https://ebookmass.com/product/handbook-of-biofuels-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Production Processes of Renewable Aviation Fuel: Present Technologies and Future Trends Claudia Gutiérrez-Antonio
https://ebookmass.com/product/production-processes-of-renewableaviation-fuel-present-technologies-and-future-trends-claudiagutierrez-antonio/ ebookmass.com
Biofuel Extraction Techniques: Biofuels, Solar, and Other Technologies Lalit Prasad
https://ebookmass.com/product/biofuel-extraction-techniques-biofuelssolar-and-other-technologies-lalit-prasad/
ebookmass.com
Biofuels and Biorefining: Volume 2: Intensification Processes and Biorefineries Claudia Gutierrez-Antonio
https://ebookmass.com/product/biofuels-and-biorefiningvolume-2-intensification-processes-and-biorefineries-claudiagutierrez-antonio/ ebookmass.com
Cora Diamond on Ethics 1st Edition Maria Balaska
https://ebookmass.com/product/cora-diamond-on-ethics-1st-editionmaria-balaska/
ebookmass.com
The Immigrant Superpower: How Brains, Brawn, and Bravery Make America Stronger Tim Kane
https://ebookmass.com/product/the-immigrant-superpower-how-brainsbrawn-and-bravery-make-america-stronger-tim-kane/
ebookmass.com
The Girl in the Headlines Hannah Jayne
https://ebookmass.com/product/the-girl-in-the-headlines-hannahjayne-3/
ebookmass.com
Blue Sky Cowboy Christmas Joanne Kennedy
https://ebookmass.com/product/blue-sky-cowboy-christmas-joannekennedy/
ebookmass.com
A Promise: A Sweeping Story of Friendship in WWII Amelia Martin
https://ebookmass.com/product/a-promise-a-sweeping-story-offriendship-in-wwii-amelia-martin/
ebookmass.com
Music and Movement: A Way of Life for the Young Child 7th Edition – Ebook PDF Version
https://ebookmass.com/product/music-and-movement-a-way-of-life-forthe-young-child-7th-edition-ebook-pdf-version/
ebookmass.com
How to be a Web Developer: A Complete Beginner's Guide on What to Know and Where to Start 1st Edition Radu Nicoara
https://ebookmass.com/product/how-to-be-a-web-developer-a-completebeginners-guide-on-what-to-know-and-where-to-start-1st-edition-radunicoara-2/
ebookmass.com
HANDBOOKOF BIOFUELS PRODUCTION
HANDBOOKOF BIOFUELS PRODUCTION
Processesand Technologies
THIRDEDITION
Editedby
RAFAELLUQUE
DepartmentofOrganicChemistry,UniversityofCórdoba, Córdoba,Spain
CAROLSZEKILIN
SchoolofEnergyandEnvironment,CityUniversityof HongKong,HongKong
KARENWILSON
CentreforAdvancedMaterials andIndustrialChemistry, SchoolofScience,RMITUniversity,Melbourne,VIC,Australia
CHENYUDU
DepartmentofChemicalSciences,SchoolofApplied Sciences,UniversityofHuddersfield,Huddersfield, UnitedKingdom
WoodheadPublishingisanimprintofElsevier
50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom
Copyright©2023ElsevierLtd.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-91193-1(print)
ISBN:978-0-323-91521-2(online)
ForinformationonallWoodheadpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: CharlotteCockle
AcquisitionsEditor: PeterAdamson
EditorialProjectManager: TimEslava
ProductionProjectManager: MariaBernard
CoverDesigner: MarkRogers
TypesetbySTRAIVE,India
Contributors
LauraAguado-Deblas
DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain
MohamedHMAhmed
AustralianInstituteforBioengineeringandNanotechnology(AIBN),TheUniversityof Queensland,Brisbane,QLD,Australia
WouterArts
CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium
LuqmanAtanda
ScienceandEngineeringFaculty,CentreforAgricultureandtheBioeconomy,Queensland UniversityofTechnology,Brisbane,QLD,Australia
NajihahAbdulBar
DepartmentofChemicalSciences,FacultyofScienceandTechnology,Universiti KebangsaanMalaysia,Bangi,Selangor,Malaysia
NunoBatalha
SchoolofChemicalEngineering,TheUniversityofQueensland,Brisbane,QLD,Australia
FelipaM.Bautista
DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain
CarolinaBotella
ShellEspan ˜ aS.A,Madrid,Spain
JuanCalero
DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain
EliasChristoforou
SchoolofEngineeringandAppliedSciences,FrederickUniversity,Nicosia,Cyprus
LorisCottoni
Unitelma-Sapienza,Universita ` degliStudidiRoma,Roma,Italy
DarfizziDerawi
DepartmentofChemicalSciences,FacultyofScienceandTechnology,Universiti KebangsaanMalaysia,Bangi,Selangor,Malaysia
AnaBelenDı ´ az UniversityofCa ´ diz,Ca ´ diz,Spain
WeiliangDong
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina
ChenyuDu
DepartmentofChemicalSciences,SchoolofAppliedSciences,UniversityofHuddersfield, Huddersfield,UnitedKingdom
RafaelEstevez
DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain
ParisA.Fokaides
SchoolofEngineeringandAppliedSciences,FrederickUniversity,Nicosia,Cyprus
IsabelLo ´ pez-Garcı ´ a PhysicalChemistryandappliedThermodynamics,UniversityofCordoba,Cordoba,Spain
GuillermoGarcia-Garcia
DepartmentofChemicalandBiologicalEngineering,TheUniversityofSheffield,Sheffield, UnitedKingdom
KleioGioulounta
DepartmentofEnvironmentalEngineering,DemocritusUniversityofThrace,Xanthi, Greece
FabioGiudice
Unitelma-Sapienza,Universita ` degliStudidiRoma,Roma,Italy
ElliHeracleous
ChemicalProcess&EnergyResourcesInstitute,CentreforResearchandTechnology Hellas;SchoolofScience&Technology,InternationalHellenicUniversity,Thessaloniki, Greece
ErnestoHernandez
CanterburyChristChurchUniversity,Canterbury,UnitedKingdom
Jesu ´ sHidalgo-Carrillo
DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain
YunziHu
Bio-chemicalConversionLab,CenterforBiomassEnergyResearch,GuangzhouInstituteof EnergyConversion,CAS,Guangzhou,China
HessamJahangiri
DepartmentofEngineeringandMathematics,SheffieldHallamUniversity;Schoolof ChemicalEngineering,UniversityofBirmingham,Birmingham,UnitedKingdom
AnasJamil
AustralianInstituteforBioengineeringandNanotechnology(AIBN),TheUniversityof Queensland,Brisbane,QLD,Australia
MinJiang
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina
YujiaJiang
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina
MuxinaKonarova
SchoolofChemicalEngineering,TheUniversityofQueensland,Brisbane,QLD,Australia
AngelosA.Lappas
ChemicalProcess&EnergyResourcesInstitute,CentreforResearchandTechnology Hellas,Thessaloniki,Greece
HannesLatine
CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium
ChongLi
KunpengInstituteofModernAgricultureatFoshan,ChineseAcademyofAgricultural Sciences,Foshan;ShenzhenBranch,GuangdongLaboratoryforLingnanModern Agriculture,ShenzhenKeyLaboratoryofAgriculturalSyntheticBiology,Genome AnalysisLaboratoryoftheMinistryofAgricultureandRuralAffairs,AgriculturalGenomics InstituteatShenzhen,ChineseAcademyofAgriculturalSciences,Shenzhen,China
Hong-YeLi
JinanUniversity,Guangzhou,People’sRepublicofChina
YiLiang
ShellGlobalSolutionsUSInc,Houston,TX,UnitedStates
CarolSzeKiLin
SchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong, People’sRepublicofChina
ClaraLo ´ pez-Aguado UniversidadReyJuanCarlos,Madrid,Spain
JiashengLu
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina
CarlosLuna
DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain
DiegoLuna
DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain
RafaelLuque
DepartmentofOrganicChemistry,UniversityofCordoba,Co ´ rdoba,Spain
JuanAntonioMelero
UniversidadReyJuanCarlos,Madrid,Spain
GabrielMorales
UniversidadReyJuanCarlos,Madrid,Spain
PiergiuseppeMorone
Unitelma-Sapienza,Universita ` degliStudidiRoma,Roma,Italy
JinhuaMou
SchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong, People’sRepublicofChina
ThomasNicolaı ¨
CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium
MiloudOuadi
SchoolofChemicalEngineering,UniversityofBirmingham,Birmingham,UnitedKingdom
BrunoPandalone
CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium
MartaPaniagua
UniversidadReyJuanCarlos,Madrid,Spain
AnshuPriya
SchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong, People’sRepublicofChina
XiujuanQian
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina
DeepakRaikwar
CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium
NoorAziraAbdulRazak
DepartmentofChemicalSciences,FacultyofScienceandTechnology,Universiti KebangsaanMalaysia,Bangi,Selangor,Malaysia
AntonioA.Romero
DepartmentofOrganicChemistry,UniversityofCordoba,CampusdeRabanales,Ed.Marie Curie,Co ´ rdoba,Spain
BertSels
CentreforSustainableCatalysisandEngineering,KULeuven,Leuven,Belgium
SivakumarS.V.
ShellIndiaMarketsPvt.Ltd,Bengaluru,India
JamesG.Speight
CD&WInc.,Laramie,WY,UnitedStates
KaterinaStamatelatou
DepartmentofEnvironmentalEngineering,DemocritusUniversityofThrace,Xanthi, Greece
NazrizawatiA.Tajuddin
SchoolofChemistryandEnvironment,FacultyofAppliedSciences,UniversitiTeknologi MARA,ShahAlam,Selangor,Malaysia
IoannaA.Vasiliadou
DepartmentofEnvironmentalEngineering,DemocritusUniversityofThrace,Xanthi, Greece
BoWang
ShenzhenBranch,GuangdongLaboratoryforLingnanModernAgriculture,ShenzhenKey LaboratoryofAgriculturalSyntheticBiology,GenomeAnalysisLaboratoryoftheMinistryof AgricultureandRuralAffairs,AgriculturalGenomicsInstituteatShenzhen,Chinese AcademyofAgriculturalSciences,Shenzhen,China
XiangWang
JinanUniversity,Guangzhou,People’sRepublicofChina
Zhen-YaoWang UniversityofTechnologySydney,Ultimo,NSW,Australia
KarenWilson
CentreforAdvancedMaterialsandIndustrialChemistry,SchoolofScience,RMIT University,Melbourne,VIC,Australia
FengxueXin
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering;JiangsuNationalSynergeticInnovation CenterforAdvancedMaterials(SICAM),NanjingTechUniversity,Nanjing,People’s RepublicofChina
TangXu
ShenzhenBranch,GuangdongLaboratoryforLingnanModernAgriculture,ShenzhenKey LaboratoryofAgriculturalSyntheticBiology,GenomeAnalysisLaboratoryoftheMinistryof AgricultureandRuralAffairs,AgriculturalGenomicsInstituteatShenzhen,Chinese AcademyofAgriculturalSciences,Shenzhen;SchoolofLifeSciences,HenanUniversity, Kaifeng,China
WeiYan
SchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong, People’sRepublicofChina
WenmingZhang
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering;JiangsuNationalSynergeticInnovation CenterforAdvancedMaterials(SICAM),NanjingTechUniversity,Nanjing,People’s RepublicofChina
DaweiZhou
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina
JieZhou
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina
XinhaiZhou
StateKeyLaboratoryofMaterials-OrientedChemicalEngineering,Collegeof BiotechnologyandPharmaceuticalEngineering,NanjingTechUniversity,Nanjing, People’sRepublicofChina
XiaoyanZou
DepartmentofChemicalSciences,SchoolofAppliedSciences,UniversityofHuddersfield, Huddersfield,UnitedKingdom;KeyLaboratoryofFunctionalInorganicMaterial Chemistry,HeilongjiangUniversity,Harbin,Heilongjiang,China
Preface
Theincreasingawarenessandconcernsaboutourdependencyonfossil resourcesandthedepletionofcrudeoilreservescausedbyindustrialization andexpansionoftransportationinemergingmarkets,togetherwithpolitical instabilityincountrieswithoilreserves,haveledtovolatilityinfuelprices andenergysupply.Inaddition,theappealforthereductionofgreenhouse gas(GHG)emissionshasbeenthehottesttopicinrecentUnitedNations climatechangeconferences.Inrecentdecades,themajorityofGHGemissionsarecontributedbyfossilfuelcombustionandindustrialprocesses. Therefore,thereisanurgentneedforthedevelopmentofalow-carboneconomicsystemtoreplacethefossil-fuel-basedsystem.Thesefactorshave becomethedrivingforcesforexploringnewalternativestoreplacefossil oil.Biomassisafeedstockthatcanfulfillrequirementsforfossiloilsubstitution,asitisarenewableresourcewhosesustainablesupplycanbeensured. Besides,biomasshasabundantlyavailablestoredsolarenergy,soitcouldact asa“naturalbattery”thatfacilitatesenergysupplysecurity.
Basedonthesuccessofthefirstandsecondeditions,thisneweditionof the HandbookofBiofuelsProduction:ProcessesandTechnologies aimstoprovide anoverviewofthelatestprogressesinvarioustechnologiesforbiofuelproduction.Specialemphasishasbeengiventoadvanced-generationbiofuels, whichincludebiofuelsproducedfromnonfoodmaterials.Thesignificant progressinthebioenergyindustryhasencouragedfurtherexplorationof low-carbontechnologiesfortheproductionofadvanced-generationbiofuels(andbiochemicals)fromlow-valuewastebiomass.Collectiveefforts fromvariousfieldsencompassingbioenergytechnologiesandpeopleincludingpoliticians,economists,environmentalists,scientists,andengineersare neededtocomeupwithalternatives,policies,andchoicestoadvancethe keytechnologiesforamoresustainablefuture.
Thisneweditionofthehandbookisdividedintofourparts.PartOne comprising Chapters1–4 coversthemajorissuesandassessmentofbiofuels production.Basicdetailsonbiofuels,includingtheirclassification,potential feedstocks,productionprocesses,policiesregardingtheirproductionand use,andsocioeconomicandenvironmentalconsiderationsandchallenges, arepresentedinthispart.PartTwocomprising Chapters5–11 highlights thelatesttechnologicaladvancementsinbiofuelsproduction.Thispartdiscussesstrategiestoproducebiofuels,suchaschemicalandbiochemical
conversionprocessesandtechnologies.PartsThreeandFourcomprising Chapters12–16 providedetailsonthermalandthermochemicalconversion processes,integratedproductionapproaches,andapplicationsofbiofuels.
Aseditorsofthisnewedition,wesincerelyhopeitcanserveasareferencetextmainlydesignedforcoursesatthepostgraduatelevel.Thebook willbealsousefultoprovidepracticalinformationtoearly-career researchers,practitionersinthefieldofbioenergy,andconsultantstoenergy agenciesthatstudythefeasibilityofbiomassprojectsandplanbiofuels productioninarationalway.
Wetakethisopportunitytoacknowledgeandthankallcontributorsfor theirexcellentcollaborationandtimelycontributionsthathavehelpedto puttogetherthisbookcoveringahighlycomprehensiverangeoftopics. Thecoeditorswouldliketoexpresstheirsincereappreciationandgratitude totheeditorialprojectmanagersatElsevier,namelyTimEslava,Madeline Jones,MicaOrtega,whopatientlyandkindlytookusthroughthedevelopmentofthisbookoverthepast3yearstoachievethisimpressivefinalresult, whichwouldnothavebeenpossiblewithouttheirsupport.Inaddition,we wouldliketoextendourgratitudetoMohanrajRajendran,copyrights coordinatorfromtheCopyrightsTeam,whoensuredasmooth permission-seekingprocess.
Lastbutnotleast,wesincerelythankHelenaChin(11-year-oldnieceof CarolLin)forhergreateffortinpreparationofthefrontcoverpicture.The picturesymbolizesbiomassasnature’swayofstoringenergyoriginating fromthesun,whichallowsustousethisenergywhenthesunisnotshining. Withverybestwishesforasuccessfulandenjoyablereading.
CHAPTER1
Introduction:Anoverview ofbiofuelsandproduction technologies
AnshuPriyaa,#,YunziHub,#,JinhuaMoua,ChenyuDuc,KarenWilsond, RafaelLuquee,andCarolSzeKiLina
aSchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKong,People’s RepublicofChina
bBio-chemicalConversionLab,CenterforBiomassEnergyResearch,GuangzhouInstituteofEnergy Conversion,CAS,Guangzhou,China
cDepartmentofChemicalSciences,SchoolofAppliedSciences,UniversityofHuddersfield,Huddersfield, UnitedKingdom
dCentreforAdvancedMaterialsandIndustrialChemistry,SchoolofScience,RMITUniversity,Melbourne, VIC,Australia
eDepartmentofOrganicChemistry,UniversityofCordoba,Co ´ rdoba,Spain
1.1Introduction
Unprecedentedgrowthintheglobalpopulation,coupledwithaccelerated urbanization,hasledtoanincreaseinthedemandforallformsofenergyand anincreaseinenvironmentalpollution.Anextensiveanalysisofthedemand andsupplyofenergysourcesrevealedthatfossilfuelsfulfilled84%ofthe world’sprimaryenergydemandin2019.Majorsourcesofthissupply includedoil(33.1%),coal(27%),naturalgas(24.2%),hydroelectricity (6.4%),renewableenergy(5%),andnuclearenergy(4.3%)(Fig.1.1).The carbonemissionsfromenergyproductionhaveincreasedby0.5%forevery 1%gaininglobaleconomicoutputsince2010(StatisticalReviewofWorld Energy,2020).Theglobalenergydemandispredictedtorisebymorethan 50%by2025,whiletheconsumptionisestimatedtoincreasebyover90% (WorldBioenergyAssociation,2020).Thediminishingglobalfuelreserves, risingfuelprices,andtheenvironmentalimpactoffossilfuelshavespurred theexplorationforsustainable,affordable,renewable,andenvironmentfriendlyenergysources.Inthiscontext,thedevelopmentandutilization ofbiofuelsasalternativeenergysourceshavegainedmuchimportance.
Biofuelsareliquidorgaseousfuelsderivedpredominantlyfromavarietyof biologicalsourcesbyphysical,chemical,biological,orcombinatorialmethods.
# Firstauthorswithequalcontribution.
Fig.1.2 showsthegeneralizedlifecycleofbiofuels.Theirproductionandconsumptionaregainingimportancebecauseoftheircapabilitytoreplacefossil fuelsandmeetglobalenergyrequirements,whilelesseningthecontribution offuelstowardglobalwarming.Inadditiontosustainability,mitigationofenvironmentalpollution,andreductioningreenhousegas(GHG)emission,biofuelsarepreferabletofossilfuelsduetoseveralotheradvantages,suchas theirrenewablenature,securityofsupplyinthefuture,andcost-effectiveness; theseadvantagesareespeciallynotableinthecontextofcontinuallyrising petroleumpricesandgeopoliticalinstabilitiesinmajorfossil-fuel-producing regionsoftheworld.
Biomasscanbeconvertedtoavarietyofbiofuels,includingliquidfuels, suchasbiodiesel,biomethanol,bioethanol,andgaseousfuels,suchasmethaneandhydrogen.Themajordifferencebetweenbiomass-generatedand petroleum-basedfuelsistheoxygencontent.Incontrasttopetroleum-based fuels,biofuelshaveoxygenlevelsof10%–45%,whilepetroleumhasessentiallynone,whichmakesthechemicalpropertiesofbiofuelsdifferentfrom petroleum-basedfuels(Demirbas,2009).Dependingonthechemicalnature andcomplexityofbiomass,biofuelsareclassifiedintodifferentgenerations, namelyfirst,second,andthirdgenerationofbiofuels.
Thefirst-generationbiofuelsareproducedfromfood-basedfeedstock; thisprimarilyincludestheuseofcropplants,suchascorn,sugarcane,wheat, andoilseeds(canola,soybean,palm,etc.),toproducebiodieselandbioethanol.Theproductionofsecond-generationbiofuelsutilizesnonediblelignocellulosicmaterialsassubstratesforenergyproduction.Thesubstrateschiefly
Hydroelectricity
Fig.1.1 Distributionofglobalenergysources.
Fig.1.2 Thetypicallifecycleofbiofuel.
includeagriculturalby-products,suchassugarcanebagasseandcellulosic cropwaste,andnoncropplants,suchasperennialgrass, Jatropha and Pongamia,toproducebioethanolandbiodiesel.InSouth-EastAsia,ediblepalmoil hasdrawnmuchattentionforbiodieselproduction,whilethepotentialof nonedibleoilseedsof Jatropha isalsobeingexploredforbiodieselproduction. Bothfirstandsecond-generationbiofuelsrequireanabundanceoflandand otheragriculturalresourcesforcultivation.Thiscreatesacompetition betweenfoodandbiofuelproduction,especiallyregardinglanduse.Inparticular,first-generationbiofuelshaveadirectimpactonfoodpriceasthey utilizefoodcropsforfuelgeneration(Gurjaretal.,2021).Suchissuesof food-versus-biofuelproduction,useofland,andagriculturalresourceswere addressedbythedevelopmentofthird-generationbiofuels.Inthisgeneration,marinemacroalgae,seaweed,algalbiomass,andcyanobacteriaemerged asattractivefeedstocksthatcouldbeusedtoproducebioethanol,biogas,and biodiesel.Duetotheirrapidgrowthrate;highlipidcontent;noland requirement;easycultivationundercontrolled,artificial,andnutrient-rich environments,suchasopenpondsorclosedphotobioreactors;easyharvesting;andlipidextractability,algalandmarinefeedstockshaveemergedasa feasibleandsustainablesubstitutethatmayprovidebetterfuelsecurityand meetcurrentandfuturefueldemands(Chhandamaetal.,2021).
Transportation,construction,industry,andagriculturearethesectors thathavethehighestdemandforfuels.Transportationaccountsforthebiggestshare,70%,ofallfuelconsumedglobally,whichiscurrentlymainly obtainedfromfossilfuels.Despiteenvironmental,social,andeconomic challenges,theglobaldemandforfuelbythetransportationsectorhasmultipliedoverthelastfewdecadesandisexpectedtogrowfurtherinthefuture (KuoandChen,2009).Fossilfuelsmustbereplacedwithcleanerandmore sustainablebiofuelstotackletherisingdemandforenergyandassociated challenges.Takingthisintoaccount,theRenewableEnergyDirectiveof theEuropeanUnionaimstoincreaserenewableenergygenerationby 27%by2030(Osaki,2019).Similarly,theUnitedStateshassetagoalto increasetheannualproductionofbioethanolfrom56.8billionlitersto 60.6billionlitersby2022throughtheEnergyIndependenceandSecurity Actof2007(Pittocketal.,2015).
Thebiofuelsectorhasexperiencedsignificantimprovementwiththe adventofmoderntechnologies.Thepotentialapplicationofbiofuelshas expandedbeyondtheirconventionaluseinthetransportationsector;biofuelsarenowusedforgenerationofelectricityandheat,forcooking,and asfuelintheaviationindustry.Extensiveresearchisbeingconductedin
thebioenergysectorworldwidetoincreasetheefficiencyofbiomassutilizationandbiofuelproduction.Differentformsofbiofuelsrangingfrombiodieseltobio-jetfuelandbiogashaveemergedasfeasibleenergyoptions.
Biodieselisbiodegradableandthereforenonexplosive.Moreover,ithas ahighcombustionefficiency,cetanenumber,andflashpoint,withalow sulfurandaromaticcontent,duetowhichitisextensivelyusedasatransportationfuel,eitherinitspureformorincombinationwithgasoline.In additiontobiodiesel,bio-aviationfuelisanothertypeofbiofuel.Also knownasgreendieselorbio-jetfuel,bio-aviationfuelisabiomass-derived syntheticparaffinickerosene.Itiswidelyusedincombinationwith petroleum-derivedjetfuelasasustainableandcleansolutiontomitigate environmentalpollutionbytheaeronauticalindustry.Bothbiodieseland bio-aviationfuelarepotentialalternativestoconventionalfuelsinthetransportationsectortopowervehicles,motorizedengines,andaircraft (Kathrotiaetal.,2021).Bioalcohols,suchasbioethanol,biomethanol, andbiobutanol,andbiogas,suchasbiomethaneandbiohydrogen,produced throughbiochemicalprocessing,arealsopromisinggreenandcleanbiofuel substitutesforfossilfuels.
Theenvironmentalandsocioeconomicadvantagesofbiofuelsforthe mitigationofenvironmentalpollutionandreductionofcarbonfootprints havemotivatednationstodecreasetheirdependencyonfossilfuelsand increasebiofuelconsumption.Thehighestconsumptionofbiodieselin 2019wasreportedtooccurintheUnitedStates,followedbyBrazil.In 2019, 43millionbarrelsofbiodieselwereconsumedintheUnitedStates (U.S.EnergyInformationAdministration(EIA),2020).
TheUnitedStatesandBrazilalsorankamongthelargestbiodieselproducingnationsandaccountedforapproximately6.5and5.9billionliters ofbiodieselproduced,respectively,in2019(Ebadianetal.,2020).During 2000–19,theglobalproductionofbiofuelincreasedfrom187thousandbarrelsto1841thousandbarrels,broadeningtheoverallmarketsizetoUS$136 billion(Statista,2020).Itisestimatedthatthebiofuelmarketsizewill continuetogrowandreachUS$153.8billionby2024(Statista,2020). Theincreaseinbiofuelproductiongloballyisdrivenbyavarietyof factorsincludingtechnologyreadiness,biofuel-friendlypolicies,andmarket demand.Theestablishmentofacompetitivemarketforbiofuelswillbe facilitatedbyfinancialincentives,subsidies,andsupportivepolicies.Biomass productionforgenerationofbiofuelsalsosupportstheagriculturalsectorby creatingemploymentopportunities,labor,andcommercialprospectsfor domesticharvest.Thepotentialforlandrestorationbythecultivationof
biomassandgenerationofincomebyproductionandexportofbiofuelsto industrializednationsareattractiveoutcomesthatmaypavethepathforfurtherprogress.Inviewofsuchenvironmentalandsocioeconomicadvantages,thereisaneedforsufficientinvestmentandgovernmentand legislativesupporttocreateaneconomicallycompetitiveglobalmarket forbiofuels.
Theaimofthisbookistoprovideadeeperinsightintothevitaldriversof biofuelproduction,technologicaladvancements,policies,regulatoryissues, environmentalandsocioeconomicconsiderations,lifecycleassessment (LCA),applicationsofbiofuelproduction,andassociatedchallenges.The bookisdividedintofourmajorparts.PartOnecoversthemajorissues andassessmentofbiofuelproduction.Basicdetailsonbiofuels,including theirclassification,potentialfeedstocks,productionprocesses,policies regardingtheirproductionanduse,andsocioeconomicandenvironmental considerationsandchallenges,arepresentedinthispart.PartTwoofthe bookchapterhighlightsthelatesttechnologicaladvancementsinbiofuel production.Thispartdiscussesstrategiestoproducebiofuels,suchaschemicalandbiochemicalconversionprocessesandtechnologies.PartsThreeand Fourofthebookprovidedetailsonthermalandthermochemicalconversion processes,integratedproductionapproaches,andapplicationsofbiofuels.
1.2Biofuelproductionprocessesandtechnologies
1.2.1Biofuelproductionfromvariousfeedstocks
Biofuelscanbeproducedfromdiversefeedstocksforvariousapplications withtheoverarchingaimofmeetingglobalenergydemandwhileminimizingenvironmentalimpacts.Differentgenerationsofbiofuelsareclassified accordingtotherawmaterialsusedtopreparethem.Eachgenerationofbiofuelshasdifferentbenefitsanddrawbacks.
First-generationbiofuelsutilizerawmaterialsfromthehumanfood chain,includingcorn,sugarcane,andoilseeds,suchassoybeanandpeanut. InEurope,biodieselaccountsformorethan80%ofthetotalbiofuelproduction,whichismainlyderivedfromrapeseedoil(EuropeanBiomass Association,2014).Ascomparedwithotherfeedstocks,themostprominent advantageoffirst-generationbiofuelsisthehighconversionefficiency;these biofuelshavehighenergyyield,andthus,areeconomicallyprofitable.Fatty acids,sugars,andstarchcomponentsincropscanbeconvertedtobiodiesel andbioethanolthroughbasicbiochemicalprocesses.However,firstgenerationbiofuelsfaceseverecriticismintermsoflanduseandfood
shortage;theyarealsoconsideredtobealeadingfactorforincreasedfood pricesanddeforestationintheAmazonandinIndonesia(Achinas etal.,2019).
Second-generationbiofuelsaregeneratedfromnonfoodbiomassresidues, suchasagriculturalwastesandwoodymaterials.LCAstudieshaverevealedthat lignocellulosicbioethanolproductionisenergeticallysustainableandcontributesmoretoreductioninGHGemissionsthandofirst-generationbiofuels (Angilietal.,2021; Moralesetal.,2015).However,therecalcitrantstructure oflignocelluloseresistsenzymaticdigestion,thereforeleadingtorelativelylow biofuelyields(Table1.1).Otherchallenges,includinganunstablesupplyof rawmaterialsandtheuseofterrestrialwaterintheproductionprocess,also representgreatconcerns.Conversiontechnologiesforsecond-generationbiofuelsarestillunderdevelopmenttoimprovetheiroverallefficiency(Siqueira etal.,2020).Inthepastfewyears,theproductioncostoflignocellulosicwaste hasbeenreducedsignificantlyfrom157.3–171.2 €/Lin2015to81.5–95.4 €/L in2020(Achinasetal.,2019).
Biofuelproducedfrommicroalgaeiscalledthird-generationbiofueland hasbeenhighlightedasapromisingalternativetorenewablesourcesdueto itspositiveenvironmentalandeconomicimpacts.Unlikecrop-basedfeedstocks,microalgaecultivationdoesnotrelyoncroplandorlargequantities offreshwater(Nieetal.,2020). Chlorella isatypicalbiofuel-producingmicroalgawithalipid-richnature(35%–50%lipids)(Shahetal.,2018).Proteinsand carbohydratesfromalgaecanbeconvertedtobio-oilsandsyngasbypyrolysis orgasification(Antoetal.,2020).Somealgaecanproducebiohydrogenand
Table1.1 Yieldsfromfirst-andsecond-generationbiofuelproductionmethods(inliters perunitoffeedstockamountandcropland)(FAO,2017; MillingerandThran,2018; Strengersetal.,2016).
Generationof
FirstgenerationBioethanolSugarplant0.25–0.55570–6840
BioethanolCorn0.4–0.463030
BioethanolWheat0.42000
BiodieselSoybean – 530
BiodieselRapeseed – 1570
SecondgenerationBioethanolBarley straw 0.054 –
BioethanolPalm wood 0.03 –
biogasviaanaerobicfermentation.Incomparisonwithconventionalfeedstocks,biomassfromalgaehasseveraladvantages(Vijetal.,2021):
•Fastergrowthandhigherphotoconversioncapacity;
•Batchorcontinuouscultivationthroughouttheyear,makingalgaea constantlyavailablesourceofenergy;
•Grownonnonagriculturallandsusingsalinewaterorwastewater;
•GHGreductionastheprocesscanbecoupledwithcarbondioxide fixation.
However,lowconversionefficienciesbasedoncurrentsystemsofproduction limitbiofuelproductionfromalgaeatanindustriallevel.Technologicalbarriersintheselectionofsuitablealgalspecies,cultivationprocedures,reactor designs,anddownstreamextractionshaveyettobeovercometomake algae-basedbiofuelseconomicallyfeasible(Vijetal.,2021).Anemergingtype ofbiofuelcategorizedasfourth-generationbiofuelusesgeneticallymodified algaeforbiofuelproduction;thistypeoffeedstockisreportedtohavehigher CO2 capturecapacityandbiofuelproductivity(Zhuetal.,2017).Forexample, modified Phaeodactylumtricornutum sp.presenteda35%increaseinlipidcontent andapproximately1.1-foldincreaseintriglyceridecontent(Yangetal.,2016).
Moreover,someadvancedstudieshaveproposedtheincreaseduseof wastematerialstoproducebiofuels. Nwankworetal.(2021) investigated anapproachtosynthesizegasoline-rangefuelsfromwasteplasticthrough thermalcatalyticcrackingreactions,resultinginthehighestliquidyieldof 89.3%fromusedpolystyrene(Nwankworetal.,2021).Factoryemission suchascarbondioxidecanberecycledintogasolinebyFischer-Tropsch reactionstoreachproductivitiesashighas3337barrelsperday (DamanabiandBahadori,2017).
Ithasbeenestimatedthatbiofuelproductionshouldbeincreasedfrom 9.7 106 to4.6 107 GJ/daybetween2016and2040toeffectivelylimit globalwarming(Correaetal.,2019).First-generationfeedstockiscurrently themainsourceofbiofuels;inviewoftheissuesofglobalhungeranddeforestation,itisvitaltodevelopitssubstitutes.Therefore,lignocellulosicwastes andmicroalgaeareconsideredtobethebestoptionscurrentlyavailableto achievesustainabilitygoals(MatAronetal.,2020).
1.2.2Physical,chemical,andbiochemicalprocesses
andtechnologies
Theproductionprocessofbiofuelsfromfeedstocksspecifictothefour generationsofbiofuelsisillustratedin Fig.1.3.Althoughthefirsttofourth generationsusedifferentrawmaterials,theirconversionprocessesarebased onsimilarprinciples.
Fig.1.3 Anoverviewofbiofuelproductionpathwaysusingdifferentfeedstocks.
Pretreatmentmethodsvarywiththestructuralpropertiesofthefeedstock; theaimistoreduceparticlesizeandpartiallyremoverecalcitrantcomponents, whichsubsequentlyaidsinconversionproceduresthataremainlydependent onchemicalcompositions.Oilandlipidsareconvertedtobiodieselthrough transesterification.Sugar,starch,andproteinsareusedtoproducebiofueland biogasthroughfermentationandgasification,respectively.
BiodieselcomprisesC14-C20 fattyacidmethylesters(FAMEs)thatare synthesizedbytransesterificationoffattyacidsand/orglycerylestersinoilseeds,vegetableoils,animalfats,andwastecookingoils.Transesterification reactionsareacceleratedbycatalysts,includingstrongsulfuricacid,strong alkalis,solidacids/alkalis,andsuitableenzymes(lipases).Currentindustrial productionmethodsmainlyusealkalinecatalysisduetotheirhighconversionefficiency;however,thealkalinewastewaterproducedfromthis methodcausesenvironmentalpollution(Ambatetal.,2018).Incomparison, methodsthatuseenzymaticcatalysisconsumesmallamountsofalcohol undermildconditionsandreleasesmallamountsofpollution.Eversa(from Novozymes)canproduceFAMEswithayieldof97%in16hwith1wt% enzymedose(Mibiellietal.,2019),demonstratingthepotentialfeasibility ofenzymaticcatalysisforbiofuelproduction.
Sugarfromstarch-richplants(e.g.,corn)andlignocellulosicbiomassis releasedviahydrolysisbyconcentratedacidsorenzymes;thisprocessistermed
saccharification.Inviewofthehighoperationalcostsofacidrecoveryand equipmentcorrosionproblemswithacidhydrolysis,enzymatichydrolysisis thepreferredmethod.Variousrecalcitrantstructuresindifferenttypesoflignocellulosicbiomassrequireenzymecocktailstoperformaspecificsynergistic action(Lopesetal.,2018),whichposesthemaintechnicalobstacleinachievingefficientsaccharification.Inrecentyears,Novozymes(Denmark)has developedanewtechnologybasedontailoredenzymaticcocktailsforspecific feedstockstodeliverthebestperformanceinhydrolyticconversionprocesses (Lopesetal.,2018).On-sitecellulaseproductionisanotherstrategytoencouragesuchfeedstock-specificenzymaticdegradation(Siqueiraetal.,2020).
Bioethanolcanbeproducedfromfermentablesugarsbyyeast,fungi,or bacteria.Currentadvancesfocusmainlyonsimultaneoussaccharification andfermentationtoimprovetheproductionefficiencyandpreventsubstrate inhibition.Finally,afterseparationandpurification,bioethanolcanbeused asafuelindependentlyorasablendwithgasoline.
Anotherstrategyistoconvertbiomassintoahybridcompound.Inthis case,differentcomponentsdonotneedtobeisolatedthroughhydrolysisor extraction.Syngasfermentationisanattractivebiochemicalconversionroute toproduceH2 andCOorCO2 frombiomass,followedbymethanation, anaerobicfermentation,orFischer-Tropschreactiontoproducebiomethane, bioethanol,orbiodiesel.Somecompanies,suchasLanzaTech,aredeploying commercialethanol-productionfacilitiestoutilizesyngasfromorchardwood andnutshells(Liakakouetal.,2019).Co-gasificationofcoalandbiomassis emergingasacleanfueltechnologythatcanachievehighthermodynamicefficiencywithrelativelylowCO2 emission(Kambleetal.,2019).
Atthisstage,themostwidelyappliedconversionmethodisanaerobic digestion(AD),bywhichallorganiccompoundscanbemetabolizedusing agroupofdiversemicroorganismstoproduceagaseousmixture,i.e.,biogas, mainlyconsistingofmethaneandcarbondioxide.Thismethodcanbe appliedtovarioustypesofsubstrates,suchassewagesludgeandmunicipal solidwaste,forenergygeneration.Moreover,ADshouldbehighlightedasa cost-effectiveapproach,especiallyforsubstratescontaininghighwatercontent,whichmakesvolumereductionandincinerationdifficult(Pateletal., 2016).Consideringtheslowreactionprocess(severaldaystoweeks), numerousinnovationshavebeenproposedtoimprovebiogasproductivity, fromnewtypesofequipmenttodetailedoperationconditions(Tabatabaei etal.,2020).Furthermore,theintegrationofADintobiorefineryframeworkshasbeenconsideredasapotentialstrategytoupgradebiogasproductionsystems(Budzianowski,2016).Theprosandconsofdifferentbiomass conversiontechnologiesaresummarizedin Table1.2.
Table1.2 Summaryofdifferentbiomassconversiontechnologies(Tabatabaeietal.,2020). Technology
Hydrolysisand fermentation
30–50°C; pH
4.5–6.0 Sugar, bioethanol, CO2
Gasification350–1800°CGas(CO,CO2, H2,CH4)
• Large-scaleapplication
• Complexity
• Highcost(especiallywith lignocellulosicbiomass)
Anaerobic digestion 35–55°C; anaerobic Gas(CO2, CH4)
• Compact
• Lowcost
• Highefficiency(40%–50%)
• Commerciallyproven
• Applicabletoorganicwaste withhighwatercontent
• Lab-orpilot-scale
• HighemissionsofNOx, CO2,andash
• Complexity(especially lignocellulosicbiomass)
• Badodors
• Lowsubstratelevelsinside thereactor
• Longreactionprocess
1.2.3Microbesinvolvedinbiofuelproductionprocesses
Microbesplayimportantrolesinbiochemicalconversionprocessesbyfunctioningasthesourceoflignocellulosicmaterial,enzymeproducers,ormetabolicfactories.Asstatedin Section1.2.1,thethirdandfourthgenerations ofbiofuelareobtainedfrommicroalgaloils.Approximately40,000microalgalspecieshavebeenidentifiedtodate;manyofthesecanaccumulateup to20%–80%oflipidbytotalbiomasscontent(Khanetal.,2018; Mobinand Alam,2017),wheremixotrophicmicroalgaecanproduce69%higherlipid contentthanheterotrophicmicroalgae. Table1.3 listssomeintensivelystudiedmicroalgaespecies,includingthecommonlyoccurring Chlorella sp.
Theyieldoflipidsfrommicroalgaeissensitivetocultivationconditions, includinglightintensity,temperature,andcarbonsource,amongothers. Thelipidcontentincreasesin Isochrysisgalbana and Scenedesmusobliquus at hightemperatures,whiletheoppositeistruefor Chlorellavulgaris (Ruangsomboon,2012).Therefore,theevaluationofaspecificstrainand understandingofitsoptimumgrowthenvironmentisessentialtoharvest thehighestamountoflipids.Geneticallymodifiedmicroalgaeemployed infourth-generationbiofuelsexhibitimprovedadaptabilityforoligotrophic environments,suchaswastewater(Abdullahetal.,2019),alongwith enhancedlipidproductivityandcarbonfixation(Table1.4).
Microbesfunctionasenzymeproducersinthehydrolysisofstarchplants andlignocellulosicbiomass.Amylase,glucoamylase,andcellulasecocktails areessentialcatalyststoconvertstarchandcelluloseintofermentablesugars.
Aspergillus sp., Trichodermareesei,andbacteria,including Bacilluslicheniformis, areemployedashoststrainsforindustrialenzymeproduction.
Table1.3 Microalgaespeciesforoilproduction(MatAronetal.,2020).
SpeciesorgenusOilcomposition(%)Lipidproductivity(mg/L/day)
Ankistrodesmus 28–40459
Botryococcusbraunii 34–75 –
Chlorellaprotothecoides 40–551209–3701
Chlorellasorokiniana 22–24420–550
Chlorellavulgaris 35–45200–1100
Dunaliellatertiolecta 33 –
Nannochloropsis 35–47290–321
Scenedesmus 34820
Table1.4 LipidproductionandfixationofGHGsbygeneticallymodifiedmicroalgae.
Process Species Achievements
Biofuel production
Chlamydomonas reinhardtii
Phaeodactylum tricornutum
GHGfixation
• 1.5-foldincreaseinlipidcontent
• 20%increaseintriglyceride content
• 35%increaseinlipidcontent
• 1.1-foldincreaseintriglyceride content
Chlamydomonas reinhardtii • 50%increaseinphotosynthesis efficiency
Synechococcus elongatus
41%increaseincarbonuptake
1.3Technoeconomicandenvironmentalassessment
Thepotentialofbiofuelsinthefieldofenergysecurityandmitigationof environmentalpollutionhasledtotheirentryintotheenergymarket. Beyondenergybenefitsandpollutioncontrol,thedevelopmentofbiofuels alsoaidsinthecreationofemploymentandstrengthenstheeconomy.The generationofbioenergyisreportedtohaveseveraltechnoeconomic,social, andenvironmentaladvantagesanddisadvantagesforsustainabledevelopment.Positiveattributesofbiofuelsincludemitigationofenvironmental pollution,energysecurity,provisionofanalternatesourceofcleanand greenfuel,regionalgrowth,andruraldevelopment.Contrarily,thereare severalseriousconcernsassociatedwithbiofuelproduction,includingcompetitionwithfoodcultivationthatleadstoanincreaseinfoodprices,high productioncosts,energyextensiveprocesses,reductioninlandandwater qualitybyextensiveuseofagrochemicalsforenhancedcropproduction forbiofuels,lossinbiodiversity,anddeforestation.Althoughbiofuelshave enteredtheglobalmarketdespitetheseshortcomings,theiracceptanceand commercializationproceedingmuchslowerthanexpected.Themainobstaclesintheircommercializationincludetherequirementoflargecapital investments,operationalchallenges,extensiveresourceutilization,spatial distribution,andvariabilityinbiomassfeedstock(Andersonetal.,2020). Governmentalsupportandpoliciesaredirelyneededtoaddresstechnical, socioeconomic,andenvironmentalissuesrelatedtobiofuelproduction andtopromoteitsufficientlytoreachambitiousproductiontargets.The governmentsofvariousdevelopedanddevelopingcountrieshaveattempted todosobyintroducingincentivesfordevelopmentofbiofuelproduction