Green sustainable process for chemical and environmental engineering and science: green solvents for

Page 1


https://ebookmass.com/product/green-sustainable-process-for-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Green Sustainable Process for Chemical and Environmental Engineering and Science: Switchable Solvents Dr. Inamuddin

https://ebookmass.com/product/green-sustainable-process-for-chemicaland-environmental-engineering-and-science-switchable-solvents-drinamuddin/ ebookmass.com

Green Sustainable Process for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide as Green Solvent Dr. Inamuddin (Editor)

https://ebookmass.com/product/green-sustainable-process-for-chemicaland-environmental-engineering-and-science-supercritical-carbondioxide-as-green-solvent-dr-inamuddin-editor/ ebookmass.com

Green Sustainable Process for Chemical and Environmental Engineering and Science: Sonochemical Organic Synthesis 1st Edition Dr. Inamuddin (Editor)

https://ebookmass.com/product/green-sustainable-process-for-chemicaland-environmental-engineering-and-science-sonochemical-organicsynthesis-1st-edition-dr-inamuddin-editor/ ebookmass.com

Marketing Management, 4e ISE 4th/ISE Edition Greg W. Marshall

https://ebookmass.com/product/marketing-management-4e-ise-4th-iseedition-greg-w-marshall/

ebookmass.com

Introduction to Scanning Tunneling Microscopy 3rd Edition

https://ebookmass.com/product/introduction-to-scanning-tunnelingmicroscopy-3rd-edition-c-julian-chen/

ebookmass.com

IoT Product Design and Development: Best Practices for Industrial, Consumer, and Business Applications Ahmad Fattahi

https://ebookmass.com/product/iot-product-design-and-development-bestpractices-for-industrial-consumer-and-business-applications-ahmadfattahi/

ebookmass.com

Let the Rubble Fall: A Coming of Age Romance (Road Trip Snapshot Series Book 2) Mandi Lynn

https://ebookmass.com/product/let-the-rubble-fall-a-coming-of-ageromance-road-trip-snapshot-series-book-2-mandi-lynn/

ebookmass.com

Introduction to Linear Algebra for Science and Engineering, 3rd Edition Daniel Norman

https://ebookmass.com/product/introduction-to-linear-algebra-forscience-and-engineering-3rd-edition-daniel-norman/

ebookmass.com

Public Administration: Theory and Practice Hoshiar Singh

https://ebookmass.com/product/public-administration-theory-andpractice-hoshiar-singh/

ebookmass.com

Energy Policy and Security under Climate Change 1st ed.

Edition Filippos Proedrou

https://ebookmass.com/product/energy-policy-and-security-underclimate-change-1st-ed-edition-filippos-proedrou/

ebookmass.com

GREENSUSTAINABLE PROCESSFOR CHEMICALAND ENVIRONMENTAL

ENGINEERINGAND SCIENCE

GREENSUSTAINABLE PROCESSFOR CHEMICALAND ENVIRONMENTAL ENGINEERINGAND SCIENCE

GreenSolventsfor Biocatalysis

INAMUDDIN

AssistantProfessor,DepartmentofAppliedChemistry,Facultyof EngineeringandTechnology,AligarhMuslimUniversity,Aligarh,India

RAJENDERBODDULA

CASKeyLaboratoryofNanosystemsandHierarchicalFabrication, NationalCenterforNanoscienceandTechnology,Beijing,China

MOHDIMRANAHAMED

DepartmentofChemistry,FacultyofScience,AligarhMuslimUniversity, Aligarh,India

ABDULLAHM.ASIRI

Professor,DepartmentofChemistry,FacultyofScience, KingAbdulazizUniversity,Jeddah,SaudiArabia

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromany useoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-819721-9

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: KostasKIMarinakis

EditorialProjectManager: EmeraldLi

ProductionProjectManager: KumarAnbazhagan

CoverDesigner: ChristianJ.Bilbow

TypesetbySPiGlobal,India

Contributors

1.Biocatalysisinindustrialbiodieselandbioethanolproduction1

DipeshKumar,AyanBanerjee,andBhaskarSingh

1. Introduction 1

2. Biodieselproduction1

3. Biocatalystsinlignocellulosicethanolproduction18

4. Conclusion 23 References 23

2.Anticancerpotentialofgreensolvents29

D.JiniandA.Anitha

1. Introduction 29

2. Greensolvents30

3. Anticancerpotentialofgreensolvents33

4. Useofgreensolventsintheextractionofoilanditsanticanceractivity43

5. Conclusionandfuturedirections44

References 46

3.SupercriticalCO2 forbiocatalysis55

ShokufehBagheri,HamidrezaBagheri,MohammadAminSedghamiz,and MohammadRezaRahimpour

1. Introduction 55

2. Kindsofnonaqueoussolventsusedforbiocatalysis58

3. Supercriticalfluid59

4. Applicationsofsupercriticalcarbondioxide(SC-CO2)solventsinbiocatalysts65

5. Conclusionsandfuturetrends69 References 70

4.Biocatalysis:Fundamentalsandsolventparameters73

HilalAcidereli,EdaGokırmakSogut,SibelDemirogluMustafov, MehmetGulcan,andFatihSen

1. Introduction 73

2. Biocatalysis 74

3. Futureperspectives82

5.Biosolventsforbiocatalysis85

MahmoudEl-Maghrabey,MohamedAmin,AbdelazizElgaml,and RaniaEl-Shaheny

1. Introduction 85

2. Classificationofbiosolventsaccordingtotheirchemicalstructure87

3. Applicationofbiosolventsinbiocatalysis95

4. Conclusions 103 References

6.Immobilizedionicliquidsforbiocatalysis109

M.J.Salar-GarcíaandV.M.Ortiz-Martínez

1. Introduction

Hydrolases

Conclusions

7.Biocatalysisinnonaqueousmedia125

MohdImranAhamed,NimraShakeel,andNaushadAnwar

1. Introduction 125

2. Selectionofnonaqueoussolvents127

3. Propertiesofnonaqueoussolventmedia128

4. Biocatalysisinsupercriticalfluids(enzymeactivity)129

5. Biocatalysisinnonaqueousorganicsolvents132

6. Biocatalysisinhydrophobicionicliquids133

7. Conclusion 136 References 136

8.Greenfluorosolventsforbiocatalysis143

MuhammadFaisal

1. Introduction 143

2. Applicationofgreenfluorosolventsinbiocatalyzedresolutionandsynthesis147

3. Conclusion 159 References 159

9.Stateoftheartandperspectivesofgreensolventsinbiocatalysis163

KrishnamoorthyLalitha,Y.SivaPrasad,andSubbiahNagarajan

1. Introduction 164

2. Reactionmediumforbiocatalysis165

3. Supercriticalfluids167

4. ApplicationsofscCO2 169

5. Othergreensolvents185

6. Conclusion 185

7. Futureperspectives185 Acknowledgments187 References 187

10.Ionicliquidsasagreensolventsfordrugsorasanactive pharmaceuticalingredient193

FarahBashir,NawshadMuhammad,NajmulHassanKhan,AbdurRahim, PervaizAhamad,AmirSadaKhan,ZahoorUllah,andMuhammadSamie

1. Introduction193

2. Properties 195

3. Pharmaceuticalapplications195

4. ILsasactivepharmaceuticalingredients196

5. SynthesisofAPI-ILs199

6. ThefutureofILsasAPIs201

7. ILsassolvents202

8. Ionicliquidsinproductionofpharmaceuticaldrugsasanalternativemedium202

9. Ionicliquidsindrugdelivery204

10. Conclusion 206 References 206

11.Switchablesolventsforbiocatalysis211

RaniaEl-Shaheny,MahmoudEl-Maghrabey,andFathallaBelal

1. Introduction 211

2. Classificationofswitchablesolvents211

3. MechanismofthereactionofCO2 withaminesandalcohols217

4. Applicationsofswitchablesolvents219

5. (Un)greennessofbiocatalysis:Facts,solutions,andmotivesforusingswitchable solvents 220

6. Realapplicationsofswitchablesolventsinbiocatalysis224

7. Conclusions 231 References 231

12.Ionicliquidsforbiocatalysis235

NaushadAnwarandMohdImranAhamed

1. Introduction 236

2. Selectionofthecomponents239

3. ILsasmediaforbiocatalyticreactions240

4. Conclusions 248 References 248

13.Organiccarbonateasagreensolventforbiocatalysis253

CongChienTruong,DineshKumarMishra,andVivekMishra

1. Greensolvents253

2. Organiccarbonates253

3. Syntheticroutes254

4. Carbonatesasthesolvents257

5. Applicationsofgreenorganiccarbonatesinchemicaltransformation258

6. Applicationinbiocatalysis265 References 269

14.Ionicliquid-mediatedbiocatalyzedorganictransformations277

BubunBanerjeeandAditiSharma

1. Introduction 278

2. Ionicliquid-mediatedorganictransformationsusingbiocatalysts278

3. Conclusions 295

15.Applicationofsupercriticalwaterinbiocatalyticprocesses301

SetarehHeidari,ErfanSadatshojaei,JalalForoozesh,andMohammadLatifi

1. Introduction 301

2. Choiceofsolventforenzymaticreactions302

3. ParametersaffectingSCF-biocatalyticsystems304

4. Applicationofsupercriticalwatertechnologiesinbiocatalyticprocesses315

5. Challengesandlimitations318

6. Conclusion 319 References 319

16.ThepotentialuseofsupercriticalCO2 asasustainablesolvent inbiocatalyticreactions325

ErfanSadatshojaei,SetarehHeidari,andReihanehHaghniaz

1. Introduction

2. BiocatalysisinscCO2

3. Biocatalysisreactions327

4. Challengesandopportunities337

17.Sustainableapproachinbiocatalyticpreparationofantibioticpeptide345

ErfanSadatshojaei,SetarehHeidari,andDavidA.Wood

1. Introduction

2. Antibioticpeptides:Characteristicsandfunctionality347

3. Cyclicpeptidesandrelatedpeptidemolecularcomplexities350 4. Peptidesynthesis352 5. Conclusions

18.Ionicliquidsandtheirbeneficialcontributionstoenzyme-catalyzed reactions,catalyticbiomassconversionandenergyconversion andstoragesystems369

SetarehHeidari,ErfanSadatshojaei,andDavidA.Wood

1.

Contributors

HilalAcidereli

SenResearchGroup,DepartmentofBiochemistry,FacultyofScience,Universityof Dumlupınar,Kutahya,Turkey

PervaizAhamad DepartmentofPhysics,UniversityofAzadJammu&Kashmir,Muzaffarabad,Pakistan

MohdImranAhamed DepartmentofChemistry,FacultyofScience,AligarhMuslimUniversity,Aligarh,Uttar Pradesh,India

MohamedAmin DepartmentofBiochemistry,FacultyofPharmacy,MansouraUniversity,Mansoura,Egypt

A.Anitha

DepartmentofChemicalEngineering,HindustanInstituteofTechnologyandScience,Chennai, India

NaushadAnwar

DepartmentofChemistry,FacultyofScience,AligarhMuslimUniversity,Aligarh,Uttar Pradesh,India

HamidrezaBagheri

DepartmentofChemicalEngineering,FacultyofEngineering,ShahidBahonarUniversityof Kerman,Kerman,Iran

ShokufehBagheri

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

AyanBanerjee

MaterialResourceEfficiencyDivision,CSIR-IndianInstituteofPetroleum,Dehradun,India

BubunBanerjee DepartmentofChemistry,IndusInternationalUniversity,Una,HimachalPradesh,India

FarahBashir

InterdisciplinaryResearchCentreinBiomedicalMaterials(IRCBM)COMSATSUniversity Islamabad;PharmaceuticalChemistry,FacultyofPharmacy,TheUniversityofLahore, Lahore,Pakistan

FathallaBelal

DepartmentofPharmaceuticalAnalyticalChemistry,FacultyofPharmacy,MansouraUniversity, Mansoura,Egypt

AbdelazizElgaml

DepartmentofMicrobiologyandImmunology,FacultyofPharmacy,MansouraUniversity, Mansoura;DepartmentofMicrobiology,FacultyofPharmacy,HorusUniversity, NewDamietta,Egypt

MahmoudEl-Maghrabey

DepartmentofPharmaceuticalAnalyticalChemistry,FacultyofPharmacy,MansouraUniversity, Mansoura,Egypt;DepartmentofAnalyticalChemistryforPharmaceuticals,Courseof PharmaceuticalSciences,GraduateSchoolofBiomedicalSciences,NagasakiUniversity, Nagasaki,Japan

RaniaEl-Shaheny

DepartmentofPharmaceuticalAnalyticalChemistry,FacultyofPharmacy,MansouraUniversity, Mansoura,Egypt;DepartmentofHygienicChemistry,CourseofPharmaceuticalSciences, GraduateSchoolofBiomedicalSciences,NagasakiUniversity,Nagasaki,Japan

MuhammadFaisal

DepartmentofChemistry,Quaid-i-AzamUniversity,Islamabad,Pakistan

JalalForoozesh

ChemicalEngineeringDepartment,UniversitiTeknologiPETRONAS,SeriIskandar,Perak, Malaysia

MehmetGulcan

DepartmentofChemistry,FacultyofScience,UniversityofVanY

ReihanehHaghniaz

DepartmentofBioengineering;CenterforMinimallyInvasiveTherapeutics(C-MIT),California NanoSystemsInstitute(CNSI),UniversityofCalifornia,LosAngeles,LosAngeles,CA, UnitedStates

SetarehHeidari

FacultyofChemicalEngineering,SahandUniversityofTechnology,Tabriz,Iran

D.Jini

DepartmentofChemicalEngineering,HindustanInstituteofTechnologyandScience,Chennai, India

AmirSadaKhan

DepartmentofChemistry,UniversityofScienceandTechnologyBannu,Bannu,Pakistan

NajmulHassanKhan

PharmaceuticalChemistry,FacultyofPharmacy,TheUniversityofLahore,Lahore,Pakistan

DipeshKumar

CentreforEnergy,IndianInstituteofTechnologyGuwahati,Assam,India

KrishnamoorthyLalitha

DepartmentofChemistry,SchoolofChemicalandBiotechnology,SASTRADeemed University,Thanjavur,TamilNadu,India

MohammadLatifi

ProcessEngineeringAdvancedResearchLab(PEARL),ChemicalEngineeringDepartment, PolytechniqueMontreal,Montreal,QC,Canada

DineshKumarMishra

GreenMaterialandProcessR&DGroup,KoreaInstituteofIndustrialTechnology,Cheonan, SouthKorea

VivekMishra

AmityInstituteofClickChemistryResearchandStudies,AmityUniversity,Noida,Uttar Pradesh;GreenChemistryNetworkCentre,DepartmentofChemistry,UniversityofDelhi, Delhi,India

NawshadMuhammad

InterdisciplinaryResearchCentreinBiomedicalMaterials(IRCBM)COMSATSUniversity Islamabad,Lahore,Pakistan

SibelDemirogluMustafov

SenResearchGroup,DepartmentofBiochemistry,FacultyofScience,Universityof Dumlupınar,K € utahya,Turkey

SubbiahNagarajan

DepartmentofChemistry,SchoolofChemicalandBiotechnology,SASTRADeemed University,Thanjavur,TamilNadu;DepartmentofChemistry,NationalInstituteofTechnology Warangal(InstituteofNationalImportance),Warangal,Telangana,India

V.M.Ortiz-Martı ´ nez

DepartmentofChemicalandEnvironmentalEngineering,TechnicalUniversityofCartagena, Murcia,Spain

Y.SivaPrasad

DepartmentofChemistry,SchoolofChemicalandBiotechnology,SASTRADeemed University,Thanjavur,TamilNadu,India

AbdurRahim

InterdisciplinaryResearchCentreinBiomedicalMaterials(IRCBM)COMSATSUniversity Islamabad,Lahore,Pakistan

MohammadRezaRahimpour

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

ErfanSadatshojaei

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

M.J.Salar-Garcı ´ a

DepartmentofChemicalandEnvironmentalEngineering,TechnicalUniversityofCartagena, Murcia,Spain

MuhammadSamie

InterdisciplinaryResearchCentreinBiomedicalMaterials(IRCBM)COMSATSUniversity Islamabad,Lahore,Pakistan

MohammadAminSedghamiz

DepartmentofChemicalEngineering,ShirazUniversity,Shiraz,Iran

FatihSen

SenResearchGroup,DepartmentofBiochemistry,FacultyofScience,Universityof Dumlupınar,Kutahya,Turkey

NimraShakeel

DepartmentofChemistry,FacultyofScience,AligarhMuslimUniversity,Aligarh,Uttar Pradesh,India

AditiSharma

DepartmentofChemistry,IndusInternationalUniversity,Una,HimachalPradesh,India

BhaskarSingh

DepartmentofEnvironmentalSciences,CentralUniversityofJharkhand,Ranchi,India

EdaGokırmakSogut

VanSecurityVocationalSchool,UniversityofYuzuncuYil,Van,Turkey

CongChienTruong

GreenProcessandSystemEngineering,KoreaUniversityofScienceandTechnology;Green MaterialandProcessR&DGroup,KoreaInstituteofIndustrialTechnology,Cheonan, SouthKorea

ZahoorUllah

DepartmentofChemistry,BalochistanUniversityofIT,EngineeringandManagementSciences (BUITEMS),Quetta,Pakistan

DavidA.Wood

DWAEnergyLimited,Lincoln,UnitedKingdom

Biocatalysisinindustrialbiodiesel andbioethanolproduction

DipeshKumara,AyanBanerjeeb,andBhaskarSinghc,* aCentreforEnergy,IndianInstituteofTechnologyGuwahati,Assam,India bMaterialResourceEfficiencyDivision,CSIR-IndianInstituteofPetroleum,Dehradun,India cDepartmentofEnvironmentalSciences,CentralUniversityofJharkhand,Ranchi,India *Correspondingauthor.e-mailaddress:bhaskar.singh@cuj.ac.in

1.Introduction

Fossilfuelshavedriventhewheelsofoursocioeconomicstructurestothecurrentlevels ofluxury.However,thesamehasledtoirreversibleenvironmentaldegradation,global warming,climatechange,andhasalsogivenrisetoenergyinsecurity.Tosupportand sustaintheviablelevelsofeconomicdevelopment,alternativesourcesofenergyare urgentlyrequired.Despitethefactthatsignificantprogresshasbeenmadetoincrease theshareofalternativeenergysourcesintheenergymix,thetransportsectorisstillpredominantlypoweredbyliquidfossilfuels.Battery-poweredvehiclesareveryappealing, butdespiteasignificantsurgeindemand,theshareofe-vehiclesplyingontheroadis negligible.Wecannoteasilydoawaywiththevehiclespoweredbyinternalcombustion enginesastheelectricvehicleswillonlyplayapivotalroleinmidtolongtermdueto severalstrategic,policy,technological,economicandinfrastructurerelatedlimitations. Tothisend,liquidbiofuelsareanattractivechoiceowingtotheirrenewability,cleaner emissionprofile,nontoxicity,miscibilityinpetrol/diesel,biodegradability,andmost importantlytheircompatibilitywiththeexistinginfrastructureofinternalcombustion engines.Biodieselandbioethanolhaveremainedthemostpopularchoicesofliquidbiofuelsforthetransportationindustry.However,theoverallsustainabilityofsuchbiofuelsis muchdependentontheprocessesandinputsthatgointotheirproduction.Conventional catalyticapproacheshaveseveralimportantlimitationandasaresultthereisagrowing bodyofknowledgeonenvironmentfriendlybiocatalysticapporoachesintheproduction ofbiofuels.Thepresentstudyreviewsthestate-of-the-artproductiontechnologyfor thesebiofuelswithaparticularemphasisonthebiocatalyticroute.

2.Biodieselproduction

Biodieseliscurrentlyoneofthemostattractivealternativefuelchoicesintransportation owingtoitsmiscibility(indiesel),renewability,cleaneremissionprofile,local

productionpotential,biodegradability,nontoxicity,andhigherlubricity [1].Thepasttwo decadeshavewitnessedanunprecedentedaugmentationinindustrialbiodieselproduction capacityinlinewiththegrowingdemandforalocallyproducedandcleanerautomotive fuel,biodieselmandates,andcommitmenttoclimatechangemitigation [2–4]

Theideaofusingvegetableoilasafuelfordieselenginedatesbacktoearly1900s whentheinventorofthedieselengineDr.RudolphDieselhadtestedpeanutoilfor thepurpose [5].However,thecurrentdesignoftheengineonlyallowsfortheuseof fuelshavingviscositycomparabletothatofdiesel.Ithaslimitedtheutilityofstraight vegetableoilinadieselengineasvegetableoilsareinvariablywaymoreviscous (10–20 diesel) [6]

Therenewedinterestinvegetableoilasafuelstemsfromthechallengesofenergy insecurity,environmentalpollution,andlimitedreservesofpetroleum [7].Tocircumventthechallengesofhighviscosityofvegetableoils,fivestrategieshavebeenputforth, andtheseinclude:blending(indiesel),pyrolysis,formationofmicroemulsion(with alcoholicsolvents),transesterification(tobiodiesel),andhydro-processing(torenewable diesel) [8].

Transesterificationofvegetableoil(orotheroleaginousmattersuchasanimalfat, recycledcookingoil,grease,etc.)remainsthemostcommonapproachtoproducefuels withviscositycomparabletodiesel [9–11].Intransesterification,thetriglyceride(TAG) tri-esterisconvertedtothreemoleculesofmono-alkylestersoffattyacids(biodiesel)and thealcoholicbackboneofTAG(glycerol)isreleasedasaby-productoftheprocess [12]. Theprocessinvolvesanacylacceptor(short-chainalcohol,methyl/ethylacetate,or dimethylcarbonate)andisgenerallysupportedbyacatalyst [9].Short-chainalcohols(primarilymethanolandethanol)arethemostcommonlyusedacylacceptors.

Transesterificationofoleaginousfeedstockstobiodieselisoftenacatalyzedprocess. Conventionally,homogeneousalkali/acidservesthepurposeofacatalyst,butthese catalystshaveseveralinherentdisadvantages(e.g.,nonreusablenature,productcontamination,downstreampurificationchallenges,andtherequirementofwaterwashand consequentgenerationofwastestreams),whichhavespurredresearchinterestsinthe developmentofnovelheterogeneouscatalysts [13,14].Severaltypesofheterogeneous (basic/acidic)materialshavebeenexaminedastransesterificationcatalysts,andeachof themhavetheirownsetofmeritsandlimitations [15,16].

Mostoftheindustrialfacilitiescurrentlyusethealkali-catalyzedprocessasitisefficientandoperatesundermildreactionconditions [17].TheUnitedStatesofAmericaand theUnitedKingdomarethetoptwobiodieselproducers [18].Thecurrentsuppliesof biodieselarepredominantlysourcedfromediblevegetableoil(rapeseedoilintheUnited Kingdom,soybeanoilintheUnitedStates,palmoilinMalaysiaandIndonesia)forwhich alkali/base-catalyzedtransesterificationisconventionallyappropriate [18].

Theutilityofnonediblefeedstocksliesinthefactthatbarringafewcountries,mostare netimportersofedibleoilsandhenceforthem,thediversionofediblesuppliestoward

biofuelproductioncannotbejustified(foodvs.fueldilemma) [19,20].Besides,mostofthe promisingnonedibleoilseedplants(suchas Jatrophacurcas, Pongamiapinnata,etc.)arehardy, havelimiteddemandformoistureandfertilizers,cangrowonmarginalland,oftenpestand diseaseresistant,andcantoleratewiderangesofenvironmentalstress.Consideringthese advantages,India’sNationalPolicyonBiofuels(2009and2018)explicitlystatesthatonly nonedibleoils(andrecycledcookingoil:RCO)beusedfortheproductionofbiodiesel [2, 21].Sincethecostofthefeedstock( 70%ofthetotalcost)hasbeenidentifiedtobethe mostsignificantdetrimentinthecost-competitiveproductionofbiodiesel,utilizationof RCOpresentsnovelcostreductionopportunities [22,23]

Theutilityofalkali/base-catalyzedtransesterificationfornonedibleandrecycled (used)cookingoilislimitedasthesetypicallycontainhighlevelsoffreefattyacids (FFAs)andmayalsocontainmoistureinexcessoftheprescribedlimits [10,24].The presenceoftheformerduringthealkali/base-catalyzedprocesssupportssaponification whilethelatermaycausehydrolysisofTAG [24].Bothofthesesidereactionsareundesirableasitnotonlyreducestheoverallyield,butalsocomplicatesproductpurification andseparationoperations.Forthesaidschemetooperateefficiently,therecommended limitsofFFAandmoisturearesetat 4mgKOHg 1 oiland0.5wt.%,respectively [25]. Unfortunately,forthenonedibleandrecycledfeedstocks,bothofthesespecificationsare rarelysatisfied [26]

Theacid-catalyzedprocess,ontheotherhand,isindependentofthefeedqualityasit cansimultaneouslyfacilitateesterification(ofFFA)andtransesterification(ofTAG)to biodiesel [27].Moreover,suchcatalystscantolerateexceedinglyhighlevelsofmoisture [28].Thus,acid-catalyzedconversionofRCOoffersaneconomicallyappealingperspective,assuggestedbyseveralofthetechno-economicstudiesonthesubject [29].Despite theadvantages,therequirementoflongreactiontime,hightemperature,high alcohol-to-oilmolarratios(andconsequentrecoveryinfrastructuredemand),neutralization,water-washsetup,andacid-resistantinfrastructurehavehamperedthelarge-scale adoptionoftheprocess [23,29,30].

Thechallengesofalkali/acid-catalyzedtransesterification,asstatedabove,haveforced researchanddevelopmentaleffortstowardthedeploymentofheterogeneous(basic/ acidic)transesterificationcatalysts.Numerousheterogeneousmaterialsofbasic(such asalkaliandalkalineearthmetals,mixedmetaloxides,andbasiczeolites) [31],acidic (heteropolyacids,sulfatedzirconia,andtungstatedzirconia) [32],andbifunctionalnature [33,34] havebeenexaminedforthepurpose.Although,unliketheirconventional homogeneouscounterparts,theheterogeneouscatalysts(bothacidandbase)offerreusability,productpurity,andavoidanceofwaterwash,thesematerialsstillsufferfrom therestofthechallenges(suchaspoorFFAandmoisturetoleranceforbasesandrequirementofhighlydemandingreactionconditionsforacids) [35].Asreported,bifunctional catalystscanfacilitatesimultaneousesterificationandtransesterificationreactions.Such catalystsholdpromiseinimprovingtheenvironmentappealandcost-competitiveness

ofbiodieselproduction,butsincebifunctionaltransesterificationcatalystsisarelatively newdevelopment,researchonsuchmaterialsstillhastogoalongwaybeforetheiractual performancecanbeassessed [33]

Anotherinterestingapproachisthenoncatalytictransformationofoleaginousmatter tobiodiesel [36].Theprocessoperatesundersupercriticalconditionsofmethanol(temperatureandpressureinexcessof300°Cand15MPa,respectively).Theprocessoffers severalvaluableadvantagesoverthecatalyzedprocess,includingveryshortreactiontime, completeconversion,simultaneoustransformationofFFAandTAG,highproduct purity,andeaseofseparation [37].However,therequirementofhighacylacceptor tooilratio,exceedinglyhightemperatureandpressureandrelatedinfrastructuraldemand hampersthetechno-economicviabilityofthefacility [23].

Anothercatalyticapproachtotransesterificationistheutilizationofbiocatalysts (enzyme).Enzymatictransesterificationhasemergedasoneofthemostattractiveopportunitiestoovercomethelimitationsofconventionalcatalysts [38].Environmentfriendliness,easeofrecovery,reusability,benignreactionconditions,high-qualityproduct,and avoidanceofawater-washingsteparetheprominentadvantagesofenzymatictransesterification [39].Enzymatictransesterificationisbyfarthemostenvironmentallyappealing approachfortheproductionofbiodiesel.

2.1Lipase-catalyzedtransesterification

Enzymatictransesterificationinvolvestheutilizationoflipase(TAGacylhydrolase,EC 3.1.1.3) [40].Theseenzymesaretypicallysourcedfromyeast,fungi,andbacteria.Lipases sourcedfromtheseorganismshaveshowndifferentregioselectivity,andthesamehas beenusedtoclassifylipaseintothefollowingfourgroups:(i)fattyacid-specificlipase, (ii)nonselectivelipase,(iii)sn-1-,sn-3-specificlipase,and(iv)sn-2-specificlipase [41].

Thefattyacid-specificlipasebringsaboutthehydrolysisofesterlinkageinTAG betweenthe9thand10thcarbonatomsinthefattyacidchain.Thesn-1-,sn-3-,and sn-2-specificlipasesperformthesamefunctionforesterlinkagesatsn-1,sn-3,and sn-2positionsinTAG.Thenonspecificformoflipaseiscapableofhydrolyzingester linkagesatanypositionintheparentTAGmolecule.Clearly,thenonspecificlipaseoffers significantadvantagesovertheircounterpartsastheycanbringaboutcompletetransesterificationofamoleofTAGtothreemolesoffattyacidalkylester(FAAE;biodiesel)and amoleofglycerol [42]

Thefirstinvestigationonlipase-catalyzedtransesterificationdatesbacktothe1990s whenlipasesourcedfrom Pseudomonasfluorescens and Mucormiehei wereutilizedforthe productionofbiodieselfromsunfloweroil [42].Sincethenavastliteraturehasaccumulatedonthesubjectcoveringdifferentdimensionsofenzymatictransesterificationincludinglipasesourcedfromnovelstrains,theirutilityfordifferentfeedstocks,recombinant lipase,lipaseimmobilization,whole-cellcatalyst,pre/posttreatmentofenzymes,effect ofdifferentacylacceptors,andtheirdosageoradditionstrategies,effectofreaction

temperatureandsolvents,processintensification,andtechno-economicandlife-cycle simulationstudies [40].

Enzymatictransesterificationisproposedtooperateviathe ping-pongbi-bimechanism inwhichtwosubstrates(TAGandmethanol)reacttoproducetwoproducts(FAMEand glycerol)withtheformationofanunstableenzyme-substrateintermediatecomplex [40]. Threekineticpathwayshavebeenputforth.Theseincludethe(i)directconversionof tri/di/monoglyceridestoFFAE,(ii)two-stepconversion(hydrolysisofTAGfollowed byesterification),and(iii)simultaneoustransesterificationofTAGandhydrolysisof TAGtoindividualfattyacidswhichisfollowedbyitsesterificationtobiodiesel [42]

Thegeneralizedmechanismofatwo-stepenzymatictransesterificationispresented below(Eqs.1and2).TheoverallreactioncanbedepictedintheformofEq.(3).The processinvolvesasequentialtransformationofTAGtoamoleculeoffattyacidanda moleculeofdiacylglycerol(DAG)inwhichthelaterproduct(DAG)isbrokendown tomonoacylglycerol(MAG)andthecorrespondingfattyacidchain.MAGreactsin anidenticalmannertoreleasetheglycerolbackbone,andthecorrespondingfattyacid chainisreleased.Thefattyacids(03molecules)thenreactwiththeacylacceptor(03molecules)inanesterificationsteptoproducethecorrespondingFAAEs(03molecules)and H2O(03molecules) [40]:

where En istheenzyme(lipase), Es istheEstersubstrate(TAG,DAG,orMAG), Fa isthe correspondingfattyacid, Gl isGlyceride(DAG,MAG)orglycerol, Al istheacylacceptor (methanol/ethanol), Ep istheproductester(FAAE),and H isH2O.

Unliketheconventionalcatalyticsystemsinwhichtherateofreactionincreaseswith anincreaseinreactiontemperature(untiloptimumtemperature),therateofincreasein enzymatictransesterificationislimitedbythetendencyoflipasedenaturationathigher temperatures.Theoptimumtemperatureforlipase-catalyzedtransesterificationisusually lowerthanthatforothercatalyst-basedtransesterification.Thereactiontemperaturefor enzymatictransesterificationhasbeenanalyzedintherangeof20–60°C [43].Theoptimumrangeformostofthelipaseshasbeenfoundtoliebetween30°Cand50°C [44].

Table1 presentsacomparisonofalternativecatalystsandsupercriticaltechnologyinthe transesterificationofoleaginousfeedstocks.

Enzymatictransesterificationoffersseveraltechnical,economic,andenvironmental advantagesovertheconventionallycatalyzedsystems.Theseprimarilyincludethe following:

(i) SimultaneousesterificationandtransesterificationofFFAandTAG,andthusappropriateforlow-costRCO.

(ii) Benignreactionconditions(lowtemperature,lowmethanoltooilmolarratio).

Table1 Comparisonofdifferentalternativecatalyticandsupercriticaltransesterification.

TypeHomogeneous [45] Heterogeneous [35] Enzymatic [40] Supercritical [46]

AlkaliAcidBaseAcidLipaseNoncatalytic

AcidtolerancePoorUnaffectedPoorUnaffectedUnaffectedUnaffected

Water tolerance PoorUnaffectedPoorUnaffectedUnaffectedUnaffected

Feedstock quality RefinedCrudeRefinedCrudeCrudeCrude

PressureAmbientAmbientAmbientAmbientAmbient10–30MPa

Time1–1.5h4–8h1–3h4–8h12–24h 1h

Molarratio1:6–1:101:30–1:501:10–1:301:30–1:501:3–1:61:30–1:50

Catalyst loading 0.5–1.5%5–10%1–5%5–10%5–10%Notrequired

Catalyst reusability PoorPoorBetterBetterBetterGreen

ProductpurityPoorPoorHighHighHighVeryhigh Downstream purification WaterwashWaterwashEco-friendlyEco-friendlyEcofriendly Notrequired

Product inhibition NoNoNoNoYesNo

Methanol inhibition NoNoNoNoYesNo

Contribution totheoverall cost

HighHighLow-refined feedstock Low,highfor crude feedstock

Lowforwastefeedstock, highforrefined feedstocks

High-cost ofenzyme High-running, operationand maintenance

Overall environmental footprint HighHighLowHighLowHigh

(iii) Theenzymecanretainitsactivityoverseveralcycles.

(iv) Veryhigh-purityproducts(thatconformtoASTMD6751andEN14214 specificationsofbiodieselfornonfeedstock-dependentpropertiessuchasthecontentofgroupIandIImetals,ediblegradeglycerol).

(v) Avoidanceofwaterwashforcrudebiodiesel.

2.1.1Effectofreactionconditions

Acylacceptor

Conventionallyshort-chainalcohols(primarilymethanol)areusedastheacylacceptorin transesterification.Othershort-chainalcoholssuchaspropanol,butanol,octanol,and branched-chainalcoholssuchasisopropanol, tert-butanol,etc.havebeenusedinsome oftheresearchinvestigations [42].Moreover,fewstudieshavealsoanalyzedtheutilityof methyl/ethylacetateanddimethylcarbonateforthesaidpurpose [41].Acetatesare attractiveacylacceptorsforbothrefinedandcrudefeedstocks,asthesedonotcauselipase inactivationandproducetriacetylglycerol(triacetin)asaby-product,whichhasfound applicationsinfood,cosmetic,pesticide,andseveralotherindustries [47].Inaddition tothese,dimethylcarbonatehasalsobeenusedinafewstudiesowingtoitsnontoxic andheat-stableproperties,andthesamecanalsobeusedasanextractionsolvent [40] Owingtoitscheaperproductioncost,methanolisthepreferredchoiceoftheacyl acceptor.Sincethecurrentsuppliesofmethanolaremajorlysourcedfromfossilfuels, itsutilizationcompromisestherenewablenatureofthefuel.Ethanol,ontheotherhand, ispredominantlyderivedfromalcoholicfermentationofbiomassandaccordinglywhen ethanolservesthepurposeofacylacceptorintransesterification(producesfattyacidethyl ester),biodieselcanbeconsideredasentirelyrenewable [48].Stoichiometrically,anoilto alcoholmolarratioof3:1issufficientforthecompleteconversionofeachfattyacidchain inTAGtobiodiesel,butusuallyanexcessofalcoholissuppliedtodrivetheforward reaction(TAGtobiodiesel)towardcompletion.Therequirementofanexcessofalcohol necessitatestheinstallationofrequisiterecoveryinfrastructuretypicallyintheformof vacuumdistillation.Thechoiceoftheacylacceptoralsodictatessomeofthevitalpropertiesofthefuelsuchasitscold-flowproperties,cetanenumber,viscosity,density,calorificvalue,etc. [49].Highpolarityandshort-chainlengthsupporthighconversion whenmethanolisusedastheacylacceptor,butitspoormiscibilityintheoleaginousmatter(nonpolar)maygiverisetomasstransferchallenges.Numerousinvestigationshave reportedtheutilityofcosolventsforimprovedmiscibilityofthereactingspecies.Ethanol, unlikemethanol,hasbettermiscibilityintheoleaginousmatterandproducesafuelwitha higherflashpoint,butitsutilityishamperedduetotheeffectofsterichindrance,which checksthekineticsofthereaction,andasaresult,theyieldofthebiodieselis compromised [50]

Oneofthechallengesinenzymatictransesterificationliesinthetoxicnatureofmethanol,whichcanaltertheactivityoflipasethroughitsinhibition,deactivation,or

denaturationand,therefore,precisecontroloverthemethanoltooilmolarratioand methanoladditionstrategyiscritical [24].

Molarratio

ForthecompleteconversionofamoleofTAG,aminimumof3:1molarequivalentof methanolisrequired;however,theliteraturesuggeststhatenzymedeactivationmay resultfromavalueaslowas 1:1.BlockingofTAGentry,enzymeunfolding,conformationalchanges,poormiscibilityofoilinmethanol,andadsorptionofmethanolon immobilizationsupportfortheenzymearesomeofthefactorsthatmaychecktheconversionoffeedstocktobiodiesel [51].Toovercomechallengesarisingfromthetoxic natureofmethanol,thefollowingfourstrategieshavefoundwidespreadappeal,andthese include(i)continuousadditionofmethanol,(ii)stepwiseadditionofmethanol,(iii)using ablendofethanolandmethanol,and(iv)usingsilicagelswelledinmethanol.Thesestrategiesenvisagelimitingtheconcentrationofmethanolinthereactionmediabelowthe toxiclevelsatanymomentintime [52]

Theoriginoflipaseaffectsitsabilitytotoleratedifferentlevelsofmethanolinthe reactionmedium.SoumanouandBornscheuer [41] reportedthatlipasesourcedfrom Pseudomonas couldbettertoleratehighlevelsandhavehigheroptimumconcentration formethanolthanthatsourcedfrom Rhizomucormiehei or Thermomyceslanuginosus Theoptimumconcentrationforthelipase(from P.cepacia)-catalyzedmethanolysisof soybeanoilwasfoundtobe8.2:1(methanoltooilmolarratio).Thelipasesourcedfrom P.cepacia couldtoleratethehighestlevelsofmethanoloverlipasederivedfromeight othersourcesunderidenticalexperimentalconditions [41].

Lipaseimmobilization

Onthebasisofthepositionofapolypeptidechain(lid),twodifferentconformationsof lipasehavebeenreported.Theseincludetheclosedinactiveconformation(blocked activesite)andtheopen,activeconformation(exposedactivesite) [41].Lipaseimmobilizationisastrategytophysicallyconfinetheenzymeoninactivesupportinitsactive conformation [53].Lipaseimmobilizationisessentialforthedevelopmentofacontinuousindustrial-scaleproductionchain.Asopposedtosmall-scalebatchoperations, whichusuallyinvolvelipaseinfreeform,thecontinuousoperationsofferhighefficiency perunitofreactorconfigurationandacomparativelyhigherrateofreturn [54].Useof immobilizationimprovesthereusability,thermal,andchemicalstability,andreducesthe chancesofproductcontaminationduetotheresiduallipase.Ithasbeenreportedthatthe incrementalcostofusinglipaseinitsfreestateis 20 higherthantheimmobilized lipase,whichisprimarilyattributedtotherequirementofregularinputsofnonreusable lipaseintheformercase [54].

However,thepossibilityofactivityloss,reducedsubstratediffusion,andleakageof theenzymefromtheimmobilizedsupportaresomeofthedisadvantagesofusingimmobilizedlipase [55]

Adsorption,ionicbonding,covalentbonding,entrapment,encapsulation,and cross-linkingarethemostcommonlyadoptedmethodsofenzymeimmobilization [54].Adsorptioninvolvestheattachmentoflipasetocarriersupport(suchasacrylicresin, textilemembrane,diatomaceousearth,celite,andpolypropylene)throughweakvander Waalsanddispersionforcesorbyhydrophobicinteractions [56].Theprocessiseasy, reversible,operatesundermildconditions,andincurslowcost.Moreover,theprocess doesnotleadtoanymajoractivitylossoflipase.Enzymeleakage,thepossibilityofsteric hindrancebythecarriersupport,andnonspecificbindingaresomeofthedisadvantages ofadsorption-basedimmobilization [57].

Numerousresearchinvestigationsonimmobilizedlipase(mainlythroughadsorption) areavailableintheliterature.MostofthesehaveanalyzedtheutilityofNovozym435. Novozym435isthetradenameforanonspecificlipasesourcedfrom Candidaantarctica Bandimmobilizedonacrylicresin [42].Amajorityofstudieshavereportedconversion of 90%forNovozym435-catalyzedtransesterificationofvirginandrecycledvegetable oils [51,58].Novozym435hasshowngoodcatalyticpropertiesandreusabilityin tertbutanolsolvent [59].InadditiontoNovozym435, Candida sp.99–125lipasesupported oncheaptextilemembranehasalsobeenusedinseveralinvestigationsasapotential immobilizationcostreductionstrategy.Immobilized Candida sp.99–125lipasehas showngoodcatalyticproperties( 85%conversion)intheconversionoflard,virginvegetableoils,andRCO [60].

Lipaseimmobilizationthroughcovalentbondingoffersthepossibilityofirreversible bindingoftheenzymeonthesupportandthuscancheckthepossibilityofenzymeleakage [53]. T.lanuginosus lipasewascovalentlyimmobilizedontohydrophobicmicroporouspoly-glutaraldehyde-activatedstyrene-divinylbenzenecopolymerandwasusedto catalyzethetransesterificationofCanolaoil.Underoptimizedconditionsof50°Cand 24h,97%conversionofthefeedstockwasobtained,andunderbatchmodeoperation, theimmobilizedlipasecouldretainitsactivityof10cycles [57]

Inentrapment-basedimmobilization,theenzymeisretainedinthematrixofapolymer,butintheory,theenzymedoesnotattachtothepolymer,andasaresult,itessentiallyremainsfreeinthesolution.Polymerization(bychemicalorphotochemical reaction),temperature-inducedgelation,andionotropicgelationarecommonmethods ofcellimmobilization(byentrapment) [61].Theprocessofentrapmentiseasy,fast, cheap,andusuallyoperatesundermildconditions.Thecatalyticeffectof P.cepacia entrappedinahydrophobicsol-gel(chemicallyinertgelpreparedbypolycondensation oftetraethoxysilaneandisobutyltrimethoxysilane)forthetransesterificationofsoybean oilwasreportedbyNoureddinietal. [62].Thestudyexaminedtheeffectofenzyme dosages,temperature,water,andalcohol.Attheoptimallevelsoftheexaminedvariables

Table2 Advantagesanddisadvantagesofalternativeimmobilizationstrategies.

MethodAdvantagesDisadvantages

AdsorptionSimplestmethod,doesnotleadtoany chemicalchanges,theprocesscanbe easilyreversed,costeffective

EntrapmentCanbeappliedtobroadrangeoflipase andsupport,operatesundermild conditions

Covalent bonding

Unlikeadsorptiontheattachmentis strongandpreventsenzymeleakage

EncapsulationSupportsco-immobilizationoftwoor morelipasesorcellsfortargeted applications,couldprovetobecost effective

Possibilityofenzymeleakage, nonspecificbindingandsteric hindrancebycarrier

Supportactsasabarrierformass transfer

Enzymeconformationand activityarestronglyinfluencedin theprocess

Diffusionchallenges

Ionic bonding SameasadsorptionEnzymeconformationisaffected

formethanolysis(0.5gwater,475mglipase,35°C,7.5:1molarratioofmethanoltosoybeanoil),aconversionof67%within1hwasobtained.Whilefortheethanolysis,aconversionof65%wasattainedwithin1hundertheoptimizedsetofconditionsforthe examinedvariables(0.5gwater,475mglipase,15.2:1molarratioofethanoltosoybean oiland35°C).Althoughthelipasecouldtolerateahighdegreeofstress(intheformof alcohols),onlyamodestdegreeofconversioncouldbeattained.Thelowconversion couldbeattributedtomasstransferlimitationsduetothesupport,whichisoneofthe mostsignificantdisadvantagesofentrapment [61] Table2 presentssomeoftheprominentadvantagesanddrawbacksofdifferentlipaseimmobilizationstrategies.

Effectofasolvent

Numerousstudiesontheutilityoforganicsolventsintransesterificationareavailablein theliteraturebothforconventional(homogeneous)andunconventional(heterogeneous)catalyticsystems.Theutilityofsolventsliesintheirabilitytoimprovethemiscibility(ofmethanolandoleaginousfeedstock)andtherebytoimprovethecontact betweenthereactants.Moreover,solventshavealsoshowneffectivenessinlowering thetimeandtemperaturerequiredtoattainequilibrium.Inenzymatictransesterification, solventsproduceanotherfavorableeffectintermsofloweredinhibitionoflipaseactivity duetomethanol,asthesolventessentiallydilutesthereactionmixture.Solventssuchas diesel,kerosene,n-hexane,benzene,toluene,cyclohexane,carbontetrachloride,chloroform,ethylacetate, tert-butanol,ethanol,etc.havebeenusedforthepurpose [42].The useofdieselandkeroseneassolventsfacilitatedcompleteconversionoffeedstockwithin

3and7h,respectively [63].Duringtransesterificationofglyceroltrioleateusing Candida sp.99–125(immobilized),Luetal. [60] analyzedtheeffectof12differentsolventsand foundthathydrophobicsolvents(suchascyclohexane,benzene, n-hexane,etc.)facilitate higheryields.ThefindingsofthestudyweresubstantiatedbyQinetal. [64] whotested ninesolventsandKojimaetal. [63] whotested18solvents.However,therearecertain challengesintheuseofsolvents,andtheseprimarilyincludetheincreasedcostandenergy requirement(fortherecoveryofsolvents).However,thesechallengesarenotapplicable todiesel(asasolvent)asbiodieselisoftenusedintheblendedform(blendofdieseland biodiesel),butadetailedanalysisofitseffectontheactivityoflipaseandotherdownstreampurificationoperationsislacking.

2.2Otherstrategiestoimprovetheefficiencyofenzymatic transesterification

Lipasessourcedfromdifferentorganisms/species/strainsexhibitadifferentdegreeof feedstockspecificity,regioselectivity,andactivityandthususingacombinationofthese presentsopportunitiesinimprovingtheoperationandcost-competitivenessoftheprocessinvolved.Thecapabilityofdifferentlipasestoselectivelytargetdifferentregionsand subsequentlycatalyzeaspecificmain/sidereactionallowsformoretargetedapplications. Utilizationofacheaplipasewithhigh-gradenonspecificandhighlyactivelipase(suchas Novozym435)canhelpreducethedemandofthelaterandaccordinglyassistincost reductionwithoutcompromisingtheyieldoftheproduct.Moreover,usingacombinationoflipasescancomplementtheactivityofindividualenzymes [51].Forinstance,the rate-limitingstepforlipasesourcedfrom T.lanuginosus isthetransformationofTAGto DAG,whilethatfor C.antarctica istheconversionofDAGtoMAG,andthereforeusing thesecancomplementeachothertoachievetheequilibriuminashorterspanoftime. Arecombinant P.pastoris celldevelopedbyYanetal. [65] couldexpress T.lanuginosus and C.antarctica lipasesbothindividuallyandinsynergy.Individually,for C.antarctica lipasetheconversionwaslimitedto61.58%,whilethatfor T.lanuginosus lipase,the reportedconversionwasonly60%.Thecombinedexpressionanduseofbothofthese ledtoaconversionof95.4%underoptimumconditionsforreactionvariables.Theutilizationoftwocommercialbrandsforthesaidpurpose(Novozym435andLipozymTL IM)(sn-1-,sn-3-specificlipasefrom T.lanuginosus immobilizedonnoncompressiblesilicagel)ledtoahighlyencouragingresult(conversion97.3%).Inasimilarinvestigation, Guanetal. [66] couldexpressboth R.miehei (sn-1,3)and P.cyclopium (nonspecific)lipase in P.pastoris andwhenbothofthesewereuseda95.1%conversionofsoybeanoilwas attainedin12h.Similarresultswereobtainedinotherstudiesonmixinglipasesfromtwo differentsources [67–69].Theapproachishighlyappealing,andthereisagrowingbody ofknowledgeonthesubject,whichwillhelpusbetterunderstandthescalabilityofthe process.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Green sustainable process for chemical and environmental engineering and science: green solvents for by Education Libraries - Issuu