https://ebookmass.com/product/handbook-of-boreholeacoustics-and-rock-physics-for-reservoir-characterization-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Reservoir Characterization: Fundamentals and Applications. Volume 2 Fred Aminzadeh
https://ebookmass.com/product/reservoir-characterization-fundamentalsand-applications-volume-2-fred-aminzadeh/
ebookmass.com
Master Handbook of Acoustics, 7th Edition F. Alton Everest
https://ebookmass.com/product/master-handbook-of-acoustics-7thedition-f-alton-everest/
ebookmass.com
Master Handbook of Acoustics, Seventh Edition F. Alton Everest
https://ebookmass.com/product/master-handbook-of-acoustics-seventhedition-f-alton-everest/
ebookmass.com
The Philosopher’s Way: Thinking Critically About Profound Ideas (5th
https://ebookmass.com/product/the-philosophers-way-thinkingcritically-about-profound-ideas-5th/
ebookmass.com
Music of Latin America and the Caribbean – Ebook PDF Version
https://ebookmass.com/product/music-of-latin-america-and-thecaribbean-ebook-pdf-version/
ebookmass.com
Stonehenge: A Brief History 1st Edition Mike Parker Pearson
https://ebookmass.com/product/stonehenge-a-brief-history-1st-editionmike-parker-pearson/
ebookmass.com
Season Warriors & Wolves (The Auran Chronicles Book 3) Wendy Heiss
https://ebookmass.com/product/season-warriors-wolves-the-auranchronicles-book-3-wendy-heiss/
ebookmass.com
Management 14th Edition John R. Schermerhorn
https://ebookmass.com/product/management-14th-edition-john-rschermerhorn/
ebookmass.com
Valuation: Measuring and Managing the Value of Companies 7th Edition Tim Koller
https://ebookmass.com/product/valuation-measuring-and-managing-thevalue-of-companies-7th-edition-tim-koller/
ebookmass.com
Owner of a Lonely Heart Eva Carter
https://ebookmass.com/product/owner-of-a-lonely-heart-eva-carter/
ebookmass.com
HandbookofBoreholeAcousticsandRock PhysicsforReservoirCharacterization
HandbookofBoreholeAcoustics andRockPhysicsforReservoir
Characterization
VimalSaxena MichelKrief
LudmilaAdam
ListofFigures
Fig.1.1Examplesof(A)isotropicandheterogeneous,(B)isotropicandhomogeneous, (C)anisotropicandheterogeneous,and(D)isotropicandhomogeneousrock.2
Fig.1.2(A)Verticaltransverseisotropy,(B)Horizontaltransverseisotropy,and (C)Tiltedtransverseisotropy. 3
Fig.1.3Componentsofstresstensor. 4
Fig.1.4Displacementandstrainunderstress. 5
Fig.1.5Stressparallelto Y-axisonsurfacesperpendicularto(A) y-axis,(B) z-axis,and (C) x-axis. 10
Fig.2.1Criticalfrequencyinwater-saturatedporousmediaforvaryingporosityand permeabilitywithrespecttovariousacousticmeasurements. 26
Fig.2.2Generalfrequencydependenceof P-wavevelocity(Vp)andtheassociated attenuation(1/Q)withbothlowandhighfluidmobility. 27
Fig.2.3Dispersioncharacteristicsof P-waveand S-wavevelocityandtheassociated attenuation(1/Q)forvaryingporosityandpermeability. 29
Fig.2.4ComparisonofBiot’sdispersionwithGeerstma-Smitapproximationforclean sandstonesamples. 31
Fig.2.5 P-and S-waveexcitationinsolidandwavepropagationinaborehole.
Fig.2.6Snell’slawforwavetravelintheborehole.(A)Generalrefraction.(B)Critical refractionandheadwaves.
Fig.2.7Wavetraininafastformation(Vs > Vmud).
Fig.2.8Wavetraininaslowformation(Vs < Vmud).
Fig.2.9Characteristicwavetraingeneratedintheboreholethroughvariouselasticwave modesanddetectedbyreceiversinacousticlogging.
Fig.2.10Boreholeschematicforwavetraintravelintheborehole.
Fig.2.11Leakymodesforreceiversatdifferentoffsets.
Fig.2.12Pseudo-Rayleigh(pR)wavesforreceiversatdifferentoffsets.
Fig.3.1(A)Singletransmitterdualreceivermonopolesonic.(B)Effectoftoolangle. (C)Effectofvaryingboreholediameter.
Fig.3.2(A)Boreholecompensated(BHC)measurementand(B)long-spacedsonic (LSS)measurement.
Fig.3.3(Left)Arraysonictoolconfigurationandrecordedwaveformsfromdifferent receivers(right)inafastformation.
Fig.3.4(Left)Monopolewavetraininfastformationand(right)timesnapshotof acousticwaveevaluationandspreadinginformation.
Fig.3.5(Left)Monopolewavetraininslowformationand(right)timesnapshotof acousticwaveevaluationandspreadinginformation.
34
35
36
37
38
38
39
40
44
46
48
49
50
Fig.5.6Pickett’sslownessplotforvaryinglithologies.
Fig.5.7 Vp/Vs versuscompressionalslownesstrend:fromcompactedtoundercompactedshalysands.
153
154
Fig.5.8 Vp/Vs plotsforsandstoneusingBGKmodelwithvariableBiot-Kriefexponent. # MichelKrief. 155
Fig.5.9ModifiedVoigtmodelincleansandstonewiththeoreticalReussaverageand BGKmodel. # MichelKrief. 157
Fig.5.10 Vp-porosityincarbonatesandtheirdependenceondifferentdominantpore types.
Fig.5.11(A)Velocity-porosityplot;effectsofporestructureoncarbonatevelocityby (B)PoA,(C)DOMsize,and(D)roundness.
Fig.5.12Stressdependenceof Vp and Vs in(A)consolidatedGulfCoastsandand (B)unconsolidatedOttawasandstone.
158
159
161
Fig.5.13Dependenceofvelocityand Vp/Vs ratioondifferentialstress:empiricalmodel.162
Fig.5.14Dependenceof Vp/Vs ratioondifferentialstressforunconsolidatedsandstone.163
Fig.5.15 Vp and Vs fordryandwater-saturatedBedfordlimestonesampleatvariable effectivepressuresandfittingrelations.
Fig.5.16Compressionalslowness—densityplotforsandstonewithvaryingBiot-Krief exponents,withdataforunder-compactedsandstone. # MichelKrief.
Fig.5.17Compressionalslowness—densityplotforcarbonatewithvaryingBiot-Krief exponents,withcarbonatedata. # MichelKrief.
Fig.5.18 Vp and Vs versusporosityforwater-saturatedcleansandstonewithvarying aspectratios.
Fig.5.19Drycompressionalvelocitieswithdifferentaspectratiosandlabmeasurements incleansandstone.
Fig.5.20Dualporositywithmicroandmacroporesforvelocitymodeling.
Fig.6.1GenerationandpropagationofStoneleywaves.
Fig.6.2Stoneleywaveformincarbonateandshale.
Fig.6.3Stoneleywaveenergyandpermeability.
Fig.6.4Permeability,Stoneleyslowness,andStoneleyamplituderatiobetweentwo receivers.
Fig.6.5ComparisonofdifferencebetweenmeasuredStoneleyslownessandpredicted nonpermeableelasticslowness(ΔΔT),andcoremeasuredpermeabilityfor limestone.
164
166
166
167
168
169
174
175
176
176
177
Fig.6.6Stoneleyvelocityandattenuationdispersionundervaryingpermeability.179
Fig.6.7ComparisonofBiot’slow-frequencyresultswithWhite’smodelforcoresamples ofvaryingporosityandpermeability;dashedcurvesareresultsfromWhite’s model,solidcurvesareBiot’slow-frequencysolution.
181
Fig.6.8ComparisonofBiot’slow-frequencyapproximationwithBiot’sfullsolutionfor coresamplesofvaryingporosityandpermeability,dashedcurvesarefull solutions,solidcurvesareresultsfromthelow-frequencyapproximation.182
Fig.6.9ComparisonbetweenlaboratoryresultswiththeoreticalmodelingforBerea sandstone. 183
Fig.6.10Comparisonbetweenlaboratoryresultswiththeoreticalmodelingforsynthetic glassbeadsamples. 183
Fig.6.11FieldcomputationofStoneleypermeabilityindolomiticlimestone. 185
Fig.6.12MatchbetweenStoneley-derivedfieldpermeabilityandmeasuredwholecore permeability. 186
Fig.6.13MatchbetweenStoneleyandNMR-derivedpermeability. 187
Fig.6.14NormalizationofStoneleypermeabilityindexwithcoredpermeability. 188
Fig.6.15ComparisonofStoneleypermeabilityindicesfromStoneleyattenuationand slownessincarbonate(SchlumbergerOilfieldReview,January1995). 189
Fig.6.16Computationofmembraneimpedancewithmulti-frequencyanalysis. 193
Fig.6.17Effectofmud-cakeimpedanceonStoneleyslownessdifferencebetween permeableandnon-permeableformations. 194
Fig.6.18SensitivityanalysisofStoneleypermeabilitywithStoneleyslowness. 196
Fig.6.19SensitivityanalysisofStoneleypermeabilitywith(A)shearslownessand (B)formationdensity. 196
Fig.6.20Dynamicpermeabilityfor(A)10%porosityand(B)20%porosityformations.198
Fig.7.1Fluideffectonvelocityforshalysand.(A)CombineddatafromHanetal. (1986)andYin(1992)and(B)KhazanehdariandMcCann’s(2005)data.206
Fig.7.2VelocitiesfromGassmann’smodelinfluid-saturatedcleansandstones.208
Fig.7.3ComparativeinfluenceofsquirtandBiot’smechanismonacousticdispersion.212
Fig.7.4Comparisonofmeasured Ksat withestimated Ksat fromGassmann’soriginaland modifiedequations. 216
Fig.7.5(A)Porosity-shaleinlaminatedshalysandand(B)Fluidsubstitutionin laminatedshalysand. 217
Fig.7.6Water-gaseffectivefluidmodulusthroughdifferentmixinglaws(using Kw 2.4GPa, Kg 0.05GPa, Kf inlogarithmicscale)
Fig.7.7Shearweakeningatseismicfrequenciesandshearstrengtheningatultrasonic frequencies.
Fig.7.8 Vp prediction(40MPa,20%porositysand)frompatchysaturationand comparisonwithdifferentmixinglaws.
Fig.7.9 Vp prediction(20MPa,34.6%porositysand)frompatchysaturationand comparisonwithdifferentmixinglaws.
Fig.7.10Differentialcompressibilityinshalysand(with Vcl ¼ 0%,20%,40%)with differentsaturants.
Fig.7.11Correlationbetweenshearcompressibilityandestimateddryframebulk compressibility.
Fig.7.12Hydrocarbonsaturationfrommodulusdecompositioninshalysand.
Fig.7.13Shearcompressibilitydependenceonporosityincarbonate.
220
222
227
228
231
232
233
234
Fig.7.14Hydrocarbonsaturationfrommodulusdecompositionindolomiticlimestone.235
Fig.8.1Homogeneity-inhomogeneityandisotropy-anisotropy.
Fig.8.2(A) Vp and(B) Vs velocityanisotropyinshaleforselectpropagationdirectionas afunctionofpressure.
Fig.8.3 Vp and Vs velocitiesparallelandperpendiculartolayer,andRHGaveragefordry clayminerals.
Fig.8.4ImpactofbrinesaturationonThomsenanisotropyparametersin(A)Bazhenov shaleand(B)Montereyshale.
Fig.8.5Relationshipbetweenkerogenvolumeandclayvolume.
Fig.8.6(A) Vp measurementversusmodifiedBackusaveragepredictiononlow-porosity shale,(B)anisotropydependenceonkerogenvolume.
240
254
254
256
257
257
ListofFigures
Fig.10.13Temperatureeffectonultrasonic P-wavevelocitiesasaresultofsaturatingfluid transformations.(A)FontainebleausandstonesaturatedwithCO2 fordifferent porefluidpressures—symbols.LinesareGassmann-modeledvelocitiesbasedon theexperimentalCO2 conditions.(B)and(C)arethedensityandbulkmodulus, respectively,ofpureCO2 estimatedwiththeNISTonlinecalculator(2015).344
Fig.10.14ColdLakesandstonedry(opentriangles)andsaturated(closedtriangles)with heavyoil,andheavyoil-saturatedBereasandstone(stars)anditscorresponding Gassmannmodeling(solidline).
Fig.10.15Sketchofa P-wavewavefrontinahorizontallylayeredmediumwiththelayering normaltothe z-direction.
345
346
Fig.10.16Modeledelasticwaveformsforananisotropicsample(A).(B)Modeled waveformandlocationofpiezocrystals(transducers).(C)Modeledultrasonic waveformsasafunctionofoffset(zoomof(B))andtransducerwidth.347
Fig.10.17Laserultrasonictransmissionscans(bottom)andmicrophotographs(top)of twoorganicmudstones.(A)Induratedandpreservedorganicmudstonewith visiblelaminations(black arrows).(B)Organicmudstonewithmicrofractures (arrows)measuredat1MPaconfiningpressure.
Fig.10.18Ultrasonictransducerexperimental P-(A)and S-velocities(B)forthree mudstonesasafunctionofdifferentialpressure.Ongetal.(2016)measureda dryDuvernaymudstone(Canada),VernikandLiu(1997)awater-saturated Bakkenmudstone(UnitedStates),andDewhustandSiggins(2006)apreserved andpore-fluidpressure-controlledMuderongmudstone(Australia).
Fig.10.19Thomsen’selasticanisotropyparametersforthedatainFig.10.17.Solidand opensymbolsarethe ε (P-waveanisotropy)and γ (S-waveanisotropy) parameters,respectively.
Fig.10.20Shearmodulusofadry(humidified)samplecomparedtoafullybrine-saturated carbonatesamplemeasuredwiththeSFSsystem(100Hz)andultrasonic transducers(0.8MHz).Frameweakeningisobservedatlowfrequencies,while modulidispersiondominatestheultrasonicdomain.
348
349
350
351
Fig.10.21SEMimagesofthemicrostructureofabasaltsamplebefore(A)andafter(B) reactionswithcarbonicacid.Beforethereactions,thefreshbasalthasglass, plagioclase(plg),andolivineasframe-formingminerals.Afterthereactions, carbonates(carb)precipitatepluggingmicrofracturesandporespaces.352
Fig.10.22Ultrasonictransduceracquisitiongeometries:(A)transmissionsetup, (B)pulsedecho-setup,and(C)passiverecording.Piezocrystalsinside transducersactassourcesorreceivers.Arrowsrepresentwavepaths.In(C)the grayfracture(rockfracturing)isthesourceofultrasonicwaves.
354
Fig.10.23Spectralratiomethodologyonsyntheticwaveforms.(A)Waveformsonan aluminumandarocksamplewitha Qr of50.(B)Normalizedamplitudespectra ofthewaveformsin(A).(C)Naturallogarithmoftheratioofthespectrain(B), with Qr ¼ 53fromthislinearfit.357
Fig.10.24Pulse-echosetupwithonetransducershowingthereflectioninterphasesfortwo events(A).Exampleofarecorded S-wavepulse-echotrainpropagatingina sedimentarycoresample(B).359
Fig.11.12AdvancedcementevaluationbycombiningTIEwithflexuralattenuation.400
Fig.11.13Characteristicsyntheticseismogramofan(A)openholeand(B)casedhole.401
Fig.11.14Syntheticwaveformof(A)bondedcasingand(B)un-bondedcasing.
Fig.11.15Casedholedipolebefore(left)andafter(right)toolcentralization,lowfrequencyfiring,andoptimizedT-Rspacing.
Fig.11.16Casedholehydrocarbonevaluationinshaly-sandpotentialreservoir.
402
405
407
Fig.11.17Bypasshydrocarbonevaluationthroughcasedholesonicinshalysand.408
Fig.12.1HSandVoigt-Reussboundsinaquartz-calcite-claycomposite:(A)matrixbulk modulus,(B)matrixshearmodulus,(C)HSandVRHaveragesformatrix modulusinaquartz-claycomposite.
Fig.12.2Brie’sfluidmodulusforawater-gasmixturewithvariable e.
Fig.12.3WatersaturatedvelocitypredictionfromHan,Eberhart-Han-Zoback(EHZ), Castagna-Batzle-Eastwood(CBE)relationships,(A)VP prediction(B)VS prediction.
413
414
416
Fig.12.4Water-saturated Vp-Vs profilefromCastagnaandHan’srelations. 417
Fig.12.5Drybulkandshearmodulifromvariousmodels.
418
Fig.12.6Shearvelocityfrom Vp incarbonatefromGreenberg-Castagna’srelation.420
Fig.12.7FlowchartfordryframeeffectivemediummodulifromWu’sself-consistent theory.
Fig.12.8FlowchartforeffectivemediummodulifromDEMtheory.
Fig.12.9FlowchartforGassmann’sfluidsubstitutionusinglogdata.
421
423
426
Fig.12.10FlowchartforvelocitypredictionandfluidsubstitutionfromXu-Whitemodel.428
Fig.B.1Hydrocarbongaspropertiesasafunctionoftemperature,pressure,and compositionforlightgas(G ¼ 0.6)andheavygas(G ¼ 1.2):(A)gasdensityand (B)gasbulkmodulus.