Green approaches in medicinal chemistry for sustainable drug design 1st edition bimal k. banik (edit

Page 1


https://ebookmass.com/product/green-approaches-in-medicinalchemistry-for-sustainable-drug-design-1st-edition-bimal-k-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Heterogeneous Catalysis in Sustainable Synthesis (Advances in Green and Sustainable Chemistry) 1st Edition Béla Török

https://ebookmass.com/product/heterogeneous-catalysis-in-sustainablesynthesis-advances-in-green-and-sustainable-chemistry-1st-editionbela-torok/

ebookmass.com

Contemporary Chemical Approaches for Green and Sustainable Drugs 1st Edition Török M. (Ed.)

https://ebookmass.com/product/contemporary-chemical-approaches-forgreen-and-sustainable-drugs-1st-edition-torok-m-ed/

ebookmass.com

Microwaves in Chemistry Applications: Fundamentals, Methods and Future Trends (Advances in Green and Sustainable Chemistry) 1st Edition Aparna Das

https://ebookmass.com/product/microwaves-in-chemistry-applicationsfundamentals-methods-and-future-trends-advances-in-green-andsustainable-chemistry-1st-edition-aparna-das/

ebookmass.com

Handbook

of Patient Safety 1st Edition Peter Lachman (Editor)

https://ebookmass.com/product/handbook-of-patient-safety-1st-editionpeter-lachman-editor/

ebookmass.com

Neuromechanics of Human Movement 5th Edition, (Ebook PDF)

https://ebookmass.com/product/neuromechanics-of-human-movement-5thedition-ebook-pdf/

ebookmass.com

The Oxford Handbook of the Sources of International Law Aspremont

https://ebookmass.com/product/the-oxford-handbook-of-the-sources-ofinternational-law-aspremont/

ebookmass.com

Integrated Behavioral Health in Primary Care: Step-By-Step Guidance for Assessment and Intervention

https://ebookmass.com/product/integrated-behavioral-health-in-primarycare-step-by-step-guidance-for-assessment-and-intervention/

ebookmass.com

Intergovernmental Relations in Divided Societies Fessha

https://ebookmass.com/product/intergovernmental-relations-in-dividedsocieties-fessha/

ebookmass.com

Scientism: prospects and problems De Ridder

https://ebookmass.com/product/scientism-prospects-and-problems-deridder/

ebookmass.com

First Dates with Anna Harrington (First Dates Series) Anna Harrington

https://ebookmass.com/product/first-dates-with-anna-harrington-firstdates-series-anna-harrington/

ebookmass.com

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformation aboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-817592-7

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnnekaHess

EditorialProjectManager: LauraOkidi

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: AlanStudholme

TypesetbySPiGlobal,India

Contributors

BimalKrishnaBanik DepartmentofMathematicsandNaturalSciences,Collegeof SciencesandHumanStudies,DeanshipofResearchDevelopment,Prince MohammadBinFahdUniversity,AlKhobar,KingdomofSaudiArabia

AjoyBasak PathologyandLaboratoryMedicine;OttawaHospitalResearchInstitute, TheOttawaHospital,Ottawa,ON,Canada

SarmisthaBasak FormerlyofKidneyResearchCenter,OttawaHospitalResearch Institute,Ottawa,ON,Canada

BaburajBaskar DepartmentofChemistry,FacultyofEngineeringTechnology, SRMInstituteofScienceandTechnology,Kattankulathur,Kancheepuram(Dt), Tamilnadu,India

BasudebBasu DepartmentofChemistry,NorthBengalUniversity,Darjeeling; DepartmentofChemistry,RaiganjUniversity,Raiganj,India

ShibaniBasu DepartmentofChemistryandBiochemistry,BoiseStateUniversity, Boise,ID,UnitedStates

PreetismitaBorah CSIR-CentralScientificInstrumentsOrganization,Chandigarh, India

ArindamChatterjee SaintLouisUniversity,SchoolofMedicine,Department ofPharmacologyandPhysiology,St.Louis,MO,UnitedStates

AroniChatterjee VirusResearchLaboratory,NationalInstituteofCholeraand EntericDiseases,ID&BGHospitalCampus,Kolkata,India

DhrubajyotiChattopadhyay AmityInstituteofBiotechnology,AmityUniversity, NewTown,Kolkata,WestBengal,India

PrasunChoudhury DepartmentofChemistry,NorthBengalUniversity,Darjeeling, India

AparnaDas DepartmentofMathematicsandNaturalSciences,CollegeofSciences andHumanStudies,PrinceMohammadBinFahdUniversity,AlKhobar,Kingdomof SaudiArabia

MuhammadFaisal DepartmentofChemistry,Quaid-i-AzamUniversity,Islamabad, Pakistan

JhumaGanguly DepartmentofChemistry,IndianInstituteofEngineeringScience andTechnology,Shibpur,Howrah,India

ArkajitGhosh IndianInstituteofEngineeringScienceandTechnology,Shibpur, India

ManojitGhosh IndianInstituteofEngineeringScienceandTechnology,Shibpur, India

K.Ilango DepartmentofPharmaceuticalChemistry,SRMCollegeofPharmacy, SRMInstituteofScienceandTechnology,Kattankulathur,Kancheepuram(Dt), Tamilnadu,India

AdyaJain SchoolofStudiesinChemistry,JiwajiUniversity,Gwalior,India

DriptaDeJoarder DepartmentofChemistry,UniversityofCalcutta,Kolkata,India

SaritaKhandelwal DepartmentofChemistry,UniversityofRajasthan,Jaipur,India

AnjanKumar RolandInstituteofPharmaceuticalSciences,Berhampur,India

HritwikKumar IndianInstituteofEngineeringScienceandTechnology,Shibpur, India

MahendraKumar DepartmentofChemistry,UniversityofRajasthan,Jaipur,India

ArunKumarMahato DepartmentofPharmaceuticalSciences,SardarBhagwan SinghUniversity,Dehradun,India

DilipK.Maiti DepartmentofChemistry,UniversityofCalcutta,Kolkata,India

SantuMaity DepartmentofChemistry,IndianInstituteofEngineeringScienceand Technology,Shibpur,Howrah,India

BibhashC.Mohantad SeemantaInstituteofPharmaceuticalSciences,Mayurbhanj, Odisha,India

ChhandaMukhopadhyay DepartmentofChemistry,UniversityofCalcutta, Kolkata,India

SankaranarayananMurugesan MedicinalChemistryResearchLaboratory, DepartmentofPharmacy,BirlaInstituteofTechnology&Science,PilaniCampus, Pilani,India

JnyanaranjanPanda RolandInstituteofPharmaceuticalSciences,Berhampur,India

Ch.NiranjanPatra RolandInstituteofPharmaceuticalSciences,Berhampur,India

PrasunPatra AmityInstituteofBiotechnology,AmityUniversity,NewTown, Kolkata,WestBengal,India

B.V.V.RaviKumar RolandInstituteofPharmaceuticalSciences,Berhampur,India

GildardoRivera LaboratoryofPharmaceuticalBiotechnology,CenterforGenomic Biotechnology,NationalPolytechnicInstitute,Reynosa,Mexico

AvinavaRoy IndianInstituteofEngineeringScienceandTechnology,Shibpur,India

EshaRushell DepartmentofChemistry,UniversityofRajasthan,Jaipur,India

AamerSaeed DepartmentofChemistry,Quaid-i-AzamUniversity,Islamabad, Pakistan

GourabSaha TampereUniversityofTechnology,Tampere,Finland

BiswaMohanSahoo RolandInstituteofPharmaceuticalSciences,Berhampur,India

RajarshiSarkar NarseeMonjeeInstituteofManagementStudies,Indore,India

C.NithyaShanthi DepartmentofPharmaceuticalSciences,SardarBhagwanSingh University,Dehradun,India

AshokKumarSrivastava DepartmentofChemistry,FacultyofEngineering& Technology,VeerBahadurSinghPurvanchalUniversity,Jaunpur,India

YogeshKumarTailor DepartmentofChemistry,UniversityofRajasthan,Jaipur, India

RamNareshYadav DepartmentofChemistry,FacultyofEngineering& Technology,VeerBahadurSinghPurvanchalUniversity,Jaunpur,India

Editor’sbiography

BimalKrishnaBanik conductedpostdoctoralresearchatCaseWesternReserve University(UnitedStates)andStevensInstituteofTechnology(UnitedStates).He isanFRSC,CChem,andFICS.Dr.Banikwasatenuredfullprofessorinchemistry andFirstPresident’sEndowedProfessorinScience&EngineeringattheUniversity ofTexas-PanAmericanandtheVicePresidentofResearch&EducationDevelopmentoftheCommunityHealthSystemsofSouthTexas.Atpresent,Dr.Banikisa professorandseniorresearcheroftheDeanshipofResearchDevelopment&College ofNaturalSciencesatthePrinceMohammedBinFahdUniversityinKingdomof SaudiArabia.

ProfessorBanikhastaughtorganicandmedicinalchemistrytoBS,MS,andPhD studentsinUSuniversitiesformanyyears.Histeachingskillsareexceptionallystrong andtheseareprovedbyseveralthousandstudents’andpeer’sevaluations.Hehas mentoredapproximately450students,20postdoctoralfellows,and7PhDresearch scientistsandhasadvised20universityfaculties.ProfessorBanikhasactedasthe advisorof2students’organizationsandsocietiesthathave1400students.

ProfessorBanikhasconductedsyntheticchemistryandchemicalbiologyresearch onovary,colon,breast,blood,prostate,brain,pancreasandskincancers(alsoonNCI 60cancercelllines);antibiotics;hormones;catalysis;greenchemistry;naturalproducts;andmicrowave-inducedreactions.Astheprincipalinvestigator(PI),hehasbeen awarded $7.25millioningrantsfromNIH,UnitedStatesandNCI,UnitedStates. Importantly,hehaspeer-reviewed402publicationsalongwith491presentation abstracts.Thenumberofcitationsofhispublicationsiscloseto6550.Hisresearch hasbeenexposedinmediaapproximately200times.ProfessorBanikhasservedas thePIofajointgreenchemistrysymposiumbetweenUnitedStatesandIndia.He

haspresided20symposiumsattheAmericanChemicalSociety(ACS)NationalMeetingsandover2-dozenconferencesattheState,National,andInternationallevel, including1attheNobelPrizecelebrationinGermany.Inthecapacityofchair,he hasintroducedmorethan300speakers.Heisareviewerof93,editorialboardmember of28,editor-in-chiefof14,founderof4,associateeditorof4,andguesteditorof6 journals.Astheeditor-in-chief,hehasrecruitedapproximately200associateeditors, regionaleditors,andeditorialboardmembersfromdifferentcountries.HeisanexaminerofNSF,NCI,NRC,DOE,ACS,andinternationalgrantapplications;reviewerof promotionandtenureoffacultyofnationalandinternationaluniversities;examinerof doctoraltheses;panelmemberofNSFandNCI/NIHgrantsections.Overtheyears,he hasservedasthechair/memberofmorethan100scientificcommittees.Professor BanikhasservedasthechairoftheUniversityofTexasM.D.AndersonCancerCenter’sdrugdiscoverysymposiumsanddirectedtheNCIfundedanalyticalchemistry Coreresearchlaboratory.

ProfessorBanikhasreceivedtheIndianChemicalSociety’s(ICS)Life-Time AchievementAwardin2018;MahatmaGandhiPravasiHonorgoldmedalfrom theUKParliament;ICS’sProfessorP.K.Boseendowmentmedal;Dr.M.N.Ghosh goldmedal;UniversityofTexasBoardofRegents’OutstandingTeachingaward;5 top-citedpapersawardsbyElsevierJournals;approximately50certificatesofexcellenceinhisprofession;IndianAssociationCommunityServiceaward;ACSMember Serviceaward;NCIwebpagerecognition;bestresearcherandmentorawardbythe UTPA;chosenasoneoftheWorld’sMostInfluentialPeopleonEarthinYear2016byUSNewsCorporation;BurdwanUniversityEminentAlumnusrecognition; FirstPresident’sEndowedProfessorshipattheUTPAinits87yearofhistory; UTPA’sawardforexcellenceininternationalstudies.Someofhisinternational researchpresentationsareconsideredaskeynote,plenary,inauguralandawardwinninglectures.Dr.Banikhasreceivedmorethan200invitationstodeliverlectures inUnitedStates,India,UnitedKingdom,Germany,China,HongKong,Greece,Italy, France,Jamaica,Sweden,Japan,Singapore,Pakistan,Norway,Bangladesh,Canada, Mexico,Vietnam,SouthKorea,Thailand,SaudiArabia,UnitedArabEmirates, Argentina,Portugal,Switzerland,Venezuela,Brazil,Spain,NewZealand,Egypt, Austria,AustraliaandTurkey.Heisalsoinvitedtowriteresearchandtextbooks bymajorpublishers,includingWiley,Elsevier,Springer,SpringerNature,Taylor& Francis,Thompson,Linus,Nova,Pearson,Cengage,HoughtonMifflinand PMUPress.

Preface

Greenapproachesinmedicinalchemistryforsustainabledrugdesignisbasedonthe knowledgeofateamofreputablescientists.Thisgroupintegratesandencouragesthe growthofmedicinalchemistry,organicchemistry,anddrugdiscoveryefforts.This bookoffersnumerousgreenandsustainableapproachestowardmedicinalchemistry throughthesynthesisofmoleculesbyenvironmentallybenignmethods(inwater,in theabsenceofsolvents,nonconventionalreactionmedia,one-potmethod,andionic liquid),catalysis,microwave-inducedreactions,naturalediblematerials,nanotechnology,engineering,biochemicalandcomputer-assistedmethods.Anumberoftest resultsofmedicinallyactivemoleculeswithrespecttospecificdiseasesareprovided inthiscontext.Theuseofnaturalandnonharmfulresources(spices,vegetables,clay, andsugar)isshownasoneofthesustainablemethodsforobtainingusefulstructures.

Thisbookrevealshowgreenapproachesareusedinmedicinalchemistryfor human’slifeimprovement.Variousimportantpointsaremade:adoptionofsustainableandgreenchemistrypathwaysinthepreparationofusefulmolecules,risksof usinghazardousmaterials,andidentifiescost-effectivesimpleprocesses.Ibelieve thisbookwillbeusefulfordiversechemists,biologists,pharmacologists,pharmacists,biotechnologists,clinicians,andengineersworkinginbothacademiaandindustry;undergraduateandgraduatestudents,andpostdoctoralfellows;scientists/faculty membersworkingingovernment,industry,andacademics.

Thisbookhas27chapterswrittenbythescientistsofdiversebackgroundandexperience.Thesechaptersaredividedinaccordancewiththeprincipalaimsdescribed. Illangoetal.exploredgreensynthesisofnaturalandsyntheticcompoundsasanticanceragents.Ghoshetal.studiedantibacterialandantimicrobialcoatingsonmetalsubstratesbycoldspraymethod.ChoudhuryandBasusynthesizedmedicinallyimportant heterocyclesusinggrapheneoxideasasustainablecatalyst.Mukhopadhyayetal. investigatedgreenmethodsforthesynthesisofpotentialsdrugsagainsttropicaldiseases.JainandBanikstudiedclay-mediatedsynthesisofbiologicallyactivecompounds.FaisalandSaeedexploredtheroleofionicliquidinmedicinalchemistry. DeJoarderandMaitidescribedsynthesisofheterocyclesinsidenanoreactors.Jain andBanikinvestigatedthemedicinalaspectsofnanoparticlesandnanocomposites. Kumaretal.developedsustainableorganictransformationsintheconstructionof heterocycles.YadavandBanikinvestigatedtheone-potsynthesisofmedicinally activemolecules.Baniketal.studiedorganocatalyticcycloadditionreactionstoward thesynthesisofcomplexcompounds.BorahandBanikexploredthesynthesisof diversesteroidsasbiologicallyactivemolecules.Sahooetal.investigatednumerous reactionsinwater.SahooandBanikexploredimportantreactionsintheabsenceof anysolventstowardthesynthesisofmedicinallyimportantcompounds.Dasand Banikinvestigatedtheapplicationofthiosugarsinorganicsynthesis.

BasakandBasakreportedagreenchemistryapproachforthesynthesisofcrucial cholesterol-loweringdrugs.PatraandChattopadhyaydescribedthereleaseofnanodrugsthroughbiosafeprocess.Gangulyetal.demonstratedanapproachincancer biologyusingsugar-derivedhydrogels.BanikandSahoostudiedgreensynthesis andbiologicalevaluationofanticancerdrugs.Sahooetal.exploredgreenchemistry approachesinthedevelopmentofantidepressantandantipsychoticagents.

BasuandBanikstudiedthepropertiesandbenefitsofnaturalspicesonhealth. BorahandBanikinvestigatedafewmedicinalplantswithcompoundsthathave anticanceractivities.

Sahooetal.describedmicrowave-assistedsynthesisofseveralantitubercular agents.BorahandBanikstudiedmicrowave-assistedsynthesisofsteroids.Sahoo etal.investigatedmicrowave-mediatedsynthesisofantiinflammatorycompounds.

DasandBanikdemonstratedacorrelationbetweendipolemomentandmedicinal propertiesofdiversemolecules.Chatterjeeexploredcomputer-assistedmethodinthe drugdiscoveryprocess.

Thisbookwouldnothavebeenpossiblewithoutthesignificantcontributions ofscientistsworkingindifferentcountriesondiverseprojectsrelatedtogreen approachesinmedicinalchemistryforsustainabledrugdesign.Isincerelythankall theauthorsfortheirvaluablebookchapters.Finally,Ithankthemanagementof ElsevierpublisherandparticularlytoMs.AnnekaHessandMs.LauraOkidifortheir activeparticipationwithme.

Thankyou,ALL.

BimalKrishnaBanik DepartmentofMathematicsandNaturalSciences,CollegeofSciencesand HumanStudies,DeanshipofResearchDevelopment,PrinceMohammad BinFahdUniversity,AlKhobar,KingdomofSaudiArabia

Greenchemistryassistedsynthesis ofnaturalandsynthetic compoundsasanticanceragents

1

K.Ilangoa,*,BaburajBaskarb,SankaranarayananMurugesanc aDepartmentofPharmaceuticalChemistry,SRMCollegeofPharmacy,SRMInstituteof ScienceandTechnology,Kattankulathur,Kancheepuram(Dt),Tamilnadu,India, bDepartmentofChemistry,FacultyofEngineeringTechnology,SRMInstituteofScienceand Technology,Kattankulathur,Kancheepuram(Dt),Tamilnadu,India, cMedicinalChemistry ResearchLaboratory,DepartmentofPharmacy,BirlaInstituteofTechnology&Science, PilaniCampus,Pilani,India

*Correspondingauthor.e-mailaddress:ilangok67@gmail.com

1.1Introduction

Greenchemistrymediatedsynthesisofnanoparticlesisabuddingtechnology,which hasreceivedsubstantialattentionamongtheresearchersinthepresentdecadedueto theirwideapplicationsinvariousfieldssuchasmedicine,biotechnology,chemistry, physics,catalysis,electronics,andmaterialscienceduetotheirattractivephysicochemicalpropertiesandstability [1].Amongthemetallicnanoparticles,silver nanoparticles(AgNPs)inparticularareknownfortheirversatilebiologicalapplicationsinthefieldsofmedicineandbiotechnology [2,3].Severalstudieshavebeen reportedonthesynthesisofAgNPsusingphysicalandchemicalmethods [4–7].Moreover,thechemical-basedsynthesisofAgNPshasbeenreportedtopollutetheecosystem [8].Recently,biologicalmethodsforthesynthesisofAgNPshavebeendeveloped becausetheyareeco-friendlyandcosteffective.Withadvancesinthegreenchemistry approach,biologicalsynthesisofAgNPshasbeenfocusedonasasubstitutetophysicalandchemicalprocessesandoffersbuddingopportunitiesforthesynthesisof AgNPs.Severalbiologicalmaterialssuchasmicroorganisms,plantextractsandmilk havebeenusedforthesynthesisofAgNPs [3,9,10].SynthesisofAgNPsusingplant extractsispotentiallyadvantageousovermicroorganismsbecauseofitseasyscale-up operations [11]

Naturalcompounds/drugsobtainedfromtheplantsourcesarehighlysafeandeasilymetabolizedwhencomparedtoothersyntheticmedicinalcompounds [12].The secondarymetabolitesobtainedfromtheplantmaterialsleadtowardsthedevelopmentofdrugs [13].Nearlyone-fourthofthetotalmedicinalcompoundsusedby thedevelopedcountriesareobtainedfromnaturalresources [14].

Inrecentyears,microwaveheatinghasbeenusedinmanyorganicreactionsleadingcleanerreactionproductsandtheuseofenvironmentallymorebenignconditions comparedwithclassicalheating.Becauseofeasyoperation,safety,shorterreaction GreenApproachesinMedicinalChemistryforSustainableDrugDesign. https://doi.org/10.1016/B978-0-12-817592-7.00001-0 © 2020ElsevierInc.Allrightsreserved.

4 GreenApproachesinMedicinalChemistryforSustainableDrugDesign

times,highyieldsandenvironmentalbenignity,microwaveirradiationisanalternativetoconventionalsynthesis [15,16].

Cancerisagroupofdiseasescharacterizedbyuncontrolledgrowth/proliferation andspreadofabnormalcells.Itisafataldiseasethatleadstothesecondmostcommon causeofdeathworldwideandhasposedaseriousthreattohumanhealthduetoeverincreasingnature [17].Thereisabout25millionnewcases/yearhasbeenreportedas perWorldCancerReportfromWorldHealthOrganization [18].Becauseofitslow curerateandhighmortality,tumorhasbecomeoneofthemostterriblediseases aroundtheworld.Apoptosisorprogrammedcelldeath,isamajorcontrolmechanism bywhichcellsdieifDNAdamageexceedsthecapacityofrepairmechanisms.Aspart ofnormaldevelopment,apoptosisplaysanimportantroleincontrollingcellnumber andproliferation.Defectsinapoptoticresponsesareconsideredasamajorcontributor indifferenthumandiseasesincludingcancer.Theresistancetoapoptosisisahallmark ofcancercells,thecrucialapproachtoanticancerdrugdiscoveryistheactivation/restorationofnormalapoptoticpathway/cascades [19].But,alargenumberofanticancer drugshavebeenfoundtoinducetheapoptoticprocessincancerouscells [20].However,unduetoxicity,sideeffectsandresistanceoftheavailablemedicinesreducetheir efficacyandutility [21–23].Despiterecentadvancesmadeinanticancerdrugdevelopment,thepresenceofresistancetoexistingchemotherapeuticagentsisamajor obstacletotheeffectivetreatmentofcancer [24].Consequently,discoveringnovel, puissantmolecularentitiesaspotentialanticancerdrugswithimprovedefficacy andresistancetocomplementthepresentchemotherapeuticstrategiesishighly desired.Interestingly,naturalproductsprovideahealthysourceforsuchcompounds. Apartfromthat,nearlyone-halfofallcancersthatarediagnosedresultsinthedeathof thepatient.Therefore,identificationofnovelpotent,safe,andselectiveanticancer drugsremainsoneofthemostpressinghealthproblems.

1.2Naturalproductsasanticanceragents

In2017,Anuetal. [25] reportedthegreensynthesisofseleniumnanoparticlesusing GarlicCloves(Alliumsativum ),itsbiophysicalcharacterizationandcytotoxicityevaluationonverocells.Theyfoundthatbiologicallygreensynthesizedselenium nanoparticlesshowedeco-friendlybiocompatiblefeaturesandlimitedcytotoxicity whencomparedwithconventionalchemicallysynthesizedseleniumnanoparticles.

Recently,in2018,Akteretal. [26] reported Brassicarapa var. japonica leaf extractmediatedgreensynthesisofcrystallineAgNPsandevaluationoftheircytotoxicityandantibacterialactivityusinginvitroPC12 cellmodel,diskdiffusionmethod, respectively.TheyfoundthatcommercialAgNPsreducedcellviabilityto23%(control97%)andincreasedlactatedehydrogenaseactivityataconcentrationof3ppm, whereas, Brassica AgNPsdidnotshowanyeffectsonbothofthecytotoxicityparametersupto10ppminPC12 cells.Moreover, Brassica AgNPsexhibitedhigher antibacterialactivityagainstGram-negative Escherichiacoli (11.1 0.5mm,ZOI) and Enterobacter sp.(15 0.5mm,ZOI)thansomepreviouslyreportedgreensynthesizedAgNPs.

In2016,Sengottaiyanetal. [27] reportedgreensynthesisofAgNPsusing SolanumindicumL.andtheirantibacterial,splenocytecytotoxicpotentials.They foundthatthegreensynthesizedAgNPsattheconcentrationof1–4mM,extensively inhibitedthegrowthofthetestedpathogens Staphylococcus sp., Klebsiella sp.andthe percentageofviableratsplenocytecellswerealsodiminishedwhileincreasingthe concentrationofAgNPs.

In2017,Alishahetal. [28] reportedgreensynthesisofstarchextractedfrom Solanumtuberosum mediatedCuOnanoparticlesandevaluatedtheirantimicrobial(micro dilutionmethod)andantibreastcanceractivity(MTTassaymethod)against Bacillus cereus, Shigellasonnei, Staphylococcusepidermidis, Enterococcus, Pseudomonas aeruginosa, Escherichiacoli,andMichiganCancerFoundation-7(MCF-7)celllines, respectively.

In2014,Arunetal. [29] reportedgreensynthesisofAgNPsusingthemushroom fungus Schizophyllumcommune andscreenedtheirantibacterial(against Escherichia coli, Bacillussubtilis, Klebsiellapneumoniae, Pseudomonasfluorescens),antifungal (against Trichophytonsimii, Trichophytonmentagrophytes, Trichophytonrubrum) andanticancer(againstHumanEpidermoidLarynxCarcinoma(HEP-2)celllines) activity.

In2013,Geethaetal. [30] reportedgreensynthesisofgoldnanoparticlesusing flowersof Couroupitaguianensis andtheirantileukemiccanceractivityagainst HL-60cells.

In2013,SujinJebaKumaretal. [31] reportedgreensynthesisofAgNPsbyaqueousextractof Plumbagoindica anditsantitumoractivityagainstDalton’sLymphoma AscitesModel(DLAcells).

Recently,in2018,Soleimanietal. [32] reportedgreensynthesisofAgNPsand evaluationoftheirantibacterial(measurementofminimuminhibitoryconcentrations (MICs)activityagainstGram-positive(Staphylococcusaureus and B.subtilis)and Gram-negative(Pseudomonas.aeruginosa and Escherichiacoli)bacteria)and antibreastcanceractivityagainstMCF-7cells.

In2017,Yugandharetal. [33] reportedbioinspiredgreensynthesisofcopperoxide nanoparticlesusing Syzygiumalternifolium stembarkandevaluationofitssynergistic antimicrobial(against Escherichiacoli and Trichodermaharzianum)andanticancer activityagainstMDA-MB-231humanbreastcancercelllines.

In2014,Sivarajetal. [34] repo rtedbiosynthesisandcharacterizationof aqueousextractof Acalyphaindica leafmediatedcopperoxidenanoparticles andevaluationofitsantimi crobialactivityagainst Escherichiacoli,Pseudomonas fluorescens , Candidaalbicans andanticanceractivityagainstMCF-7(breast cancer)celllines.

In2017,Nagajyothietal. [35] reportedgreensynthesisusinganaqueous blackbean(Phaseolusvulgaris)extractandanticanceractivityofcopperoxide nanoparticlesagainsthumancervicalcarcinoma(HeLacells).Theyalsoobserved thatCuONPsinducedintracellularreact iveoxygenspecies(ROS)generationina dose-dependentmannerandsignificantlyreducedcervicalcarcinomacolonies.

In2013,Sankaretal. [36] reportedaqueousextractof Origanumvulgare mediated biosynthesisofAgNPsforitsantibacterialactivityagainst Aeromonashydrophilla, Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents5

Bacillus sps., Escherichiacoli (Enteropathogenic–EP), Klebsiella sps., Salmonella sps., Salmonellaparatyphi, Shigelladysenteriae , Shigellasonnei,andanticancer activityagainsthumanlungcancer(A549)celllines(LD50 at100 μg/mL).Theyalso proposedthat,theimprovedcytotoxiceffectsof O.vulgare maybeduetothe presenceofbioactivecompoundssuchascarvacrol,terpinen,thymol,sabinine, linolool,terpinolene,quercetin,apigeninascappingagentsingreensynthesisof AgNPs.

In2014,Vasanthetal. [37] reportedanticanceractivityof Moringaoleifera stem barkextractmediatedAgNPsonhumancervicalcarcinoma(HeLa)cellsbyapoptosis inductionthroughROSgenerationanditssubsequentactiononinhibitingcellreplicationinHeLacells.

In2015,Nayaketal. [38] reportedbiologicallysynthesizedAgNPsofplant extractsof Cucurbitamaxima (petals), M.oleifera (leaves), Acoruscalamus (rhizome),andtheiranticanceractivityagainstepidermoidcarcinoma(A431)cells. Amongthethreesynthesizednanoparticles,therhizomeextractgeneratedAgNPs weresignificantlysuperiortothepetalandleavesextractgeneratedAgNPsinrelation totheirantimicrobialactivityagainst B.subtilis,Escherichiacoli,P.aeruginosa and Vibriocholerae.

In2017,Gnanaveletal. [39] reportedthebiosynthesisandcharacterizationof copperoxidenanoparticlesfromtheleavesof Ormocarpumcochinchinense andits anticanceractivityonhumancoloncancer(HCT-116)celllineswithIC50 valueof 40 μg/mL.

In2013,Sumanetal. [40] reportedbiosynthesis,characterization,andcytotoxic effectofAgNPsusing Morindacitrifolia rootextractagainsthumancervicalcarcinoma(HeLa)cells.TheyalsoproposedthatthecytotoxicityoftheAgNPsviathegenerationofROSorincreasesinintracellularoxidativestressandtriggercelldeath processincludingapoptosisandnecrosis.

In2015,Ramaretal. [41] reportedbiosynthesisofAgNPsusingethanolic petalsextractof Rosaindica anditsantibacterial,anticancer,andantiinflammatory activities.TheyfoundthatthepreparedAgNPsshowedaneffectiveantibacterial activityagainstGram-negative(Escherichiacoli, Klebsiellapneumoniae) thanGram-positive( Streptococcusmutans , Enterococcusfaecalis )bacteria. TheAgNPsalsoshowedpotentialanticanceractivityagainsthumancolon adenocarcinomacancer(HCT15)celllin esaswellasinvitroantiinflammatory activity.

In2013,Inbathamizhetal. [42] reportedinvitroevaluationofantioxidantandanticancerpotentialoftheaqueousleafextractof Morindapubescens synthesizedAgNPs againsthumanepitheliumlivercancer(HEPG2)cells.

In2012,Harneetal. [43] reportednovelrouteforrapidbiosynthesisofcopper nanoparticlesusingaqueousextractof CalotropisproceraL.latexandtheircytotoxicityontumor(humancervicalcarcinoma-HeLa,humanlungcancer-A549andBaby hamsterkidney-BHK21)celllinesat120 μMconcentration.

In2014,Kathiravanetal. [44] reportedthesynthesisofAgNPsfrom Meliadubia leafextractandtheirinvitroanticanceractivityagainsthumanbreastcancer(MCF-7) celllines(IC50 31.20 μg/mL).

1.3Syntheticcompoundsasanticanceragents

In2016,Dingetal. [45] reportedgreensynthesisusingmicrowaveirradiationtechniqueandantitumorevaluationof15novelseriesof3-[4-bi-(4-fluorophenyl)methylpiperazinyl]-4-amino-5-thione-1,2,4-triazoleSchiffbasesagainstcelldivisioncycle 25homologB(CDC25B)cellsfrom Schizosaccharomycespombe.Amongthese, around14compounds(6a–n)showedsignificantinhibitoryactivity(83%–99%) againstCDC25B.

6(a–n) Comp. codeR 6H5 6H4 6H4

2C6H4

2C6H4

3OC6H4

2C6H4

6H4

2C6H4

In2017,Reddyetal. [46] reportedheterogeneouscatalysissuchaschitosanmediated one-potgreensynthesisusingmicrowaveirradiationunderneatconditionsand cytotoxicityevaluationof15novel α-aminophosphonatescontaining trifluoromethylanilinemoietyagainstPC-3(prostatecancer),MCF-7(breastcancer), HeLa(CervixCancer),U973,K562,andHL60(humanLeukemiacelllines).Among thesecompounds,compound 4k withpyrenemoietyshowedhighercytotoxicpotency againstbreastcancer,U973,K562,HL60cancercelllineswhilecompound 4g with trifluoromethylgroupexhibitedpromisingcytotoxicityagainstU973,K562,and Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents7

3C6H4

4-CF 6l 2-Furyl 6m 2-Thiophenyl 6n 2-Pyridinyl

8 GreenApproachesinMedicinalChemistryforSustainableDrugDesign

HL60cancercelllines.Theyalsoproposedthatthesignificantactivityexhibitedby theabove-mentionedcompoundsmaybeduetostronginhibitionofthe topoisomerase-IIenzymeofcancercells.

codeR

Recently,in2018,Dofeetal. [47] reportedgreensynthesisunderultrasoundirradiationandinhibitoryeffectofnovel16quinoline-basedthiazolidinonesonthegrowth ofMCF-7humanbreastcancercelllinesbyG2/Mcellcyclearrest.Amongthetitled compounds,analogues 2c, 2d,and 2f (IC50 values5.38,5.12,and0.73 μM,respectively)showedsignificantanticanceractivityagainsthumanbreastcancercelllines (MCF-7)andwereconsideredasapotentiallead.Theyalsoobservedtheinduction ofG2/Mcellarrestwithin24hviaflowcytometryanalysisbytheabove-mentioned significantlyactivecompounds.

In2018,Mohanetal. [48] reportedone-potsolvent-freegreensynthesisusing β-cyclodextrinasabiomimeticcatalystandanticanceractivityofnovel15pyrazolyl phosphonatesagainstbreastcancer(MCF-7),prostatecancer(DU-145),andlungcancer(A-549)celllinesbysulfarodamine-B(SRB)assay.Amongthesynthesizedcompounds,compounds 4o (IC50 7.854,6.753,5.967), 4n (IC50 9.187,7.672,6.483),and 4m (IC50 9.867,9.839,8.113)exhibitedexcellentcellgrowthinhibitoryeffectson MCF-7,DU-145,andA-549celllineswhencomparedtothedoxorubicin(IC50 9.652,7.114,8.340)standardused.

Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents9

In2010,Sharmaetal. [49] reportedmicrowave-assisted,solvent-free,parallelsynthesisof20novelsubstitutedimidazolesandevaluatedtheirantibacterial,anthelmintic, short-termanticancer,andantitubercularactivity.Allthesynthesizedsubstituted imidazoleshaveshowngoodantibacterialactivityagainstGram-negativebacterial strains(Klebsiellapneumoniae and Escherichiacoli)andmoderatetogoodanthelminticactivity(againstearthworms Megascolexkonkanensis, Pontoscolexcorethruses).Thesynthesizedimidazolederivative(compounds 5b, 7b, 12b, 15b, 16b)possessedsignificantcytotoxicactivity(CC50 31.25,91.61,50.32,50.00, 94.63 μg/mL,respectively)againstEhrlich’sascitescarcinoma(EAC)celllines.

In2010,Kidwaietal. [50] reportedenvironmentfriendlysynthesisandanticancer evaluationof10novel2-oxo/thioxooctahydroquinazolin-5-onederivativesusing cericammoniumnitrate(CAN)ascatalystandpolyethyleneglycol(PEG)assolvent. Amongthetitledanalogues,compounds 4c, 4d,and 4e werefoundtoexhibitexcellent activityataconcentrationaslowas0.06 μg/mLagainstU87humangliomacells.

codeXR 4c SC2H5 4d OC3H8 4e S

In2012,Mungaraetal. [51] reportedgreensynthesisusing(PEG-400)asagreenreactionmediaandantiproliferativeactivityof14novel α-aminophosphonatesagainst A549(humanlungcancer),MCF-7(humanbreastcancer)andNCI-N87(human stomachcancer)cells.Amongthese,compounds 4c, 4e,and 4m exhibitedgoodantiproliferativeactivityagainsttheabove-mentionedthreecancercells.

Comp.

Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents11

1.4Conclusion

Inconclusion,theauthorshavesuccessfullycompiledtherecentlypublishedfindings intheareaofgreenchemistryassistedsynthesisofnaturalandsyntheticheterocyclic organiccompoundsthatareeffectiveagainstvariouscancercelllines.Thisdetailed reviewworkwilldefinitelygiveanmeaningfulinsightforthereaderswhowillbe workingintheareaofgreenchemistryassistedcancerchemotherapeutics.

References

[1] P.Raveendran,J.Fu,S.L.Wallen,Completely“green”synthesisandstabilizationofmetal nanoparticles,J.Am.Chem.Soc.125(2003)13940–13941.

[2] V.Venkatpurwar,V.Pokharkar,Greensynthesisofsilvernanoparticlesusingmarine polysaccharide:studyofin-vitroantibacterialactivity,Mater.Lett.65(2011)999–1002.

[3] S.A.Babu,G.Prabu,SynthesisofAgNPsusingtheextractofCalotropisproceraflowerat roomtemperature,Mater.Lett.65(2011)1675–1677.

[4] S.Iravani,H.Korbekandi,S.V.Mirmohammadi,B.Zolfaghari,Synthesisofsilver nanoparticles:Chemical,physicalandbiologicalmethods,Res.Pharm.Sci. 9 (2014) 385–406.

[5] K.Gudikandula,S.C.Maringanti,Synthesisofsilvernanoparticlesbychemicalandbiologicalmethodsandtheirantimicrobialproperties,J.Exp.Nanomed.9(2016)714–721.

[6] F.Mafune,J.Kohno,Y.Takeda,T.Kondow,H.Sawabe,Structureandstabilityofsilver nanoparticlesinaqueoussolutionproducedbylaserablation,J.Phys.Chem.B104(2000) 8333–8337.

[7] H.Huang,Y.Yang,Preparationofsilvernanoparticlesininorganicclaysuspensions, Compos.Sci.Technol.68(2008)2948–2953.

[8] T.Y.Suman,S.R.RadhikaRajasree,A.Kanchana,E.Beena,Biosynthesis,characterizationandcytotoxiceffectofplantmediatedsilvernanoparticlesusing Morindacitrifolia rootextract,ColloidSurf.B106(2013)74–78.

[9] K.J.Lee,S.H.Park,M.Govarthanan,P.H.Wang,Y.S.Seo,M.Cho,W.H.Lee,J.Y.Lee, S.Kamala-Kannan,B.T.Oh,Synthesisofsilvernanoparticlesusingcowmilkandtheir antifungalactivityagainstphytopathogens,Mater.Lett.105(2013)128–131.

[10] S.V.Otari,R.M.Patil,N.H.Nadaf,S.J.Ghosh,S.H.Pawar,Greenbiosynthesisofsilver nanoparticlesfromanactinobacteriaRhodococcussp,Mater.Lett.72(2012)92–94.

[11] M.F.Zayed,W.H.Eisa,A.A.Shabaka,Malvaparvifloraextractassistedgreensynthesisof silvernanoparticles,Spectrochim.ActaA98(2012)423–428.

[12] S.M.Roopan,G.Elango,ExploitationofCocosnuciferaanon-foodtowardthebiological andnanobiotechnologyfield,Ind.Crop.Prod.67(2015)130–136.

[13] G.Madhumitha,S.M.Roopan,Devastatedcrops:Multifunctionalefficacyfortheproductionofnanoparticles,J.Nanomater.2013(2013)1–12.

[14] G.Elango,S.M.Kumaran,S.S.Kumar,S.Muthuraja,S.M.Roopan,Greensynthesisof SnO2 nanoparticlesanditsphotocatalyticactivityofphenolsulfonphthaleindye,Spectrochim.ActaA145(2015)176–180.

[15] B.A.Roberts,C.R.Strauss,Towardrapid,“green”,predictablemicrowave-assistedsynthesis,Acc.Chem.Res.38(2005)653–661.

[16] V.Polshettiwar,R.S.Varma,Greenerandrapidaccesstobioactiveheterocycles:One-pot solvent-freesynthesisof1,3,4-oxadiazolesand1,3,4-thiadiazoles,TetrahedronLett. 49(2008)879–883.

12 GreenApproachesinMedicinalChemistryforSustainableDrugDesign

[17] A.Jemal,T.Murray,E.Ward,A.Smuels,R.C.Tiwari,A.Ghafoor,E.J.Feuer,M.J.Thun, Cancerstatistics,CACancerJ.Clin.55(2005)10–30.

[18]B.Stewart,C.P.Wild,WorldCancerReport2014,InternationalAgencyforResearchon CancerWorldHealthOrganization,Lyon,France,2014.ISBN978-92-832-0429-9.Availableonline, http://www.iarc.fr/en/publications/books/wcr/wcr-order.php

[19] S.W.Lowe,A.W.Lin,Apoptosisincancer,Carcinogenesis21(2000)485–495.

[20] S.W.Fesik,Promotingapoptosisasastrategyforcancerdrugdiscovery,Nat.Rev.Cancer 5(2005)876–885.

[21] G.Yang,S.Nowsheen,A.Khaled,A.Georgakilas,Toxicityandadverseeffectsoftamoxifenandotheranti-estrogendrugs,Pharmacol.Ther.139(2013)392–404.

[22] A.Monnier,Long-termefficacyandsafetyofletrozolefortheadjuvanttreatmentofearly breastcancerinpostmenopausalwomen:areview,Ther.Clin.RiskManag.5(2009) 725–738.

[23] K.A.Lyseng-Williamson,C.Fenton,Docetaxel:areviewofitsuseinmetastaticbreast cancer,Drugs65(2011)2513–2531.

[24] K.Kelly,L.P.J.Lovato,R.B.Livingston,J.Zangmeister,S.A.Taylor,D.Roychowdhury, J.J.Crowley,D.R.Gandara,Cisplatin,etoposideandpaclitaxelwithgranulocytecolonystimulatingfactorinuntreatedpatientswithextensive-stagesmallcelllungcancer:aphase IItrialofthesouthwestoncologygroup,Clin.CancerRes.7(2001)2325–2329.

[25] K.Anu,G.Singaravelu,K.Murugan,G.Benelli,Green-synthesisofselenium nanoparticlesusinggarliccloves(Alliumsativum):biophysicalcharacterizationandcytotoxicityonVerocells,J.Clust.Sci.28(2017)551–563.

[26]M.Akter,M.M.Rahman,A.K.M.A.Ullah,M.T.Sikder,T.Hosokawa,T.Saito, M.Kurasaki, Brassicarapavar.japonica leafextractmediatedgreensynthesisofcrystallinesilvernanoparticlesandevaluationoftheirstability,cytotoxicityandantibacterial activity.J.Inorg.Organomet.Polym.Mater.(2018), https://doi.org/10.1007/s10904-0180818-7

[27] A.Sengottaiyan,R.Mythili,T.Selvankumar,A.Aravinthan,S.Kamala-Kannan, K.Manoharan,P.Thiyagarajan,M.Govarthanan,J.-H.Kim,Greensynthesisofsilver nanoparticlesusingSolanumindicumL.andtheirantibacterial,splenocytecytotoxic potentials,Res.Chem.Intermed.42(2016)3095–3103.

[28] H.Alishah,S.Pourseyedi,S.Y.Ebrahimipour,S.E.Mahani,N.Rafiei,Greensynthesisof starch-mediatedCuOnanoparticles:preparation,characterization,antimicrobialactivities andinvitroMTTassayagainstMCF-7cellline,Rend.Fis.Acc.Lincei28(2017)65–71.

[29] G.Arun,M.Eyini,P.Gunasekaran,Greensynthesisofsilvernanoparticlesusingthe mushroomfungus Schizophyllumcommune anditsbiomedicalapplications,Biotechnol. BioprocessEng.19(2014)1083–1090.

[30] R.Geetha,T.Ashokkumar,S.Tamilselvan,K.Govindaraju,M.Sadiq,G.Singaravelu, Greensynthesisofgoldnanoparticlesandtheiranticanceractivity,CancerNanotechnol. 4(2013)91–98.

[31] T.SujinJebaKumar,C.K.Balavigneswaran,R.MosesPackiaraj,A.Veeraraj,S.Prakash, Y.NatheerHassan,K.P.Srinivasakumar,Greensynthesisofsilvernanoparticlesby Plumbagoindica anditsantitumoractivityagainstDalton’slymphomaascitesmodel, BioNanoScience3(2013)394–402.

[32] F.F.Soleimani,T.Saleh,S.A.Shojaosadati,R.Poursalehi,Greensynthesisofdifferent shapesofsilvernanostructuresandevaluationoftheirantibacterialandcytotoxicactivity, BioNanoScience8(2018)72–80.

[33] P.Yugandhar,T.Vasavi,P.UmaMaheswariDevi,N.Savithramma,Bioinspiredgreen synthesisofcopperoxidenanoparticlesfromSyzygiumalternifolium(Wt.)Walp:

Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents13

Characterizationandevaluationofitssynergisticantimicrobialandanticanceractivity, Appl.Nano.Sci.7(2017)417–427.

[34] R.Sivaraj,P.K.S.M.Rahman,S.N.Rajiv,R.Venckatesh,Biosynthesisandcharacterizationof Acalyphaindica mediatedcopperoxidenanoparticlesandevaluationofitsantimicrobialandanticanceractivity,Spectrochim.ActaAMol.Biomol.Spectrosc.129(2014) 255–258.

[35] P.C.Nagajyothi,P.Muthuraman,T.V.M.Sreekanth,D.H.Kim,J.Shim,Greensynthesis: in-vitroanticanceractivityofcopperoxidenanoparticlesagainsthumancervicalcarcinomacells,Arab.J.Chem.10(2017)215–225.

[36] R.Sankar,A.Karthik,A.Prabu,S.Karthik,K.S.Shivashangari,V.Ravikumar, Origanum vulgare mediatedbiosynthesisofsilvernanoparticlesforitsantibacterialandanticancer activity,ColloidsSurf.B:Biointerfaces108(2013)80–84.

[37] K.Vasanth,K.Ilango,R.MohanKumar,A.Agrawal,G.P.Dubey,Anticanceractivityof Moringaoleifera mediatedsilvernanoparticlesonhumancervicalcarcinomacellsbyapoptosisinduction,ColloidsSurf.B:Biointerfaces117(2014)354–359.

[38] D.Nayak,S.Pradhan,S.Ashe,P.R.Rauta,B.Nayak,Biologicallysynthesizedsilver nanoparticlesfromthreediversefamilyofplantextractsandtheiranticanceractivity againstepidermoidA431carcinoma,J.ColloidInterfaceSci.457(2015)329–338.

[39] V.Gnanavel,V.Palanichamy,S.M.Roopan,Biosynthesisandcharacterizationofcopper oxidenanoparticlesanditsanticanceractivityonhumancoloncancercelllines(HCT116),J.Photochem.Photobiol.BBiol.171(2017)133–138.

[40] T.Y.Suman,S.R.RadhikaRajasree,A.Kanchana,S.B.Elizabeth,Biosynthesis,characterizationandcytotoxiceffectofplantmediatedsilvernanoparticlesusing Morinda citrifolia rootextract,ColloidsSurf.B:Biointerfaces106(2013)74–78.

[41] R.Manikandan,B.Manikandan,T.Raman,K.Arunagirinathan,N.M.Prabhu,M.Jothi Basu,M.Perumal,S.Palanisamy,A.Munusamy,Biosynthesisofsilvernanoparticles usingethanolicpetalsextractof Rosaindica andcharacterizationofitsantibacterial,anticancerandanti-inflammatoryactivities,Spectrochim.ActaAMol.Biomol.Spectrosc. 138(2015)120–129.

[42] L.Inbathamizh,T.MekalaiPonnu,E.JancyMary, Invitro evaluationofantioxidantand anticancerpotentialofMorindapubescenssynthesizedsilvernanoparticles,J.Pharm.Res. 6(2013)32–38.

[43] S.Harne,A.Sharma,M.Dhaygude,S.Joglekar,K.Kodam,M.Hudlikar,Novelroutefor rapidbiosynthesisofcoppernanoparticlesusingaqueousextractof Calotropisprocera L. latexandtheircytotoxicityontumorcells,ColloidsSurf.B:Biointerfaces95(2012) 284–288.

[44] V.Kathiravan,S.Ravi,S.Ashokkumar,Synthesisofsilvernanoparticlesfrom Melia dubia leafextractandtheir invitro anticanceractivity,Spectrochim.ActaAMol.Biomol. Spectrosc.130(2014)116–121.

[45] Y.Ding,Z.Zhang,G.Zhang,S.Mo,Q.Li,Z.Zhao,Greensynthesisandevaluation oftheantitumoractivityofanovelseriesof3-[4-bi-(4-fluorophenyl)methylpiperazinyl]-4-amino-5-thione-1,2,4-triazoleSchiffbases,Res.Chem.Intermed. 42(2016)3105–3116.

[46] K.M.K.Reddy,S.M.Sadik,N.Saichaithanya,K.Peddanna,N.B.Reddy,G.Sravya, Z.Grigory,C.S.Reddy,One-potgreensynthesisandcytotoxicityofnew α-aminophosphonates,Res.Chem.Intermed.43(2017)7087–7103.

[47] V.S. Dofe,A.P.Sarkate,R.Azad,C.H.Gill,Greensynthesisandinhibitoryeffectofnovel quinolinebasedthiazolidinonesonthegrowthofMCF-7humanbreastcancercelllineby G2/Mcellcyclearrest,Res.Chem.Intermed.44(2018)1149–1160.

[48]G.Mohan,S.Santhisudha,S.Murali,N.B.Reddy,G.Sravya,G.V.Zyryanov,C.S.Reddy, One-potgreensynthesisandbio-assayofpyrazolylphosphonates.Res.Chem.Intermed. (2018), https://doi.org/10.1007/s11164-018-3319-y.

[49] G.K.Sharma,D.Pathak,Microwave-assisted,solvent-freeandparallelsynthesisofsome novelsubstitutedImidazolesofbiologicalinterest,Chem.Pharm.Bull.58(2010) 375–380.

[50] M.Kidwai,D.Bhatnagar,R.Kumar,P.M.Luthra,Synthesisof2-Oxo/ Thioxooctahydroquinazolin-5-onederivativesandtheirevaluationasanticanceragents, Chem.Pharm.Bull.58(2010)1320–1323.

[51] A.K.Mungara,Y.-K.Park,K.D.Lee,Synthesisandantiproliferativeactivityofnovel α-Aminophosphonates,Chem.Pharm.Bull.60(2012)1531–1537.

Antibacterialandantimicrobial coatingsonmetalsubstratesby coldspraytechnique:Presentand futureperspectives

2

ManojitGhosha,*,AvinavaRoya,ArkajitGhosha,HritwikKumara,GourabSahab aIndianInstituteofEngineeringScienceandTechnology,Shibpur,India, bTampere UniversityofTechnology,Tampere,Finland *Correspondingauthor.e-mailaddress:mghosh@metal.iiests.ac.in

Nomenclature

ALP alkalinephosphataseactivityisdeterminedbyquantifyingtheamountofp-nitrophenol,theendproducthydrolyzedofparanitrophenylphosphate.

Bioactivity theabilityofmaterialtobringoutresponseinlivingtissue.

Biodegradable getsresorbedwhenoneplacedinthehumanbody.

Bioinert doesnotinitiateareactionwithhostwhenintroducedtobody.

BMG bulkmetallicglassesareformedatverylowcriticalcoolingratesinorderto suppressthenucleationofcrystallinephases.

HA hydroxyapatite(Ca10(PO4)6(OH)2)isceramicmaterialwhichiswidelyused inbiomedicalapplicationsduetoitslowreleaseofantibioticsandsimulatestheboneingrowthbetweenimplantandbone.

hBMSC humanbonemarrowstromalcellsareusedtostudyosteogenesisinvitroand gotapplicationsinbonetissueengineering.

HPCS high-pressurecoldsprayreferstothesysteminwhichthereisaxialinjection ofpowdersandutilizationof25–30barspressuregas.

LPCS low-pressurecoldspraysystemreferstothesysteminwhichthereisradial injectionofpowdersandutilizationof5–10barspressuregas.

MRSA methicillin-resistant Staphylococcusaureus istheGram-positiveinfectious bacteriathatisresistancetomanyantibioticsandaccountsfor8%hospitalinfectionsintheUnitedStates.

MTS itisthecolorimetricmethodforassessingcellmetabolicactivityusedinthe fieldofcancerbiology,immunology,anddrugdeliverypharmacy.

PEEK poly-ether-ether-ketone[(C6H4-O-C6H4-O-C6H4-CO-)n]ispopularimplant materialbecauseofhavingexcellentpropertiessuchasexcellentthermalstability,frictionreductionandmechanicalpropertiessimilartohumanbone.

VCS vacuumcoldsprayreferstotheprocessinwhichspecimenisplacedinthe vacuumtankandnanoparticlesaresprayedintousingapropellantflowof gasespeciallyheliumorair.

Theinterestintheevolutionofsubstrateswithantibacterialpropertiesfordifferent biomedicalapplicationsisofgrowingconcernassomanymicroorganismsare antibiotic-resistant.Thissubjecthashelpedindesigninginnovativebiomaterials.Possiblemicrobe-controllingstrategiesincludeusingbiomedicaldevicesandimplants. Highlyfascinatingpathsareeitherusedorundertheresearchstage,involvingthe depositionofbactericidalagentsuponthebiomaterialsurfacetopreventtheattachmentofbacteriatothesurfaceandalsotoarrestthegrowthofanybiofilm.Products foundinnature,aswellascertainbioactivemetalslikeAg,Cu,andZn,provideviable optionsforadvancedbiomaterialsforantibacterialagents.Coldspray(CS)simply explainedasaccelerationthroughLavalNozzleanddepositionofsolidcomposite powdersonasuitablesubstrate.Particlesundergoplasticdeformationonlywhen thebombardingspeedisinexcessofacertainvalue—thethresholdvalue.Theclose linkexistingbetweenthefundamentalunderstandingofbondingmechanismsand fluiddynamicsofCSmakesitapowerfultoolforvariousapplicationsanddifferent fromothertraditionalconsolidationprocesses.CShasemergedasapromisingcandidatefordepositingbiocompatibleandantimicrobialcoatingsoverthepastdecades. Itoffersmanyadvantagesascomparedtothethermalsprayprocessasitinvolves kineticenergyinsteadofthermalenergyforspray.Sinceitisalow-temperaturedepositionprocess,undesiredtensileresidualstresses,oxidation,andchemicalreactions canbeavoided.Duetotheplasticityofcoatings,itispossibletodepositdifferentantimicrobialbiocompatiblecoatingsofmetallicmaterialsandpolymers.Inaddition,itis costeffectiveandenvironmentallygreen.Thefollowingwrite-upprovidesacomprehensiveideaaboutthelatestadvancementsinthefieldofmodifiedbiomaterialsalong withanaccountofthemostinterestingprocessesusedtodepositantibacterialcoatings onparticularsurfacestobeusedinthefieldofbiomedicalimplantapplications.Further,itdescribesthepresentstatusofantimicrobialcoatingsusingCSanditsfuture applicationsandinvestigationsaresuggestedinthefieldofantibacterialcoatingsand orthopedicsindustry.

2.2Theneedforthedevelopmentofantibacterialand antimicrobialcoatings

Themeaningoftheterm“biomaterial”isrecentlyproposedbyWilliamsetal. [1] in1987 as“anonviablematerialusedinamedicaldeviceandintendedtointeractwithbiological systems”.Foroverthelast60–70years,thisfieldhasalwaysbeenunderprogressive developmentandexperiencedmanychangestilldate.Thefieldofbiomaterialshas evolvedthroughthreegenerationseachwithclear-cutanddefinitiveobjectivestarting fromthefirst-generationbio-inertmaterialsinthelate1960stothird-generationbiomimeticbiomaterials(Fig.2.1).Thetwomajorproblemsinbiomaterialsarebiocompatibilityandstructuralcompatibility.Biocompatibilitycanbeperceivedas“material’sability

toperformwithanappropriatehostresponseinaparticularapplication.”Itindirectly expressestwoterms,namely,biosafetyandbiostability,wherethematerialdoesnothave toevokelong-termpersistinginfectionwhichmayyielddeathofacellorproducea malfunctioningofthecellortissuematrix.

Bio-inert biomaterials

Material that once placed in the human body has minimum interaction with its surrounding tissue.

Include

Material that upon placement within the human body starts to dissolve (resorbed) and slowly replaced by advancing tissue (sch as bone).

Includes biodegradable glass ceramics,polymers and bioglass.

Includes nano HA, collagen, biological molecules.

195019601970198019902000201020202030

Fig.2.1 Evolutionofbiomaterialsscience.

However,thesectionofimplanttissueinteractionsinbiomedicalsciencecanbebettercomprehendedbysurfaceengineering.Theidealmedicalimplantisonethatowns bothantibacterialfunctionandexcellentcellbiocompatibility.Medicalimplantsonthe basisofapplicationscanbecategorizedintogroupsnamelySensoryandneurological, cardiovascular,Orthopedic,contraception,cosmetic,andotherorgansandsystems. Otherorgansandsystemsincludetreatmentofacidrefluxdisease,respiratoryfailure, sleepapnoea,involuntaryurination,andanalincontinenceanderectiledysfunction.

Titaniumalloysarebroadlyusedinbiomedicalapplicationsmainlyindentaland orthopedicimplants [2].However,atthetissueandimplantinterfaceoftitanium,there istheformationofsurfacebiofilmwhichmakesimplantsurfacesusceptibletoinfection.Hence,thereisarequirementofpotentialmethodsofsurfacemodifications,with thecapabilitytocoatthebiomaterialswithantibacterialsubstanceslikecopper,tin, andzinctofulfillthespecificdemandsofparticularapplications.FormationofbiofilmscanonlybetackledbythedevelopmentofantibacterialcoatingswhichwillpreventinitialadhesionofbacteriatothesurfaceofTi.Forthecoatingsofbiomedical surfacessuchascatheters [3],polymericnanocompositesofsilverareusedsuccessfully.Similarly,peptide-based [4] antimicrobialcoatingswereusefulformedical implants.Inaddition,oil-basedcoatingisanaturalprocesstoprepareantimicrobial essentialoils.Carvacrol [5],thechiefcomponentofthymeoilisintroducedinto waterbornepolyurethanecoatings,preventstheformationofbiofilmbylowering thebacterialattachment.

Surfacecharacteristicsofmedicalimplantsplayakeyroleininitialadherenceand growthofbacteriaontheimplantsurfaceandsubsequentcellactionandresponse. Thesecharacteristicsgenerallyincluderoughness,surfacefreeenergy,surfacepotential,conductivity,wettability,etc. [2].Bacteriaresistantinterfacecanbeobtainedby alteringphysicalandchemicalsurfaceproperties [2] anddevelopmentofantiadhesive polymercoatings.

Scaffolding material that mimics one or multiple characteristics of the natural extracellular matrix
stainless steel,titanium, alumina,partially stabilized zirconia .

2.3Thecoatingtechniques

Thereisawiderangeofsurfacetreatmenttechniquesforthedevelopmentofantimicrobialcoatinglikeultraviolet(UV)radiation,chemicalandplasmagrafting,ion implantation,andplasmaimmersionionimplantationanddeposition.

Asfarasmetalcoatingsareconcerned,roughandporousTicoatingsareprepared throughvacuumplasmaspraying(VPS).Earlier,Yangetal. [6] obtainedTicoatings onTisubstratescontaininganouterlayerfullofmacroporeswhicharebeneficialfor tissueingrowthintothecoating.SuchmacroporeshaveasurfaceroughnessofapproximatelyRa ¼ 100 μm.However,Borsarietal. [7] producedthedenseVPS-Ticoatingswiththepurposetoavoidthedepletioninthedensityofbone,alsoknownas “stressshielding”andthusincreasingtheprosthesislifespan.VPScoatingprovided agoodbiologicalresponseinvitroanditbehavedthesameasthecoatingsusedin orthopedics.

Copperandcopper-basedalloysarewidelyusedascoatingswhicharethermally sprayedonthetopoftheconstructionelementssuchassteelwhichpreservesitsnecessarystrength.Oneoftheadvantagesofthethermallysprayedcoatingsisapossibilitytogeneratecoatingsmadeofmaterialsofdifferentcompositionsincluding compositematerials.Italsofindsitsusageinhospitalequipmentasitisverymuch effectiveinfightingpathogenicmicroorganisms.Michelsetal. [8] showedthatthere isanincreaseinantimicrobialeffectivenesswithincreasingcontentofcopperin alloys. Fig.2.2 showsthatthedecreaseinbacteriacountof Listeriamonocytogenes ismorerapidinthehighercontentofcopperinalloys.Theformationofbiofilmsisnot possiblebecauseofrapidcontactkilling [9] andtheformationofradicalsinCucomplexesmakesthevirusesidleandinactive [10].AlthoughtheinhibitoryeffectofCuon biofilmisnotwellknown,itisbelievedthatthecupricionisresponsiblefortheantimicrobialactionofcopper [8].Theresearchrevealedthattheequipmentwith

Fig.2.2 Theviabilityof L.monocytogenes onthesurfacesofalloysUNSC10200,C22000, C63800,C70600,C75200,andS30400at20°C.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Green approaches in medicinal chemistry for sustainable drug design 1st edition bimal k. banik (edit by Education Libraries - Issuu