Water-solubleorganiccarbon
wt% Weightpercent
XAF X-rayabsorptionspectroscopy
XANES X-rayabsorptionnearedgestructure
XRD X-raydiffraction
XRF X-ray fluorescence
XtRA Extendedrange
y Years
YAG:Yb Yb-dopedY3Al5O12
YAP:Ce Cerium-activatedyttriumaluminumperovskite (Ce:YAlO3)
YG Yttriumglass
YSi(Ce) Cerium-activatedyttriumsilicate
Z Atomicnumber
Z2 Averageatomicnumber
Zef or Zeff Effectiveatomicnumber
ZCH CentralAnalyticalLaboratory,Jülich
ZnS(Ag) Silver-activatedzincsulfide
Environmentalradioactivitymonitoring
RudolfEngelbrecht
Radiochemistry,SeibersdorfLaborGmbH,Seibersdorf,Austria;Currently-AustrianAgencyforHealthandFoodSecurity,GmbH,Vienna
Chapteroutline
I.Introduction:objectiveofenvironmentalmonitoring1
II.Typesofmonitoringprograms2
A.Routinemonitoring2
B.Emergencypreparedness3
C.Emergencymonitoring3
III.Fundamentalsofenvironmentalmonitoring4
A.Designofenvironmentalmonitoringprograms4
B.Samplingstrategies7
C.Samplepreparation9
D.Measurementandquantification10
E.Qualityassurance/qualitycontrol12
IV.Monitoringforinternalexposure14
A.Air14
1.Aerosols14
2.Onlineversusofflinesystems14
3.Gaseouseffluents15
B.Soil,sediments,vegetation,anddeposits17
1.Laboratorybased17
2.Insitugammaspectroscopy19
C.Water20
I.Introduction:objectiveof environmentalmonitoring
Asrecenthistory(e.g., IAEA,2011;UNSCEAR,2014; IAEA,2015;IRSN,2018)hasshowntoscientistsandthe public,transparentandcomprehensibledoseassessments, includingestimationofdosesascloselyaspossibletothose actuallyreceived,areafundamentalbasisofmanaging radiationprotection.Themostrealisticassessmentofdoses isobtainedbyusingmeasuredactivityconcentrationsin environmentalmediaandmeasurementsofexternaldose rates.Environmentalmonitoringprovidesdatathatpermit theanalysisandevaluationofradiation fieldsandradionuclideactivityconcentrationsinenvironmentalsamples relevanttohumanexposure,primarilyinair,drinking
1.Wastewater23
2.Rain23
3.Groundwater23
4.Surfacewater24
5.Drinkingwater24
D.Foodstuff24
1.Milk24
2.Meatandfish25
3.Vegetables,fruits,andcereals26
4.Mixeddiet26
V.Monitoringforexternalexposure26
A.Doseratemonitoring26
B.Dosemonitoring27
VI.Mobilemonitoring27
A.Aerialmeasurements27
B.Mobilelaboratories28 References32 Furtherreading40 RudolfEngelbrecht40
water,agriculturalproducts,andnaturalfoodstuffs,aswell asinbioindicatorsthatconcentrateradionuclidesandprovideameasureoftrendsinactivitylevels.
Thus,environmentalmonitoringcanbedescribedasthe expositionscenario basedsystematicsamplingandanalysisofair,water,soil,andbiotatoassessenvironmental conditions.Theobjectiveofsuchmonitoringistoobtain solidinformationthatwillserveasthebasisformeasures andpoliticaldecisions.Environmentalmonitoringassessmentscaninvolveestablishingbaselinequality,uncovering environmentaltrends,identifyinganyvariations,detecting newenvironmentalissues,anddeterminingtheprogress madetoachieveenvironmentalgoals.
Itisimportanttodistinguishthespecificaspectsof environmentalmonitoringdataobtainedundernormal
operatingconditionsfromthoseobtainedunderemergency conditionssincethecriteriaforevaluationarecompletely different.Undernormaloperatingconditions,dataareoften importantforthestatutorycontrolofreleases,butthelevels setaretoberelatedtohumantissuedoses.Incaseofa possibleaccidentalreleaseofradioactivity,themonitoring programaimsatansweringquestions,suchasHasan abnormalreleaseoccurred?Isthereactiontobetaken?and Whichremedialmeasuresshouldbebroughtabout?Thus, distinctioncanbemadebetweenthefollowingdifferent situations:
Routinemonitoring emergencypreparedness emergencymonitoring.
Foreachofthesesituations,thetypeofmonitoring programtobeestablishedisinfluencedbythesourceof radioactivityaswellasthescaleofthespatialandtemporal boundariesoftheenvironmenttobemonitored.Intheend, thegoalofmonitoringtheenvironmentalwaysistoobtain aprofoundsetofdatathatwillserveasabasisthatenables authoritiestoimplementmeasuresforeitherpreserving environmentalvaluesorpreventingtheirdeterioration.
II.Typesofmonitoringprograms
A.Routinemonitoring
Routinemonitoringprogramsaimatprovidinginformation ontheoveralldosereceivedbythepopulationatlarge.The setupofthemonitoringistheresultofanoptimization processinwhichtheavailabilityofmeasurementresources, therelativeimportanceofdifferentexposurepathways,and thelevelsofactivityanddoseinrelationtotheregulatory constraintsaretakenintoconsideration.Routineenvironmentalradiationmonitoringprogramsaredesignedspecificallyforeachfacility,takingintoaccountsite-specifi c factors,suchasclimate,sitelocation,thedesignofthe facilityanditsbarriers,geologicalandgeomorphological conditions,theoff-siteenvironment,andthepopulation distribution(IAEA,2004);theseprogramsareconducted bothonandoutsidethesitegivingrisetopotentialexposureofthepublictoradionuclidesintheenvironment.
Thelifecycleoftheroutineprogramsforenvironmental monitoringcomprisespreoperationalstudies,performedto establish “baseline” environmentalradiationlevelsand activityconcentrationsforthepurposeofsubsequently determiningtheimpactsofthesource,monitoringduring theoperationalphase,anddecommissioningorpostoperationmonitoring,performedaslongasthefacilityremainsapotentialsourceofradionuclidesthatcouldbe releasedtotheenvironment.Thecomplexityoftheprogramdependsontheidentities,quantities,andchemical andphysicalformsofradionuclidesthatmaybereleased andonthecharacteristicsofthemonitoredenvironment.
Onceamonitoringprogramhasbeenimplemented,it shouldbereviewedperiodicallytoensurethatitcontinually fulfi llstheobjectives.
Thepurposeofroutineenvironmentalmonitoringof airborneradioactivityistomonitordomesticandforeign facilities.Samplingofsoils,sediments,ordepositsserves asanindicatoroflong-termbuildupofradioactivityinthe environment.Measurementofingredientsinfoodstuffand waterisintendedtocompletethemonitoringprogramfor themigrationofradionuclidesinthefoodchainortocheck thecontaminationofthepublicatlargebyingestion. Monitoringlocationsforground-andsurfacewater,sediment,biota,andfoodstuffsarerelatedtothepotential migrationpathwaysdeterminedbypreoperationalstudies, andthefrequenciesofsamplingandmeasurementsare specifi edwithaviewtothetimelydetectionofsigni ficant changesinthereleaseratesandconcentrationsofradionuclidesandtheassociatedlevelsofhumanexposurein accordancewiththemonitoringobjectives.
Ithastobenotedthatradonmonitoring,whichforms themainexposuretoradioactivesourcestomembersofthe public(UNSCEAR,2000b),isnotimplementedinenvironmentalmonitoringprogramsbutconductedinspecial radonsurveyprograms(e.g., Friedmannetal.,2007).
Recentattentionhasbeenpaidtoradiationrisktothe peopleandtheenvironmentcausedbyexposuretoionizing radiationoriginatingfromnaturallyoccurringradioactive materials(NORMs).NORMstouchmanyaspectsoflife, startingwithoccupationalrisk,throughsome “contaminated” goods,leisureactivitiesincludingspavisitsand endingwithahugeamountofbulkwasteoftendumpedin ourvicinity(Kathren,1998; IAEA,2003).Suchalterations tothenaturalstateresultinanincrementofradiationriskto thepeopleaswellastononhumanbiota.Eachparticular typeofNORMdeterminesauniquescenarioofexposure usuallydifferingfromthosecausedbytheartificialradionuclides(Martinetal.,1997).
Themeasurementsmustbeadequatetodetermineradiationlevelsandtrendsofenvironmentalradioactivityat levelsjustdetectable,theparametersneededforsubsequent doseassessment,andcompliancewithnationalorinternationalstandards,constraints,orlimitslaiddownforthe protectionofthepopulation.Theselimitsandconstraints havevaluesthataretypicallylessthanexposuredueto naturalbackgroundradiation.Itis,thus,necessarytobe abletoidentifythesourceandtocircumscribetheextentof theradioactivematerialwithreasonableaccuracy.
Theobjectivesofroutinemonitoringprogramsareto l provideinformationtoassesstheadequacyofprotectionofthepublic, l meetrequirementsofregulatoryagencies, l verifyradionuclidecontainmentand/orwastemanagementpractices,
l meetlegalliabilityobligations,and l providepublicassurance.
B.Emergencypreparedness
Environmentalmonitoringmaybeconductedcontinuously toserveasadetectionsystem.Emergencypreparedness monitoringispartofastrategyfordataandinformation acquisition.Theoverallemergencystrategyincludestwo differentmodesofinformation,namely,(1)acquisition,as therearephysicalmeasurementsofrelevantdataonone handand(2)modelingofsituationsasatoolforinterpolationandextrapolationintimeandspacewheremeasurementdataaresparseontheotherhand.Itisusually moresatisfactorytomakeprovisionfordetectingan emergencyatitssource,butdetectionbyenvironmental monitoringmayberequiredinsomesituations,for example,nearfrontiers.Inanuclearaccident,theprompt monitoringofalargeareamaybeneeded.Forthisreason, automaticmeasuringstationsthatwillcontinuouslymeasurethedoserateintheenvironmentinstalledaroundmajor facilitiesarecapableofearlymonitoring.Continuously operatedoff-sitesystemshavetheadvantagethattheycan providerapidindication,notonlythatareleasetothe environmenthastakenplacebutalsoofthedirectionin whichthereleasedmaterialismoving.Off-sitesystemsdo havethedisadvantagethatthedetectorsneedtobe considerablymoresensitivethanifsitedneartothe possiblepointofreleaseandalsoneedtobeextremely reliableifduplicationistobeavoided.
Allofthesesystemsmayincludesuchdevicesascontinuousairsamplerscapableofmeasuringconcentrationsof airborneparticles,gaseousiodine,andanyotherradionuclides ofparticularconcernorwatersamplersforcontinuously scanningtheskyorbodiesofwaterforradiation.Ifafacility maycontainlargeamountsoftritium,somespecialdeviceto measuretritiummaywellbeinstalled.Ineachcase,the readingsbeingtelemeteredbacktoacontrolcenter.
Systemsintendedtodetectairbornereleasesbytheuse ofairsamplersintroducecomplextechniques,ifearly warningisrequired,becauseofthepresenceofthenatural decayproductsofradonandthoron.However,iftimecan beallowedforthesetodecay,asimplemeasurementof grossalpha-orgrossbeta-activitywillindicatewhether conditionsareseriouslyabnormal,althoughitmustalways berememberedthatgrossactivityresultscannotbeinterpretedintermsofhazardtoman.Theintendeduseofthe resultantinformationgivesguidancetothechoiceof monitoringprioritiesofsuchnetworks.
Theobjectivesofemergencypreparednessmonitoring areasfollows:
l Detectinganyrelease
l Predictingplumetrajectory
l Earlygovernmentandpublicinformation
l Planningofurgentpopulationprotection countermeasures
l Planningofagriculturalcountermeasuresandfood restrictions
C.Emergencymonitoring
Underemergencyconditions,environmentalmonitoringis themostinformativesourceofdata.Themeasurementsof theradiationlevelsorthelevelsofradioactivecontaminationarerequiredforrapidassessmentsofthesituationto informthoseresponsibleforcontrollingtheemergencyso thatcountermeasurescanbeputinhandasamatterof urgency.Monitoringinemergencysituationsisalsoa valuableandfundamentaltooltoverifytheeffectivenessof theactionstaken,forexample,evacuation,closingthe areas,useofstableiodinetablets,orbanningtheconsumptionoffoodstuffsorwaterfromdefinedareas.
Historyhasshownthattherequirementsfortheemergencymonitoringprogramandthenatureofrelevantdata willevolvewithtime.Theproceduresusedinemergency monitoringcanconvenientlybegroupedintothreephases, namely,detection,initialsurvey,andsubsequentsurveys.
Intheinitialemergencyresponsefollowinganaccident, whereinformationisrequiredwithaslittledelayas possible,rapidandrelativelysimple,albeitcrude,analytical methodsmaybepreferred.Thisusuallymeansalesser sensitivityandthusagreaterriskforerrors.However,in anyemergencysituation,itisimportantthattheresultscan beobtainedrelativelyquickly.Undermostconditions,this wouldamounttotheuseofdoserateandsurvey instruments.
Nevertheless,itshouldbeensuredthatthetypesofinstrumentsavailablearesuitableforthemeasurementpurposes.Forexample,ifthereleasedmaterialconsistsofonly tritiumorplutonium,thenthetypicalbeta gammasurvey instrumentsarenotofmuchuseandappropriatespecial instrumentsand/ormonitoringtechniquesshouldbeused.
Attheearlystageofanaccidentalatmosphericrelease, externalexposureincludesthecontributionofradiation fromtheplume.Thus,initialsurveysinthereleasephaseof theaccidentwillbefocusedonmeasurementsofcloud shineandonthesamplingofradionuclidesfromtheplume toassessdosesfromexternalexposureandinhalation.In thepostreleasephase,externalgammadoseratemeasurementsareattributablemainlytoradiationfromdepositson theground.Closetotheinstallation,thesemeasurements mayalsoincludethecontributionofradiationfromthe source.
Theexternaldoseratemeasurementsshouldbesupplementedassoonaspossiblebynuclide-speci ficanalysis ofrepresentativesamplesofmobileenvironmentalmedia andbiotathroughwhichradionuclidescouldmigrateand
reachthehumanhabitatandtherebyenterthehumanbody. Theseareatmosphericair,soilwaterandgroundwater, surfacewater,sediments,biota,andfoodstuffs.Groundwatershouldbemonitoredthroughmonitoringwells locatedatasuf ficientdeptharoundanddownstreamofthe facility.Thesemeasurementsmaybepursuedoverlonger periodsoftime.However,theassessmentoftheimpactof short-livednuclidessuchasiodineandrutheniumisotopes willbepossibleonlyifmeasurementsareperformedwithin afewweeksaftertheaccident.
Onceareleasehasceasedanddepositionlevelshave stabilized,nuclide-speci fi cdepositiondensitiesofall gamma-emittingradionuclidescanbeacquiredrapidlyby theuseof insitu gammaspectrometry.Nevertheless,laboratoryanalysisofalargenumberofsamplesofsoil, plants,water,agriculturalproducts,andnaturalfoodstuffs willbenecessarytosupplementthedataprovidedbythe in situ measurements.
Duringsuchsubsequentsurveys,italsowillbenecessarytoperformalargenumberofmeasurementsin differentmediainviewofanaccurateaposterioriassessmentoftheradiologicalimpact.Suchanassessmentfulfi lls theneedforadequateinformationofthepublicandmay servealsofurtherscienti ficinvestigations.
Thespeci ficobjectivesofemergencyradiationmonitoringintheenvironmentareto
l provideaccurateandtimelydataonthelevels,extent, anddurationofradiationandenvironmentalcontaminationwithradionuclides,
l providedetailofthephysicalandchemicalcharacteristicsofthehazard,
l assistinpreventingandcontrollingthespreadof contamination,
l assistdecision-makersontheimplementationofurgent, intermediate-,andrecovery-phasepopulationprotection countermeasures,agriculturalcountermeasures,and foodrestrictions
l provideinformationfortheprotectionofemergency andrecoveryworkers,
l provideinformationforthepubliconthedegreeofthe hazard,
l provideinformationneededtoidentifyanypeoplefor whomlong-termmedicalscreeningiswarranted,
l confirmtheefficiencyofprotectiveactions.
III.Fundamentalsofenvironmental monitoring
A.Designofenvironmentalmonitoring programs
Monitoringdesignprovidesanswerstothefollowingquestions:Whatwillbemonitored?Whataretheparameterstobe
measured?Howwilltheseparametersbemonitored?Where, when,andhowfrequentlywilltheparametersbemeasured.A monitoringprogramwillbeasvaluableandeffectiveasthe questionsidentifiedarespecificandfocusedandcanbeusedto guidethedevelopmentofamonitoringplan.
Tobeconsistentwiththeobjectivesandthedesignof anymonitoringprogram,onehastoconsidertypesand characteristicsofcriticalradionuclides,modesoftheir releasetotheenvironment,includingmechanismsforthe transferofradionuclidesthroughenvironmentalmedia, dispersionandreconcentrationmechanisms,andtheirseasonalvariation,existinglevelsofradionuclidesinthe environmentandtheirvariability,andexposurepathways thatmakethemajorcontributionstoindividualdoses, leadingtorequirementsintermsofsampling,sample treatment,measurementtechnique,andthelowerlimitof detectionorminimaldetectableactivity(IAEA,2005). Moreover,thenatureoftheenvironment,asthelocationof thefacilityinrelationtopopulationcentersandtheir compositionanddensities,surfacewaters,oceans, geological,meteorological,hydrological,andothernatural conditions,whichmightinfl uencethedispersalofreleased radionuclides,hastobetakenintoaccount.
Akeyfeatureindesigningenvironmentalmonitoringprogramsistheidentificationofpotentiallycriticalradionuclides, pathways,andgroupsorindividualspotentiallyaffected.
Intheconsiderationsofthelimitationofdosetothe generalpublicfromionizingradiation,dosestoindividuals, tocriticalgroups,andtothegeneralpopulationare distinguished.Asearlyas1965,the ICRP(1965) defineda criticalgroupasthat “whoseexposureishomogeneousand typicalofthatofthemosthighlyexposedindividualsinthe exposedpopulation.” In2006,theICRPintroducedthenew conceptofarepresentativeperson,definingitas “anindividualreceivingadosethatisrepresentativeofthemore highlyexposedindividualsinthepopulation” (ICRP, 2006).Theterm “representativeperson” describesanindividualwithcharacteristicsthatreflectthoseofthegroup thatreceivesthehighestdosesfromaparticularsource, knownastherepresentativepersonfortheradionuclidein question,andreplacesthe “averagememberofthecritical group” definedinpreviouspublicationsoftheICRP.Inany case,criticalgroupsortherepresentativepersonmaybein thevicinityoftheinstallationoratsomedistantlocation. Toassesstheannualeffectivedosesforbothcriticalgroup andrepresentativeperson,methodsrecommendedbythe InternationalAtomicEnergyAgency(IAEA,1982;IAEA, 2001)canbeused.Amoreconservativeconcepttoassess dosestothepublicisgiveninUSRegulatoryGuide1.109 andbasedontheindividualofmaximumdose(USNRC, 1977).
Routesfromasourceofradionuclidesand/orradiation toatargetindividualorapopulationthroughmediainthe environmentaredefinedintheexposurepathways.
Therearetwomaincategoriesofexposurepathway:
l Externalexposurefromradionuclidespresentintheair orinmaterialincorporatedin,forexample,soilsorsediment,determinedbydirectmeasurementsofexternal doseorbysoilanalysis.
l Internalexposurefromtheinhalation,ingestion,orimmersionofradionuclidespresentinairorincorporated inwaterorfoods,respectively.Immersionandinhalationaremonitoredbyairsampling.Ingestionofradioactivityismonitoredbymeansoffoodsampling,for example,milk, fish,andshellfish,orindicatororganismsormaterials.
Generally,arangeofpotentialpathwaysthatmaybe morecomplicatedinrealityneedtobeconsidered (Table1.1).Therelativeimportanceofdifferentexposure pathwayswillbedependentupon
l themagnitudeofthedischarge,
l therouteofdischargeandfactorsaffectingit(e.g.,stack height,meteorologicalconditions,etc.),
l thephysicalstateorproperties(e.g.,emissiontype,energy,physicalhalf-life,gas,liquid,orsolid),
l thechemicalcharacteristics(e.g.,organicorinorganic form,oxidationstate,speciation,etc.)
l thedosimetricimportanceofradionuclides,
l environmentalcharacteristics(e.g.,climate,typeof biota,agriculturalproduction ,etc.);locations,ages,diets,andhabitsoftheexposedindividualsor population.
Underconditionsofnormaldischargesandchronic(prolonged)exposure,thepathwaysareusuallypermanentand welldefined.Incaseofemergencyreleases,thecontributions viadifferentpathwaystothedosesreceivedbyworkersand thepublicmaybedifferentfromthenormalandtransient. Thesedifferencesshouldbeconsideredwhenestablishingthe monitoringprogram.Toprotectthepublicandworkersfrom deterministichealtheffectsfollowingmajoraccidents,radiologicalcriteriainemergenciesmaybedifferentfromthose appliedunderconditionsofnormaldischarges(e.g.,additional monitoringdatamaybenecessary).
Undernormaloperationconditions,thatis,forroutine environmentalmonitoring,thoseradionuclidesaretobe considered,whicharelimitedindischargepermitsorare significantcomponentsofagrouplimit(e.g.,strontium-90 limitedunderanyotherbeta/gamma-emittingradionuclide grouplimit).Otherradionuclidesmayberequiredasaresult ofinternationalobligationsorbackgrounds.Provensurrogateradionuclidesmaybeused(e.g.,wheretheradionuclide fingerprintisrelativelystable).Sinceroutinemonitoring programsaredesignedtoverifycompliancewithenvironmentalstandardsatlevelsjustdetectableandwhicharefor recordsonlybylow-levelmeasurements,itisessentialtobe abletoidentifythesourceandtocircumscribetheextentof theradioactivematerialwithreasonableaccuracy.
Preoperationalassessmentsoftheexpectedinventoriesof radionuclidesduringoperationofafacility,thepossible dischargepathwaysandthelikelyamountsthatwillbe dischargedtotheenvironment,withdueconsiderationofthe
TABLE1.1 Importantexposurepathwaystobeconsideredinthemonitoringprogram.
Externalexposurepathways
Sourceofradiation / human Directexposurefromasource
Sourceofradionuclides/ atmosphereorwaterbody / human Exposureduetotheplumeorwater
Sourceofradionuclides / atmosphereorwaterbody / humanskin Skincontactexposure
Sourceofradionuclides / atmosphereorwaterbody / soilor sedimentorbuildingsurfaceorvegetation / human
Internalexposurepathways
Exposurefromdepositedradionuclidesontheground,onthe shoresofrivers,lakes,orthesea;onwalls,roofs,andfloors;oron trees,bushes,andgrass
Sourceofradionuclides / atmosphere / human Inhalationofradionuclidesintheplume;
Sourceofradionuclides / waterbody / human Ingestionofradionuclidesindrinkingwater
Sourceofradionuclides / atmosphereorwaterbody / (soil orsediment) / vegetation / meat,milk,eggs,vegetables,or marinefood / human
Ingestionofradionuclidesinfoodorbeverages
Soilorsediment / human Inhalationofresuspendedradionuclides
Sourceoftritium / atmosphere / human Absorptionoftritiumoxidethroughtheskin
effluenttreatmentsystemsthatwillbeinstalled,willhelpto definespatialandtemporalboundariesandselecttypesand numbersofsamplesandmeasurementmethods.Apreoperationalprogramintendedtoestablishbaselinesmightalso identifysuitableindicatororganismsorindicatormaterials forparticularradionuclides.Indicatorssuchasseaweeds, lichen,orsuspendedparticulatematterareselectednot becausetheyrepresentacomponentofthehumandietbut becausetheyconcentrateradionuclidesandprovideameasureoftrendsinactivitylevelsandhencemayprovidemore sensitiveinformationofenvironmentalcontamination.
Environmentalmonitoringduringthedecommissioning ofafacility,suchasuraniumminesandmills,uranium enrichmentplants,fuelfabricationfacilities,nuclearreactors(IAEA,1998,1999;2001,2002a,2002b),nuclear fuelreprocessingplants,andotherradionuclideprocessing facilities,willbesimilartothatfortheoperationalstage, modifi edtotakeaccountofchangesinthesourceterm,all materialsexhibitingsignificantlevelsofactivity(FAO, 1996)areremovedasdecommissioningproceeds.Forboth currentandhistoricaldischarges,in-growthofdaughters mayneedtobeconsidered(e.g., 241Amfrom 241Pu).
Themostimportantradionuclidestobeassessed followingareleaseofradionuclidesfromauranium-fueled reactortotheenvironmentare 134Cs, 137Cs(137mBa), 131I, andothergammaemitters;thebetaemitters 89Sr, 90Sr,and tritium;andthealphaemitters 238Pu, (239 þ 240)Pu, 241Am, and 242Cm.Thisgroupofradionuclidesismostlikelytobe ofconcernduetointernalexposurefrominhalationand ingestionoffoodandwaterandtothecontaminationof environmentalmaterials,whicharepartoftheimmediate pathways,leadingtocontaminationoffood(Table1.2). Biologicalconcentrationinfreshwaterandmarinesystems canresultinveryrapidtransferandenrichmentofspeci fic radionuclides.Radionuclidesthatentersuchsystemscan, incertaincases,berapidlyaccumulatedbyplanktonand algae,whichserveasfoodforhighertrophiclevels;thus, theradionuclidesbecomeconcentratedinorganismssuch asoysters,clams,shrimp,etc.
Radionuclidesofparticularconcerninfreshwaterand marinefoodchainsinclude 54Mn, 55Fe, 59Fe, 60Co, 65Zn, 95Zr, 95Nb, 103Ru, 106Ru, 110mAg, 125Sb, 131I, 134Cs, 137Cs, 141Ce, 144Ce,andsomeofthetransuranicelements.
Manyotherradionuclideswouldbepresentindebrisfrom anuclearaccident;theirpotentialcontributiontohuman exposuredependsonthetypeofaccidentandthecircumstancesatthetimeoftheaccident.Sincethereareseveraltypes offuel,thespectraofradionuclidesthatwouldbepresentin accidentalreleasescouldbesomewhatdifferent.
Thelevelsofradionuclidesintheenvironmentandfood andtheirvariabilityhavebeenextensivelycompiledbythe UnitedNationsScienti ficCommitteeontheEffectsof AtomicRadiation(UNSCEAR,2000b,2000c ).Thesereportscontaininformationaboutthetransferofradionuclidesbetweenatmospheres,waters,soils,biota,andperson andabouthumanexposuretothevariousnuclides (UNSCEAR,2000a,2008).
Whatsiteorenvironmentwillbemonitored,whatwill bemeasured,wherewillitbemeasured,andwhenand howfrequentlywillitbemeasuredareessentialelements ofamonitoringdesign.However,asthedevelopmentof themonitoringdesignalmostalwaysrequiresclari fi cation andprioritization,documentingthedesign,including rationalefordecisions,iscriticalwhenthedesignis implementedandwhenthecollecteddataareusedfor reportingtonationalpolicymakers,internationalforums, andthepublic.
Identi ficationandassessmentofthepotentiallycritical radionuclides,pathways,andgroupsorindividualsisa substantialprerequisiteindesigningenvironmentalmonitoringprograms,directlyaffectingthenatureandextentof themeasurements.Theselectionofthemajorcontributing radionuclidesandtheirsignifi cantpathwaystothepredefinedtargetpopulationorindividualdirectthemonitoringprogramstothemostimportantsubjects.The followingprinciplesforthedevelopmentofapractical monitoringprograminvolvestepsthatarereasonablyindependentoflocalcircumstances:
Air 131I, 134Cs, 137Cs
Water 3H, 89Sr, 90Sr, 131I, 134Cs, 137Cs
Milk 89Sr, 90Sr, 131I, 134Cs, 137Cs
Meat 134Cs, 137Cs
Otherfoods
Vegetation
Soil
89Sr, 90Sr, 134Cs, 137Cs
89Sr, 90Sr, 95Zr, 95Nb, 103Ru, 106Ru, 131I, 134Cs, 137Cs, 144Ce
89Sr, 90Sr, 134Cs, 137Cs, 238Pu, (239þ240)Pu, 241Am, 242Cm