Green energy m. a. parvez mahmud - The ebook is available for online reading or easy download

Page 1


https://ebookmass.com/product/green-energy-m-a-parvezmahmud/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Green Energy to Sustainability Blaschek

https://ebookmass.com/product/green-energy-to-sustainability-blaschek/

ebookmass.com

Green Energy Harvesting Pooja Devi

https://ebookmass.com/product/green-energy-harvesting-pooja-devi/

ebookmass.com

Advances of Artificial Intelligence in a Green Energy Environment Pandian Vasant

https://ebookmass.com/product/advances-of-artificial-intelligence-ina-green-energy-environment-pandian-vasant/

ebookmass.com

Examples & Explanations for The Law of Torts (Examples & Explanations Series) 5th Edition, (Ebook PDF)

https://ebookmass.com/product/examples-explanations-for-the-law-oftorts-examples-explanations-series-5th-edition-ebook-pdf/

ebookmass.com

Possibility of Interreligious Dialogue 1st Edition

https://ebookmass.com/product/possibility-of-interreligiousdialogue-1st-edition-michael-h-mitias/

ebookmass.com

How to Read the Wilderness : An Illustrated Guide to North American Flora and Fauna Nature Study Guild

https://ebookmass.com/product/how-to-read-the-wilderness-anillustrated-guide-to-north-american-flora-and-fauna-nature-studyguild/ ebookmass.com

Bicycling for Transportation: An Evidence-Base for Communities Melissa Bopp

https://ebookmass.com/product/bicycling-for-transportation-anevidence-base-for-communities-melissa-bopp/

ebookmass.com

The Frozen Prince Maxym M. Martineau [Martineau

https://ebookmass.com/product/the-frozen-prince-maxym-m-martineaumartineau-2/

ebookmass.com

Liquid

Crystals, 3rd Edition Iam-Choon Khoo

https://ebookmass.com/product/liquid-crystals-3rd-edition-iam-choonkhoo/

ebookmass.com

Promoting Health: The Primary Health Care Approach 7th

https://ebookmass.com/product/promoting-health-the-primary-healthcare-approach-7th-edition-jane-taylor/

ebookmass.com

GREENENERGY

GREENENERGY ASustainableFuture

M.A.PARVEZMAHMUD

SchoolofElectrical,Mechanicaland

InfrastructureEngineering

TheUniversityofMelbourne Parkville,VIC,Australia

SHAHJADIHISANFARJANA

SchoolofEngineering

DeakinUniversity

Geelong,VIC,Australia

CANDACELANG

SchoolofEngineering

MacquarieUniversity

Sydney,NSW,Australia

NAZMULHUDA

SchoolofEngineering

MacquarieUniversity

Sydney,NSW,Australia

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2023ElsevierInc.Allrightsreserved.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission. TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook. Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstitute endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachorparticular useoftheMATLAB® software.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-85953-0

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JosephP.Hayton

AcquisitionsEditor: LisaReading

EditorialProjectManager: MoisesCarloP.Catain

ProductionProjectManager: KameshRamajogi

CoverDesigner: MilesHitchen

TypesetbyVTeX

1.Introductiontogreenandsustainableenergy1

1.1. Challengesandobjectives1

1.2. Maincontributions3

1.3. Bookoutline5

2.State-of-the-artlifecycleassessmentmethodologiesappliedin renewableenergysystems7

2.1. Introduction7

2.2. Reviewselectioncriteriaandmethod11

2.3. Lifecycleassessmentofrenewablepowerplants12

2.4. LCAofrenewableenergysystems17

2.5. Geographiclocation-wiseLCAofrenewableenergysystems31

2.6. Summaryandoutlook40

2.7. Conclusionandfuturerecommendation45

3.Environmentalimpactsofsolar-PVandsolar-thermalplants47

3.1. Introduction48

3.2. Materialsandmethods52

3.3. Resultsanddiscussion58

3.4. Limitationsofthisstudy71

3.5. Conclusions71

4.Environmentalimpactsofhydropowerplants73

4.1. Introduction73

4.2. HydropowerplantsofalpineandnonalpineareasinEurope78

4.3. Methodology80

4.4. Results88

4.5. Discussion96

4.6. Limitationsandfutureimprovements98

4.7. Conclusion102

5.Environmentalimpactassessmentofrenewablepowerplantsin theUS103

5.1. Introduction103

5.2. USelectricitygenerationandconsumptionoverview109

5.3. Methodology109

5.4. Resultsandinterpretation118

5.5. Uncertaintyanalysis124

5.6. Sensitivityanalysis129

5.7. Discussion131

5.8. Conclusion132

6.Comparativeenvironmentalimpactassessmentofsolar-PV, wind,biomass,andhydropowerplants135

6.1. Introduction136

6.2. Materialsandmethods138

6.3. Resultsanddiscussion147

6.4. Conclusion160

7.Advancedenergy-sharingframeworkforrobustcontroland optimaleconomicoperationofanislandedmicrogridsystem161

7.1. Introduction161

7.2. Power-routingframework164

7.3. Optimization-basedenergy-sharingmodel166

7.4. Power-routingcontrolstrategy168

7.5. Simulationandresults171

7.6. Conclusion177

8.Environmentalimpactassessmentandtechno-economicanalysis ofahybridmicrogridsystem179

8.1. Introduction179

8.2. Microgridsystemoverview183

8.3. Methods185

8.4. Resultsanddiscussion193

8.5. Sensitivityanalysis198

8.6. Conclusion200

9.Futuredirectionstowardsgreenandsustainableenergy205

9.1. Booksummaryandconcludingremarks205

9.2. Futureresearchdirections209

A.Listofacronyms211

B.Listofsymbols213 References215

Index 231

Listoffigures

Figure2.1 Systematicoverviewofthekeystepsfollowedtoconductthis review.12

Figure2.2 ThekeyLCAstages[1].12

Figure2.3 TheLCAframework[1].13

Figure2.4 Thecommonlifecycleinventoryforenergysystems[2].14

Figure2.5 SchematicrepresentationofLCAmethods.15

Figure2.6 Comparisonofkeyimpactsofvariousrenewableplants[2].43

Figure2.7 Keyimpactsofsolar-PVplants.43

Figure2.8 Keyimpactsofhydropowerplants.44

Figure2.9 Keyimpactcomparisonwithwindpowerplants.44

Figure2.10 Keyimpactcomparisonwithbiomasspowerplants.45

Figure3.1 Schematicframeworkofthesolar-PVsystem.53

Figure3.2 Schematicframeworkofthesolar-thermalsystem.53

Figure3.3 Step-by-stepenergyandmaterialflowsforbothsystems.55

Figure3.4 SystemboundaryoftheLCA.56

Figure3.5 Lifecycleinputsandoutputsofthesolar-PVsystemusingthe RMFmethodology.59

Figure3.6 Environmentalprofilesoftheconsideredsolar-PVsystem.60

Figure3.7 End-pointimpactsoftheindividualcomponentsofthe solar-PVsystem.60

Figure3.8 Lifecycleinputsandoutputsofthesolar-thermalsystem usingtheRMFmethodology.62

Figure3.9 Environmentalprofilesoftheconsideredsolar-thermalsystem.62

Figure3.10 End-pointimpactsoftheindividualcomponentsofthe solar-thermalsystem.63

Figure3.11 Comparisonofenvironmentalimpactsfromthesolar-PVand thesolar-thermalsystem.64

Figure3.12 End-pointimpactcomparisonofthesystemsusingImpact 2002+methodology.65

Figure3.13 GHGemissionofthesolar-PVsystemwithatimeperiodof 100years.66

Figure3.14 GHGemissionofthesolar-thermalsystemwithatimeperiod of100years.67

Figure3.15 GHGemissionofthesystemsasdeterminedusingIPCC methodology.67

Figure3.16 Requiredenergyfromdifferentsourcestobuild,operate,and disposeofbothsystems.68

Figure3.17 Probabilitydistributionforthesingle-scoreimpactcategory ofthesolar-PVsystem.70

Figure3.18 Probabilitydistributionforthesingle-scoreimpactcategory ofthesolar-thermalsystem.71

Figure4.1 MapofthealpineboundaryinEurope(source:2ndReporton theStateoftheAlps)[3].79

Figure4.2 Hydropowerproductionscenariosinalpineandnonalpine areasofEurope[4].80

Figure4.3 StagesoftheLCAmethod[5].81

Figure4.4 Materialsflowsheetfor1MJofhydropowergenerationinan alpineregion.82

Figure4.5 Materialsflowsheetfor1MJofhydropowergenerationina nonalpineregion.83

Figure4.6 LCAsystemboundaryusedinthisresearch.84

Figure4.7 LCAmethodsusedinthisresearch.87

Figure4.8 Globalwarming-basedimpactoutcomecomparison.89

Figure4.9 Ozoneformation-basedimpactoutcomecomparison.89

Figure4.10 Ecotoxicity-basedimpactoutcomecomparison.90

Figure4.11 Waterconsumption-basedimpactoutcomecomparison.90

Figure4.12 Effectoutcomecomparisonforotherimpactindicators.91

Figure4.13 End-pointdamageassessmentoftheplantsusingtheImpact 2002+approach.92

Figure4.14 GHGemissionsasdeterminedbytheIPCCapproach.94

Figure4.15 Comparativelifecycleinputsandoutputsofhydropower plantsofalpineandnonalpineregionsasdeterminedbythe RMFmethod.95

Figure4.16 Environmentalimpactsofvariouspowerplants.99

Figure4.17 Probabilitydistributionforthesingle-scoreimpactcategory ofhydropowerplantsofalpinezones.99

Figure4.18 Probabilitydistributionforthesingle-scoreimpactcategory ofhydropowerplantsofnonalpinezones.99

Figure5.1 ElectricityconsumptionoverviewintheUSbasedondifferent energysources[6].111

Figure5.2 Materialflowsheetfor1kWhofsolar-PVpowergeneration.112

Figure5.3 Materialflowsheetfor1kWhofpumpedstoragehydropower generation.113

Figure5.4 Materialflowsheetfor1kWhofbiomasspowergeneration.114

Figure5.5 Commonsystemboundaryforallpowergeneration processesusedinthisLCAanalysis.116

Figure5.6 Lifecycleimpactassessmentmethodsusedinthisresearch.117

Figure5.7 Normalizedenvironmentalimpactoutcomes,asdetermined usingtheTRACImid-pointapproach.119

Figure5.8 LCAoutcomeafterweightingbytheEco-indicator99 end-pointapproach.121

Figure5.9 Metal-andgas-basedemissionsbyrenewableenergyplants asdeterminedusingtheEco-points97method.122

Figure5.10 GHGemissionsasdeterminedusingIPCCmethodology.124

Figure5.11 Probabilitydistributionforthesingle-scoreimpactcategory ofthesolar-PVpowerplant.127

Figure5.12 Probabilitydistributionforthesingle-scoreimpactcategory ofthepumpedstoragehydropowerplant.128

Figure5.13 Probabilitydistributionforthesingle-scoreimpactcategory ofthebiomasspowerplant.128

Figure5.14 Comparisonofthefindingswithexistingstudies.132

Figure6.1 Materialflowsheetfor1MJofsolarenergygeneration.141

Figure6.2 Materialflowsheetfor1MJofwindenergygeneration.142

Figure6.3 Materialflowsheetfor1MJofhydroenergygeneration.143

Figure6.4 Materialflowsheetfor1MJofbiomassenergygeneration.144

Figure6.5 Commonsystemboundaryforallpowergeneration processesusedinthisLCAanalysis.145

Figure6.6 Lifecycleimpactassessmentmethodsusedinthisresearch.146

Figure6.7 ComparativeLCAinputsandoutputsoftheconsidered renewableenergyplantsusingtheRMFmethod.148

Figure6.8 ComparisonperimpactindicatorusingCMLmid-point methodologybyaddingindividualeffects.Thehighest impactissetto100%.149

Figure6.9 LCAoutcomesafterweightingbytheEco-indicator99 end-pointapproach.150

Figure6.10 Relativefuel-basedenergyconsumptionratesbythe consideredplants,asdeterminedusingtheCEDmethod.151

Figure6.11 RelativeGHGemissionsbytheplants,asdeterminedusing theIPCCmethodology.153

Figure6.12 Probabilitydistributionforthesingle-scoreimpactcategory ofthePVpowerplant.154

Figure6.13 Probabilitydistributionforthesingle-scoreimpactcategory ofthewindpowerplant.154

Figure6.14 Probabilitydistributionforthesingle-scoreimpactcategory ofthehydropowerplant.155

Figure6.15 Probabilitydistributionforthesingle-scoreimpactcategory ofthebiomasspowerplant.155

Figure6.16 Outcomecomparisonswithpriorstudies.156

Figure7.1 Theconceptualarchitectureforthepower-routingframework.166

Figure7.2 Powerroutingmanagementstrategy.167

Figure7.3 Invertercontrolstructure.170

Figure7.4 InvertercircuitdiagramwithLCLfilter.170

Figure7.5 AggregatedPVgenerationandloadprofileofprosumersand consumers.172

Figure7.6 Individualloadprofilesofprosumers.172

Figure7.7 Individualloadprofilesofconsumers.173

Figure7.8 SolarirradiationprofileattheMGlocation.173

Figure7.9 Hourlyprosumers’demandandsupplystatus.174

Figure7.10 Hourlyconsumers’demandandsupplystatus.175

Figure7.11 %SoCoftheCSS.175

Figure7.12 HourlyprofitfromtheMGframework.176

Figure7.13 ACandDCbusvoltages.177

Figure7.14 ACbusfrequency.177

Figure8.1 TheMGframeworkstructure.184

Figure8.2 ThesystemboundaryoftheMGframeworkforLCAanalysis.189

Figure8.3 Thestage-wisematerial,energy,andemissionflow.190

Figure8.4 ThematerialflowoftheMGframework.191

Figure8.5 TheLCAmethodsusedinthisanalysis.192

Figure8.6 TheannualexcesspowerrateoftheMGframework.194

Figure8.7 Thelifecycleenvironmentalprofilesoftheframeworkas determinedusingtheReCiPe2016method.195

Figure8.8 End-pointdamageassessmentoftheframeworkusingthe ReCiPe2016method.196

Figure8.9 GHGemissionasdeterminedusingtheIPCCmethod.198

Figure8.10 Themetal-basedemissionsquantificationoutcomeusingthe Eco-points97method.199

Listoftables

Table2.1 Thebestpracticemethodforeachimpactindicator[7].16

Table2.2 Keyfindingsandrecommendationsfromrecentstudieson LCAofsolar-PVplants.19

Table2.3 Keyfindingsandrecommendationsfromrecentstudieson LCAofhydropowerplants.25

Table2.4 Keyfindingsandrecommendationsfromrecentstudieson LCAofwindpowerplants.28

Table2.5 Keyfindingsandrecommendationsfromrecentstudieson LCAofbiomasspowerplants.30

Table2.6 Keyfindingsandrecommendationsfromrecentstudieson LCAofotherrenewableplants.32

Table2.7 Keyfindingsandrecommendationsfromrecentstudieson LCAofrenewableplantsinAsia.34

Table2.8 Keyfindingsandrecommendationsfromrecentstudieson LCAofrenewableplantsinEurope.36

Table2.9 Keyfindingsandrecommendationsfromrecentstudieson LCAofrenewableplantsinAmerica.38

Table2.10 Keyfindingsandrecommendationsfromrecentstudieson LCAofrenewableplantsinotherzones.39

Table2.11 Comparisonofkeymid-pointimpactsamongvarious renewableplants.42

Table3.1 Previousworksoflifecycleassessmentofsolar-thermal systemsandtheirlimitations.50

Table3.2 Previousworksoflifecycleassessmentofsolar-PVsystem andtheirlimitations.51

Table3.3 Datacollectionforframeworksinthesolar-PVsystemandthe solar-thermalsystem.57

Table3.4 Lifecycleinputsandoutputscomparisonbetweenthe solar-PVsystemandthesolar-thermalsystem.64

Table3.5 Sensitivityanalysisoutcomefordifferentsolarcollectortypes forthesolar-thermalsystem.69

Table3.6 Sensitivityanalysisoutcomebasedondifferentbatterytypes forthesolar-PVsystem.70

Table4.1 RecentstudiesonLCAofhydropowerplantsandtheresearch gaps.76

Table4.2 HydropowerproductiondetailsforthealpineareasinEurope.79

Table4.3 Hydropowerproductiondetailsforthenonalpineareasin Europe.79

Table4.4 LCIforLCAoftheconsideredhydropowerplantslocatedin alpineregions.85

Table4.5 LCIforLCAoftheconsideredhydropowerplantslocatedin nonalpineregions.86

Table4.6 Lifecycleenergyconsumptionbytheconsideredhydropower plants,asdeterminedbytheCEDmethod.95

Table4.7 Keyimpactcomparisonwithpreviousstudies.96

Table4.8 Keyimpactsofvariousplants.100

Table4.9 Keydamagecomparisonwithvariousplants.101

Table5.1 Country-basedoverviewofpreviousresearchonsolar-PV, hydro,andbiomasspowerplants.106

Table5.2 ElectricityproductionintheUSbasedondifferentenergy sources[8].110

Table5.3 Datasourcesfortheconsideredrenewablepowerplantsin theUS.115

Table5.4 LCAinputsandoutputsoftheconsideredplantsusingthe RMFapproach.119

Table5.5 Mid-pointenvironmentalimpactsoftheconsideredplantsas determinedusingtheTRACImethod.120

Table5.6 Fuel-basedenergyconsumptionratesofsolar-PV,pumped storagehydropower,andbiomassplantsintheUS.121

Table5.7 Plants’metal-andgas-basedemissionsasdeterminedbythe Eco-points97method.123

Table5.8 GHGemissionsasdeterminedbytheIPCCapproach.123

Table5.9 Mid-pointimpactcomparisonwithothernonrenewable powerplants.125

Table5.10 End-pointimpactcomparisonwithothernonrenewable powerplants.126

Table5.11 Sensitivityanalysisofsevenpumpedstoragehydropower plantsinvariouscountries.130

Table6.1 Datasourcesfortheconsideredrenewablepowerplants.140

Table6.2 Metal-andgas-basedemissionsbyrenewableenergyplants, asdeterminedusingtheEco-points97method.152

Table6.3 Importantfindingsandcomparisonwithotherstudies.157

Table7.1 Controlsystemparameters.171

Table8.1 Simulationparameters.187

Table8.2 DatacollectionforLCAoftheMGframework.190

Table8.3 TheNPC-basedoptimizationresultoftheMGframework.194

Table8.4 ThekeyhazardoussubstancesoftheMGelementsthat mostlyaffecttheend-pointenvironmentalindicators.197

Table8.5 Sensitivityanalysisoutcomesforvariousbatterylifetimesand solar-scaledfactorsinNPC-basedoptimizationoftheMG.200

Table8.6 SensitivityanalysisoutcomeforvariousPVmodulesoftheMG.201

Table8.7 SensitivityanalysisoutcomeforvariousbatteriesoftheMG.202

Introductiontogreenand sustainableenergy

Thedemandforelectricityisincreasingdaybydayduetotheriseof theglobalpopulationandtheincreasingindustrialactivity.Tofulfillthis increasingenergydemand,morecarbon-basedfuelsarebeingusedinconventionalpowerplants,whichreleasegreateramountsofgreenhousegases (GHGs)andhazardoussubstancesintotheenvironment.Thegenerationof renewableelectricity,however,forexamplewithsolar-photovoltaic(PV), wind,biomass,andhydropowerplants,canreplacethefossilfuel-basedproductioninasustainablewayastheyproducelow-carbonelectricitythrough techno-economicoperation.Thus,ithelpstofulfilltheenergydemandsvia anenvironment-friendlyandeconomicallyviableapproach.However,like conventionalenergysystems,renewablepowerplantsalsohavesomedirectandindirectimpactsontheenvironment,humanhealth,ecosystems, andresources,whichcomefromeachelement’sproduction,transportation,installation,operation,andend-of-liferecyclingstages.Therefore,it isneededtoassesstheenvironmentalimpactandeconomicviabilityofrenewableenergyplantsandcomparethemwiththoseofotheroptionsfor aregionbasedonadynamiclifecycleassessment(LCA)approach.Inthis bookweaimtoidentifytheprocessesofrenewableenergysystemsthat contributemosttoenvironmentalandeconomicbenefits.

1.1.Challengesandobjectives

Themainchallengesofthisresearchworkarelistedasfollows:

• Thelifecycleenvironmentalimpactsofallelementsofrenewableplants likesolar-PV,solar-thermal,andhydropowergenerationsystemsmust beidentifiedbyanappropriateLCAapproachtoreplacetheimpacting materialsbyalternativeenvironment-friendlyoptions.

• Thedevelopmentofcomprehensivelifecycleinventory(LCI)approachesconsideringallstagesofrenewableenergyplantsfromraw materialextractiontoend-of-lifewastemanagementisnecessaryfor assessingtheenvironmentalimpacts. GreenEnergy https://doi.org/10.1016/B978-0-32-385953-0.00007-0

• ThequantificationofGHGemissionsbyrenewableplantslocatedin differentgeographiclocationsateachstageoftheirlifecycleisessential tofindcleaneroptions.

• Theestimationoffossilfuel-basedenergyconsumptionoverthelifetimeofrenewablepowerplantsincludingtherawmaterialextraction, manufactureofkeyparts,transportation,systeminstallation,andendof-lifewastedisposalstagesisneededtoreplacecarbon-basedsystems bysustainableapproaches.

• Itisessentialtoevaluatethemetal-basedemissionsintoair,water, andsoiloverthelifetimeofrenewableplantsbyanappropriateLCA methodtosavetheenvironmentandachievecleanerelectricityproduction.

• Uncertaintyandsensitivityanalysesofrenewablepowerplantelements arerequiredtooptimizetheiroperationwithrespecttoenvironmental impactandeconomicgain.Itisalsorequiredtoobtaininformationon theenvironmentalimpactofeachelementoftheconsideredrenewable energysystemsandonwaystosupplyelectricitywithcleanergeneration,highercost-effectiveness,andhigherreliability.

• Thedevelopmentofarenewableenergy-drivenmicrogrid(MG)to shareexcesselectricityinacommunityfortheoptimaluseofdistributedenergyresourcesandbatteryenergystoragesystemsthrough nonlinearprogramming(NLP)-basedoptimizationapproachesisessential.Itisalsonecessarytoverifytheproposedframeworkbya droopcontroller-basedreal-timecontrolstrategyforstabledirectcurrent(DC)andalternatingcurrent(AC)busvoltagestoensurebetter performanceofthegrid.

• Itisrequiredtoconductnetpresentcost(NPC)-basedenergyoptimizationforoptimalsizingofasolarPV-drivenislandedMGusing real-timephysical,operation,andeconomicinputsinthesystem.Itis alsorequiredtodevelopanLCIforthisMGframeworktoevaluatethe environmentalimpactsbasedon21mid-pointindicators,3endpoint indicators,GHGemissions,andfossilfuel-basedenergyconsumption overitslifetimeusingdifferentsystematicLCAapproaches. Motivatedbythechallengesrelatedtothesustainable,clean,andeconomicoperationofrenewableenergytechnologies,themainobjectivesof thebookareasfollows:

• developingacomprehensivesystemboundaryforsolar-PVandsolarthermalsystemsforassessment,comparison,andsensitivityanalysisof

theirlifecycleimpactsontheenvironment,humanhealth,theclimate, andecosystems;

• developingauniqueLCIandquantifyingtheenvironmentalimpacts ofhydropowerplantsinalpineandnonalpineareasofEuropethrough LCAanalysisforidentifyingthebestoption;

• quantifyingtheenvironmentalhazardsofrenewableelectricitygenerationsystemsintheUS,astheUShavenotablesolar-PV,biomass,and pumpedstoragehydropowerplants,andcomparingtheireffectsonthe environmentandhumanhealththroughadynamicLCAapproach;

• designinganovelLCIforsolar-PV,wind,andhydropowerplantsin Switzerlandtoevaluatelifecycleemissionsandidentifythebestplant option;

• developinganadvancedpower-routingframeworkforasolar-PV-based islandedMGwithacentralstoragesystemforoptimaleconomicoperationthroughroutingexcessenergytonearbyneighborhoods;

• conductinganNPC-basedsimulationforoptimalsizingofanislanded MGframeworkandassessingitsenvironmentalimpactsbasedon21 mid-pointindicatorsand3end-pointindicatorsbydevelopinganovel LCIforthesystem.

1.2.Maincontributions

Followingtheabovementionedresearchchallengesandobjectivesof thisbook,thesixkeycontributionsarehighlightedbelow:

• Thefirstcontributionofthisbookisthedesign,systemdevelopment, datacollection,andLCA-basedevaluationoftheenvironmentaleffects ofasolar-PVandasolar-thermalsystem.Toensureeffectivenessof thisresearch,acomprehensivesystemboundaryisdevelopedforboth consideredsolartechnologies,LCAiscarriedoutforbothsystemsby multiplemethodstoassesstheenvironmentalprofiles,theGHGemissionratesareestimatedforbothsystems,andsensitivityanduncertainty analysisisconductedtoexaminetheenvironmentalperformanceof bothsystemsmorecritically.

• ThesecondcontributionofthisbookistheenvironmentalhazardestimationofexistinghydropowerplantsinEurope.Forthatreason,a uniqueLCIisdevelopedforhydropowerplantslocatedinbothalpine andnonalpineareasofEuropetoassesstheirenvironmentalhazards intermsofecosystems,climatechange,resources,andhumanhealth.

Moreover,astep-by-stepLCAanalysisisperformedtodeterminethe GHGandmetal-basedemissionsofbothcategoriesofplants.

• Thethirdcontributionofthisbookisthecomparativeenvironmental impactassessmentofthreedifferentrenewablepowerplants,namely solar-PV,biomass,andpumpedstoragehydropowerplantsintheUS. Theimpactsareconsideredbasedon10mid-pointimpactcategories and3end-pointindicators.

• Thefourthcontributionofthisbookisthedesignanddevelopment ofanewLCIforsolar-PV,wind,biomass,andhydropowerplantsto evaluatelifecycleemissionsandidentifythebestplantoption.

• Thefifthcontributionofthisbookistheestablishmentanadvanced power-routingframeworkforasolar-PV-basedislandedMG.AnNLPbasedoptimizationmodelisdevelopedandappliedfortheday-ahead schedulingofexcesspowerroutingforanoptimalprofittostakeholdersusingtheproposedMGframework.Moreover,amodifieddroop controller-basedreal-timecontrolstrategyisestablishedthatprovides stableDCandACbusvoltagesandensuresbetterperformanceof thegrid.Theproposedpower-routingframeworkisverifiedviaacase studyforatypicalislandedMG.

• Thefinalcontributionofthisresearchistheaccomplishmentofan NPC-basedoptimizationanalysisandanLCA-basedassessmentofthe environmentalimpactofanoff-gridMGframework.Toensurethe validityofthisresearch,NPC-basedoptimizationiscarriedoutforthe highestprofitofprosumersthroughoptimalsizingofelementsusing real-timephysical,operation,andeconomicinputsintheproposedMG system.Moreover,anovelLCIisdevelopedtoevaluatethelifecycle materialandenergyflowandcomparetheenvironmentalimpactsof eachelementoftheMG.

Thewell-knownSimaProsoftwareandtherenownedecoinventglobal databaseareusedtoassessthelifecycleenvironmentalimpactsbymultiplemethodssuchastheInternationalLifeCycleDataSystem(ILCD) formid-pointanalysis,Impact2002+forend-pointanalysis,cumulative energydemand(CED)forfossilfuel-basedenergyconsumptionestimation,Eco-points97formetal-andgas-basedemissionassessment,Ecoindicator99foruncertaintyanalysis,andIntergovernmentalPanelon ClimateChange(IPCC)assessmentforGHGemissionevaluation.Additionally,theHOMERProandMATLAB® toolsareusedforNPC-and NLP-basedoptimizationoftheeconomicoperationoftheMGframeworkforthemaximumprofitofprosumersandrobustcontroloperation

oftheproposedsystem.Thefindingsofthisbookprovidevaluableinformationontheenvironmentalimpactsofeachelementoftheconsidered renewableenergysystemsandonwaystosupplyelectricitywithcleaner generation,highercost-effectiveness,andhigherreliability.Overall,the resultsrevealtheproductionimpactsandcanbeutilizedtoprioritize environment-friendlyandcost-effectiveoperationcorrectlythroughpotentialimprovementplans.

1.3.Bookoutline

Thisbookcontainsageneralintroduction,Plant-basedandcountrybasedLCAofrenewableenergygenerationsystems,environmentalimpactassessment,andeconomicanalysisofislandedandhybridenergyMG frameworks.Therearethreemajorbranches:LCA,economicanalysis(EA), andcombinedLCAandEA.IntheLCAbranch,lifecycleimpactanalyses ofbothplant-based(solar-PV,solar-thermal,andhydropowerplants)and country-based(US)renewableenergyplantsarepresented.Then,inthe EAbranch,NLP-basedeconomicoptimizationofaproposedislandedMG frameworkisaddressed.Finally,inthecombinedLCAandEAbranch,the NPC-basedeconomicoptimizationandlifecycleimpactsofaproposed hybridMGframeworkarediscussed.

Thisbookisoutlinedasfollows.

Chapter 1 providesthechallengesandobjectivesofthisresearchincludingthemaincontributions.Thebookoutlineispresentedattheend ofthischapter.

Chapter 2 focusesonthebackgroundinformationandrelatedworksof LCAandEAofrenewableenergytechnologies.Thischapteralsodiscusses themethodsofLCAandeconomicoptimization.

Chapter 3 presentstheLCAofasolar-PVandasolar-thermalpower plant.Thischapteralsocomparesthefindingsofbothplantcategoriesto makebetter-informedchoices.Itprovidesadditionalinformationonthe impactsassociatedwitheachoftheelementslikethePVpanel,valve, battery,converter,controller,flowmeter,etc.,inbothsolar-PVandsolarthermalsystems,identifyingthecriticalmaterialsandstages;itisanticipated thatbyreplacingthehazardousmaterialstheenvironmentcanbesavedfrom long-termdangerousemissions.

Chapter 4 concentratesontheanalysesofenvironmentalimpactsof hydropowerplantsinalpineandnonalpineareasofEuropebyasystematic LCAapproach.Thischapterpresentstheroleofhydropowerinpromoting

sustainableproductionofelectricity,especiallyusingthefullpotentialsof thealpineregion,thusleadingtoenvironmentallyfriendlycleanrenewable energygeneration.

Chapter 5 discussestheenvironmentaleffectscausedbydifferenttypes ofrenewableplantsthroughLCA.Acomparativestudyisconductedamong solar-PV,biomass,andpumpedstoragehydropowerplantsintheUS.Life cycleimpactanalysishasbeencarriedoutbytheEco-indicator99,Tool fortheReductionandAssessmentofChemicalandotherEnvironmental Impacts,RawMaterialFlows,CED,Eco-points97,andIPCCmethods, usingSimaProsoftware.Theimpactsareconsideredbasedon10mid-point impactcategoriesand3end-pointindicators.Thefindingswillguideinvestorsininstallingsustainableandcleanpowerplants.

Chapter 6 highlightsacomparativeLCAanalysisofsolar-PV,wind, biomass,andhydropowerplants,identifyingthebestrenewableplantoption consideringenvironmentalperspectives.

Chapter 7 proposesanovelenergy-sharingframeworkforaremote localitywhereanMGistheonlymeansofmeetingtheprosumers’load demandsandroutingexcessenergytotheirneighborstofulfilltheirenergydemands.ItalsopresentsanNLP-basedoptimizationmodelforthe day-aheadschedulingofmaximumavailablepowerroutingafterfulfilling prosumers’andconsumers’loaddemandswithintheconstraintsofcentral storageforanoff-gridremoteMGframework.Furthermore,theproposed power-routingframeworkisverifiedinthischaptertobeastablecontrol operationmethodwithpropervoltageregulationutilizingadroopcontrollerinthepowercontrolloopoftheinverter.

Chapter 8 providesanNPC-basedoptimizationanalysisandanLCAbasedenvironmentalimpactassessmentofasolar-PV-drivenoff-gridMG framework.Thischapterhighlightstheresearchoutcomesfromsixperspectives:(i)proposinganoff-gridMGsystem,(ii)optimizingthesystembased onNPCminimization,(iii)analyzinglifecyclematerialflow,(iv)building anLCIapproach,(v)assessingenvironmentalprofilesbymultiplemethods, and(vi)conductingsensitivityanalysestooptimizethedesignandenvironmentalperformanceoftheproposedsystem.Thewell-knownHOMER ProandSimaProsoftwareprogramsandtherenownedecoinventglobal databaseareusedforthecostoptimizationandimpactassessment.

Chapter 9 providesconcludingremarksandproposesfuturedirections forthisresearcharea.

State-of-the-artlifecycle assessmentmethodologies appliedinrenewableenergy systems

Thischapterreviewsthemajorresearchfindingspublishedontheenvironmentalimpactevaluationofrenewableelectricitygenerationsystems throughlifecycleassessment(LCA).Thechapterprovidesimportantinsightsintotheknowledgegapsinlow-carbonelectricityproductiontechnologiesforasustainablefuture.Themainresearchfocusinmostpartsof theworldisonrenewablepowergenerationplantsbecauseoftheirtruepotentialforlow-carbon,nonfossilenergyproduction.However,theseplants havesomenegligibleenvironmentalimpactsonhumankind,resources,and ecosystems.Theseimpactsoccurmostlyduringtheextractionofrawmaterials,theproductionofelementsfromtheextractedrawmaterials,the transportationofthematerialstotheplant,andend-of-lifewastemanagement.Amongafewenvironmentalimpactestimationmethodswhichare widelyusedtodeterminesustainabilityindicators,LCAisawell-justified method.Althoughstate-of-the-artresourcesandtoolshavebeenemployed recentlyinevaluatingtheenvironmentalimpactsofrenewablepowerplants throughouttheirlifespan,thereisstillaresearchgapinidentifyingthekey processeswhichrequiremostattention.Thereviewfindingsrevealthatthe assessmentindicatorsofresourcesandecosystemsarekeyfactorsthatare mostlylackinginthepreviousliteraturewhicharecrucialforpeopleor locationsnearbyplants.Thischapteranalyzesandsummarizestheexisting literaturetoidentifytheresearchgapstoguidefutureresearchinthefield ofsustainablerenewableelectricitygeneration.

2.1.Introduction

Thedemandforelectricityisincreasingdaybydayduetotheriseof theglobalpopulationandtheincreasingindustrialactivity.Tomeetthe increasingdemand,fossilfuel-basedconventionalelectricityproduction hasbeenaugmented[9].Theseconventionalpowerplantsemitincreas-

ingamountsofharmfulgreenhousegases(GHGs)throughtheburning ofcarbonfuelssuchascoal,gas,andoil[10].Therefore,theglobalclimateisbeingaffected.Researchersaregettingmoreconcernedaboutthe resourcesandecosystems,duetotheinevitablethreatsofthereleaseof harmfulsubstancesintotheatmosphere.Itisrequiredtotakestepsto abateglobalGHGemissionstosavetheenvironment.Therefore,nowadays renewableenergysystems(RESs)aregettingmorepopulartoabatethe conventionalcarbon-basedenergygeneration[11].Inthenextdecades, wewillseeanunprecedentedexpansionofRESsforelectricityproduction.Solar-photovoltaic(PV),wind,biomass,andhydropowerarethemost promisingRESstobeconsideredduetotheirhighreliabilityandsustainability[12,13].

Itisusuallyconsideredthatrenewablepowertechnologieshavesmaller environmentalimpactsthanconventionalgenerationsystems,buttheimpactsofRESsarenotnegligible.Itisneededtoquantifytheenvironmental hazardofeachelementduringthemanufacture,transportation,installation, operation,maintenance,andend-of-liferecyclingprocessesofthesolar-PV, wind,biomass,andhydropowerplants.Forthatpurpose,theLCAapproach iswidelyusedtoevaluatetheimpactsofpowerplantsthroughouttheirlifespaninastep-by-stepmanner[14].LCAfollowsthestandardapproachof theInternationalStandardizationOrganization(ISO)[15]inassessingthe environmentalimpactswithaccuracyandrobustness.LCAhasbeenused inamplesustainabilityassessmentsofvariousproductsandsystems.Lelek etal.reportedthatLCAisanimportanttoolforenvironmentalimpact evaluationofenergysystemsasitconsiderslifecycleinputresources,materialflows,andoutputemissionsforoverallimpactquantifications[16]. Thus,comparativeLCAresultscanbeusedasatheoreticalbasistomake better-informedchoicesandimprovesustainability.

Inthelast10years,about67importantresearchworkshavebeenpublishedbasedonLCAofrenewableenergytechnologies.Thepriorstudies depictthattheeffectsofapowerplantvarybasedonitsgeographicallocation.Forinstance,theeffectsofhydropowerplantslocatedinthealpine regionsofEuropedifferfromtheeffectsofhydropowerplantssituatedin nonalpineregionsofEurope.Previousliteraturealsosuggestedthatthe sustainabilityofrenewableenergyplantsinaspecificareadependsonthe abundanceofresourcesinthatzone.Moreover,thedominantelementsthat areresponsibleformostimpactsofeachpowerplantswerehighlightedin thepreviousstudies.Themainpurposeofthiscriticalreviewistoanalyze

andsummarizerecentfindingsfromtheLCAofRESsandprovideafuture directiontooptimizethesustainabilityofrenewableenergyproduction.

Anumberofpriorinvestigationshighlightedthelifecycleeffectsofone majorelementoftheplant,likethePVpanel,turbine,orbattery.Some otherstudiesfocusedononetypeofplantinaspecificlocation,likesolarPV,wind,orhydropowerplant.Therealsoexistpriorworksthatassessed andcomparedvariousrenewableplantsofacountryorspecificlocation. Overall,researchersdepictedmostlyplant-basedLCAandcountry-based LCAofRESs.Liangetal.[17],Akinyeleetal.[18],andMahmudetal.[19] conductedLCAoflithium-ionbatteries.Innocenzietal.[20]andMeng etal.[21]assessedtheeffectsofNiMHbatteries.Espinosaetal.[22,23], Latunussaetal.[24],andGerbinetetal.[25]analyzedtheimpactsofsolarPVpanels.Houetal.[26],Atilganetal.[27],Mahmudetal.[28],Wardet al.[29],Dasetal.[30],Rubioetal.[31],Santoyetal.[32],andJacobson etal.[33]evaluatedtheimpactsofsolartechnologies.Srinivasanetal.[34], Gaudardetal.[35],Brioneshidrovoetal.[36],andSchereretal.[37]evaluatedtheenvironmentalimpactsofhydropowertechnologies.Moreover, Turconietal.[38],Huangetal.[39],Jesuinaetal.[40],Xuetal.[41], Schreiberetal.[42],andFangetal.[43]depictedtheenvironmentaleffects ofwindpowertechnologiesandidentifiedsustainablewaysofconstructing windturbinesforsuperiorenvironmentalprofiles.Furthermore,Beagleet al.[44],Pedroetal.[45],andMaieretal.[46]assessedtheenvironmental impactsofbiomasspowerplantsandsuggestedthemostinfluencingfactors inbioenergysupplychains.Suchplant-basedLCAanalysesofrenewable energytechnologieshighlightedwaysofloweringcarbonemissionsinthe nearfuture,whicharesummarizedtopresentthestateoftheartandto providefutureresearchdirections.Someotherpreviousstudiesonlyinvestigatedtheeffectsofplantsinaspecificlocation,likeAsia[15,47–50], Europe[51–55],orAmerica[31,36,56,57],andfocusedonfindingthe bestrenewableenergyoptioninthezoneconsideringsustainability.Such country-basedLCAanalysisofrenewableenergytechnologieshighlighted waysofsustainablerenewableenergygeneration,butnoneanalyzedthe amountoffossilfuel-basedenergyconsumptionbytheconsideredplants duringconstruction,usage,andend-of-lifemanagementindifferentcountries.

Therearethreereviewarticlesinthisfield.In2019,Barrosetal.presentedacriticalreviewafterconductingastudyconsidering67recent relevantarticles.Inthisreview,theyanalyzeandsummarizethecharacteristicsoftheliterature,identifyingthemostusedimpactcategories,LCA

tools,keywords,journals,researchgroups,andtheirlocations[14].However,asummaryofthetechnicaloutcomesandfuturedirectionshasnot beenprovided.In2013,Turconietal.reviewedLCAsofelectricitygenerationtechnologiesanddemonstratedtheenvironmentalconsequences ofimplementingnewtechnologiesbasedonvaryingexistingLCAfindings[38].Themajorimpactingelementsoftheplantshavenotbeen evaluated.In2009,Varunetal.estimatedandcomparedthecarbonemissionsofrenewableenergygenerationsystems[58],buttherateoffossil fuel-basedenergyconsumptionovertheoveralllifespanoftheplantsand waystoreducecarbonreleaseintotheenvironmenthasnotbeenreported yet.

Thoughtheseenvironmentalhazardsdifferwidelybetweendifferent planttypes,betweendifferentlocations,andbetweenelectricitygeneration systemsofdifferentsizes,itisnecessarytoestimatetheimpactsfromeach REStorecognizethemainelementswhichareresponsibleformostenvironmentalhazards/emissions.Forinstance,thedominantfactorsaffecting themajorimpactsofahydropowerplantareconstruction,transport,the turbine,andthereservoir[11].ItisessentialtoanalyzeandcomparetherecentfindingsonGHGemissionsbyRESstoreduceglobalwarming.The literaturelacksacomprehensiveanalysisandcomparisonoffossilfuel-based energyconsumptionbyRESsthroughouttheirlifetime.Moreover,theimpactsoftherenewablesystemsonhumanhealth,ecosystems,theclimate, andresourcesarenotbeensummarizedinpriorworks.Therefore,themain contributionofthischapterissixfold.First,ithighlightstheLCAmethods ofRESsandindicatestheissuesthatmustbeovercome.Second,itanalyzes andsummarizesthekeyfindingsandrecommendationsforthesustainable developmentofRESsinrecentstudiesforfurtherimprovements.Third,it reviewsthekeyimpactingelementsofeachplantindifferentcountriesto replacethembyanequivalentsustainablealternative.Fourth,itestimates therateoffossilfuel-basedenergyconsumptionduringtheoveralllifespan oftheRES.Fifth,itcomparestherateofGHGemissionfromvariousrenewablepowerplants.Last,itanalyzesandsummarizestheimpactsofRESs onhumanhealth,ecosystems,climate,andresources.

Thestructureofthischapter,includingthemainobjectives,considerations,andcontributions,arepresentedbrieflyinthis Section 2.1.Forthe accomplishmentofthekeyobjectivesofthisstudy, Section 2.2 describes thereviewselectioncriteriaandapproachesusedinthiswork. Section 2.3 highlightstheLCAmethodologyusedforimpactassessmentofrenewable energytechnologies. Section 2.4 depictsthesummaryofsustainability

State-of-the-artlifecycleassessmentmethodologiesappliedinrenewableenergysystems 11 outcomesofsolar-PV,solar-thermal,wind,andhydropowerplants.The findingsofthelifecycleimpactassessmentofRESsatdifferentgeographic locationsaresummarizedin Section 2.5. Section 2.6 summarizesand comparesthekeyfactorsresponsibleforenvironmentalhazardsfromRESs andindicatestheresearchgapsinthepriorLCAresearchinrelationto renewablepowersystems.Lastly,concludingremarksandfutureresearch directionsarepresentedin Section 2.7.

2.2.Reviewselectioncriteriaandmethod

Atthefirststage,therelevantresearchoutcomeswerecollectedand sortedaspartofthematerialselectionprocess.Atotalof67publishedarticlesonLCAofrenewableenergytechnologieswerefound.Mostofthese articleswerepublishedinthe AppliedEnergyJournal,the RenewableEnergy Journal,the JournalofCleanerProduction,the InternationalJournalofLifeCycle Assessment, ScienceoftheTotalEnvironment,andthe Renewable&SustainableEnergyReviews journal.Thesearticleswereclassifiedbasedonthetype ofrenewablepowerresourceandlocationsoftheplants.Fourrenewable powertechnologies,i.e.,solar-PV,wind,hydro,andbiomassplants,were vastlystudiedthroughLCA.

Inthenextstage,thekeyLCAapproacheswereidentifiedthroughan extensivereviewofthearticles.Thecommonsystemboundaryforrenewableenergytechnologieswasalsoinvestigated.Moreover,theLCA mid-pointandend-pointimpactcategoriesweresummarizedfromthe publishedarticles.Furthermore,LCAsoftwareandfunctionalunitswere summarizedreviewingthearticles,whicharehighlightedinSection 2.3 ofthischapter.Inthefollowingstage,theimpactfulelementsanddevices oftheconsideredrenewableplantsbasedonresourcesandlocationswere analyzedandsummarized.

Inthelaststage,theresearchgaps,limitations,andfuturerecommendationswereprovidedbasedonpriorresearchstudies.Thereasonsforthe emissionsfromrenewableenergyplantsandsolutionstoreducetheenvironmentalimpactsweresuggestedinthisstage.LCApractitionersand sustainableenergyproducerswillfindthekeymaterials/devicesthatneed tobereplacedforefficientLCAapplicationandforcleanerproductionof renewableenergyinthenearfuture.Fig. 2.1 depictsasummaryofthefour mainstagestoconductthisreview.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.