Handbook of human-machine systems giancarlo fortino - The ebook in PDF/DOCX format is ready for down

Page 1


https://ebookmass.com/product/handbook-of-human-machine-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The Oxford Handbook of Online Intermediary Liability 1st Edition Giancarlo Frosio

https://ebookmass.com/product/the-oxford-handbook-of-onlineintermediary-liability-1st-edition-giancarlo-frosio/

ebookmass.com

Machine Vision Inspection Systems, Machine Learning-Based Approaches Muthukumaran Malarvel

https://ebookmass.com/product/machine-vision-inspection-systemsmachine-learning-based-approaches-muthukumaran-malarvel/

ebookmass.com

Human-Like Machine Intelligence Stephen Muggleton

https://ebookmass.com/product/human-like-machine-intelligence-stephenmuggleton/

ebookmass.com

Rethinking Revolutions from 1905 to 1934: Democracy, Social Justice and National Liberation around the World Stefan Berger

https://ebookmass.com/product/rethinking-revolutionsfrom-1905-to-1934-democracy-social-justice-and-national-liberationaround-the-world-stefan-berger/ ebookmass.com

Goodwin

and Guze’s Psychiatric Diagnosis 7th Edition

https://ebookmass.com/product/goodwin-and-guzes-psychiatricdiagnosis-7th-edition/

ebookmass.com

In Her Sights Katie Ruggle

https://ebookmass.com/product/in-her-sights-katie-ruggle-4/

ebookmass.com

Nanocolloids for Petroleum Engineering: Fundamentals and Practices Baghir Suleimanov

https://ebookmass.com/product/nanocolloids-for-petroleum-engineeringfundamentals-and-practices-baghir-suleimanov/

ebookmass.com

Engineering Software Products: An Introduction to Modern Software Engineering Ian Sommerville

https://ebookmass.com/product/engineering-software-products-anintroduction-to-modern-software-engineering-ian-sommerville/

ebookmass.com

Fashion Tech Applied: Exploring Augmented Reality, Artificial Intelligence, Virtual Reality, NFTs, Body Scanning, 3D Digital Design, and More 1st Edition Von N. Ruzive

https://ebookmass.com/product/fashion-tech-applied-exploringaugmented-reality-artificial-intelligence-virtual-reality-nfts-bodyscanning-3d-digital-design-and-more-1st-edition-von-n-ruzive/ ebookmass.com

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktsson

AnjanBose

JamesDuncan

AminMoeness

DesineniSubbaramNaidu

BehzadRazavi

JimLyke

HaiLi

BrianJohnson

JeffreyReed

DiomidisSpinellis

AdamDrobot

TomRobertazzi

AhmetMuratTekalp

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection 107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,or authorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com. RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons, Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/ go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/or itsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission.Allother trademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithanyproduct orvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontents ofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategies containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhen thisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitor anyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317) 572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataappliedfor:

HardbackISBN:9781119863632

CoverDesign:Wiley

CoverImages:©bergamont/Shutterstock;SviatlanaLaza/Shutterstock;barleyman/GettyImages;3alexd/Getty Images;Olemedia/GettyImages;Westend61/GettyImages;3alexd/GettyImages;MontyRakusen/GettyImages; WitthayaPrasongsin/GettyImages;LucaSage/GettyImages;NisianHughes/GettyImages;SerhiiBrovko/ GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

EditorsBiography xxi

ListofContributors xxiii

Preface xxxiii

1Introduction 1 GiancarloFortino,DavidKaber,AndreasNürnberger,andDavidMendonça

1.1BookRationale 1

1.2ChaptersOverview 2 Acknowledgments 8 References 8

2Brain–ComputerInterfaces:RecentAdvances,Challenges,andFuture Directions 11 TiagoH.Falk,ChristophGuger,andIvanVolosyak

2.1Introduction 11

2.2Background 12

2.2.1Active/ReactiveBCIs 13

2.2.2PassiveBCIs 14

2.2.3HybridBCIs 15

2.3RecentAdvancesandApplications 15

2.3.1Active/ReactiveBCIs 15

2.3.2PassiveBCIs 16

2.3.3HybridBCIs 16

2.4FutureResearchChallenges 16

2.4.1CurrentResearchIssues 17

2.4.2FutureResearchDirections 17

2.5Conclusions 18 References 18

3Brain–ComputerInterfacesforAffectiveNeurofeedbackApplications 23 LucasR.TrambaiolliandTiagoH.Falk

3.1Introduction 23

3.2Background 23

3.3State-of-the-Art 24

3.3.1DepressiveDisorder 25

3.3.2PosttraumaticStressDisorder,PTSD 26

3.4FutureResearchChallenges 27

3.4.1OpenChallenges 27

3.4.2FutureDirections 28

3.5Conclusion 28

References 29

4PediatricBrain–ComputerInterfaces:AnUnmetNeed 35

EliKinney-Lang,EricaD.Floreani,NiloufaralsadatHashemi,DionKelly,StefanieS.Bradley, ChristineHorner,BrianIrvine,ZeannaJadavji,DanetteRowley,IlyasSadybekov,SiLong JennyTou,EphremZewdie,TomChau,andAdamKirton

4.1Introduction 35

4.1.1Motivation 36

4.2Background 36

4.2.1ComponentsofaBCI 36

4.2.1.1SignalAcquisition 36

4.2.1.2SignalProcessing 36

4.2.1.3Feedback 36

4.2.1.4Paradigms 37

4.2.2BrainAnatomyandPhysiology 37

4.2.3DevelopmentalNeurophysiology 38

4.2.4ClinicalTranslationofBCI 38

4.2.4.1AssistiveTechnology(AT) 38

4.2.4.2ClinicalAssessment 39

4.3CurrentBodyofKnowledge 39

4.4ConsiderationsforPediatricBCI 40

4.4.1DevelopmentalImpactonEEG-basedBCI 40

4.4.2HardwareforPediatricBCI 41

4.4.3SignalProcessingforPediatricBCI 41

4.4.3.1FeatureExtraction,SelectionandClassification 42

4.4.3.2EmergingTechniques 42

4.4.4DesigningExperimentsforPediatricBCI 43

4.4.5MeaningfulApplicationsforPediatricBCI 43

4.4.6ClinicalTranslationofPediatricBCI 44

4.5Conclusions 44 References 45

5Brain–ComputerInterface-basedPredator–PreyDroneInteractions 49 AbdelkaderNasreddineBelkacemandAbderrahmaneLakas

5.1Introduction 49

5.2RelatedWork 50

5.3Predator–PreyDroneInteraction 51

5.4ConclusionandFutureChallenges 57 References 58

6LevelsofCooperationinHuman–MachineSystems:AHuman–BCI–Robot Example 61 Marie-PierrePacaux-Lemoine,LydiaHabib,andTomCarlson

6.1Introduction 61

6.2LevelsofCooperation 61

6.3ApplicationtotheControlofaRobotbyThought 63

6.3.1DesigningtheSystem 64

6.3.2ExperimentsandResults 66

6.4ResultsfromtheMethodologicalPointofView 67

6.5ConclusionandPerspectives 68 References 69

7Human–MachineSocialSystems:TestandValidationviaMilitary UseCases 71

CharleneK.Stokes,MonikaLohani,ArwenH.DeCostanza,andElliotLoh

7.1Introduction 71

7.2BackgroundSummary:FromToolstoTeammates 72

7.2.1TwoSidesoftheEquation 72

7.2.2MovingBeyondtheCognitiveRevolution 73

7.2.2.1ARediscoveryoftheUnconscious 74

7.3FutureResearchDirections 75

7.3.1Machine:FunctionalDesigns 75

7.3.2Human:GroundTruth 76

7.3.2.1PhysiologicalComputing 76

7.3.3Context:TyingItAllTogether 77

7.3.3.1TrainingandTeamModels 77

7.4Conclusion 79 References 79

8TheRoleofMultimodalDataforModelingCommunicationinArtificial SocialAgents 83

StephanieGrossandBrigitteKrenn

8.1Introduction 83

8.2Background 84

8.2.1Context 84

8.2.2BasicDefinitions 84

8.3RelatedWork 84

8.3.1HHIData 85

8.3.2HRIData 85

8.3.2.1JointAttentionandRobotTurn-TakingCapabilities 85

8.3.3PublicAvailabilityoftheData 87

8.4DatasetsandResultingImplications 87

8.4.1HumanCommunicativeSignals 87

8.4.1.1ExperimentalSetup 87

8.4.1.2DataAnalysisandResults 88

8.4.2HumansReactingtoRobotSignals 89

8.4.2.1ComparingDifferentRoboticTurn-GivingSignals 89

8.4.2.2ComparingDifferentTransparencyMechanisms 90

8.5Conclusions 91

8.6FutureResearchChallenges 91 References 91

9ModelingInteractionsHappeninginPeople-DrivenCollaborative Processes 95

MaximilianoCanche,SergioF.Ochoa,DanielPerovich,andRodrigoSantos

9.1Introduction 95

9.2Background 97

9.3State-of-the-ArtinInteractionModelingLanguagesandNotations 98

9.3.1VisualLanguagesandNotations 99

9.3.2ComparisonofInteractionModelingLanguagesandNotations 100

9.4ChallengesandFutureResearchDirections 101 References 102

10TransparentCommunicationsforHuman–MachineTeaming 105

JessieY.C.Chen

10.1Introduction 105

10.2DefinitionsandFrameworks 105

10.3ImplementationofTransparentHuman–MachineInterfacesinIntelligent Systems 106

10.3.1Human–RobotInteraction 106

10.3.2MultiagentSystemsandHuman–SwarmInteraction 108

10.3.3Automated/AutonomousDriving 109

10.3.4ExplainableAI-BasedSystems 109

10.3.5GuidelinesandAssessmentMethods 109

10.4FutureResearchDirections 110 References 111

11ConversationalHuman–MachineInterfaces 115

MaríaJesúsRodríguez-Sánchez,KawtarBenghazi,DavidGriol,andZoraidaCallejas

11.1Introduction 115

11.2Background 115

11.2.1HistoryoftheDevelopmentoftheField 116

11.2.2BasicDefinitions 117

11.3State-of-the-Art 117

11.3.1DiscussionoftheMostImportantScientific/TechnicalContributions 117

11.3.2ComparisonTable 119

11.4FutureResearchChallenges 121

11.4.1CurrentResearchIssues 121

11.4.2FutureResearchDirectionsDealingwiththeCurrentIssues 121 References 122

12Interaction-CenteredDesign:AnEnduringStrategyandMethodologyfor SociotechnicalSystems 125 MingHou,ScottFang,WenbiWang,andPhilipS.E.Farrell

12.1Introduction 125

12.2EvolutionofHMSDesignStrategy 126

12.2.1AHMSTechnology:IntelligentAdaptiveSystem 126

12.2.2EvolutionofIASDesignStrategy 128

12.3State-of-the-Art:Interaction-CenteredDesign 130

x Contents

15.3.1STSAssistance 169

15.3.2WalkingAssistance 169

15.3.2.1ManeuverabilityImprovement 169

15.3.2.2GravityCompensation 170

15.3.2.3ObstacleAvoidance 170

15.3.2.4FallsRiskPredictionandFallPrevention 170

15.3.3LocalizationandNavigation 170

15.3.3.1MapBuildingandLocalization 171

15.3.3.2PathPlanning 171

15.3.3.3AssistedLocalization 171

15.3.3.4AssistedNavigation 171

15.3.4FurtherFunctionalities 171

15.3.4.1ReminderSystems 171

15.3.4.2HealthMonitoring 171

15.3.4.3Communication,Information,Entertainment,andTraining 172

15.4Conclusion 172 References 173

16AWearableAffectiveRobot 181

JiaLiu,JinfengXu,MinChen,andIztokHumar

16.1Introduction 181

16.2ArchitectureDesignandCharacteristics 183

16.2.1ArchitectureofaWearableAffectiveRobot 183

16.2.2CharacteristicsofaWearableAffectiveRobot 184

16.3DesignoftheWearable,AffectiveRobot’sHardware 185

16.3.1AIWACBoxHardwareDesign 185

16.3.2HardwareDesignoftheEEGAcquisition 185

16.3.3AIWACSmartTactileDevice 185

16.3.4PrototypeoftheWearableAffectiveRobot 186

16.4AlgorithmfortheWearableAffectiveRobot 186

16.4.1AlgorithmforAffectiveRecognition 186

16.4.2User-BehaviorPerceptionbasedonaBrain-WearableDevice 186

16.5LifeModelingoftheWearableAffectiveRobot 187

16.5.1DataSetLabelingandProcessing 188

16.5.2MultidimensionalDataIntegration 188

16.5.3ModelingofAssociatedScenarios 188

16.6ChallengesandProspects 189

16.6.1ResearchChallengesoftheWearableAffectiveRobot 189

16.6.2ApplicationScenariosfortheWearableAffectiveRobot 189

16.7Conclusions 190

References 190

17VisualHuman–ComputerInteractionsforIntelligentVehicles 193 XumengWang,WeiChen,andFei-YueWang

17.1Introduction 193

17.2Background 193

20DecodingHumans’andVirtualAgents’EmotionalExpressions 225 TerryAmorese,GennaroCordasco,MarialuciaCuciniello,OlgaShevaleva,StefanoMarrone, CarlVogel,andAnnaEsposito

20.1Introduction 225

20.2RelatedWork 226

20.3MaterialsandMethodology 227

20.3.1Participants 227

20.3.2Stimuli 228

20.3.3ToolsandProcedures 228

20.4DescriptiveStatistics 229

20.5DataAnalysisandResults 230

20.5.1ComparisonSyntheticvs.NaturalisticExperiment 234

20.6DiscussionandConclusions 235

Acknowledgment 238

References 238

21IntelligentComputationalEdge:FromPervasiveComputingandInternetof ThingstoComputingContinuum 241 RadmilaJuric

21.1Introduction 241

21.2TheJourneyofPervasiveComputing 242

21.3ThePoweroftheIoT 243

21.3.1InherentProblemswiththeIoT 244

21.4IoT:TheJourneyfromCloudtoEdge 245

21.5TowardIntelligentComputationalEdge 246

21.6IsComputingContinuumtheAnswer? 247

21.7DoWeHaveMoreQuestionsthanAnswers? 248

21.8WhatWouldourVisionBe? 249

References 251

22ImplementingContextAwarenessinAutonomousVehicles 257 FedericoFaruffini,AlessandroCorrea-Victorino,andMarie-HélèneAbel

22.1Introduction 257

22.2Background 258

22.2.1Ontologies 258

22.2.2AutonomousDriving 258

22.2.3BasicDefinitions 259

22.3RelatedWorks 260

22.4ImplementationandTests 261

22.4.1ImplementingtheContextofNavigation 261

22.4.2ControlLoopRule 262

22.4.3Simulations 263

22.5Conclusions 264

22.6FutureResearchChallenges 264 References 264

25.2.2BasicDefinition 292

25.3RelatedWork 293

25.4Method 294

25.4.1Apparatus 295

25.4.2Participants 296

25.4.3ExperimentDesign 296

25.4.4Tasks 297

25.4.5DependentVariables 297

25.4.5.1HazardNegotiationPerformance 297

25.4.5.2VehicleControlPerformance 298

25.4.6Procedure 298

25.5Results 299

25.5.1HazardReactionPerformance 299

25.5.2PosthazardManualDrivingPerformance 299

25.5.3PosttestingUsabilityQuestionnaire 301

25.6Discussion 302

25.7Conclusion 303

25.8FutureResearch 304 References 304

26RGB-DBasedHumanActionRecognition:FromHandcraftedtoDeep Learning 307 BangliLiuandHonghaiLiu

26.1Introduction 307

26.2RGB-DSensorsand3DData 307

26.3HumanActionRecognitionviaHandcraftedMethods 308

26.3.1Skeleton-BasedMethods 308

26.3.2Depth-BasedMethods 309

26.3.3HybridFeature-BasedMethods 309

26.4HumanActionRecognitionviaDeepLearningMethods 310

26.4.1CNN-BasedMethods 310

26.4.2RNN-BasedMethods 311

26.4.3GCN-BasedMethods 313

26.5Discussion 314

26.6RGB-DDatasets 314

26.7ConclusionandFutureDirections 315 References 316

27HybridIntelligence:AugmentingEmployees’Decision-MakingwithAI-Based Applications 321 InaHeine,ThomasHellebrandt,LouisHuebser,andMarcosPadrón

27.1Introduction 321

27.2Background 321

27.2.1Context 321

27.2.2BasicDefinitions 322

27.3RelatedWork 323

27.4TechnicalPartoftheChapter 324

27.4.1DescriptionoftheUseCase 324

27.4.1.1BusinessModel 324

27.4.1.2Process 324

27.4.1.3UseCaseObjectives 325

27.4.2DescriptionoftheEnvisionedSolution 325

27.4.3DevelopmentApproachofAIApplication 326

27.4.3.1DevelopmentProcess 326

27.4.3.2ProcessAnalysisandTimeStudy 326

27.4.3.3DevelopmentandDeploymentData 327

27.4.3.4SystemTestingandDeployment 327

27.4.3.5DevelopmentInfrastructureandDevelopmentCostMonitoring 327

27.5Conclusions 330

27.6FutureResearchChallenges 330 References 330

28HumanFactorsinDriving 333

BirsenDonmez,DengboHe,andHollandM.Vasquez

28.1Introduction 333

28.2ResearchMethodologies 334

28.3In-VehicleElectronicDevices 335

28.3.1Distraction 335

28.3.2InteractionModality 336

28.3.2.1VisualandManualModalities 336

28.3.2.2AuditoryandVocalModalities 337

28.3.2.3HapticModality 338

28.3.3WearableDevices 338

28.4VehicleAutomation 339

28.4.1DriverSupportFeatures 339

28.4.2AutomatedDrivingFeatures 341

28.5DriverMonitoringSystems 342

28.6Conclusion 343 References 343

29WearableComputingSystems:State-of-the-ArtandResearch Challenges 349

GiancarloFortinoandRaffaeleGravina

29.1Introduction 349

29.2WearableDevices 350

29.2.1AHistoryofWearables 350

29.2.2SensorTypes 351

29.2.2.1PhysiologicalSensors 352

29.2.2.2InertialSensors 352

29.2.2.3VisualSensors 352

29.2.2.4AudioSensors 355

29.2.2.5OtherSensors 355

29.3BodySensorNetworks-basedWearableComputingSystems 355

29.3.1BodySensorNetworks 355

29.3.2TheSPINEBody-of-Knowledge 357

29.3.2.1TheSPINEFramework 357

29.3.2.2TheBodyCloudFramework 359

29.4ApplicationsofWearableDevicesandBSNs 360

29.4.1Healthcare 360

29.4.1.1CardiovascularDisease 362

29.4.1.2Parkinson’sDisease 362

29.4.1.3RespiratoryDisease 362

29.4.1.4Diabetes 363

29.4.1.5Rehabilitation 363

29.4.2Fitness 363

29.4.2.1DietMonitoring 363

29.4.2.2Activity/FitnessTracker 363

29.4.3Sports 364

29.4.4Entertainment 364

29.5ChallengesandProspects 364

29.5.1MaterialsandWearability 364

29.5.2PowerSupply 365

29.5.3SecurityandPrivacy 365

29.5.4Communication 365

29.5.5EmbeddedComputing,DevelopmentMethodologies,andEdgeAI 365

29.6Conclusions 365 Acknowledgment 366 References 366

30MultisensorWearableDeviceforMonitoringVitalSignsandPhysical Activity 373

JoshuaDiTocco,LuigiRaiano,DanielaloPresti,CarloMassaroni,DomenicoFormica,and EmilianoSchena

30.1Introduction 373

30.2Background 373

30.2.1Context 373

30.2.2BasicDefinitions 374

30.3RelatedWork 375

30.4CaseStudy:MultisensorWearableDeviceforMonitoringRRandPhysical Activity 376

30.4.1WearableDeviceDescription 376

30.4.1.1ModulefortheEstimationofRR 377

30.4.1.2ModulefortheEstimationofPhysicalActivity 377

30.4.2ExperimentalSetupandProtocol 378

30.4.2.1ExperimentalSetup 378

30.4.2.2ExperimentalProtocol 378

30.4.3DataAnalysis 378

30.4.4Results 378

30.5Conclusions 379

30.6FutureResearchChallenges 380 References 380

31IntegrationofMachineLearningwithWearableTechnologies 383

DariusNahavandi,RoohallahAlizadehsani,andAbbasKhosravi

31.1Introduction 383

31.2Background 384

31.2.1HistoryofWearables 384

31.2.2SupervisedLearning 384

31.2.3UnsupervisedLearning 386

31.2.4DeepLearning 386

31.2.5DeepDeterministicPolicyGradient 387

31.2.6CloudComputing 388

31.2.7EdgeComputing 388

31.3StateoftheArt 389

31.4FutureResearchChallenges 392 References 393

32Gesture-BasedComputing 397

32.1Introduction 397

32.2Background 398

32.2.1HistoryoftheDevelopmentofGesture-BasedComputing 398

32.2.2BasicDefinitions 399

32.3StateoftheArt 399

32.4FutureResearchChallenges 402

32.4.1CurrentResearchIssues 402

32.4.2FutureResearchDirectionsDealingwiththeCurrentIssues 403 Acknowledgment 403 References 403

33EEG-basedAffectiveComputing 409 XueliangQuanandDongruiWu

33.1Introduction 409

33.2Background 409

33.2.1BriefHistory 409

33.2.2EmotionTheory 410

33.2.3EmotionRepresentation 410

33.2.4EEG 410

33.2.5EEG-BasedEmotionRecognition 411

33.3State-of-the-Art 411

33.3.1PublicDatasets 411

33.3.2EEGFeatureExtraction 411

33.3.3FeatureFusion 412

33.3.4AffectiveComputingAlgorithms 413

33.3.4.1TransferLearning 413

33.3.4.2ActiveLearning 413

33.3.4.3DeepLearning 413

33.4ChallengesandFutureDirections 414 Acknowledgment 415 References 415

34SecurityofHumanMachineSystems 419

FrancescoFlammini,EmanueleBellini,MariaStelladeBiase,andStefanoMarrone

34.1Introduction 419

34.2Background 420

34.2.1AnHistoricalRetrospective 420

34.2.2FoundationsofSecurityTheory 421

34.2.3AReferenceModel 421

34.3StateoftheArt 422

34.3.1SurveyMethodology 422

34.3.2ResearchTrends 425

34.4ConclusionsandFutureResearch 426 References 428

35IntegratingInnovation:TheRoleofStandardsinPromotingResponsible DevelopmentofHuman–MachineSystems 431

ZachMcKinney,MartijndeNeeling,LuigiBianchi,andRicardoChavarriaga

35.1IntroductiontoStandardsinHuman–MachineSystems 431

35.1.1WhatAreStandards? 431

35.1.2StandardsinContext:TechnologyGovernance,BestPractice,andSoftLaw 432

35.1.3TheNeedforStandardsinHMS 433

35.1.4BenefitsofStandards 433

35.1.5WhatMakesanEffectiveStandard? 434

35.2TheHMSStandardsLandscape 435

35.2.1StandardsinNeuroscienceandNeurotechnologyforBrain–MachineInterfaces 435

35.2.2IEEEP2731–UnifiedTerminologyforBCI 435

35.2.2.1TheBCIGlossary 439

35.2.2.2TheBCIFunctionalModel 439

35.2.2.3BCIDataStorage 439

35.2.3IEEEP2794–ReportingStandardfor invivo NeuralInterfaceResearch(RSNIR) 441

35.3StandardsDevelopmentProcess 443

35.3.1WhoCanParticipateinStandardsDevelopment? 443

35.3.2WhyShouldIParticipateinStandardsDevelopment? 444

35.3.3HowCanIgetInvolvedinStandardsDevelopment? 444

35.4StrategicConsiderationsandDiscussion 444

35.4.1ChallengestoDevelopmentandBarrierstoAdoptionofStandards 444

35.4.2StrategiestoPromoteStandardsDevelopmentandAdoption 445

35.4.3FinalPerspective:OnInnovation 445 Acknowledgments 446 References 446

36SituationAwarenessinHuman-MachineSystems 451 GiuseppeD’AnielloandMatteoGaeta

36.1Introduction 451

36.2Background 452

36.3State-of-the-Art 453

36.3.1SituationIdentificationTechniquesinHMS 454

36.3.2SituationEvolutioninHMS 455

36.3.3Situation-AwareHumanMachine-Systems 455

36.4DiscussionandResearchChallenges 456

36.5Conclusion 458 References 458

37Modeling,Analyzing,andFosteringtheAdoptionofNewTechnologies:The CaseofElectricVehicles 463

ValentinaBreschi,ChiaraRavazzi,SilviaStrada,FabrizioDabbene,andMaraTanelli

37.1Introduction 463

37.2Background 464

37.2.1AnAgent-basedModelforEVTransition 464

37.2.2CalibrationBasedonRealMobilityPatterns 466

37.3FosteringtheEVTransitionviaControloverNetworks 468

37.3.1RelatedWork:APerspectiveAnalysis 468

37.3.2ANewModelforEVTransitionwithIncentivePolicies 469

37.3.2.1ModelingTime-varyingThresholds 469

37.3.2.2CalibrationoftheModel 470

37.4BoostingEVAdoptionwithFeedback 470

37.4.1FormulationoftheOptimalControlProblem 470

37.4.2DerivationoftheOptimalPolicies 471

37.4.3ARecedingHorizonStrategytoBoostEVAdoption 472

37.5ExperimentalResults 473

37.6Conclusions 476

37.7FutureResearchChallenges 477

Acknowledgments 477 References 477

Index 479

EditorsBiography

GiancarloFortino(IEEEFellow’22)isfullprofessorofComputerEngineeringintheDepartment ofInformatics,Modeling,Electronics,andSystemsattheUniversityofCalabria(Unical),Italy. HehasaPhDinSystemsandComputerEngineeringfromUniversityofCalabriain2000.His researchinterestsincludewearablecomputingsystems,InternetofThings,andcybersecurity.He isnamedHighlyCitedResearcher2002–2022byClarivateinComputerScience.Hehasauthored morethan650papersininternationaljournals,conferences,andbooks.Heis(founding)series editoroftheIEEEPressBookSeriesonHuman–MachineSystemsandoftheSpringerInternet ofThingsseries,andisAssociateEditorofpremierIEEETransactions.HeiscofounderandCEO ofSenSysCalS.r.l.,aUnicalspinofffocusedoninnovativeIoTsystems,andcofounderofBigTech S.r.l.,astartupfocusedonAI-drivensystemsandBigData.Fortinoiscurrentlyamemberofthe IEEESMCSBoGandco-chairoftheSMCSTConIWCD.

DavidKaberiscurrentlytheDean’sLeadershipProfessorandChairoftheDepartmentofIndustrialandSystemsEngineeringattheUniversityofFlorida(UF).PriortojoiningUF,Kaberwasa distinguishedprofessorofindustrialengineeringatNorthCarolinaStateUniversitywherehealso servedastheDirectorofResearchfortheErgonomicsCenterofNorthCarolina.Kaber’sprimary areaofresearchinterestishuman-systemsengineeringwithafocusonhuman–automaton interaction,includingdesignandanalysisforsituationawarenessincomplexhumanin-the-loop systems.Domainsofstudyforhisresearchhaveincludedphysicalworksystems,industrialsafety systems,roboticsystems,transportationsystems,andhealthcare.KaberisafellowofIEEEand previouseditor-in-chiefofthe IEEETransactionsonHuman–MachineSystems.Heisafellowof InstituteofIndustrialEngineersandafellowoftheHumanFactorsandErgonomicsSociety.Kaber isalsoaCertifiedHumanFactorsProfessional(BCPE)andaCertifiedSafetyProfessional(BCSP).

AndreasNürnbergerisprofessorofDataandKnowledgeEngineeringattheOtto-von-Guericke UniversitätMagdeburg(OVGU),Germany.Hisresearchfocusesonadaptivityinhuman–machine systems,consideringaspectssuchasuserbehavioranalysisandintelligentuserassistance.He wasinvolvedintheorganizationofmanyconferencesandworkshopsinrelatedareasandthe developmentofnewscientificevents,amongothers,theIEEESMCSsponsoredinternational conferenceseriesonHuman–MachineSystems(IEEEICHMS).Andreaswasvisitingresearcher attheUniversityofMelbourne,Australia;postdocatUCBerkeley,UnitedStates;andvisiting professoratUniversitéPierreetMarieCurie,Paris.AndreasisanEmmyNoetherFellowofthe GermanScienceFoundation(DFG).

DavidMendonça(SeniorMember,2012)isSeniorPrincipalDecisionScientistatMITRECorporation.HepreviouslyheldtherankofprofessorintheDepartmentofIndustrialandSystems EngineeringandintheDepartmentofCognitiveScienceatRensselaerPolytechnicInstitute. HeservedasaProgramDirectorattheNationalScienceFoundationfrom2015to2017.Hewas avisitingscholarattheUniversityofLisbon(Portugal)andatDelftUniversityofTechnology (TheNetherlands).HeiscurrentlyamemberoftheBoardofGovernorsoftheIEEESystems, ManandCyberneticsSociety,andoftheIEEEBoston(Massachusetts)Section.HeholdsaPhD inDecisionSciencesandEngineeringSystemsfromRensselaerPolytechnicInstitute,anMSfrom CarnegieMellonUniversity,andaBAfromUniversityofMassachusetts/Amherst.

ValentinaBreschi

DepartmentofElectricalEngineering EindhovenUniversityofTechnology Eindhoven

Netherlands

ZoraidaCallejas UniversidaddeGranada Granada

Spain

MaximilianoCanche FacultyofMathematics UniversidadAutónomadeYucatán Mérida,Yucatán

Mexico

FilippoCantucci

TrustTheoryandTechnologyGroup InstituteofCognitiveSciencesand Technologies NationalResearchCouncilofItaly

Rome Italy

TomCarlson AspireCreate UniversityCollegeLondon Stanmore,Middlesex UK

CristianoCastelfranchi

TrustTheoryandTechnologyGroup InstituteofCognitiveSciencesand Technologies NationalResearchCouncilofItaly

Rome Italy

TomChau IIIBloorviewResearchInstitute HollandBloorviewKidsRehabilitation Hospital

Toronto Canada

RicardoChavarriaga CentreforArtificialIntelligence SchoolofEngineering ZurichUniversityofAppliedSciencesZHAW Winterthur

Switzerland and CLAIREOfficeSwitzerland,ZHAWdigital ZurichUniversityofAppliedSciences Winterthur

Zürich Switzerland

JessieY.C.Chen U.S.ArmyResearchLaboratory AberdeenProvingGround,Maryland USA

MinChen SchoolofComputerScienceandTechnology HuazhongUniversityofScienceand Technology

Wuhan China

WeiChen StateKeyLabofCAD&CG ZhejiangUniversity Hangzhou

China

GennaroCordasco DepartmentofPsychology UniversitàdellaCampania“L.Vanvitelli” Caserta

Italy

AlessandroCorrea-Victorino HeudiasycLaboratory UniversityofTechnologyofCompiègne Compiègne

France

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.