https://ebookmass.com/product/green-energy-m-a-parvezmahmud/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Green Energy to Sustainability Blaschek
https://ebookmass.com/product/green-energy-to-sustainability-blaschek/
ebookmass.com
Green Energy Harvesting Pooja Devi
https://ebookmass.com/product/green-energy-harvesting-pooja-devi/
ebookmass.com
Advances of Artificial Intelligence in a Green Energy Environment Pandian Vasant
https://ebookmass.com/product/advances-of-artificial-intelligence-ina-green-energy-environment-pandian-vasant/
ebookmass.com
Examples & Explanations for The Law of Torts (Examples & Explanations Series) 5th Edition, (Ebook PDF)
https://ebookmass.com/product/examples-explanations-for-the-law-oftorts-examples-explanations-series-5th-edition-ebook-pdf/
ebookmass.com
Possibility of Interreligious Dialogue 1st Edition
Michael H. Mitias
https://ebookmass.com/product/possibility-of-interreligiousdialogue-1st-edition-michael-h-mitias/
ebookmass.com
How to Read the Wilderness : An Illustrated Guide to North American Flora and Fauna Nature Study Guild
https://ebookmass.com/product/how-to-read-the-wilderness-anillustrated-guide-to-north-american-flora-and-fauna-nature-studyguild/ ebookmass.com
Bicycling for Transportation: An Evidence-Base for Communities Melissa Bopp
https://ebookmass.com/product/bicycling-for-transportation-anevidence-base-for-communities-melissa-bopp/
ebookmass.com
The Frozen Prince Maxym M. Martineau [Martineau
https://ebookmass.com/product/the-frozen-prince-maxym-m-martineaumartineau-2/
ebookmass.com
Liquid
Crystals, 3rd Edition Iam-Choon Khoo
https://ebookmass.com/product/liquid-crystals-3rd-edition-iam-choonkhoo/
ebookmass.com
Promoting Health: The Primary Health Care Approach 7th
Edition Jane Taylor
https://ebookmass.com/product/promoting-health-the-primary-healthcare-approach-7th-edition-jane-taylor/
ebookmass.com
GREENENERGY
GREENENERGY ASustainableFuture
M.A.PARVEZMAHMUD
SchoolofElectrical,Mechanicaland
InfrastructureEngineering
TheUniversityofMelbourne Parkville,VIC,Australia
SHAHJADIHISANFARJANA
SchoolofEngineering
DeakinUniversity
Geelong,VIC,Australia
CANDACELANG
SchoolofEngineering
MacquarieUniversity
Sydney,NSW,Australia
NAZMULHUDA
SchoolofEngineering
MacquarieUniversity
Sydney,NSW,Australia
AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom
Copyright©2023ElsevierInc.Allrightsreserved.
MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission. TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook. Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstitute endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachorparticular useoftheMATLAB® software.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-85953-0
ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: JosephP.Hayton
AcquisitionsEditor: LisaReading
EditorialProjectManager: MoisesCarloP.Catain
ProductionProjectManager: KameshRamajogi
CoverDesigner: MilesHitchen
TypesetbyVTeX
1.Introductiontogreenandsustainableenergy1
1.1. Challengesandobjectives1
1.2. Maincontributions3
1.3. Bookoutline5
2.State-of-the-artlifecycleassessmentmethodologiesappliedin renewableenergysystems7
2.1. Introduction7
2.2. Reviewselectioncriteriaandmethod11
2.3. Lifecycleassessmentofrenewablepowerplants12
2.4. LCAofrenewableenergysystems17
2.5. Geographiclocation-wiseLCAofrenewableenergysystems31
2.6. Summaryandoutlook40
2.7. Conclusionandfuturerecommendation45
3.Environmentalimpactsofsolar-PVandsolar-thermalplants47
3.1. Introduction48
3.2. Materialsandmethods52
3.3. Resultsanddiscussion58
3.4. Limitationsofthisstudy71
3.5. Conclusions71
4.Environmentalimpactsofhydropowerplants73
4.1. Introduction73
4.2. HydropowerplantsofalpineandnonalpineareasinEurope78
4.3. Methodology80
4.4. Results88
4.5. Discussion96
4.6. Limitationsandfutureimprovements98
4.7. Conclusion102
5.Environmentalimpactassessmentofrenewablepowerplantsin theUS103
5.1. Introduction103
5.2. USelectricitygenerationandconsumptionoverview109
5.3. Methodology109
5.4. Resultsandinterpretation118
5.5. Uncertaintyanalysis124
5.6. Sensitivityanalysis129
5.7. Discussion131
5.8. Conclusion132
6.Comparativeenvironmentalimpactassessmentofsolar-PV, wind,biomass,andhydropowerplants135
6.1. Introduction136
6.2. Materialsandmethods138
6.3. Resultsanddiscussion147
6.4. Conclusion160
7.Advancedenergy-sharingframeworkforrobustcontroland optimaleconomicoperationofanislandedmicrogridsystem161
7.1. Introduction161
7.2. Power-routingframework164
7.3. Optimization-basedenergy-sharingmodel166
7.4. Power-routingcontrolstrategy168
7.5. Simulationandresults171
7.6. Conclusion177
8.Environmentalimpactassessmentandtechno-economicanalysis ofahybridmicrogridsystem179
8.1. Introduction179
8.2. Microgridsystemoverview183
8.3. Methods185
8.4. Resultsanddiscussion193
8.5. Sensitivityanalysis198
8.6. Conclusion200
9.Futuredirectionstowardsgreenandsustainableenergy205
9.1. Booksummaryandconcludingremarks205
9.2. Futureresearchdirections209
A.Listofacronyms211
B.Listofsymbols213 References215
Index 231
Listoffigures
Figure2.1 Systematicoverviewofthekeystepsfollowedtoconductthis review.12
Figure2.2 ThekeyLCAstages[1].12
Figure2.3 TheLCAframework[1].13
Figure2.4 Thecommonlifecycleinventoryforenergysystems[2].14
Figure2.5 SchematicrepresentationofLCAmethods.15
Figure2.6 Comparisonofkeyimpactsofvariousrenewableplants[2].43
Figure2.7 Keyimpactsofsolar-PVplants.43
Figure2.8 Keyimpactsofhydropowerplants.44
Figure2.9 Keyimpactcomparisonwithwindpowerplants.44
Figure2.10 Keyimpactcomparisonwithbiomasspowerplants.45
Figure3.1 Schematicframeworkofthesolar-PVsystem.53
Figure3.2 Schematicframeworkofthesolar-thermalsystem.53
Figure3.3 Step-by-stepenergyandmaterialflowsforbothsystems.55
Figure3.4 SystemboundaryoftheLCA.56
Figure3.5 Lifecycleinputsandoutputsofthesolar-PVsystemusingthe RMFmethodology.59
Figure3.6 Environmentalprofilesoftheconsideredsolar-PVsystem.60
Figure3.7 End-pointimpactsoftheindividualcomponentsofthe solar-PVsystem.60
Figure3.8 Lifecycleinputsandoutputsofthesolar-thermalsystem usingtheRMFmethodology.62
Figure3.9 Environmentalprofilesoftheconsideredsolar-thermalsystem.62
Figure3.10 End-pointimpactsoftheindividualcomponentsofthe solar-thermalsystem.63
Figure3.11 Comparisonofenvironmentalimpactsfromthesolar-PVand thesolar-thermalsystem.64
Figure3.12 End-pointimpactcomparisonofthesystemsusingImpact 2002+methodology.65
Figure3.13 GHGemissionofthesolar-PVsystemwithatimeperiodof 100years.66
Figure3.14 GHGemissionofthesolar-thermalsystemwithatimeperiod of100years.67
Figure3.15 GHGemissionofthesystemsasdeterminedusingIPCC methodology.67
Figure3.16 Requiredenergyfromdifferentsourcestobuild,operate,and disposeofbothsystems.68
Figure3.17 Probabilitydistributionforthesingle-scoreimpactcategory ofthesolar-PVsystem.70
Figure3.18 Probabilitydistributionforthesingle-scoreimpactcategory ofthesolar-thermalsystem.71
Figure4.1 MapofthealpineboundaryinEurope(source:2ndReporton theStateoftheAlps)[3].79
Figure4.2 Hydropowerproductionscenariosinalpineandnonalpine areasofEurope[4].80
Figure4.3 StagesoftheLCAmethod[5].81
Figure4.4 Materialsflowsheetfor1MJofhydropowergenerationinan alpineregion.82
Figure4.5 Materialsflowsheetfor1MJofhydropowergenerationina nonalpineregion.83
Figure4.6 LCAsystemboundaryusedinthisresearch.84
Figure4.7 LCAmethodsusedinthisresearch.87
Figure4.8 Globalwarming-basedimpactoutcomecomparison.89
Figure4.9 Ozoneformation-basedimpactoutcomecomparison.89
Figure4.10 Ecotoxicity-basedimpactoutcomecomparison.90
Figure4.11 Waterconsumption-basedimpactoutcomecomparison.90
Figure4.12 Effectoutcomecomparisonforotherimpactindicators.91
Figure4.13 End-pointdamageassessmentoftheplantsusingtheImpact 2002+approach.92
Figure4.14 GHGemissionsasdeterminedbytheIPCCapproach.94
Figure4.15 Comparativelifecycleinputsandoutputsofhydropower plantsofalpineandnonalpineregionsasdeterminedbythe RMFmethod.95
Figure4.16 Environmentalimpactsofvariouspowerplants.99
Figure4.17 Probabilitydistributionforthesingle-scoreimpactcategory ofhydropowerplantsofalpinezones.99
Figure4.18 Probabilitydistributionforthesingle-scoreimpactcategory ofhydropowerplantsofnonalpinezones.99
Figure5.1 ElectricityconsumptionoverviewintheUSbasedondifferent energysources[6].111
Figure5.2 Materialflowsheetfor1kWhofsolar-PVpowergeneration.112
Figure5.3 Materialflowsheetfor1kWhofpumpedstoragehydropower generation.113
Figure5.4 Materialflowsheetfor1kWhofbiomasspowergeneration.114
Figure5.5 Commonsystemboundaryforallpowergeneration processesusedinthisLCAanalysis.116
Figure5.6 Lifecycleimpactassessmentmethodsusedinthisresearch.117
Figure5.7 Normalizedenvironmentalimpactoutcomes,asdetermined usingtheTRACImid-pointapproach.119
Figure5.8 LCAoutcomeafterweightingbytheEco-indicator99 end-pointapproach.121
Figure5.9 Metal-andgas-basedemissionsbyrenewableenergyplants asdeterminedusingtheEco-points97method.122
Figure5.10 GHGemissionsasdeterminedusingIPCCmethodology.124
Figure5.11 Probabilitydistributionforthesingle-scoreimpactcategory ofthesolar-PVpowerplant.127
Figure5.12 Probabilitydistributionforthesingle-scoreimpactcategory ofthepumpedstoragehydropowerplant.128
Figure5.13 Probabilitydistributionforthesingle-scoreimpactcategory ofthebiomasspowerplant.128
Figure5.14 Comparisonofthefindingswithexistingstudies.132
Figure6.1 Materialflowsheetfor1MJofsolarenergygeneration.141
Figure6.2 Materialflowsheetfor1MJofwindenergygeneration.142
Figure6.3 Materialflowsheetfor1MJofhydroenergygeneration.143
Figure6.4 Materialflowsheetfor1MJofbiomassenergygeneration.144
Figure6.5 Commonsystemboundaryforallpowergeneration processesusedinthisLCAanalysis.145
Figure6.6 Lifecycleimpactassessmentmethodsusedinthisresearch.146
Figure6.7 ComparativeLCAinputsandoutputsoftheconsidered renewableenergyplantsusingtheRMFmethod.148
Figure6.8 ComparisonperimpactindicatorusingCMLmid-point methodologybyaddingindividualeffects.Thehighest impactissetto100%.149
Figure6.9 LCAoutcomesafterweightingbytheEco-indicator99 end-pointapproach.150
Figure6.10 Relativefuel-basedenergyconsumptionratesbythe consideredplants,asdeterminedusingtheCEDmethod.151
Figure6.11 RelativeGHGemissionsbytheplants,asdeterminedusing theIPCCmethodology.153
Figure6.12 Probabilitydistributionforthesingle-scoreimpactcategory ofthePVpowerplant.154
Figure6.13 Probabilitydistributionforthesingle-scoreimpactcategory ofthewindpowerplant.154
Figure6.14 Probabilitydistributionforthesingle-scoreimpactcategory ofthehydropowerplant.155
Figure6.15 Probabilitydistributionforthesingle-scoreimpactcategory ofthebiomasspowerplant.155
Figure6.16 Outcomecomparisonswithpriorstudies.156
Figure7.1 Theconceptualarchitectureforthepower-routingframework.166
Figure7.2 Powerroutingmanagementstrategy.167
Figure7.3 Invertercontrolstructure.170
Figure7.4 InvertercircuitdiagramwithLCLfilter.170
Figure7.5 AggregatedPVgenerationandloadprofileofprosumersand consumers.172
Figure7.6 Individualloadprofilesofprosumers.172
Figure7.7 Individualloadprofilesofconsumers.173
Figure7.8 SolarirradiationprofileattheMGlocation.173
Figure7.9 Hourlyprosumers’demandandsupplystatus.174
Figure7.10 Hourlyconsumers’demandandsupplystatus.175
Figure7.11 %SoCoftheCSS.175
Figure7.12 HourlyprofitfromtheMGframework.176
Figure7.13 ACandDCbusvoltages.177
Figure7.14 ACbusfrequency.177
Figure8.1 TheMGframeworkstructure.184
Figure8.2 ThesystemboundaryoftheMGframeworkforLCAanalysis.189
Figure8.3 Thestage-wisematerial,energy,andemissionflow.190
Figure8.4 ThematerialflowoftheMGframework.191
Figure8.5 TheLCAmethodsusedinthisanalysis.192
Figure8.6 TheannualexcesspowerrateoftheMGframework.194
Figure8.7 Thelifecycleenvironmentalprofilesoftheframeworkas determinedusingtheReCiPe2016method.195
Figure8.8 End-pointdamageassessmentoftheframeworkusingthe ReCiPe2016method.196
Figure8.9 GHGemissionasdeterminedusingtheIPCCmethod.198
Figure8.10 Themetal-basedemissionsquantificationoutcomeusingthe Eco-points97method.199
Listoftables
Table2.1 Thebestpracticemethodforeachimpactindicator[7].16
Table2.2 Keyfindingsandrecommendationsfromrecentstudieson LCAofsolar-PVplants.19
Table2.3 Keyfindingsandrecommendationsfromrecentstudieson LCAofhydropowerplants.25
Table2.4 Keyfindingsandrecommendationsfromrecentstudieson LCAofwindpowerplants.28
Table2.5 Keyfindingsandrecommendationsfromrecentstudieson LCAofbiomasspowerplants.30
Table2.6 Keyfindingsandrecommendationsfromrecentstudieson LCAofotherrenewableplants.32
Table2.7 Keyfindingsandrecommendationsfromrecentstudieson LCAofrenewableplantsinAsia.34
Table2.8 Keyfindingsandrecommendationsfromrecentstudieson LCAofrenewableplantsinEurope.36
Table2.9 Keyfindingsandrecommendationsfromrecentstudieson LCAofrenewableplantsinAmerica.38
Table2.10 Keyfindingsandrecommendationsfromrecentstudieson LCAofrenewableplantsinotherzones.39
Table2.11 Comparisonofkeymid-pointimpactsamongvarious renewableplants.42
Table3.1 Previousworksoflifecycleassessmentofsolar-thermal systemsandtheirlimitations.50
Table3.2 Previousworksoflifecycleassessmentofsolar-PVsystem andtheirlimitations.51
Table3.3 Datacollectionforframeworksinthesolar-PVsystemandthe solar-thermalsystem.57
Table3.4 Lifecycleinputsandoutputscomparisonbetweenthe solar-PVsystemandthesolar-thermalsystem.64
Table3.5 Sensitivityanalysisoutcomefordifferentsolarcollectortypes forthesolar-thermalsystem.69
Table3.6 Sensitivityanalysisoutcomebasedondifferentbatterytypes forthesolar-PVsystem.70
Table4.1 RecentstudiesonLCAofhydropowerplantsandtheresearch gaps.76
Table4.2 HydropowerproductiondetailsforthealpineareasinEurope.79
Table4.3 Hydropowerproductiondetailsforthenonalpineareasin Europe.79
Table4.4 LCIforLCAoftheconsideredhydropowerplantslocatedin alpineregions.85
Table4.5 LCIforLCAoftheconsideredhydropowerplantslocatedin nonalpineregions.86
Table4.6 Lifecycleenergyconsumptionbytheconsideredhydropower plants,asdeterminedbytheCEDmethod.95
Table4.7 Keyimpactcomparisonwithpreviousstudies.96
Table4.8 Keyimpactsofvariousplants.100
Table4.9 Keydamagecomparisonwithvariousplants.101
Table5.1 Country-basedoverviewofpreviousresearchonsolar-PV, hydro,andbiomasspowerplants.106
Table5.2 ElectricityproductionintheUSbasedondifferentenergy sources[8].110
Table5.3 Datasourcesfortheconsideredrenewablepowerplantsin theUS.115
Table5.4 LCAinputsandoutputsoftheconsideredplantsusingthe RMFapproach.119
Table5.5 Mid-pointenvironmentalimpactsoftheconsideredplantsas determinedusingtheTRACImethod.120
Table5.6 Fuel-basedenergyconsumptionratesofsolar-PV,pumped storagehydropower,andbiomassplantsintheUS.121
Table5.7 Plants’metal-andgas-basedemissionsasdeterminedbythe Eco-points97method.123
Table5.8 GHGemissionsasdeterminedbytheIPCCapproach.123
Table5.9 Mid-pointimpactcomparisonwithothernonrenewable powerplants.125
Table5.10 End-pointimpactcomparisonwithothernonrenewable powerplants.126
Table5.11 Sensitivityanalysisofsevenpumpedstoragehydropower plantsinvariouscountries.130
Table6.1 Datasourcesfortheconsideredrenewablepowerplants.140
Table6.2 Metal-andgas-basedemissionsbyrenewableenergyplants, asdeterminedusingtheEco-points97method.152
Table6.3 Importantfindingsandcomparisonwithotherstudies.157
Table7.1 Controlsystemparameters.171
Table8.1 Simulationparameters.187
Table8.2 DatacollectionforLCAoftheMGframework.190
Table8.3 TheNPC-basedoptimizationresultoftheMGframework.194
Table8.4 ThekeyhazardoussubstancesoftheMGelementsthat mostlyaffecttheend-pointenvironmentalindicators.197
Table8.5 Sensitivityanalysisoutcomesforvariousbatterylifetimesand solar-scaledfactorsinNPC-basedoptimizationoftheMG.200
Table8.6 SensitivityanalysisoutcomeforvariousPVmodulesoftheMG.201
Table8.7 SensitivityanalysisoutcomeforvariousbatteriesoftheMG.202
Introductiontogreenand sustainableenergy
Thedemandforelectricityisincreasingdaybydayduetotheriseof theglobalpopulationandtheincreasingindustrialactivity.Tofulfillthis increasingenergydemand,morecarbon-basedfuelsarebeingusedinconventionalpowerplants,whichreleasegreateramountsofgreenhousegases (GHGs)andhazardoussubstancesintotheenvironment.Thegenerationof renewableelectricity,however,forexamplewithsolar-photovoltaic(PV), wind,biomass,andhydropowerplants,canreplacethefossilfuel-basedproductioninasustainablewayastheyproducelow-carbonelectricitythrough techno-economicoperation.Thus,ithelpstofulfilltheenergydemandsvia anenvironment-friendlyandeconomicallyviableapproach.However,like conventionalenergysystems,renewablepowerplantsalsohavesomedirectandindirectimpactsontheenvironment,humanhealth,ecosystems, andresources,whichcomefromeachelement’sproduction,transportation,installation,operation,andend-of-liferecyclingstages.Therefore,it isneededtoassesstheenvironmentalimpactandeconomicviabilityofrenewableenergyplantsandcomparethemwiththoseofotheroptionsfor aregionbasedonadynamiclifecycleassessment(LCA)approach.Inthis bookweaimtoidentifytheprocessesofrenewableenergysystemsthat contributemosttoenvironmentalandeconomicbenefits.
1.1.Challengesandobjectives
Themainchallengesofthisresearchworkarelistedasfollows:
• Thelifecycleenvironmentalimpactsofallelementsofrenewableplants likesolar-PV,solar-thermal,andhydropowergenerationsystemsmust beidentifiedbyanappropriateLCAapproachtoreplacetheimpacting materialsbyalternativeenvironment-friendlyoptions.
• Thedevelopmentofcomprehensivelifecycleinventory(LCI)approachesconsideringallstagesofrenewableenergyplantsfromraw materialextractiontoend-of-lifewastemanagementisnecessaryfor assessingtheenvironmentalimpacts. GreenEnergy https://doi.org/10.1016/B978-0-32-385953-0.00007-0
• ThequantificationofGHGemissionsbyrenewableplantslocatedin differentgeographiclocationsateachstageoftheirlifecycleisessential tofindcleaneroptions.
• Theestimationoffossilfuel-basedenergyconsumptionoverthelifetimeofrenewablepowerplantsincludingtherawmaterialextraction, manufactureofkeyparts,transportation,systeminstallation,andendof-lifewastedisposalstagesisneededtoreplacecarbon-basedsystems bysustainableapproaches.
• Itisessentialtoevaluatethemetal-basedemissionsintoair,water, andsoiloverthelifetimeofrenewableplantsbyanappropriateLCA methodtosavetheenvironmentandachievecleanerelectricityproduction.
• Uncertaintyandsensitivityanalysesofrenewablepowerplantelements arerequiredtooptimizetheiroperationwithrespecttoenvironmental impactandeconomicgain.Itisalsorequiredtoobtaininformationon theenvironmentalimpactofeachelementoftheconsideredrenewable energysystemsandonwaystosupplyelectricitywithcleanergeneration,highercost-effectiveness,andhigherreliability.
• Thedevelopmentofarenewableenergy-drivenmicrogrid(MG)to shareexcesselectricityinacommunityfortheoptimaluseofdistributedenergyresourcesandbatteryenergystoragesystemsthrough nonlinearprogramming(NLP)-basedoptimizationapproachesisessential.Itisalsonecessarytoverifytheproposedframeworkbya droopcontroller-basedreal-timecontrolstrategyforstabledirectcurrent(DC)andalternatingcurrent(AC)busvoltagestoensurebetter performanceofthegrid.
• Itisrequiredtoconductnetpresentcost(NPC)-basedenergyoptimizationforoptimalsizingofasolarPV-drivenislandedMGusing real-timephysical,operation,andeconomicinputsinthesystem.Itis alsorequiredtodevelopanLCIforthisMGframeworktoevaluatethe environmentalimpactsbasedon21mid-pointindicators,3endpoint indicators,GHGemissions,andfossilfuel-basedenergyconsumption overitslifetimeusingdifferentsystematicLCAapproaches. Motivatedbythechallengesrelatedtothesustainable,clean,andeconomicoperationofrenewableenergytechnologies,themainobjectivesof thebookareasfollows:
• developingacomprehensivesystemboundaryforsolar-PVandsolarthermalsystemsforassessment,comparison,andsensitivityanalysisof
theirlifecycleimpactsontheenvironment,humanhealth,theclimate, andecosystems;
• developingauniqueLCIandquantifyingtheenvironmentalimpacts ofhydropowerplantsinalpineandnonalpineareasofEuropethrough LCAanalysisforidentifyingthebestoption;
• quantifyingtheenvironmentalhazardsofrenewableelectricitygenerationsystemsintheUS,astheUShavenotablesolar-PV,biomass,and pumpedstoragehydropowerplants,andcomparingtheireffectsonthe environmentandhumanhealththroughadynamicLCAapproach;
• designinganovelLCIforsolar-PV,wind,andhydropowerplantsin Switzerlandtoevaluatelifecycleemissionsandidentifythebestplant option;
• developinganadvancedpower-routingframeworkforasolar-PV-based islandedMGwithacentralstoragesystemforoptimaleconomicoperationthroughroutingexcessenergytonearbyneighborhoods;
• conductinganNPC-basedsimulationforoptimalsizingofanislanded MGframeworkandassessingitsenvironmentalimpactsbasedon21 mid-pointindicatorsand3end-pointindicatorsbydevelopinganovel LCIforthesystem.
1.2.Maincontributions
Followingtheabovementionedresearchchallengesandobjectivesof thisbook,thesixkeycontributionsarehighlightedbelow:
• Thefirstcontributionofthisbookisthedesign,systemdevelopment, datacollection,andLCA-basedevaluationoftheenvironmentaleffects ofasolar-PVandasolar-thermalsystem.Toensureeffectivenessof thisresearch,acomprehensivesystemboundaryisdevelopedforboth consideredsolartechnologies,LCAiscarriedoutforbothsystemsby multiplemethodstoassesstheenvironmentalprofiles,theGHGemissionratesareestimatedforbothsystems,andsensitivityanduncertainty analysisisconductedtoexaminetheenvironmentalperformanceof bothsystemsmorecritically.
• ThesecondcontributionofthisbookistheenvironmentalhazardestimationofexistinghydropowerplantsinEurope.Forthatreason,a uniqueLCIisdevelopedforhydropowerplantslocatedinbothalpine andnonalpineareasofEuropetoassesstheirenvironmentalhazards intermsofecosystems,climatechange,resources,andhumanhealth.
Moreover,astep-by-stepLCAanalysisisperformedtodeterminethe GHGandmetal-basedemissionsofbothcategoriesofplants.
• Thethirdcontributionofthisbookisthecomparativeenvironmental impactassessmentofthreedifferentrenewablepowerplants,namely solar-PV,biomass,andpumpedstoragehydropowerplantsintheUS. Theimpactsareconsideredbasedon10mid-pointimpactcategories and3end-pointindicators.
• Thefourthcontributionofthisbookisthedesignanddevelopment ofanewLCIforsolar-PV,wind,biomass,andhydropowerplantsto evaluatelifecycleemissionsandidentifythebestplantoption.
• Thefifthcontributionofthisbookistheestablishmentanadvanced power-routingframeworkforasolar-PV-basedislandedMG.AnNLPbasedoptimizationmodelisdevelopedandappliedfortheday-ahead schedulingofexcesspowerroutingforanoptimalprofittostakeholdersusingtheproposedMGframework.Moreover,amodifieddroop controller-basedreal-timecontrolstrategyisestablishedthatprovides stableDCandACbusvoltagesandensuresbetterperformanceof thegrid.Theproposedpower-routingframeworkisverifiedviaacase studyforatypicalislandedMG.
• Thefinalcontributionofthisresearchistheaccomplishmentofan NPC-basedoptimizationanalysisandanLCA-basedassessmentofthe environmentalimpactofanoff-gridMGframework.Toensurethe validityofthisresearch,NPC-basedoptimizationiscarriedoutforthe highestprofitofprosumersthroughoptimalsizingofelementsusing real-timephysical,operation,andeconomicinputsintheproposedMG system.Moreover,anovelLCIisdevelopedtoevaluatethelifecycle materialandenergyflowandcomparetheenvironmentalimpactsof eachelementoftheMG.
Thewell-knownSimaProsoftwareandtherenownedecoinventglobal databaseareusedtoassessthelifecycleenvironmentalimpactsbymultiplemethodssuchastheInternationalLifeCycleDataSystem(ILCD) formid-pointanalysis,Impact2002+forend-pointanalysis,cumulative energydemand(CED)forfossilfuel-basedenergyconsumptionestimation,Eco-points97formetal-andgas-basedemissionassessment,Ecoindicator99foruncertaintyanalysis,andIntergovernmentalPanelon ClimateChange(IPCC)assessmentforGHGemissionevaluation.Additionally,theHOMERProandMATLAB® toolsareusedforNPC-and NLP-basedoptimizationoftheeconomicoperationoftheMGframeworkforthemaximumprofitofprosumersandrobustcontroloperation
oftheproposedsystem.Thefindingsofthisbookprovidevaluableinformationontheenvironmentalimpactsofeachelementoftheconsidered renewableenergysystemsandonwaystosupplyelectricitywithcleaner generation,highercost-effectiveness,andhigherreliability.Overall,the resultsrevealtheproductionimpactsandcanbeutilizedtoprioritize environment-friendlyandcost-effectiveoperationcorrectlythroughpotentialimprovementplans.
1.3.Bookoutline
Thisbookcontainsageneralintroduction,Plant-basedandcountrybasedLCAofrenewableenergygenerationsystems,environmentalimpactassessment,andeconomicanalysisofislandedandhybridenergyMG frameworks.Therearethreemajorbranches:LCA,economicanalysis(EA), andcombinedLCAandEA.IntheLCAbranch,lifecycleimpactanalyses ofbothplant-based(solar-PV,solar-thermal,andhydropowerplants)and country-based(US)renewableenergyplantsarepresented.Then,inthe EAbranch,NLP-basedeconomicoptimizationofaproposedislandedMG frameworkisaddressed.Finally,inthecombinedLCAandEAbranch,the NPC-basedeconomicoptimizationandlifecycleimpactsofaproposed hybridMGframeworkarediscussed.
Thisbookisoutlinedasfollows.
Chapter 1 providesthechallengesandobjectivesofthisresearchincludingthemaincontributions.Thebookoutlineispresentedattheend ofthischapter.
Chapter 2 focusesonthebackgroundinformationandrelatedworksof LCAandEAofrenewableenergytechnologies.Thischapteralsodiscusses themethodsofLCAandeconomicoptimization.
Chapter 3 presentstheLCAofasolar-PVandasolar-thermalpower plant.Thischapteralsocomparesthefindingsofbothplantcategoriesto makebetter-informedchoices.Itprovidesadditionalinformationonthe impactsassociatedwitheachoftheelementslikethePVpanel,valve, battery,converter,controller,flowmeter,etc.,inbothsolar-PVandsolarthermalsystems,identifyingthecriticalmaterialsandstages;itisanticipated thatbyreplacingthehazardousmaterialstheenvironmentcanbesavedfrom long-termdangerousemissions.
Chapter 4 concentratesontheanalysesofenvironmentalimpactsof hydropowerplantsinalpineandnonalpineareasofEuropebyasystematic LCAapproach.Thischapterpresentstheroleofhydropowerinpromoting
sustainableproductionofelectricity,especiallyusingthefullpotentialsof thealpineregion,thusleadingtoenvironmentallyfriendlycleanrenewable energygeneration.
Chapter 5 discussestheenvironmentaleffectscausedbydifferenttypes ofrenewableplantsthroughLCA.Acomparativestudyisconductedamong solar-PV,biomass,andpumpedstoragehydropowerplantsintheUS.Life cycleimpactanalysishasbeencarriedoutbytheEco-indicator99,Tool fortheReductionandAssessmentofChemicalandotherEnvironmental Impacts,RawMaterialFlows,CED,Eco-points97,andIPCCmethods, usingSimaProsoftware.Theimpactsareconsideredbasedon10mid-point impactcategoriesand3end-pointindicators.Thefindingswillguideinvestorsininstallingsustainableandcleanpowerplants.
Chapter 6 highlightsacomparativeLCAanalysisofsolar-PV,wind, biomass,andhydropowerplants,identifyingthebestrenewableplantoption consideringenvironmentalperspectives.
Chapter 7 proposesanovelenergy-sharingframeworkforaremote localitywhereanMGistheonlymeansofmeetingtheprosumers’load demandsandroutingexcessenergytotheirneighborstofulfilltheirenergydemands.ItalsopresentsanNLP-basedoptimizationmodelforthe day-aheadschedulingofmaximumavailablepowerroutingafterfulfilling prosumers’andconsumers’loaddemandswithintheconstraintsofcentral storageforanoff-gridremoteMGframework.Furthermore,theproposed power-routingframeworkisverifiedinthischaptertobeastablecontrol operationmethodwithpropervoltageregulationutilizingadroopcontrollerinthepowercontrolloopoftheinverter.
Chapter 8 providesanNPC-basedoptimizationanalysisandanLCAbasedenvironmentalimpactassessmentofasolar-PV-drivenoff-gridMG framework.Thischapterhighlightstheresearchoutcomesfromsixperspectives:(i)proposinganoff-gridMGsystem,(ii)optimizingthesystembased onNPCminimization,(iii)analyzinglifecyclematerialflow,(iv)building anLCIapproach,(v)assessingenvironmentalprofilesbymultiplemethods, and(vi)conductingsensitivityanalysestooptimizethedesignandenvironmentalperformanceoftheproposedsystem.Thewell-knownHOMER ProandSimaProsoftwareprogramsandtherenownedecoinventglobal databaseareusedforthecostoptimizationandimpactassessment.
Chapter 9 providesconcludingremarksandproposesfuturedirections forthisresearcharea.
State-of-the-artlifecycle assessmentmethodologies appliedinrenewableenergy systems
Thischapterreviewsthemajorresearchfindingspublishedontheenvironmentalimpactevaluationofrenewableelectricitygenerationsystems throughlifecycleassessment(LCA).Thechapterprovidesimportantinsightsintotheknowledgegapsinlow-carbonelectricityproductiontechnologiesforasustainablefuture.Themainresearchfocusinmostpartsof theworldisonrenewablepowergenerationplantsbecauseoftheirtruepotentialforlow-carbon,nonfossilenergyproduction.However,theseplants havesomenegligibleenvironmentalimpactsonhumankind,resources,and ecosystems.Theseimpactsoccurmostlyduringtheextractionofrawmaterials,theproductionofelementsfromtheextractedrawmaterials,the transportationofthematerialstotheplant,andend-of-lifewastemanagement.Amongafewenvironmentalimpactestimationmethodswhichare widelyusedtodeterminesustainabilityindicators,LCAisawell-justified method.Althoughstate-of-the-artresourcesandtoolshavebeenemployed recentlyinevaluatingtheenvironmentalimpactsofrenewablepowerplants throughouttheirlifespan,thereisstillaresearchgapinidentifyingthekey processeswhichrequiremostattention.Thereviewfindingsrevealthatthe assessmentindicatorsofresourcesandecosystemsarekeyfactorsthatare mostlylackinginthepreviousliteraturewhicharecrucialforpeopleor locationsnearbyplants.Thischapteranalyzesandsummarizestheexisting literaturetoidentifytheresearchgapstoguidefutureresearchinthefield ofsustainablerenewableelectricitygeneration.
2.1.Introduction
Thedemandforelectricityisincreasingdaybydayduetotheriseof theglobalpopulationandtheincreasingindustrialactivity.Tomeetthe increasingdemand,fossilfuel-basedconventionalelectricityproduction hasbeenaugmented[9].Theseconventionalpowerplantsemitincreas-
ingamountsofharmfulgreenhousegases(GHGs)throughtheburning ofcarbonfuelssuchascoal,gas,andoil[10].Therefore,theglobalclimateisbeingaffected.Researchersaregettingmoreconcernedaboutthe resourcesandecosystems,duetotheinevitablethreatsofthereleaseof harmfulsubstancesintotheatmosphere.Itisrequiredtotakestepsto abateglobalGHGemissionstosavetheenvironment.Therefore,nowadays renewableenergysystems(RESs)aregettingmorepopulartoabatethe conventionalcarbon-basedenergygeneration[11].Inthenextdecades, wewillseeanunprecedentedexpansionofRESsforelectricityproduction.Solar-photovoltaic(PV),wind,biomass,andhydropowerarethemost promisingRESstobeconsideredduetotheirhighreliabilityandsustainability[12,13].
Itisusuallyconsideredthatrenewablepowertechnologieshavesmaller environmentalimpactsthanconventionalgenerationsystems,buttheimpactsofRESsarenotnegligible.Itisneededtoquantifytheenvironmental hazardofeachelementduringthemanufacture,transportation,installation, operation,maintenance,andend-of-liferecyclingprocessesofthesolar-PV, wind,biomass,andhydropowerplants.Forthatpurpose,theLCAapproach iswidelyusedtoevaluatetheimpactsofpowerplantsthroughouttheirlifespaninastep-by-stepmanner[14].LCAfollowsthestandardapproachof theInternationalStandardizationOrganization(ISO)[15]inassessingthe environmentalimpactswithaccuracyandrobustness.LCAhasbeenused inamplesustainabilityassessmentsofvariousproductsandsystems.Lelek etal.reportedthatLCAisanimportanttoolforenvironmentalimpact evaluationofenergysystemsasitconsiderslifecycleinputresources,materialflows,andoutputemissionsforoverallimpactquantifications[16]. Thus,comparativeLCAresultscanbeusedasatheoreticalbasistomake better-informedchoicesandimprovesustainability.
Inthelast10years,about67importantresearchworkshavebeenpublishedbasedonLCAofrenewableenergytechnologies.Thepriorstudies depictthattheeffectsofapowerplantvarybasedonitsgeographicallocation.Forinstance,theeffectsofhydropowerplantslocatedinthealpine regionsofEuropedifferfromtheeffectsofhydropowerplantssituatedin nonalpineregionsofEurope.Previousliteraturealsosuggestedthatthe sustainabilityofrenewableenergyplantsinaspecificareadependsonthe abundanceofresourcesinthatzone.Moreover,thedominantelementsthat areresponsibleformostimpactsofeachpowerplantswerehighlightedin thepreviousstudies.Themainpurposeofthiscriticalreviewistoanalyze
andsummarizerecentfindingsfromtheLCAofRESsandprovideafuture directiontooptimizethesustainabilityofrenewableenergyproduction.
Anumberofpriorinvestigationshighlightedthelifecycleeffectsofone majorelementoftheplant,likethePVpanel,turbine,orbattery.Some otherstudiesfocusedononetypeofplantinaspecificlocation,likesolarPV,wind,orhydropowerplant.Therealsoexistpriorworksthatassessed andcomparedvariousrenewableplantsofacountryorspecificlocation. Overall,researchersdepictedmostlyplant-basedLCAandcountry-based LCAofRESs.Liangetal.[17],Akinyeleetal.[18],andMahmudetal.[19] conductedLCAoflithium-ionbatteries.Innocenzietal.[20]andMeng etal.[21]assessedtheeffectsofNiMHbatteries.Espinosaetal.[22,23], Latunussaetal.[24],andGerbinetetal.[25]analyzedtheimpactsofsolarPVpanels.Houetal.[26],Atilganetal.[27],Mahmudetal.[28],Wardet al.[29],Dasetal.[30],Rubioetal.[31],Santoyetal.[32],andJacobson etal.[33]evaluatedtheimpactsofsolartechnologies.Srinivasanetal.[34], Gaudardetal.[35],Brioneshidrovoetal.[36],andSchereretal.[37]evaluatedtheenvironmentalimpactsofhydropowertechnologies.Moreover, Turconietal.[38],Huangetal.[39],Jesuinaetal.[40],Xuetal.[41], Schreiberetal.[42],andFangetal.[43]depictedtheenvironmentaleffects ofwindpowertechnologiesandidentifiedsustainablewaysofconstructing windturbinesforsuperiorenvironmentalprofiles.Furthermore,Beagleet al.[44],Pedroetal.[45],andMaieretal.[46]assessedtheenvironmental impactsofbiomasspowerplantsandsuggestedthemostinfluencingfactors inbioenergysupplychains.Suchplant-basedLCAanalysesofrenewable energytechnologieshighlightedwaysofloweringcarbonemissionsinthe nearfuture,whicharesummarizedtopresentthestateoftheartandto providefutureresearchdirections.Someotherpreviousstudiesonlyinvestigatedtheeffectsofplantsinaspecificlocation,likeAsia[15,47–50], Europe[51–55],orAmerica[31,36,56,57],andfocusedonfindingthe bestrenewableenergyoptioninthezoneconsideringsustainability.Such country-basedLCAanalysisofrenewableenergytechnologieshighlighted waysofsustainablerenewableenergygeneration,butnoneanalyzedthe amountoffossilfuel-basedenergyconsumptionbytheconsideredplants duringconstruction,usage,andend-of-lifemanagementindifferentcountries.
Therearethreereviewarticlesinthisfield.In2019,Barrosetal.presentedacriticalreviewafterconductingastudyconsidering67recent relevantarticles.Inthisreview,theyanalyzeandsummarizethecharacteristicsoftheliterature,identifyingthemostusedimpactcategories,LCA
tools,keywords,journals,researchgroups,andtheirlocations[14].However,asummaryofthetechnicaloutcomesandfuturedirectionshasnot beenprovided.In2013,Turconietal.reviewedLCAsofelectricitygenerationtechnologiesanddemonstratedtheenvironmentalconsequences ofimplementingnewtechnologiesbasedonvaryingexistingLCAfindings[38].Themajorimpactingelementsoftheplantshavenotbeen evaluated.In2009,Varunetal.estimatedandcomparedthecarbonemissionsofrenewableenergygenerationsystems[58],buttherateoffossil fuel-basedenergyconsumptionovertheoveralllifespanoftheplantsand waystoreducecarbonreleaseintotheenvironmenthasnotbeenreported yet.
Thoughtheseenvironmentalhazardsdifferwidelybetweendifferent planttypes,betweendifferentlocations,andbetweenelectricitygeneration systemsofdifferentsizes,itisnecessarytoestimatetheimpactsfromeach REStorecognizethemainelementswhichareresponsibleformostenvironmentalhazards/emissions.Forinstance,thedominantfactorsaffecting themajorimpactsofahydropowerplantareconstruction,transport,the turbine,andthereservoir[11].ItisessentialtoanalyzeandcomparetherecentfindingsonGHGemissionsbyRESstoreduceglobalwarming.The literaturelacksacomprehensiveanalysisandcomparisonoffossilfuel-based energyconsumptionbyRESsthroughouttheirlifetime.Moreover,theimpactsoftherenewablesystemsonhumanhealth,ecosystems,theclimate, andresourcesarenotbeensummarizedinpriorworks.Therefore,themain contributionofthischapterissixfold.First,ithighlightstheLCAmethods ofRESsandindicatestheissuesthatmustbeovercome.Second,itanalyzes andsummarizesthekeyfindingsandrecommendationsforthesustainable developmentofRESsinrecentstudiesforfurtherimprovements.Third,it reviewsthekeyimpactingelementsofeachplantindifferentcountriesto replacethembyanequivalentsustainablealternative.Fourth,itestimates therateoffossilfuel-basedenergyconsumptionduringtheoveralllifespan oftheRES.Fifth,itcomparestherateofGHGemissionfromvariousrenewablepowerplants.Last,itanalyzesandsummarizestheimpactsofRESs onhumanhealth,ecosystems,climate,andresources.
Thestructureofthischapter,includingthemainobjectives,considerations,andcontributions,arepresentedbrieflyinthis Section 2.1.Forthe accomplishmentofthekeyobjectivesofthisstudy, Section 2.2 describes thereviewselectioncriteriaandapproachesusedinthiswork. Section 2.3 highlightstheLCAmethodologyusedforimpactassessmentofrenewable energytechnologies. Section 2.4 depictsthesummaryofsustainability
State-of-the-artlifecycleassessmentmethodologiesappliedinrenewableenergysystems 11 outcomesofsolar-PV,solar-thermal,wind,andhydropowerplants.The findingsofthelifecycleimpactassessmentofRESsatdifferentgeographic locationsaresummarizedin Section 2.5. Section 2.6 summarizesand comparesthekeyfactorsresponsibleforenvironmentalhazardsfromRESs andindicatestheresearchgapsinthepriorLCAresearchinrelationto renewablepowersystems.Lastly,concludingremarksandfutureresearch directionsarepresentedin Section 2.7.
2.2.Reviewselectioncriteriaandmethod
Atthefirststage,therelevantresearchoutcomeswerecollectedand sortedaspartofthematerialselectionprocess.Atotalof67publishedarticlesonLCAofrenewableenergytechnologieswerefound.Mostofthese articleswerepublishedinthe AppliedEnergyJournal,the RenewableEnergy Journal,the JournalofCleanerProduction,the InternationalJournalofLifeCycle Assessment, ScienceoftheTotalEnvironment,andthe Renewable&SustainableEnergyReviews journal.Thesearticleswereclassifiedbasedonthetype ofrenewablepowerresourceandlocationsoftheplants.Fourrenewable powertechnologies,i.e.,solar-PV,wind,hydro,andbiomassplants,were vastlystudiedthroughLCA.
Inthenextstage,thekeyLCAapproacheswereidentifiedthroughan extensivereviewofthearticles.Thecommonsystemboundaryforrenewableenergytechnologieswasalsoinvestigated.Moreover,theLCA mid-pointandend-pointimpactcategoriesweresummarizedfromthe publishedarticles.Furthermore,LCAsoftwareandfunctionalunitswere summarizedreviewingthearticles,whicharehighlightedinSection 2.3 ofthischapter.Inthefollowingstage,theimpactfulelementsanddevices oftheconsideredrenewableplantsbasedonresourcesandlocationswere analyzedandsummarized.
Inthelaststage,theresearchgaps,limitations,andfuturerecommendationswereprovidedbasedonpriorresearchstudies.Thereasonsforthe emissionsfromrenewableenergyplantsandsolutionstoreducetheenvironmentalimpactsweresuggestedinthisstage.LCApractitionersand sustainableenergyproducerswillfindthekeymaterials/devicesthatneed tobereplacedforefficientLCAapplicationandforcleanerproductionof renewableenergyinthenearfuture.Fig. 2.1 depictsasummaryofthefour mainstagestoconductthisreview.