Handbook of biofuels production: processes and technologies rafael luque - Quickly access the ebook

Page 1


https://ebookmass.com/product/handbook-of-biofuels-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Production Processes of Renewable Aviation Fuel: Present Technologies and Future Trends Claudia Gutiérrez-Antonio

https://ebookmass.com/product/production-processes-of-renewableaviation-fuel-present-technologies-and-future-trends-claudiagutierrez-antonio/ ebookmass.com

Biofuel Extraction Techniques: Biofuels, Solar, and Other Technologies Lalit Prasad

https://ebookmass.com/product/biofuel-extraction-techniques-biofuelssolar-and-other-technologies-lalit-prasad/

ebookmass.com

Biofuels and Biorefining: Volume 2: Intensification Processes and Biorefineries Claudia Gutierrez-Antonio

https://ebookmass.com/product/biofuels-and-biorefiningvolume-2-intensification-processes-and-biorefineries-claudiagutierrez-antonio/ ebookmass.com

Cora Diamond on Ethics 1st Edition Maria Balaska

https://ebookmass.com/product/cora-diamond-on-ethics-1st-editionmaria-balaska/

ebookmass.com

The Immigrant Superpower: How Brains, Brawn, and Bravery Make America Stronger Tim Kane

https://ebookmass.com/product/the-immigrant-superpower-how-brainsbrawn-and-bravery-make-america-stronger-tim-kane/

ebookmass.com

The Girl in the Headlines Hannah Jayne

https://ebookmass.com/product/the-girl-in-the-headlines-hannahjayne-3/

ebookmass.com

Blue Sky Cowboy Christmas Joanne Kennedy

https://ebookmass.com/product/blue-sky-cowboy-christmas-joannekennedy/

ebookmass.com

A Promise: A Sweeping Story of Friendship in WWII Amelia Martin

https://ebookmass.com/product/a-promise-a-sweeping-story-offriendship-in-wwii-amelia-martin/

ebookmass.com

Music and Movement: A Way of Life for the Young Child 7th Edition – Ebook PDF Version

https://ebookmass.com/product/music-and-movement-a-way-of-life-forthe-young-child-7th-edition-ebook-pdf-version/

ebookmass.com

How to be a Web Developer: A Complete Beginner's Guide on What to Know and Where to Start 1st Edition Radu Nicoara

https://ebookmass.com/product/how-to-be-a-web-developer-a-completebeginners-guide-on-what-to-know-and-where-to-start-1st-edition-radunicoara-2/

ebookmass.com

HANDBOOKOF BIOFUELS PRODUCTION

HANDBOOKOF BIOFUELS PRODUCTION

Processesand Technologies

THIRDEDITION

Editedby

RAFAELLUQUE

DepartmentofOrganicChemistry,UniversityofCórdoba, Córdoba,Spain

CAROLSZEKILIN

SchoolofEnergyandEnvironment,CityUniversityof HongKong,HongKong

KARENWILSON

CentreforAdvancedMaterials andIndustrialChemistry, SchoolofScience,RMITUniversity,Melbourne,VIC,Australia

CHENYUDU

DepartmentofChemicalSciences,SchoolofApplied Sciences,UniversityofHuddersfield,Huddersfield, UnitedKingdom

WoodheadPublishingisanimprintofElsevier

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright©2023ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-91193-1(print)

ISBN:978-0-323-91521-2(online)

ForinformationonallWoodheadpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CharlotteCockle

AcquisitionsEditor: PeterAdamson

EditorialProjectManager: TimEslava

ProductionProjectManager: MariaBernard

CoverDesigner: MarkRogers

TypesetbySTRAIVE,India

Contributors

LauraAguado-Deblas

DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain

MohamedHMAhmed

AustralianInstituteforBioengineeringandNanotechnology(AIBN),TheUniversityof Queensland,Brisbane,QLD,Australia

WouterArts

CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium

LuqmanAtanda

ScienceandEngineeringFaculty,CentreforAgricultureandtheBioeconomy,Queensland UniversityofTechnology,Brisbane,QLD,Australia

NajihahAbdulBar

DepartmentofChemicalSciences,FacultyofScienceandTechnology,Universiti KebangsaanMalaysia,Bangi,Selangor,Malaysia

NunoBatalha

SchoolofChemicalEngineering,TheUniversityofQueensland,Brisbane,QLD,Australia

FelipaM.Bautista

DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain

CarolinaBotella

ShellEspan ˜ aS.A,Madrid,Spain

JuanCalero

DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain

EliasChristoforou

SchoolofEngineeringandAppliedSciences,FrederickUniversity,Nicosia,Cyprus

LorisCottoni

Unitelma-Sapienza,Universita ` degliStudidiRoma,Roma,Italy

DarfizziDerawi

DepartmentofChemicalSciences,FacultyofScienceandTechnology,Universiti KebangsaanMalaysia,Bangi,Selangor,Malaysia

AnaBelenDı ´ az UniversityofCa ´ diz,Ca ´ diz,Spain

WeiliangDong

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina

ChenyuDu

DepartmentofChemicalSciences,SchoolofAppliedSciences,UniversityofHuddersfield, Huddersfield,UnitedKingdom

RafaelEstevez

DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain

ParisA.Fokaides

SchoolofEngineeringandAppliedSciences,FrederickUniversity,Nicosia,Cyprus

IsabelLo ´ pez-Garcı ´ a PhysicalChemistryandappliedThermodynamics,UniversityofCordoba,Cordoba,Spain

GuillermoGarcia-Garcia

DepartmentofChemicalandBiologicalEngineering,TheUniversityofSheffield,Sheffield, UnitedKingdom

KleioGioulounta

DepartmentofEnvironmentalEngineering,DemocritusUniversityofThrace,Xanthi, Greece

FabioGiudice

Unitelma-Sapienza,Universita ` degliStudidiRoma,Roma,Italy

ElliHeracleous

ChemicalProcess&EnergyResourcesInstitute,CentreforResearchandTechnology Hellas;SchoolofScience&Technology,InternationalHellenicUniversity,Thessaloniki, Greece

ErnestoHernandez

CanterburyChristChurchUniversity,Canterbury,UnitedKingdom

Jesu ´ sHidalgo-Carrillo

DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain

YunziHu

Bio-chemicalConversionLab,CenterforBiomassEnergyResearch,GuangzhouInstituteof EnergyConversion,CAS,Guangzhou,China

HessamJahangiri

DepartmentofEngineeringandMathematics,SheffieldHallamUniversity;Schoolof ChemicalEngineering,UniversityofBirmingham,Birmingham,UnitedKingdom

AnasJamil

AustralianInstituteforBioengineeringandNanotechnology(AIBN),TheUniversityof Queensland,Brisbane,QLD,Australia

MinJiang

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina

YujiaJiang

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina

MuxinaKonarova

SchoolofChemicalEngineering,TheUniversityofQueensland,Brisbane,QLD,Australia

AngelosA.Lappas

ChemicalProcess&EnergyResourcesInstitute,CentreforResearchandTechnology Hellas,Thessaloniki,Greece

HannesLatine

CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium

ChongLi

KunpengInstituteofModernAgricultureatFoshan,ChineseAcademyofAgricultural Sciences,Foshan;ShenzhenBranch,GuangdongLaboratoryforLingnanModern Agriculture,ShenzhenKeyLaboratoryofAgriculturalSyntheticBiology,Genome AnalysisLaboratoryoftheMinistryofAgricultureandRuralAffairs,AgriculturalGenomics InstituteatShenzhen,ChineseAcademyofAgriculturalSciences,Shenzhen,China

Hong-YeLi

JinanUniversity,Guangzhou,People’sRepublicofChina

YiLiang

ShellGlobalSolutionsUSInc,Houston,TX,UnitedStates

CarolSzeKiLin

SchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong, People’sRepublicofChina

ClaraLo ´ pez-Aguado UniversidadReyJuanCarlos,Madrid,Spain

JiashengLu

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina

CarlosLuna

DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain

DiegoLuna

DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain

RafaelLuque

DepartmentofOrganicChemistry,UniversityofCordoba,Co ´ rdoba,Spain

JuanAntonioMelero

UniversidadReyJuanCarlos,Madrid,Spain

GabrielMorales

UniversidadReyJuanCarlos,Madrid,Spain

PiergiuseppeMorone

Unitelma-Sapienza,Universita ` degliStudidiRoma,Roma,Italy

JinhuaMou

SchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong, People’sRepublicofChina

ThomasNicolaı ¨

CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium

MiloudOuadi

SchoolofChemicalEngineering,UniversityofBirmingham,Birmingham,UnitedKingdom

BrunoPandalone

CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium

MartaPaniagua

UniversidadReyJuanCarlos,Madrid,Spain

AnshuPriya

SchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong, People’sRepublicofChina

XiujuanQian

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina

DeepakRaikwar

CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium

NoorAziraAbdulRazak

DepartmentofChemicalSciences,FacultyofScienceandTechnology,Universiti KebangsaanMalaysia,Bangi,Selangor,Malaysia

AntonioA.Romero

DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain

BertSels

CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium

SivakumarS.V.

ShellIndiaMarketsPvt.Ltd,Bengaluru,India

JamesG.Speight

CD&WInc.,Laramie,WY,UnitedStates

KaterinaStamatelatou

DepartmentofEnvironmentalEngineering,DemocritusUniversityofThrace,Xanthi, Greece

NazrizawatiA.Tajuddin

SchoolofChemistryandEnvironment,FacultyofAppliedSciences,UniversitiTeknologi MARA,ShahAlam,Selangor,Malaysia

IoannaA.Vasiliadou

DepartmentofEnvironmentalEngineering,DemocritusUniversityofThrace,Xanthi, Greece

BoWang

ShenzhenBranch,GuangdongLaboratoryforLingnanModernAgriculture,ShenzhenKey LaboratoryofAgriculturalSyntheticBiology,GenomeAnalysisLaboratoryoftheMinistryof AgricultureandRuralAffairs,AgriculturalGenomicsInstituteatShenzhen,Chinese AcademyofAgriculturalSciences,Shenzhen,China

XiangWang

JinanUniversity,Guangzhou,People’sRepublicofChina

Zhen-YaoWang UniversityofTechnologySydney,Ultimo,NSW,Australia

KarenWilson

CentreforAdvancedMaterialsandIndustrialChemistry,SchoolofScience,RMIT University,Melbourne,VIC,Australia

FengxueXin

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering;JiangsuNationalSynergeticInnovation CenterforAdvancedMaterials(SICAM),NanjingTechUniversity,Nanjing,People’s RepublicofChina

TangXu

ShenzhenBranch,GuangdongLaboratoryforLingnanModernAgriculture,ShenzhenKey LaboratoryofAgriculturalSyntheticBiology,GenomeAnalysisLaboratoryoftheMinistryof AgricultureandRuralAffairs,AgriculturalGenomicsInstituteatShenzhen,Chinese AcademyofAgriculturalSciences,Shenzhen;SchoolofLifeSciences,HenanUniversity, Kaifeng,China

WeiYan

SchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong, People’sRepublicofChina

WenmingZhang

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering;JiangsuNationalSynergeticInnovation CenterforAdvancedMaterials(SICAM),NanjingTechUniversity,Nanjing,People’s RepublicofChina

DaweiZhou

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina

JieZhou

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina

XinhaiZhou

StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina

XiaoyanZou

DepartmentofChemicalSciences,SchoolofAppliedSciences,UniversityofHuddersfield, Huddersfield,UnitedKingdom;KeyLaboratoryofFunctionalInorganicMaterial Chemistry,HeilongjiangUniversity,Harbin,Heilongjiang,China

Preface

Theincreasingawarenessandconcernsaboutourdependencyonfossil resourcesandthedepletionofcrudeoilreservescausedbyindustrialization andexpansionoftransportationinemergingmarkets,togetherwithpolitical instabilityincountrieswithoilreserves,haveledtovolatilityinfuelprices andenergysupply.Inaddition,theappealforthereductionofgreenhouse gas(GHG)emissionshasbeenthehottesttopicinrecentUnitedNations climatechangeconferences.Inrecentdecades,themajorityofGHGemissionsarecontributedbyfossilfuelcombustionandindustrialprocesses. Therefore,thereisanurgentneedforthedevelopmentofalow-carboneconomicsystemtoreplacethefossil-fuel-basedsystem.Thesefactorshave becomethedrivingforcesforexploringnewalternativestoreplacefossil oil.Biomassisafeedstockthatcanfulfillrequirementsforfossiloilsubstitution,asitisarenewableresourcewhosesustainablesupplycanbeensured. Besides,biomasshasabundantlyavailablestoredsolarenergy,soitcouldact asa“naturalbattery”thatfacilitatesenergysupplysecurity.

Basedonthesuccessofthefirstandsecondeditions,thisneweditionof the HandbookofBiofuelsProduction:ProcessesandTechnologies aimstoprovide anoverviewofthelatestprogressesinvarioustechnologiesforbiofuelproduction.Specialemphasishasbeengiventoadvanced-generationbiofuels, whichincludebiofuelsproducedfromnonfoodmaterials.Thesignificant progressinthebioenergyindustryhasencouragedfurtherexplorationof low-carbontechnologiesfortheproductionofadvanced-generationbiofuels(andbiochemicals)fromlow-valuewastebiomass.Collectiveefforts fromvariousfieldsencompassingbioenergytechnologiesandpeopleincludingpoliticians,economists,environmentalists,scientists,andengineersare neededtocomeupwithalternatives,policies,andchoicestoadvancethe keytechnologiesforamoresustainablefuture.

Thisneweditionofthehandbookisdividedintofourparts.PartOne comprising Chapters1–4 coversthemajorissuesandassessmentofbiofuels production.Basicdetailsonbiofuels,includingtheirclassification,potential feedstocks,productionprocesses,policiesregardingtheirproductionand use,andsocioeconomicandenvironmentalconsiderationsandchallenges, arepresentedinthispart.PartTwocomprising Chapters5–11 highlights thelatesttechnologicaladvancementsinbiofuelsproduction.Thispartdiscussesstrategiestoproducebiofuels,suchaschemicalandbiochemical

conversionprocessesandtechnologies.PartsThreeandFourcomprising Chapters12–16 providedetailsonthermalandthermochemicalconversion processes,integratedproductionapproaches,andapplicationsofbiofuels.

Aseditorsofthisnewedition,wesincerelyhopeitcanserveasareferencetextmainlydesignedforcoursesatthepostgraduatelevel.Thebook willbealsousefultoprovidepracticalinformationtoearly-career researchers,practitionersinthefieldofbioenergy,andconsultantstoenergy agenciesthatstudythefeasibilityofbiomassprojectsandplanbiofuels productioninarationalway.

Wetakethisopportunitytoacknowledgeandthankallcontributorsfor theirexcellentcollaborationandtimelycontributionsthathavehelpedto puttogetherthisbookcoveringahighlycomprehensiverangeoftopics. Thecoeditorswouldliketoexpresstheirsincereappreciationandgratitude totheeditorialprojectmanagersatElsevier,namelyTimEslava,Madeline Jones,MicaOrtega,whopatientlyandkindlytookusthroughthedevelopmentofthisbookoverthepast3yearstoachievethisimpressivefinalresult, whichwouldnothavebeenpossiblewithouttheirsupport.Inaddition,we wouldliketoextendourgratitudetoMohanrajRajendran,copyrights coordinatorfromtheCopyrightsTeam,whoensuredasmooth permission-seekingprocess.

Lastbutnotleast,wesincerelythankHelenaChin(11-year-oldnieceof CarolLin)forhergreateffortinpreparationofthefrontcoverpicture.The picturesymbolizesbiomassasnature’swayofstoringenergyoriginating fromthesun,whichallowsustousethisenergywhenthesunisnotshining. Withverybestwishesforasuccessfulandenjoyablereading.

CHAPTER1

Introduction:Anoverview ofbiofuelsandproduction technologies

AnshuPriyaa,#,YunziHub,#,JinhuaMoua,ChenyuDuc,KarenWilsond, RafaelLuquee,andCarolSzeKiLina

aSchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong,People’s RepublicofChina

bBio-chemicalConversionLab,CenterforBiomassEnergyResearch,GuangzhouInstituteofEnergy Conversion,CAS,Guangzhou,China

cDepartmentofChemicalSciences,SchoolofAppliedSciences,UniversityofHuddersfield,Huddersfield, UnitedKingdom

dCentreforAdvancedMaterialsandIndustrialChemistry,SchoolofScience,RMITUniversity,Melbourne, VIC,Australia

eDepartmentofOrganicChemistry,UniversityofCordoba,Co ´ rdoba,Spain

1.1Introduction

Unprecedentedgrowthintheglobalpopulation,coupledwithaccelerated urbanization,hasledtoanincreaseinthedemandforallformsofenergyand anincreaseinenvironmentalpollution.Anextensiveanalysisofthedemand andsupplyofenergysourcesrevealedthatfossilfuelsfulfilled84%ofthe world’sprimaryenergydemandin2019.Majorsourcesofthissupply includedoil(33.1%),coal(27%),naturalgas(24.2%),hydroelectricity (6.4%),renewableenergy(5%),andnuclearenergy(4.3%)(Fig.1.1).The carbonemissionsfromenergyproductionhaveincreasedby0.5%forevery 1%gaininglobaleconomicoutputsince2010(StatisticalReviewofWorld Energy,2020).Theglobalenergydemandispredictedtorisebymorethan 50%by2025,whiletheconsumptionisestimatedtoincreasebyover90% (WorldBioenergyAssociation,2020).Thediminishingglobalfuelreserves, risingfuelprices,andtheenvironmentalimpactoffossilfuelshavespurred theexplorationforsustainable,affordable,renewable,andenvironmentfriendlyenergysources.Inthiscontext,thedevelopmentandutilization ofbiofuelsasalternativeenergysourceshavegainedmuchimportance.

Biofuelsareliquidorgaseousfuelsderivedpredominantlyfromavarietyof biologicalsourcesbyphysical,chemical,biological,orcombinatorialmethods.

# Firstauthorswithequalcontribution.

Fig.1.2 showsthegeneralizedlifecycleofbiofuels.Theirproductionandconsumptionaregainingimportancebecauseoftheircapabilitytoreplacefossil fuelsandmeetglobalenergyrequirements,whilelesseningthecontribution offuelstowardglobalwarming.Inadditiontosustainability,mitigationofenvironmentalpollution,andreductioningreenhousegas(GHG)emission,biofuelsarepreferabletofossilfuelsduetoseveralotheradvantages,suchas theirrenewablenature,securityofsupplyinthefuture,andcost-effectiveness; theseadvantagesareespeciallynotableinthecontextofcontinuallyrising petroleumpricesandgeopoliticalinstabilitiesinmajorfossil-fuel-producing regionsoftheworld.

Biomasscanbeconvertedtoavarietyofbiofuels,includingliquidfuels, suchasbiodiesel,biomethanol,bioethanol,andgaseousfuels,suchasmethaneandhydrogen.Themajordifferencebetweenbiomass-generatedand petroleum-basedfuelsistheoxygencontent.Incontrasttopetroleum-based fuels,biofuelshaveoxygenlevelsof10%–45%,whilepetroleumhasessentiallynone,whichmakesthechemicalpropertiesofbiofuelsdifferentfrom petroleum-basedfuels(Demirbas,2009).Dependingonthechemicalnature andcomplexityofbiomass,biofuelsareclassifiedintodifferentgenerations, namelyfirst,second,andthirdgenerationofbiofuels.

Thefirst-generationbiofuelsareproducedfromfood-basedfeedstock; thisprimarilyincludestheuseofcropplants,suchascorn,sugarcane,wheat, andoilseeds(canola,soybean,palm,etc.),toproducebiodieselandbioethanol.Theproductionofsecond-generationbiofuelsutilizesnonediblelignocellulosicmaterialsassubstratesforenergyproduction.Thesubstrateschiefly

Hydroelectricity
Fig.1.1 Distributionofglobalenergysources.

Fig.1.2 Thetypicallifecycleofbiofuel.

includeagriculturalby-products,suchassugarcanebagasseandcellulosic cropwaste,andnoncropplants,suchasperennialgrass, Jatropha and Pongamia,toproducebioethanolandbiodiesel.InSouth-EastAsia,ediblepalmoil hasdrawnmuchattentionforbiodieselproduction,whilethepotentialof nonedibleoilseedsof Jatropha isalsobeingexploredforbiodieselproduction. Bothfirstandsecond-generationbiofuelsrequireanabundanceoflandand otheragriculturalresourcesforcultivation.Thiscreatesacompetition betweenfoodandbiofuelproduction,especiallyregardinglanduse.Inparticular,first-generationbiofuelshaveadirectimpactonfoodpriceasthey utilizefoodcropsforfuelgeneration(Gurjaretal.,2021).Suchissuesof food-versus-biofuelproduction,useofland,andagriculturalresourceswere addressedbythedevelopmentofthird-generationbiofuels.Inthisgeneration,marinemacroalgae,seaweed,algalbiomass,andcyanobacteriaemerged asattractivefeedstocksthatcouldbeusedtoproducebioethanol,biogas,and biodiesel.Duetotheirrapidgrowthrate;highlipidcontent;noland requirement;easycultivationundercontrolled,artificial,andnutrient-rich environments,suchasopenpondsorclosedphotobioreactors;easyharvesting;andlipidextractability,algalandmarinefeedstockshaveemergedasa feasibleandsustainablesubstitutethatmayprovidebetterfuelsecurityand meetcurrentandfuturefueldemands(Chhandamaetal.,2021).

Transportation,construction,industry,andagriculturearethesectors thathavethehighestdemandforfuels.Transportationaccountsforthebiggestshare,70%,ofallfuelconsumedglobally,whichiscurrentlymainly obtainedfromfossilfuels.Despiteenvironmental,social,andeconomic challenges,theglobaldemandforfuelbythetransportationsectorhasmultipliedoverthelastfewdecadesandisexpectedtogrowfurtherinthefuture (KuoandChen,2009).Fossilfuelsmustbereplacedwithcleanerandmore sustainablebiofuelstotackletherisingdemandforenergyandassociated challenges.Takingthisintoaccount,theRenewableEnergyDirectiveof theEuropeanUnionaimstoincreaserenewableenergygenerationby 27%by2030(Osaki,2019).Similarly,theUnitedStateshassetagoalto increasetheannualproductionofbioethanolfrom56.8billionlitersto 60.6billionlitersby2022throughtheEnergyIndependenceandSecurity Actof2007(Pittocketal.,2015).

Thebiofuelsectorhasexperiencedsignificantimprovementwiththe adventofmoderntechnologies.Thepotentialapplicationofbiofuelshas expandedbeyondtheirconventionaluseinthetransportationsector;biofuelsarenowusedforgenerationofelectricityandheat,forcooking,and asfuelintheaviationindustry.Extensiveresearchisbeingconductedin

thebioenergysectorworldwidetoincreasetheefficiencyofbiomassutilizationandbiofuelproduction.Differentformsofbiofuelsrangingfrombiodieseltobio-jetfuelandbiogashaveemergedasfeasibleenergyoptions.

Biodieselisbiodegradableandthereforenonexplosive.Moreover,ithas ahighcombustionefficiency,cetanenumber,andflashpoint,withalow sulfurandaromaticcontent,duetowhichitisextensivelyusedasatransportationfuel,eitherinitspureformorincombinationwithgasoline.In additiontobiodiesel,bio-aviationfuelisanothertypeofbiofuel.Also knownasgreendieselorbio-jetfuel,bio-aviationfuelisabiomass-derived syntheticparaffinickerosene.Itiswidelyusedincombinationwith petroleum-derivedjetfuelasasustainableandcleansolutiontomitigate environmentalpollutionbytheaeronauticalindustry.Bothbiodieseland bio-aviationfuelarepotentialalternativestoconventionalfuelsinthetransportationsectortopowervehicles,motorizedengines,andaircraft (Kathrotiaetal.,2021).Bioalcohols,suchasbioethanol,biomethanol, andbiobutanol,andbiogas,suchasbiomethaneandbiohydrogen,produced throughbiochemicalprocessing,arealsopromisinggreenandcleanbiofuel substitutesforfossilfuels.

Theenvironmentalandsocioeconomicadvantagesofbiofuelsforthe mitigationofenvironmentalpollutionandreductionofcarbonfootprints havemotivatednationstodecreasetheirdependencyonfossilfuelsand increasebiofuelconsumption.Thehighestconsumptionofbiodieselin 2019wasreportedtooccurintheUnitedStates,followedbyBrazil.In 2019, 43millionbarrelsofbiodieselwereconsumedintheUnitedStates (U.S.EnergyInformationAdministration(EIA),2020).

TheUnitedStatesandBrazilalsorankamongthelargestbiodieselproducingnationsandaccountedforapproximately6.5and5.9billionliters ofbiodieselproduced,respectively,in2019(Ebadianetal.,2020).During 2000–19,theglobalproductionofbiofuelincreasedfrom187thousandbarrelsto1841thousandbarrels,broadeningtheoverallmarketsizetoUS$136 billion(Statista,2020).Itisestimatedthatthebiofuelmarketsizewill continuetogrowandreachUS$153.8billionby2024(Statista,2020). Theincreaseinbiofuelproductiongloballyisdrivenbyavarietyof factorsincludingtechnologyreadiness,biofuel-friendlypolicies,andmarket demand.Theestablishmentofacompetitivemarketforbiofuelswillbe facilitatedbyfinancialincentives,subsidies,andsupportivepolicies.Biomass productionforgenerationofbiofuelsalsosupportstheagriculturalsectorby creatingemploymentopportunities,labor,andcommercialprospectsfor domesticharvest.Thepotentialforlandrestorationbythecultivationof

biomassandgenerationofincomebyproductionandexportofbiofuelsto industrializednationsareattractiveoutcomesthatmaypavethepathforfurtherprogress.Inviewofsuchenvironmentalandsocioeconomicadvantages,thereisaneedforsufficientinvestmentandgovernmentand legislativesupporttocreateaneconomicallycompetitiveglobalmarket forbiofuels.

Theaimofthisbookistoprovideadeeperinsightintothevitaldriversof biofuelproduction,technologicaladvancements,policies,regulatoryissues, environmentalandsocioeconomicconsiderations,lifecycleassessment (LCA),applicationsofbiofuelproduction,andassociatedchallenges.The bookisdividedintofourmajorparts.PartOnecoversthemajorissues andassessmentofbiofuelproduction.Basicdetailsonbiofuels,including theirclassification,potentialfeedstocks,productionprocesses,policies regardingtheirproductionanduse,andsocioeconomicandenvironmental considerationsandchallenges,arepresentedinthispart.PartTwoofthe bookchapterhighlightsthelatesttechnologicaladvancementsinbiofuel production.Thispartdiscussesstrategiestoproducebiofuels,suchaschemicalandbiochemicalconversionprocessesandtechnologies.PartsThreeand Fourofthebookprovidedetailsonthermalandthermochemicalconversion processes,integratedproductionapproaches,andapplicationsofbiofuels.

1.2Biofuelproductionprocessesandtechnologies

1.2.1Biofuelproductionfromvariousfeedstocks

Biofuelscanbeproducedfromdiversefeedstocksforvariousapplications withtheoverarchingaimofmeetingglobalenergydemandwhileminimizingenvironmentalimpacts.Differentgenerationsofbiofuelsareclassified accordingtotherawmaterialsusedtopreparethem.Eachgenerationofbiofuelshasdifferentbenefitsanddrawbacks.

First-generationbiofuelsutilizerawmaterialsfromthehumanfood chain,includingcorn,sugarcane,andoilseeds,suchassoybeanandpeanut. InEurope,biodieselaccountsformorethan80%ofthetotalbiofuelproduction,whichismainlyderivedfromrapeseedoil(EuropeanBiomass Association,2014).Ascomparedwithotherfeedstocks,themostprominent advantageoffirst-generationbiofuelsisthehighconversionefficiency;these biofuelshavehighenergyyield,andthus,areeconomicallyprofitable.Fatty acids,sugars,andstarchcomponentsincropscanbeconvertedtobiodiesel andbioethanolthroughbasicbiochemicalprocesses.However,firstgenerationbiofuelsfaceseverecriticismintermsoflanduseandfood

shortage;theyarealsoconsideredtobealeadingfactorforincreasedfood pricesanddeforestationintheAmazonandinIndonesia(Achinas etal.,2019).

Second-generationbiofuelsaregeneratedfromnonfoodbiomassresidues, suchasagriculturalwastesandwoodymaterials.LCAstudieshaverevealedthat lignocellulosicbioethanolproductionisenergeticallysustainableandcontributesmoretoreductioninGHGemissionsthandofirst-generationbiofuels (Angilietal.,2021; Moralesetal.,2015).However,therecalcitrantstructure oflignocelluloseresistsenzymaticdigestion,thereforeleadingtorelativelylow biofuelyields(Table1.1).Otherchallenges,includinganunstablesupplyof rawmaterialsandtheuseofterrestrialwaterintheproductionprocess,also representgreatconcerns.Conversiontechnologiesforsecond-generationbiofuelsarestillunderdevelopmenttoimprovetheiroverallefficiency(Siqueira etal.,2020).Inthepastfewyears,theproductioncostoflignocellulosicwaste hasbeenreducedsignificantlyfrom157.3–171.2 €/Lin2015to81.5–95.4 €/L in2020(Achinasetal.,2019).

Biofuelproducedfrommicroalgaeiscalledthird-generationbiofueland hasbeenhighlightedasapromisingalternativetorenewablesourcesdueto itspositiveenvironmentalandeconomicimpacts.Unlikecrop-basedfeedstocks,microalgaecultivationdoesnotrelyoncroplandorlargequantities offreshwater(Nieetal.,2020). Chlorella isatypicalbiofuel-producingmicroalgawithalipid-richnature(35%–50%lipids)(Shahetal.,2018).Proteinsand carbohydratesfromalgaecanbeconvertedtobio-oilsandsyngasbypyrolysis orgasification(Antoetal.,2020).Somealgaecanproducebiohydrogenand

Table1.1 Yieldsfromfirst-andsecond-generationbiofuelproductionmethods(inliters perunitoffeedstockamountandcropland)(FAO,2017; MillingerandThran,2018; Strengersetal.,2016).

Generationof

FirstgenerationBioethanolSugarplant0.25–0.55570–6840

BioethanolCorn0.4–0.463030

BioethanolWheat0.42000

BiodieselSoybean – 530

BiodieselRapeseed – 1570

SecondgenerationBioethanolBarley straw 0.054 –

BioethanolPalm wood 0.03 –

biogasviaanaerobicfermentation.Incomparisonwithconventionalfeedstocks,biomassfromalgaehasseveraladvantages(Vijetal.,2021):

•Fastergrowthandhigherphotoconversioncapacity;

•Batchorcontinuouscultivationthroughouttheyear,makingalgaea constantlyavailablesourceofenergy;

•Grownonnonagriculturallandsusingsalinewaterorwastewater;

•GHGreductionastheprocesscanbecoupledwithcarbondioxide fixation.

However,lowconversionefficienciesbasedoncurrentsystemsofproduction limitbiofuelproductionfromalgaeatanindustriallevel.Technologicalbarriersintheselectionofsuitablealgalspecies,cultivationprocedures,reactor designs,anddownstreamextractionshaveyettobeovercometomake algae-basedbiofuelseconomicallyfeasible(Vijetal.,2021).Anemergingtype ofbiofuelcategorizedasfourth-generationbiofuelusesgeneticallymodified algaeforbiofuelproduction;thistypeoffeedstockisreportedtohavehigher CO2 capturecapacityandbiofuelproductivity(Zhuetal.,2017).Forexample, modified Phaeodactylumtricornutum sp.presenteda35%increaseinlipidcontent andapproximately1.1-foldincreaseintriglyceridecontent(Yangetal.,2016).

Moreover,someadvancedstudieshaveproposedtheincreaseduseof wastematerialstoproducebiofuels. Nwankworetal.(2021) investigated anapproachtosynthesizegasoline-rangefuelsfromwasteplasticthrough thermalcatalyticcrackingreactions,resultinginthehighestliquidyieldof 89.3%fromusedpolystyrene(Nwankworetal.,2021).Factoryemission suchascarbondioxidecanberecycledintogasolinebyFischer-Tropsch reactionstoreachproductivitiesashighas3337barrelsperday (DamanabiandBahadori,2017).

Ithasbeenestimatedthatbiofuelproductionshouldbeincreasedfrom 9.7 106 to4.6 107 GJ/daybetween2016and2040toeffectivelylimit globalwarming(Correaetal.,2019).First-generationfeedstockiscurrently themainsourceofbiofuels;inviewoftheissuesofglobalhungeranddeforestation,itisvitaltodevelopitssubstitutes.Therefore,lignocellulosicwastes andmicroalgaeareconsideredtobethebestoptionscurrentlyavailableto achievesustainabilitygoals(MatAronetal.,2020).

1.2.2Physical,chemical,andbiochemicalprocesses

andtechnologies

Theproductionprocessofbiofuelsfromfeedstocksspecifictothefour generationsofbiofuelsisillustratedin Fig.1.3.Althoughthefirsttofourth generationsusedifferentrawmaterials,theirconversionprocessesarebased onsimilarprinciples.

Fig.1.3 Anoverviewofbiofuelproductionpathwaysusingdifferentfeedstocks.

Pretreatmentmethodsvarywiththestructuralpropertiesofthefeedstock; theaimistoreduceparticlesizeandpartiallyremoverecalcitrantcomponents, whichsubsequentlyaidsinconversionproceduresthataremainlydependent onchemicalcompositions.Oilandlipidsareconvertedtobiodieselthrough transesterification.Sugar,starch,andproteinsareusedtoproducebiofueland biogasthroughfermentationandgasification,respectively.

BiodieselcomprisesC14-C20 fattyacidmethylesters(FAMEs)thatare synthesizedbytransesterificationoffattyacidsand/orglycerylestersinoilseeds,vegetableoils,animalfats,andwastecookingoils.Transesterification reactionsareacceleratedbycatalysts,includingstrongsulfuricacid,strong alkalis,solidacids/alkalis,andsuitableenzymes(lipases).Currentindustrial productionmethodsmainlyusealkalinecatalysisduetotheirhighconversionefficiency;however,thealkalinewastewaterproducedfromthis methodcausesenvironmentalpollution(Ambatetal.,2018).Incomparison, methodsthatuseenzymaticcatalysisconsumesmallamountsofalcohol undermildconditionsandreleasesmallamountsofpollution.Eversa(from Novozymes)canproduceFAMEswithayieldof97%in16hwith1wt% enzymedose(Mibiellietal.,2019),demonstratingthepotentialfeasibility ofenzymaticcatalysisforbiofuelproduction.

Sugarfromstarch-richplants(e.g.,corn)andlignocellulosicbiomassis releasedviahydrolysisbyconcentratedacidsorenzymes;thisprocessistermed

saccharification.Inviewofthehighoperationalcostsofacidrecoveryand equipmentcorrosionproblemswithacidhydrolysis,enzymatichydrolysisis thepreferredmethod.Variousrecalcitrantstructuresindifferenttypesoflignocellulosicbiomassrequireenzymecocktailstoperformaspecificsynergistic action(Lopesetal.,2018),whichposesthemaintechnicalobstacleinachievingefficientsaccharification.Inrecentyears,Novozymes(Denmark)has developedanewtechnologybasedontailoredenzymaticcocktailsforspecific feedstockstodeliverthebestperformanceinhydrolyticconversionprocesses (Lopesetal.,2018).On-sitecellulaseproductionisanotherstrategytoencouragesuchfeedstock-specificenzymaticdegradation(Siqueiraetal.,2020).

Bioethanolcanbeproducedfromfermentablesugarsbyyeast,fungi,or bacteria.Currentadvancesfocusmainlyonsimultaneoussaccharification andfermentationtoimprovetheproductionefficiencyandpreventsubstrate inhibition.Finally,afterseparationandpurification,bioethanolcanbeused asafuelindependentlyorasablendwithgasoline.

Anotherstrategyistoconvertbiomassintoahybridcompound.Inthis case,differentcomponentsdonotneedtobeisolatedthroughhydrolysisor extraction.Syngasfermentationisanattractivebiochemicalconversionroute toproduceH2 andCOorCO2 frombiomass,followedbymethanation, anaerobicfermentation,orFischer-Tropschreactiontoproducebiomethane, bioethanol,orbiodiesel.Somecompanies,suchasLanzaTech,aredeploying commercialethanol-productionfacilitiestoutilizesyngasfromorchardwood andnutshells(Liakakouetal.,2019).Co-gasificationofcoalandbiomassis emergingasacleanfueltechnologythatcanachievehighthermodynamicefficiencywithrelativelylowCO2 emission(Kambleetal.,2019).

Atthisstage,themostwidelyappliedconversionmethodisanaerobic digestion(AD),bywhichallorganiccompoundscanbemetabolizedusing agroupofdiversemicroorganismstoproduceagaseousmixture,i.e.,biogas, mainlyconsistingofmethaneandcarbondioxide.Thismethodcanbe appliedtovarioustypesofsubstrates,suchassewagesludgeandmunicipal solidwaste,forenergygeneration.Moreover,ADshouldbehighlightedasa cost-effectiveapproach,especiallyforsubstratescontaininghighwatercontent,whichmakesvolumereductionandincinerationdifficult(Pateletal., 2016).Consideringtheslowreactionprocess(severaldaystoweeks), numerousinnovationshavebeenproposedtoimprovebiogasproductivity, fromnewtypesofequipmenttodetailedoperationconditions(Tabatabaei etal.,2020).Furthermore,theintegrationofADintobiorefineryframeworkshasbeenconsideredasapotentialstrategytoupgradebiogasproductionsystems(Budzianowski,2016).Theprosandconsofdifferentbiomass conversiontechnologiesaresummarizedin Table1.2.

Table1.2 Summaryofdifferentbiomassconversiontechnologies(Tabatabaeietal.,2020). Technology

Hydrolysisand fermentation

30–50°C; pH

4.5–6.0 Sugar, bioethanol, CO2

Gasification350–1800°CGas(CO,CO2, H2,CH4)

• Large-scaleapplication

• Complexity

• Highcost(especiallywith lignocellulosicbiomass)

Anaerobic digestion 35–55°C; anaerobic Gas(CO2, CH4)

• Compact

• Lowcost

• Highefficiency(40%–50%)

• Commerciallyproven

• Applicabletoorganicwaste withhighwatercontent

• Lab-orpilot-scale

• HighemissionsofNOx, CO2,andash

• Complexity(especially lignocellulosicbiomass)

• Badodors

• Lowsubstratelevelsinside thereactor

• Longreactionprocess

1.2.3Microbesinvolvedinbiofuelproductionprocesses

Microbesplayimportantrolesinbiochemicalconversionprocessesbyfunctioningasthesourceoflignocellulosicmaterial,enzymeproducers,ormetabolicfactories.Asstatedin Section1.2.1,thethirdandfourthgenerations ofbiofuelareobtainedfrommicroalgaloils.Approximately40,000microalgalspecieshavebeenidentifiedtodate;manyofthesecanaccumulateup to20%–80%oflipidbytotalbiomasscontent(Khanetal.,2018; Mobinand Alam,2017),wheremixotrophicmicroalgaecanproduce69%higherlipid contentthanheterotrophicmicroalgae. Table1.3 listssomeintensivelystudiedmicroalgaespecies,includingthecommonlyoccurring Chlorella sp.

Theyieldoflipidsfrommicroalgaeissensitivetocultivationconditions, includinglightintensity,temperature,andcarbonsource,amongothers. Thelipidcontentincreasesin Isochrysisgalbana and Scenedesmusobliquus at hightemperatures,whiletheoppositeistruefor Chlorellavulgaris (Ruangsomboon,2012).Therefore,theevaluationofaspecificstrainand understandingofitsoptimumgrowthenvironmentisessentialtoharvest thehighestamountoflipids.Geneticallymodifiedmicroalgaeemployed infourth-generationbiofuelsexhibitimprovedadaptabilityforoligotrophic environments,suchaswastewater(Abdullahetal.,2019),alongwith enhancedlipidproductivityandcarbonfixation(Table1.4).

Microbesfunctionasenzymeproducersinthehydrolysisofstarchplants andlignocellulosicbiomass.Amylase,glucoamylase,andcellulasecocktails areessentialcatalyststoconvertstarchandcelluloseintofermentablesugars.

Aspergillus sp., Trichodermareesei,andbacteria,including Bacilluslicheniformis, areemployedashoststrainsforindustrialenzymeproduction.

Table1.3 Microalgaespeciesforoilproduction(MatAronetal.,2020).

SpeciesorgenusOilcomposition(%)Lipidproductivity(mg/L/day)

Ankistrodesmus 28–40459

Botryococcusbraunii 34–75 –

Chlorellaprotothecoides 40–551209–3701

Chlorellasorokiniana 22–24420–550

Chlorellavulgaris 35–45200–1100

Dunaliellatertiolecta 33 –

Nannochloropsis 35–47290–321

Scenedesmus 34820

Table1.4 LipidproductionandfixationofGHGsbygeneticallymodifiedmicroalgae.

Process Species Achievements

Biofuel production

Chlamydomonas reinhardtii

Phaeodactylum tricornutum

GHGfixation

• 1.5-foldincreaseinlipidcontent

• 20%increaseintriglyceride content

• 35%increaseinlipidcontent

• 1.1-foldincreaseintriglyceride content

Chlamydomonas reinhardtii • 50%increaseinphotosynthesis efficiency

Synechococcus elongatus

41%increaseincarbonuptake

1.3Technoeconomicandenvironmentalassessment

Thepotentialofbiofuelsinthefieldofenergysecurityandmitigationof environmentalpollutionhasledtotheirentryintotheenergymarket. Beyondenergybenefitsandpollutioncontrol,thedevelopmentofbiofuels alsoaidsinthecreationofemploymentandstrengthenstheeconomy.The generationofbioenergyisreportedtohaveseveraltechnoeconomic,social, andenvironmentaladvantagesanddisadvantagesforsustainabledevelopment.Positiveattributesofbiofuelsincludemitigationofenvironmental pollution,energysecurity,provisionofanalternatesourceofcleanand greenfuel,regionalgrowth,andruraldevelopment.Contrarily,thereare severalseriousconcernsassociatedwithbiofuelproduction,includingcompetitionwithfoodcultivationthatleadstoanincreaseinfoodprices,high productioncosts,energyextensiveprocesses,reductioninlandandwater qualitybyextensiveuseofagrochemicalsforenhancedcropproduction forbiofuels,lossinbiodiversity,anddeforestation.Althoughbiofuelshave enteredtheglobalmarketdespitetheseshortcomings,theiracceptanceand commercializationproceedingmuchslowerthanexpected.Themainobstaclesintheircommercializationincludetherequirementoflargecapital investments,operationalchallenges,extensiveresourceutilization,spatial distribution,andvariabilityinbiomassfeedstock(Andersonetal.,2020). Governmentalsupportandpoliciesaredirelyneededtoaddresstechnical, socioeconomic,andenvironmentalissuesrelatedtobiofuelproduction andtopromoteitsufficientlytoreachambitiousproductiontargets.The governmentsofvariousdevelopedanddevelopingcountrieshaveattempted todosobyintroducingincentivesfordevelopmentofbiofuelproduction

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.