https://ebookmass.com/product/green-approaches-in-medicinalchemistry-for-sustainable-drug-design-1st-edition-bimal-k-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Heterogeneous Catalysis in Sustainable Synthesis (Advances in Green and Sustainable Chemistry) 1st Edition Béla Török
https://ebookmass.com/product/heterogeneous-catalysis-in-sustainablesynthesis-advances-in-green-and-sustainable-chemistry-1st-editionbela-torok/
ebookmass.com
Contemporary Chemical Approaches for Green and Sustainable Drugs 1st Edition Török M. (Ed.)
https://ebookmass.com/product/contemporary-chemical-approaches-forgreen-and-sustainable-drugs-1st-edition-torok-m-ed/
ebookmass.com
Microwaves in Chemistry Applications: Fundamentals, Methods and Future Trends (Advances in Green and Sustainable Chemistry) 1st Edition Aparna Das
https://ebookmass.com/product/microwaves-in-chemistry-applicationsfundamentals-methods-and-future-trends-advances-in-green-andsustainable-chemistry-1st-edition-aparna-das/
ebookmass.com
Handbook
of Patient Safety 1st Edition Peter Lachman (Editor)
https://ebookmass.com/product/handbook-of-patient-safety-1st-editionpeter-lachman-editor/
ebookmass.com
Neuromechanics of Human Movement 5th Edition, (Ebook PDF)
https://ebookmass.com/product/neuromechanics-of-human-movement-5thedition-ebook-pdf/
ebookmass.com
The Oxford Handbook of the Sources of International Law Aspremont
https://ebookmass.com/product/the-oxford-handbook-of-the-sources-ofinternational-law-aspremont/
ebookmass.com
Integrated Behavioral Health in Primary Care: Step-By-Step Guidance for Assessment and Intervention
https://ebookmass.com/product/integrated-behavioral-health-in-primarycare-step-by-step-guidance-for-assessment-and-intervention/
ebookmass.com
Intergovernmental Relations in Divided Societies Fessha
https://ebookmass.com/product/intergovernmental-relations-in-dividedsocieties-fessha/
ebookmass.com
Scientism: prospects and problems De Ridder
https://ebookmass.com/product/scientism-prospects-and-problems-deridder/
ebookmass.com
First Dates with Anna Harrington (First Dates Series) Anna Harrington
https://ebookmass.com/product/first-dates-with-anna-harrington-firstdates-series-anna-harrington/
ebookmass.com
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
©2020ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformation aboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-817592-7
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
AcquisitionsEditor: AnnekaHess
EditorialProjectManager: LauraOkidi
ProductionProjectManager: PremKumarKaliamoorthi
CoverDesigner: AlanStudholme
TypesetbySPiGlobal,India
Contributors
BimalKrishnaBanik DepartmentofMathematicsandNaturalSciences,Collegeof SciencesandHumanStudies,DeanshipofResearchDevelopment,Prince MohammadBinFahdUniversity,AlKhobar,KingdomofSaudiArabia
AjoyBasak PathologyandLaboratoryMedicine;OttawaHospitalResearchInstitute, TheOttawaHospital,Ottawa,ON,Canada
SarmisthaBasak FormerlyofKidneyResearchCenter,OttawaHospitalResearch Institute,Ottawa,ON,Canada
BaburajBaskar DepartmentofChemistry,FacultyofEngineeringTechnology, SRMInstituteofScienceandTechnology,Kattankulathur,Kancheepuram(Dt), Tamilnadu,India
BasudebBasu DepartmentofChemistry,NorthBengalUniversity,Darjeeling; DepartmentofChemistry,RaiganjUniversity,Raiganj,India
ShibaniBasu DepartmentofChemistryandBiochemistry,BoiseStateUniversity, Boise,ID,UnitedStates
PreetismitaBorah CSIR-CentralScientificInstrumentsOrganization,Chandigarh, India
ArindamChatterjee SaintLouisUniversity,SchoolofMedicine,Department ofPharmacologyandPhysiology,St.Louis,MO,UnitedStates
AroniChatterjee VirusResearchLaboratory,NationalInstituteofCholeraand EntericDiseases,ID&BGHospitalCampus,Kolkata,India
DhrubajyotiChattopadhyay AmityInstituteofBiotechnology,AmityUniversity, NewTown,Kolkata,WestBengal,India
PrasunChoudhury DepartmentofChemistry,NorthBengalUniversity,Darjeeling, India
AparnaDas DepartmentofMathematicsandNaturalSciences,CollegeofSciences andHumanStudies,PrinceMohammadBinFahdUniversity,AlKhobar,Kingdomof SaudiArabia
MuhammadFaisal DepartmentofChemistry,Quaid-i-AzamUniversity,Islamabad, Pakistan
JhumaGanguly DepartmentofChemistry,IndianInstituteofEngineeringScience andTechnology,Shibpur,Howrah,India
ArkajitGhosh IndianInstituteofEngineeringScienceandTechnology,Shibpur, India
ManojitGhosh IndianInstituteofEngineeringScienceandTechnology,Shibpur, India
K.Ilango DepartmentofPharmaceuticalChemistry,SRMCollegeofPharmacy, SRMInstituteofScienceandTechnology,Kattankulathur,Kancheepuram(Dt), Tamilnadu,India
AdyaJain SchoolofStudiesinChemistry,JiwajiUniversity,Gwalior,India
DriptaDeJoarder DepartmentofChemistry,UniversityofCalcutta,Kolkata,India
SaritaKhandelwal DepartmentofChemistry,UniversityofRajasthan,Jaipur,India
AnjanKumar RolandInstituteofPharmaceuticalSciences,Berhampur,India
HritwikKumar IndianInstituteofEngineeringScienceandTechnology,Shibpur, India
MahendraKumar DepartmentofChemistry,UniversityofRajasthan,Jaipur,India
ArunKumarMahato DepartmentofPharmaceuticalSciences,SardarBhagwan SinghUniversity,Dehradun,India
DilipK.Maiti DepartmentofChemistry,UniversityofCalcutta,Kolkata,India
SantuMaity DepartmentofChemistry,IndianInstituteofEngineeringScienceand Technology,Shibpur,Howrah,India
BibhashC.Mohantad SeemantaInstituteofPharmaceuticalSciences,Mayurbhanj, Odisha,India
ChhandaMukhopadhyay DepartmentofChemistry,UniversityofCalcutta, Kolkata,India
SankaranarayananMurugesan MedicinalChemistryResearchLaboratory, DepartmentofPharmacy,BirlaInstituteofTechnology&Science,PilaniCampus, Pilani,India
JnyanaranjanPanda RolandInstituteofPharmaceuticalSciences,Berhampur,India
Ch.NiranjanPatra RolandInstituteofPharmaceuticalSciences,Berhampur,India
PrasunPatra AmityInstituteofBiotechnology,AmityUniversity,NewTown, Kolkata,WestBengal,India
B.V.V.RaviKumar RolandInstituteofPharmaceuticalSciences,Berhampur,India
GildardoRivera LaboratoryofPharmaceuticalBiotechnology,CenterforGenomic Biotechnology,NationalPolytechnicInstitute,Reynosa,Mexico
AvinavaRoy IndianInstituteofEngineeringScienceandTechnology,Shibpur,India
EshaRushell DepartmentofChemistry,UniversityofRajasthan,Jaipur,India
AamerSaeed DepartmentofChemistry,Quaid-i-AzamUniversity,Islamabad, Pakistan
GourabSaha TampereUniversityofTechnology,Tampere,Finland
BiswaMohanSahoo RolandInstituteofPharmaceuticalSciences,Berhampur,India
RajarshiSarkar NarseeMonjeeInstituteofManagementStudies,Indore,India
C.NithyaShanthi DepartmentofPharmaceuticalSciences,SardarBhagwanSingh University,Dehradun,India
AshokKumarSrivastava DepartmentofChemistry,FacultyofEngineering& Technology,VeerBahadurSinghPurvanchalUniversity,Jaunpur,India
YogeshKumarTailor DepartmentofChemistry,UniversityofRajasthan,Jaipur, India
RamNareshYadav DepartmentofChemistry,FacultyofEngineering& Technology,VeerBahadurSinghPurvanchalUniversity,Jaunpur,India
Editor’sbiography
BimalKrishnaBanik conductedpostdoctoralresearchatCaseWesternReserve University(UnitedStates)andStevensInstituteofTechnology(UnitedStates).He isanFRSC,CChem,andFICS.Dr.Banikwasatenuredfullprofessorinchemistry andFirstPresident’sEndowedProfessorinScience&EngineeringattheUniversity ofTexas-PanAmericanandtheVicePresidentofResearch&EducationDevelopmentoftheCommunityHealthSystemsofSouthTexas.Atpresent,Dr.Banikisa professorandseniorresearcheroftheDeanshipofResearchDevelopment&College ofNaturalSciencesatthePrinceMohammedBinFahdUniversityinKingdomof SaudiArabia.
ProfessorBanikhastaughtorganicandmedicinalchemistrytoBS,MS,andPhD studentsinUSuniversitiesformanyyears.Histeachingskillsareexceptionallystrong andtheseareprovedbyseveralthousandstudents’andpeer’sevaluations.Hehas mentoredapproximately450students,20postdoctoralfellows,and7PhDresearch scientistsandhasadvised20universityfaculties.ProfessorBanikhasactedasthe advisorof2students’organizationsandsocietiesthathave1400students.
ProfessorBanikhasconductedsyntheticchemistryandchemicalbiologyresearch onovary,colon,breast,blood,prostate,brain,pancreasandskincancers(alsoonNCI 60cancercelllines);antibiotics;hormones;catalysis;greenchemistry;naturalproducts;andmicrowave-inducedreactions.Astheprincipalinvestigator(PI),hehasbeen awarded $7.25millioningrantsfromNIH,UnitedStatesandNCI,UnitedStates. Importantly,hehaspeer-reviewed402publicationsalongwith491presentation abstracts.Thenumberofcitationsofhispublicationsiscloseto6550.Hisresearch hasbeenexposedinmediaapproximately200times.ProfessorBanikhasservedas thePIofajointgreenchemistrysymposiumbetweenUnitedStatesandIndia.He
haspresided20symposiumsattheAmericanChemicalSociety(ACS)NationalMeetingsandover2-dozenconferencesattheState,National,andInternationallevel, including1attheNobelPrizecelebrationinGermany.Inthecapacityofchair,he hasintroducedmorethan300speakers.Heisareviewerof93,editorialboardmember of28,editor-in-chiefof14,founderof4,associateeditorof4,andguesteditorof6 journals.Astheeditor-in-chief,hehasrecruitedapproximately200associateeditors, regionaleditors,andeditorialboardmembersfromdifferentcountries.HeisanexaminerofNSF,NCI,NRC,DOE,ACS,andinternationalgrantapplications;reviewerof promotionandtenureoffacultyofnationalandinternationaluniversities;examinerof doctoraltheses;panelmemberofNSFandNCI/NIHgrantsections.Overtheyears,he hasservedasthechair/memberofmorethan100scientificcommittees.Professor BanikhasservedasthechairoftheUniversityofTexasM.D.AndersonCancerCenter’sdrugdiscoverysymposiumsanddirectedtheNCIfundedanalyticalchemistry Coreresearchlaboratory.
ProfessorBanikhasreceivedtheIndianChemicalSociety’s(ICS)Life-Time AchievementAwardin2018;MahatmaGandhiPravasiHonorgoldmedalfrom theUKParliament;ICS’sProfessorP.K.Boseendowmentmedal;Dr.M.N.Ghosh goldmedal;UniversityofTexasBoardofRegents’OutstandingTeachingaward;5 top-citedpapersawardsbyElsevierJournals;approximately50certificatesofexcellenceinhisprofession;IndianAssociationCommunityServiceaward;ACSMember Serviceaward;NCIwebpagerecognition;bestresearcherandmentorawardbythe UTPA;chosenasoneoftheWorld’sMostInfluentialPeopleonEarthinYear2016byUSNewsCorporation;BurdwanUniversityEminentAlumnusrecognition; FirstPresident’sEndowedProfessorshipattheUTPAinits87yearofhistory; UTPA’sawardforexcellenceininternationalstudies.Someofhisinternational researchpresentationsareconsideredaskeynote,plenary,inauguralandawardwinninglectures.Dr.Banikhasreceivedmorethan200invitationstodeliverlectures inUnitedStates,India,UnitedKingdom,Germany,China,HongKong,Greece,Italy, France,Jamaica,Sweden,Japan,Singapore,Pakistan,Norway,Bangladesh,Canada, Mexico,Vietnam,SouthKorea,Thailand,SaudiArabia,UnitedArabEmirates, Argentina,Portugal,Switzerland,Venezuela,Brazil,Spain,NewZealand,Egypt, Austria,AustraliaandTurkey.Heisalsoinvitedtowriteresearchandtextbooks bymajorpublishers,includingWiley,Elsevier,Springer,SpringerNature,Taylor& Francis,Thompson,Linus,Nova,Pearson,Cengage,HoughtonMifflinand PMUPress.
Preface
Greenapproachesinmedicinalchemistryforsustainabledrugdesignisbasedonthe knowledgeofateamofreputablescientists.Thisgroupintegratesandencouragesthe growthofmedicinalchemistry,organicchemistry,anddrugdiscoveryefforts.This bookoffersnumerousgreenandsustainableapproachestowardmedicinalchemistry throughthesynthesisofmoleculesbyenvironmentallybenignmethods(inwater,in theabsenceofsolvents,nonconventionalreactionmedia,one-potmethod,andionic liquid),catalysis,microwave-inducedreactions,naturalediblematerials,nanotechnology,engineering,biochemicalandcomputer-assistedmethods.Anumberoftest resultsofmedicinallyactivemoleculeswithrespecttospecificdiseasesareprovided inthiscontext.Theuseofnaturalandnonharmfulresources(spices,vegetables,clay, andsugar)isshownasoneofthesustainablemethodsforobtainingusefulstructures.
Thisbookrevealshowgreenapproachesareusedinmedicinalchemistryfor human’slifeimprovement.Variousimportantpointsaremade:adoptionofsustainableandgreenchemistrypathwaysinthepreparationofusefulmolecules,risksof usinghazardousmaterials,andidentifiescost-effectivesimpleprocesses.Ibelieve thisbookwillbeusefulfordiversechemists,biologists,pharmacologists,pharmacists,biotechnologists,clinicians,andengineersworkinginbothacademiaandindustry;undergraduateandgraduatestudents,andpostdoctoralfellows;scientists/faculty membersworkingingovernment,industry,andacademics.
Thisbookhas27chapterswrittenbythescientistsofdiversebackgroundandexperience.Thesechaptersaredividedinaccordancewiththeprincipalaimsdescribed. Illangoetal.exploredgreensynthesisofnaturalandsyntheticcompoundsasanticanceragents.Ghoshetal.studiedantibacterialandantimicrobialcoatingsonmetalsubstratesbycoldspraymethod.ChoudhuryandBasusynthesizedmedicinallyimportant heterocyclesusinggrapheneoxideasasustainablecatalyst.Mukhopadhyayetal. investigatedgreenmethodsforthesynthesisofpotentialsdrugsagainsttropicaldiseases.JainandBanikstudiedclay-mediatedsynthesisofbiologicallyactivecompounds.FaisalandSaeedexploredtheroleofionicliquidinmedicinalchemistry. DeJoarderandMaitidescribedsynthesisofheterocyclesinsidenanoreactors.Jain andBanikinvestigatedthemedicinalaspectsofnanoparticlesandnanocomposites. Kumaretal.developedsustainableorganictransformationsintheconstructionof heterocycles.YadavandBanikinvestigatedtheone-potsynthesisofmedicinally activemolecules.Baniketal.studiedorganocatalyticcycloadditionreactionstoward thesynthesisofcomplexcompounds.BorahandBanikexploredthesynthesisof diversesteroidsasbiologicallyactivemolecules.Sahooetal.investigatednumerous reactionsinwater.SahooandBanikexploredimportantreactionsintheabsenceof anysolventstowardthesynthesisofmedicinallyimportantcompounds.Dasand Banikinvestigatedtheapplicationofthiosugarsinorganicsynthesis.
BasakandBasakreportedagreenchemistryapproachforthesynthesisofcrucial cholesterol-loweringdrugs.PatraandChattopadhyaydescribedthereleaseofnanodrugsthroughbiosafeprocess.Gangulyetal.demonstratedanapproachincancer biologyusingsugar-derivedhydrogels.BanikandSahoostudiedgreensynthesis andbiologicalevaluationofanticancerdrugs.Sahooetal.exploredgreenchemistry approachesinthedevelopmentofantidepressantandantipsychoticagents.
BasuandBanikstudiedthepropertiesandbenefitsofnaturalspicesonhealth. BorahandBanikinvestigatedafewmedicinalplantswithcompoundsthathave anticanceractivities.
Sahooetal.describedmicrowave-assistedsynthesisofseveralantitubercular agents.BorahandBanikstudiedmicrowave-assistedsynthesisofsteroids.Sahoo etal.investigatedmicrowave-mediatedsynthesisofantiinflammatorycompounds.
DasandBanikdemonstratedacorrelationbetweendipolemomentandmedicinal propertiesofdiversemolecules.Chatterjeeexploredcomputer-assistedmethodinthe drugdiscoveryprocess.
Thisbookwouldnothavebeenpossiblewithoutthesignificantcontributions ofscientistsworkingindifferentcountriesondiverseprojectsrelatedtogreen approachesinmedicinalchemistryforsustainabledrugdesign.Isincerelythankall theauthorsfortheirvaluablebookchapters.Finally,Ithankthemanagementof ElsevierpublisherandparticularlytoMs.AnnekaHessandMs.LauraOkidifortheir activeparticipationwithme.
Thankyou,ALL.
BimalKrishnaBanik DepartmentofMathematicsandNaturalSciences,CollegeofSciencesand HumanStudies,DeanshipofResearchDevelopment,PrinceMohammad BinFahdUniversity,AlKhobar,KingdomofSaudiArabia
1
K.Ilangoa,*,BaburajBaskarb,SankaranarayananMurugesanc aDepartmentofPharmaceuticalChemistry,SRMCollegeofPharmacy,SRMInstituteof ScienceandTechnology,Kattankulathur,Kancheepuram(Dt),Tamilnadu,India, bDepartmentofChemistry,FacultyofEngineeringTechnology,SRMInstituteofScienceand Technology,Kattankulathur,Kancheepuram(Dt),Tamilnadu,India, cMedicinalChemistry ResearchLaboratory,DepartmentofPharmacy,BirlaInstituteofTechnology&Science, PilaniCampus,Pilani,India
*Correspondingauthor.e-mailaddress:ilangok67@gmail.com
1.1Introduction
Greenchemistrymediatedsynthesisofnanoparticlesisabuddingtechnology,which hasreceivedsubstantialattentionamongtheresearchersinthepresentdecadedueto theirwideapplicationsinvariousfieldssuchasmedicine,biotechnology,chemistry, physics,catalysis,electronics,andmaterialscienceduetotheirattractivephysicochemicalpropertiesandstability [1].Amongthemetallicnanoparticles,silver nanoparticles(AgNPs)inparticularareknownfortheirversatilebiologicalapplicationsinthefieldsofmedicineandbiotechnology [2,3].Severalstudieshavebeen reportedonthesynthesisofAgNPsusingphysicalandchemicalmethods [4–7].Moreover,thechemical-basedsynthesisofAgNPshasbeenreportedtopollutetheecosystem [8].Recently,biologicalmethodsforthesynthesisofAgNPshavebeendeveloped becausetheyareeco-friendlyandcosteffective.Withadvancesinthegreenchemistry approach,biologicalsynthesisofAgNPshasbeenfocusedonasasubstitutetophysicalandchemicalprocessesandoffersbuddingopportunitiesforthesynthesisof AgNPs.Severalbiologicalmaterialssuchasmicroorganisms,plantextractsandmilk havebeenusedforthesynthesisofAgNPs [3,9,10].SynthesisofAgNPsusingplant extractsispotentiallyadvantageousovermicroorganismsbecauseofitseasyscale-up operations [11]
Naturalcompounds/drugsobtainedfromtheplantsourcesarehighlysafeandeasilymetabolizedwhencomparedtoothersyntheticmedicinalcompounds [12].The secondarymetabolitesobtainedfromtheplantmaterialsleadtowardsthedevelopmentofdrugs [13].Nearlyone-fourthofthetotalmedicinalcompoundsusedby thedevelopedcountriesareobtainedfromnaturalresources [14].
Inrecentyears,microwaveheatinghasbeenusedinmanyorganicreactionsleadingcleanerreactionproductsandtheuseofenvironmentallymorebenignconditions comparedwithclassicalheating.Becauseofeasyoperation,safety,shorterreaction GreenApproachesinMedicinalChemistryforSustainableDrugDesign. https://doi.org/10.1016/B978-0-12-817592-7.00001-0 © 2020ElsevierInc.Allrightsreserved.
4 GreenApproachesinMedicinalChemistryforSustainableDrugDesign
times,highyieldsandenvironmentalbenignity,microwaveirradiationisanalternativetoconventionalsynthesis [15,16].
Cancerisagroupofdiseasescharacterizedbyuncontrolledgrowth/proliferation andspreadofabnormalcells.Itisafataldiseasethatleadstothesecondmostcommon causeofdeathworldwideandhasposedaseriousthreattohumanhealthduetoeverincreasingnature [17].Thereisabout25millionnewcases/yearhasbeenreportedas perWorldCancerReportfromWorldHealthOrganization [18].Becauseofitslow curerateandhighmortality,tumorhasbecomeoneofthemostterriblediseases aroundtheworld.Apoptosisorprogrammedcelldeath,isamajorcontrolmechanism bywhichcellsdieifDNAdamageexceedsthecapacityofrepairmechanisms.Aspart ofnormaldevelopment,apoptosisplaysanimportantroleincontrollingcellnumber andproliferation.Defectsinapoptoticresponsesareconsideredasamajorcontributor indifferenthumandiseasesincludingcancer.Theresistancetoapoptosisisahallmark ofcancercells,thecrucialapproachtoanticancerdrugdiscoveryistheactivation/restorationofnormalapoptoticpathway/cascades [19].But,alargenumberofanticancer drugshavebeenfoundtoinducetheapoptoticprocessincancerouscells [20].However,unduetoxicity,sideeffectsandresistanceoftheavailablemedicinesreducetheir efficacyandutility [21–23].Despiterecentadvancesmadeinanticancerdrugdevelopment,thepresenceofresistancetoexistingchemotherapeuticagentsisamajor obstacletotheeffectivetreatmentofcancer [24].Consequently,discoveringnovel, puissantmolecularentitiesaspotentialanticancerdrugswithimprovedefficacy andresistancetocomplementthepresentchemotherapeuticstrategiesishighly desired.Interestingly,naturalproductsprovideahealthysourceforsuchcompounds. Apartfromthat,nearlyone-halfofallcancersthatarediagnosedresultsinthedeathof thepatient.Therefore,identificationofnovelpotent,safe,andselectiveanticancer drugsremainsoneofthemostpressinghealthproblems.
1.2Naturalproductsasanticanceragents
In2017,Anuetal. [25] reportedthegreensynthesisofseleniumnanoparticlesusing GarlicCloves(Alliumsativum ),itsbiophysicalcharacterizationandcytotoxicityevaluationonverocells.Theyfoundthatbiologicallygreensynthesizedselenium nanoparticlesshowedeco-friendlybiocompatiblefeaturesandlimitedcytotoxicity whencomparedwithconventionalchemicallysynthesizedseleniumnanoparticles.
Recently,in2018,Akteretal. [26] reported Brassicarapa var. japonica leaf extractmediatedgreensynthesisofcrystallineAgNPsandevaluationoftheircytotoxicityandantibacterialactivityusinginvitroPC12 cellmodel,diskdiffusionmethod, respectively.TheyfoundthatcommercialAgNPsreducedcellviabilityto23%(control97%)andincreasedlactatedehydrogenaseactivityataconcentrationof3ppm, whereas, Brassica AgNPsdidnotshowanyeffectsonbothofthecytotoxicityparametersupto10ppminPC12 cells.Moreover, Brassica AgNPsexhibitedhigher antibacterialactivityagainstGram-negative Escherichiacoli (11.1 0.5mm,ZOI) and Enterobacter sp.(15 0.5mm,ZOI)thansomepreviouslyreportedgreensynthesizedAgNPs.
In2016,Sengottaiyanetal. [27] reportedgreensynthesisofAgNPsusing SolanumindicumL.andtheirantibacterial,splenocytecytotoxicpotentials.They foundthatthegreensynthesizedAgNPsattheconcentrationof1–4mM,extensively inhibitedthegrowthofthetestedpathogens Staphylococcus sp., Klebsiella sp.andthe percentageofviableratsplenocytecellswerealsodiminishedwhileincreasingthe concentrationofAgNPs.
In2017,Alishahetal. [28] reportedgreensynthesisofstarchextractedfrom Solanumtuberosum mediatedCuOnanoparticlesandevaluatedtheirantimicrobial(micro dilutionmethod)andantibreastcanceractivity(MTTassaymethod)against Bacillus cereus, Shigellasonnei, Staphylococcusepidermidis, Enterococcus, Pseudomonas aeruginosa, Escherichiacoli,andMichiganCancerFoundation-7(MCF-7)celllines, respectively.
In2014,Arunetal. [29] reportedgreensynthesisofAgNPsusingthemushroom fungus Schizophyllumcommune andscreenedtheirantibacterial(against Escherichia coli, Bacillussubtilis, Klebsiellapneumoniae, Pseudomonasfluorescens),antifungal (against Trichophytonsimii, Trichophytonmentagrophytes, Trichophytonrubrum) andanticancer(againstHumanEpidermoidLarynxCarcinoma(HEP-2)celllines) activity.
In2013,Geethaetal. [30] reportedgreensynthesisofgoldnanoparticlesusing flowersof Couroupitaguianensis andtheirantileukemiccanceractivityagainst HL-60cells.
In2013,SujinJebaKumaretal. [31] reportedgreensynthesisofAgNPsbyaqueousextractof Plumbagoindica anditsantitumoractivityagainstDalton’sLymphoma AscitesModel(DLAcells).
Recently,in2018,Soleimanietal. [32] reportedgreensynthesisofAgNPsand evaluationoftheirantibacterial(measurementofminimuminhibitoryconcentrations (MICs)activityagainstGram-positive(Staphylococcusaureus and B.subtilis)and Gram-negative(Pseudomonas.aeruginosa and Escherichiacoli)bacteria)and antibreastcanceractivityagainstMCF-7cells.
In2017,Yugandharetal. [33] reportedbioinspiredgreensynthesisofcopperoxide nanoparticlesusing Syzygiumalternifolium stembarkandevaluationofitssynergistic antimicrobial(against Escherichiacoli and Trichodermaharzianum)andanticancer activityagainstMDA-MB-231humanbreastcancercelllines.
In2014,Sivarajetal. [34] repo rtedbiosynthesisandcharacterizationof aqueousextractof Acalyphaindica leafmediatedcopperoxidenanoparticles andevaluationofitsantimi crobialactivityagainst Escherichiacoli,Pseudomonas fluorescens , Candidaalbicans andanticanceractivityagainstMCF-7(breast cancer)celllines.
In2017,Nagajyothietal. [35] reportedgreensynthesisusinganaqueous blackbean(Phaseolusvulgaris)extractandanticanceractivityofcopperoxide nanoparticlesagainsthumancervicalcarcinoma(HeLacells).Theyalsoobserved thatCuONPsinducedintracellularreact iveoxygenspecies(ROS)generationina dose-dependentmannerandsignificantlyreducedcervicalcarcinomacolonies.
In2013,Sankaretal. [36] reportedaqueousextractof Origanumvulgare mediated biosynthesisofAgNPsforitsantibacterialactivityagainst Aeromonashydrophilla, Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents5
Bacillus sps., Escherichiacoli (Enteropathogenic–EP), Klebsiella sps., Salmonella sps., Salmonellaparatyphi, Shigelladysenteriae , Shigellasonnei,andanticancer activityagainsthumanlungcancer(A549)celllines(LD50 at100 μg/mL).Theyalso proposedthat,theimprovedcytotoxiceffectsof O.vulgare maybeduetothe presenceofbioactivecompoundssuchascarvacrol,terpinen,thymol,sabinine, linolool,terpinolene,quercetin,apigeninascappingagentsingreensynthesisof AgNPs.
In2014,Vasanthetal. [37] reportedanticanceractivityof Moringaoleifera stem barkextractmediatedAgNPsonhumancervicalcarcinoma(HeLa)cellsbyapoptosis inductionthroughROSgenerationanditssubsequentactiononinhibitingcellreplicationinHeLacells.
In2015,Nayaketal. [38] reportedbiologicallysynthesizedAgNPsofplant extractsof Cucurbitamaxima (petals), M.oleifera (leaves), Acoruscalamus (rhizome),andtheiranticanceractivityagainstepidermoidcarcinoma(A431)cells. Amongthethreesynthesizednanoparticles,therhizomeextractgeneratedAgNPs weresignificantlysuperiortothepetalandleavesextractgeneratedAgNPsinrelation totheirantimicrobialactivityagainst B.subtilis,Escherichiacoli,P.aeruginosa and Vibriocholerae.
In2017,Gnanaveletal. [39] reportedthebiosynthesisandcharacterizationof copperoxidenanoparticlesfromtheleavesof Ormocarpumcochinchinense andits anticanceractivityonhumancoloncancer(HCT-116)celllineswithIC50 valueof 40 μg/mL.
In2013,Sumanetal. [40] reportedbiosynthesis,characterization,andcytotoxic effectofAgNPsusing Morindacitrifolia rootextractagainsthumancervicalcarcinoma(HeLa)cells.TheyalsoproposedthatthecytotoxicityoftheAgNPsviathegenerationofROSorincreasesinintracellularoxidativestressandtriggercelldeath processincludingapoptosisandnecrosis.
In2015,Ramaretal. [41] reportedbiosynthesisofAgNPsusingethanolic petalsextractof Rosaindica anditsantibacterial,anticancer,andantiinflammatory activities.TheyfoundthatthepreparedAgNPsshowedaneffectiveantibacterial activityagainstGram-negative(Escherichiacoli, Klebsiellapneumoniae) thanGram-positive( Streptococcusmutans , Enterococcusfaecalis )bacteria. TheAgNPsalsoshowedpotentialanticanceractivityagainsthumancolon adenocarcinomacancer(HCT15)celllin esaswellasinvitroantiinflammatory activity.
In2013,Inbathamizhetal. [42] reportedinvitroevaluationofantioxidantandanticancerpotentialoftheaqueousleafextractof Morindapubescens synthesizedAgNPs againsthumanepitheliumlivercancer(HEPG2)cells.
In2012,Harneetal. [43] reportednovelrouteforrapidbiosynthesisofcopper nanoparticlesusingaqueousextractof CalotropisproceraL.latexandtheircytotoxicityontumor(humancervicalcarcinoma-HeLa,humanlungcancer-A549andBaby hamsterkidney-BHK21)celllinesat120 μMconcentration.
In2014,Kathiravanetal. [44] reportedthesynthesisofAgNPsfrom Meliadubia leafextractandtheirinvitroanticanceractivityagainsthumanbreastcancer(MCF-7) celllines(IC50 31.20 μg/mL).
1.3Syntheticcompoundsasanticanceragents
In2016,Dingetal. [45] reportedgreensynthesisusingmicrowaveirradiationtechniqueandantitumorevaluationof15novelseriesof3-[4-bi-(4-fluorophenyl)methylpiperazinyl]-4-amino-5-thione-1,2,4-triazoleSchiffbasesagainstcelldivisioncycle 25homologB(CDC25B)cellsfrom Schizosaccharomycespombe.Amongthese, around14compounds(6a–n)showedsignificantinhibitoryactivity(83%–99%) againstCDC25B.
6(a–n) Comp. codeR 6H5 6H4 6H4
2C6H4
2C6H4
3OC6H4
2C6H4
6H4
2C6H4
In2017,Reddyetal. [46] reportedheterogeneouscatalysissuchaschitosanmediated one-potgreensynthesisusingmicrowaveirradiationunderneatconditionsand cytotoxicityevaluationof15novel α-aminophosphonatescontaining trifluoromethylanilinemoietyagainstPC-3(prostatecancer),MCF-7(breastcancer), HeLa(CervixCancer),U973,K562,andHL60(humanLeukemiacelllines).Among thesecompounds,compound 4k withpyrenemoietyshowedhighercytotoxicpotency againstbreastcancer,U973,K562,HL60cancercelllineswhilecompound 4g with trifluoromethylgroupexhibitedpromisingcytotoxicityagainstU973,K562,and Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents7
3C6H4
4-CF 6l 2-Furyl 6m 2-Thiophenyl 6n 2-Pyridinyl
8 GreenApproachesinMedicinalChemistryforSustainableDrugDesign
HL60cancercelllines.Theyalsoproposedthatthesignificantactivityexhibitedby theabove-mentionedcompoundsmaybeduetostronginhibitionofthe topoisomerase-IIenzymeofcancercells.
codeR
Recently,in2018,Dofeetal. [47] reportedgreensynthesisunderultrasoundirradiationandinhibitoryeffectofnovel16quinoline-basedthiazolidinonesonthegrowth ofMCF-7humanbreastcancercelllinesbyG2/Mcellcyclearrest.Amongthetitled compounds,analogues 2c, 2d,and 2f (IC50 values5.38,5.12,and0.73 μM,respectively)showedsignificantanticanceractivityagainsthumanbreastcancercelllines (MCF-7)andwereconsideredasapotentiallead.Theyalsoobservedtheinduction ofG2/Mcellarrestwithin24hviaflowcytometryanalysisbytheabove-mentioned significantlyactivecompounds.
In2018,Mohanetal. [48] reportedone-potsolvent-freegreensynthesisusing β-cyclodextrinasabiomimeticcatalystandanticanceractivityofnovel15pyrazolyl phosphonatesagainstbreastcancer(MCF-7),prostatecancer(DU-145),andlungcancer(A-549)celllinesbysulfarodamine-B(SRB)assay.Amongthesynthesizedcompounds,compounds 4o (IC50 7.854,6.753,5.967), 4n (IC50 9.187,7.672,6.483),and 4m (IC50 9.867,9.839,8.113)exhibitedexcellentcellgrowthinhibitoryeffectson MCF-7,DU-145,andA-549celllineswhencomparedtothedoxorubicin(IC50 9.652,7.114,8.340)standardused.
Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents9
In2010,Sharmaetal. [49] reportedmicrowave-assisted,solvent-free,parallelsynthesisof20novelsubstitutedimidazolesandevaluatedtheirantibacterial,anthelmintic, short-termanticancer,andantitubercularactivity.Allthesynthesizedsubstituted imidazoleshaveshowngoodantibacterialactivityagainstGram-negativebacterial strains(Klebsiellapneumoniae and Escherichiacoli)andmoderatetogoodanthelminticactivity(againstearthworms Megascolexkonkanensis, Pontoscolexcorethruses).Thesynthesizedimidazolederivative(compounds 5b, 7b, 12b, 15b, 16b)possessedsignificantcytotoxicactivity(CC50 31.25,91.61,50.32,50.00, 94.63 μg/mL,respectively)againstEhrlich’sascitescarcinoma(EAC)celllines.











In2010,Kidwaietal. [50] reportedenvironmentfriendlysynthesisandanticancer evaluationof10novel2-oxo/thioxooctahydroquinazolin-5-onederivativesusing cericammoniumnitrate(CAN)ascatalystandpolyethyleneglycol(PEG)assolvent. Amongthetitledanalogues,compounds 4c, 4d,and 4e werefoundtoexhibitexcellent activityataconcentrationaslowas0.06 μg/mLagainstU87humangliomacells.
codeXR 4c SC2H5 4d OC3H8 4e S
In2012,Mungaraetal. [51] reportedgreensynthesisusing(PEG-400)asagreenreactionmediaandantiproliferativeactivityof14novel α-aminophosphonatesagainst A549(humanlungcancer),MCF-7(humanbreastcancer)andNCI-N87(human stomachcancer)cells.Amongthese,compounds 4c, 4e,and 4m exhibitedgoodantiproliferativeactivityagainsttheabove-mentionedthreecancercells.
Comp.
Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents11
1.4Conclusion
Inconclusion,theauthorshavesuccessfullycompiledtherecentlypublishedfindings intheareaofgreenchemistryassistedsynthesisofnaturalandsyntheticheterocyclic organiccompoundsthatareeffectiveagainstvariouscancercelllines.Thisdetailed reviewworkwilldefinitelygiveanmeaningfulinsightforthereaderswhowillbe workingintheareaofgreenchemistryassistedcancerchemotherapeutics.
References
[1] P.Raveendran,J.Fu,S.L.Wallen,Completely“green”synthesisandstabilizationofmetal nanoparticles,J.Am.Chem.Soc.125(2003)13940–13941.
[2] V.Venkatpurwar,V.Pokharkar,Greensynthesisofsilvernanoparticlesusingmarine polysaccharide:studyofin-vitroantibacterialactivity,Mater.Lett.65(2011)999–1002.
[3] S.A.Babu,G.Prabu,SynthesisofAgNPsusingtheextractofCalotropisproceraflowerat roomtemperature,Mater.Lett.65(2011)1675–1677.
[4] S.Iravani,H.Korbekandi,S.V.Mirmohammadi,B.Zolfaghari,Synthesisofsilver nanoparticles:Chemical,physicalandbiologicalmethods,Res.Pharm.Sci. 9 (2014) 385–406.
[5] K.Gudikandula,S.C.Maringanti,Synthesisofsilvernanoparticlesbychemicalandbiologicalmethodsandtheirantimicrobialproperties,J.Exp.Nanomed.9(2016)714–721.
[6] F.Mafune,J.Kohno,Y.Takeda,T.Kondow,H.Sawabe,Structureandstabilityofsilver nanoparticlesinaqueoussolutionproducedbylaserablation,J.Phys.Chem.B104(2000) 8333–8337.
[7] H.Huang,Y.Yang,Preparationofsilvernanoparticlesininorganicclaysuspensions, Compos.Sci.Technol.68(2008)2948–2953.
[8] T.Y.Suman,S.R.RadhikaRajasree,A.Kanchana,E.Beena,Biosynthesis,characterizationandcytotoxiceffectofplantmediatedsilvernanoparticlesusing Morindacitrifolia rootextract,ColloidSurf.B106(2013)74–78.
[9] K.J.Lee,S.H.Park,M.Govarthanan,P.H.Wang,Y.S.Seo,M.Cho,W.H.Lee,J.Y.Lee, S.Kamala-Kannan,B.T.Oh,Synthesisofsilvernanoparticlesusingcowmilkandtheir antifungalactivityagainstphytopathogens,Mater.Lett.105(2013)128–131.
[10] S.V.Otari,R.M.Patil,N.H.Nadaf,S.J.Ghosh,S.H.Pawar,Greenbiosynthesisofsilver nanoparticlesfromanactinobacteriaRhodococcussp,Mater.Lett.72(2012)92–94.
[11] M.F.Zayed,W.H.Eisa,A.A.Shabaka,Malvaparvifloraextractassistedgreensynthesisof silvernanoparticles,Spectrochim.ActaA98(2012)423–428.
[12] S.M.Roopan,G.Elango,ExploitationofCocosnuciferaanon-foodtowardthebiological andnanobiotechnologyfield,Ind.Crop.Prod.67(2015)130–136.
[13] G.Madhumitha,S.M.Roopan,Devastatedcrops:Multifunctionalefficacyfortheproductionofnanoparticles,J.Nanomater.2013(2013)1–12.
[14] G.Elango,S.M.Kumaran,S.S.Kumar,S.Muthuraja,S.M.Roopan,Greensynthesisof SnO2 nanoparticlesanditsphotocatalyticactivityofphenolsulfonphthaleindye,Spectrochim.ActaA145(2015)176–180.
[15] B.A.Roberts,C.R.Strauss,Towardrapid,“green”,predictablemicrowave-assistedsynthesis,Acc.Chem.Res.38(2005)653–661.
[16] V.Polshettiwar,R.S.Varma,Greenerandrapidaccesstobioactiveheterocycles:One-pot solvent-freesynthesisof1,3,4-oxadiazolesand1,3,4-thiadiazoles,TetrahedronLett. 49(2008)879–883.
12 GreenApproachesinMedicinalChemistryforSustainableDrugDesign
[17] A.Jemal,T.Murray,E.Ward,A.Smuels,R.C.Tiwari,A.Ghafoor,E.J.Feuer,M.J.Thun, Cancerstatistics,CACancerJ.Clin.55(2005)10–30.
[18]B.Stewart,C.P.Wild,WorldCancerReport2014,InternationalAgencyforResearchon CancerWorldHealthOrganization,Lyon,France,2014.ISBN978-92-832-0429-9.Availableonline, http://www.iarc.fr/en/publications/books/wcr/wcr-order.php
[19] S.W.Lowe,A.W.Lin,Apoptosisincancer,Carcinogenesis21(2000)485–495.
[20] S.W.Fesik,Promotingapoptosisasastrategyforcancerdrugdiscovery,Nat.Rev.Cancer 5(2005)876–885.
[21] G.Yang,S.Nowsheen,A.Khaled,A.Georgakilas,Toxicityandadverseeffectsoftamoxifenandotheranti-estrogendrugs,Pharmacol.Ther.139(2013)392–404.
[22] A.Monnier,Long-termefficacyandsafetyofletrozolefortheadjuvanttreatmentofearly breastcancerinpostmenopausalwomen:areview,Ther.Clin.RiskManag.5(2009) 725–738.
[23] K.A.Lyseng-Williamson,C.Fenton,Docetaxel:areviewofitsuseinmetastaticbreast cancer,Drugs65(2011)2513–2531.
[24] K.Kelly,L.P.J.Lovato,R.B.Livingston,J.Zangmeister,S.A.Taylor,D.Roychowdhury, J.J.Crowley,D.R.Gandara,Cisplatin,etoposideandpaclitaxelwithgranulocytecolonystimulatingfactorinuntreatedpatientswithextensive-stagesmallcelllungcancer:aphase IItrialofthesouthwestoncologygroup,Clin.CancerRes.7(2001)2325–2329.
[25] K.Anu,G.Singaravelu,K.Murugan,G.Benelli,Green-synthesisofselenium nanoparticlesusinggarliccloves(Alliumsativum):biophysicalcharacterizationandcytotoxicityonVerocells,J.Clust.Sci.28(2017)551–563.
[26]M.Akter,M.M.Rahman,A.K.M.A.Ullah,M.T.Sikder,T.Hosokawa,T.Saito, M.Kurasaki, Brassicarapavar.japonica leafextractmediatedgreensynthesisofcrystallinesilvernanoparticlesandevaluationoftheirstability,cytotoxicityandantibacterial activity.J.Inorg.Organomet.Polym.Mater.(2018), https://doi.org/10.1007/s10904-0180818-7
[27] A.Sengottaiyan,R.Mythili,T.Selvankumar,A.Aravinthan,S.Kamala-Kannan, K.Manoharan,P.Thiyagarajan,M.Govarthanan,J.-H.Kim,Greensynthesisofsilver nanoparticlesusingSolanumindicumL.andtheirantibacterial,splenocytecytotoxic potentials,Res.Chem.Intermed.42(2016)3095–3103.
[28] H.Alishah,S.Pourseyedi,S.Y.Ebrahimipour,S.E.Mahani,N.Rafiei,Greensynthesisof starch-mediatedCuOnanoparticles:preparation,characterization,antimicrobialactivities andinvitroMTTassayagainstMCF-7cellline,Rend.Fis.Acc.Lincei28(2017)65–71.
[29] G.Arun,M.Eyini,P.Gunasekaran,Greensynthesisofsilvernanoparticlesusingthe mushroomfungus Schizophyllumcommune anditsbiomedicalapplications,Biotechnol. BioprocessEng.19(2014)1083–1090.
[30] R.Geetha,T.Ashokkumar,S.Tamilselvan,K.Govindaraju,M.Sadiq,G.Singaravelu, Greensynthesisofgoldnanoparticlesandtheiranticanceractivity,CancerNanotechnol. 4(2013)91–98.
[31] T.SujinJebaKumar,C.K.Balavigneswaran,R.MosesPackiaraj,A.Veeraraj,S.Prakash, Y.NatheerHassan,K.P.Srinivasakumar,Greensynthesisofsilvernanoparticlesby Plumbagoindica anditsantitumoractivityagainstDalton’slymphomaascitesmodel, BioNanoScience3(2013)394–402.
[32] F.F.Soleimani,T.Saleh,S.A.Shojaosadati,R.Poursalehi,Greensynthesisofdifferent shapesofsilvernanostructuresandevaluationoftheirantibacterialandcytotoxicactivity, BioNanoScience8(2018)72–80.
[33] P.Yugandhar,T.Vasavi,P.UmaMaheswariDevi,N.Savithramma,Bioinspiredgreen synthesisofcopperoxidenanoparticlesfromSyzygiumalternifolium(Wt.)Walp:
Greenchemistryassistedsynthesisofnaturalandsyntheticcompoundsasanticanceragents13
Characterizationandevaluationofitssynergisticantimicrobialandanticanceractivity, Appl.Nano.Sci.7(2017)417–427.
[34] R.Sivaraj,P.K.S.M.Rahman,S.N.Rajiv,R.Venckatesh,Biosynthesisandcharacterizationof Acalyphaindica mediatedcopperoxidenanoparticlesandevaluationofitsantimicrobialandanticanceractivity,Spectrochim.ActaAMol.Biomol.Spectrosc.129(2014) 255–258.
[35] P.C.Nagajyothi,P.Muthuraman,T.V.M.Sreekanth,D.H.Kim,J.Shim,Greensynthesis: in-vitroanticanceractivityofcopperoxidenanoparticlesagainsthumancervicalcarcinomacells,Arab.J.Chem.10(2017)215–225.
[36] R.Sankar,A.Karthik,A.Prabu,S.Karthik,K.S.Shivashangari,V.Ravikumar, Origanum vulgare mediatedbiosynthesisofsilvernanoparticlesforitsantibacterialandanticancer activity,ColloidsSurf.B:Biointerfaces108(2013)80–84.
[37] K.Vasanth,K.Ilango,R.MohanKumar,A.Agrawal,G.P.Dubey,Anticanceractivityof Moringaoleifera mediatedsilvernanoparticlesonhumancervicalcarcinomacellsbyapoptosisinduction,ColloidsSurf.B:Biointerfaces117(2014)354–359.
[38] D.Nayak,S.Pradhan,S.Ashe,P.R.Rauta,B.Nayak,Biologicallysynthesizedsilver nanoparticlesfromthreediversefamilyofplantextractsandtheiranticanceractivity againstepidermoidA431carcinoma,J.ColloidInterfaceSci.457(2015)329–338.
[39] V.Gnanavel,V.Palanichamy,S.M.Roopan,Biosynthesisandcharacterizationofcopper oxidenanoparticlesanditsanticanceractivityonhumancoloncancercelllines(HCT116),J.Photochem.Photobiol.BBiol.171(2017)133–138.
[40] T.Y.Suman,S.R.RadhikaRajasree,A.Kanchana,S.B.Elizabeth,Biosynthesis,characterizationandcytotoxiceffectofplantmediatedsilvernanoparticlesusing Morinda citrifolia rootextract,ColloidsSurf.B:Biointerfaces106(2013)74–78.
[41] R.Manikandan,B.Manikandan,T.Raman,K.Arunagirinathan,N.M.Prabhu,M.Jothi Basu,M.Perumal,S.Palanisamy,A.Munusamy,Biosynthesisofsilvernanoparticles usingethanolicpetalsextractof Rosaindica andcharacterizationofitsantibacterial,anticancerandanti-inflammatoryactivities,Spectrochim.ActaAMol.Biomol.Spectrosc. 138(2015)120–129.
[42] L.Inbathamizh,T.MekalaiPonnu,E.JancyMary, Invitro evaluationofantioxidantand anticancerpotentialofMorindapubescenssynthesizedsilvernanoparticles,J.Pharm.Res. 6(2013)32–38.
[43] S.Harne,A.Sharma,M.Dhaygude,S.Joglekar,K.Kodam,M.Hudlikar,Novelroutefor rapidbiosynthesisofcoppernanoparticlesusingaqueousextractof Calotropisprocera L. latexandtheircytotoxicityontumorcells,ColloidsSurf.B:Biointerfaces95(2012) 284–288.
[44] V.Kathiravan,S.Ravi,S.Ashokkumar,Synthesisofsilvernanoparticlesfrom Melia dubia leafextractandtheir invitro anticanceractivity,Spectrochim.ActaAMol.Biomol. Spectrosc.130(2014)116–121.
[45] Y.Ding,Z.Zhang,G.Zhang,S.Mo,Q.Li,Z.Zhao,Greensynthesisandevaluation oftheantitumoractivityofanovelseriesof3-[4-bi-(4-fluorophenyl)methylpiperazinyl]-4-amino-5-thione-1,2,4-triazoleSchiffbases,Res.Chem.Intermed. 42(2016)3105–3116.
[46] K.M.K.Reddy,S.M.Sadik,N.Saichaithanya,K.Peddanna,N.B.Reddy,G.Sravya, Z.Grigory,C.S.Reddy,One-potgreensynthesisandcytotoxicityofnew α-aminophosphonates,Res.Chem.Intermed.43(2017)7087–7103.
[47] V.S. Dofe,A.P.Sarkate,R.Azad,C.H.Gill,Greensynthesisandinhibitoryeffectofnovel quinolinebasedthiazolidinonesonthegrowthofMCF-7humanbreastcancercelllineby G2/Mcellcyclearrest,Res.Chem.Intermed.44(2018)1149–1160.
[48]G.Mohan,S.Santhisudha,S.Murali,N.B.Reddy,G.Sravya,G.V.Zyryanov,C.S.Reddy, One-potgreensynthesisandbio-assayofpyrazolylphosphonates.Res.Chem.Intermed. (2018), https://doi.org/10.1007/s11164-018-3319-y.
[49] G.K.Sharma,D.Pathak,Microwave-assisted,solvent-freeandparallelsynthesisofsome novelsubstitutedImidazolesofbiologicalinterest,Chem.Pharm.Bull.58(2010) 375–380.
[50] M.Kidwai,D.Bhatnagar,R.Kumar,P.M.Luthra,Synthesisof2-Oxo/ Thioxooctahydroquinazolin-5-onederivativesandtheirevaluationasanticanceragents, Chem.Pharm.Bull.58(2010)1320–1323.
[51] A.K.Mungara,Y.-K.Park,K.D.Lee,Synthesisandantiproliferativeactivityofnovel α-Aminophosphonates,Chem.Pharm.Bull.60(2012)1531–1537.
Antibacterialandantimicrobial coatingsonmetalsubstratesby coldspraytechnique:Presentand futureperspectives
2
ManojitGhosha,*,AvinavaRoya,ArkajitGhosha,HritwikKumara,GourabSahab aIndianInstituteofEngineeringScienceandTechnology,Shibpur,India, bTampere UniversityofTechnology,Tampere,Finland *Correspondingauthor.e-mailaddress:mghosh@metal.iiests.ac.in
Nomenclature
ALP alkalinephosphataseactivityisdeterminedbyquantifyingtheamountofp-nitrophenol,theendproducthydrolyzedofparanitrophenylphosphate.
Bioactivity theabilityofmaterialtobringoutresponseinlivingtissue.
Biodegradable getsresorbedwhenoneplacedinthehumanbody.
Bioinert doesnotinitiateareactionwithhostwhenintroducedtobody.
BMG bulkmetallicglassesareformedatverylowcriticalcoolingratesinorderto suppressthenucleationofcrystallinephases.
HA hydroxyapatite(Ca10(PO4)6(OH)2)isceramicmaterialwhichiswidelyused inbiomedicalapplicationsduetoitslowreleaseofantibioticsandsimulatestheboneingrowthbetweenimplantandbone.
hBMSC humanbonemarrowstromalcellsareusedtostudyosteogenesisinvitroand gotapplicationsinbonetissueengineering.
HPCS high-pressurecoldsprayreferstothesysteminwhichthereisaxialinjection ofpowdersandutilizationof25–30barspressuregas.
LPCS low-pressurecoldspraysystemreferstothesysteminwhichthereisradial injectionofpowdersandutilizationof5–10barspressuregas.
MRSA methicillin-resistant Staphylococcusaureus istheGram-positiveinfectious bacteriathatisresistancetomanyantibioticsandaccountsfor8%hospitalinfectionsintheUnitedStates.
MTS itisthecolorimetricmethodforassessingcellmetabolicactivityusedinthe fieldofcancerbiology,immunology,anddrugdeliverypharmacy.
PEEK poly-ether-ether-ketone[(C6H4-O-C6H4-O-C6H4-CO-)n]ispopularimplant materialbecauseofhavingexcellentpropertiessuchasexcellentthermalstability,frictionreductionandmechanicalpropertiessimilartohumanbone.
VCS vacuumcoldsprayreferstotheprocessinwhichspecimenisplacedinthe vacuumtankandnanoparticlesaresprayedintousingapropellantflowof gasespeciallyheliumorair.
Theinterestintheevolutionofsubstrateswithantibacterialpropertiesfordifferent biomedicalapplicationsisofgrowingconcernassomanymicroorganismsare antibiotic-resistant.Thissubjecthashelpedindesigninginnovativebiomaterials.Possiblemicrobe-controllingstrategiesincludeusingbiomedicaldevicesandimplants. Highlyfascinatingpathsareeitherusedorundertheresearchstage,involvingthe depositionofbactericidalagentsuponthebiomaterialsurfacetopreventtheattachmentofbacteriatothesurfaceandalsotoarrestthegrowthofanybiofilm.Products foundinnature,aswellascertainbioactivemetalslikeAg,Cu,andZn,provideviable optionsforadvancedbiomaterialsforantibacterialagents.Coldspray(CS)simply explainedasaccelerationthroughLavalNozzleanddepositionofsolidcomposite powdersonasuitablesubstrate.Particlesundergoplasticdeformationonlywhen thebombardingspeedisinexcessofacertainvalue—thethresholdvalue.Theclose linkexistingbetweenthefundamentalunderstandingofbondingmechanismsand fluiddynamicsofCSmakesitapowerfultoolforvariousapplicationsanddifferent fromothertraditionalconsolidationprocesses.CShasemergedasapromisingcandidatefordepositingbiocompatibleandantimicrobialcoatingsoverthepastdecades. Itoffersmanyadvantagesascomparedtothethermalsprayprocessasitinvolves kineticenergyinsteadofthermalenergyforspray.Sinceitisalow-temperaturedepositionprocess,undesiredtensileresidualstresses,oxidation,andchemicalreactions canbeavoided.Duetotheplasticityofcoatings,itispossibletodepositdifferentantimicrobialbiocompatiblecoatingsofmetallicmaterialsandpolymers.Inaddition,itis costeffectiveandenvironmentallygreen.Thefollowingwrite-upprovidesacomprehensiveideaaboutthelatestadvancementsinthefieldofmodifiedbiomaterialsalong withanaccountofthemostinterestingprocessesusedtodepositantibacterialcoatings onparticularsurfacestobeusedinthefieldofbiomedicalimplantapplications.Further,itdescribesthepresentstatusofantimicrobialcoatingsusingCSanditsfuture applicationsandinvestigationsaresuggestedinthefieldofantibacterialcoatingsand orthopedicsindustry.
2.2Theneedforthedevelopmentofantibacterialand antimicrobialcoatings
Themeaningoftheterm“biomaterial”isrecentlyproposedbyWilliamsetal. [1] in1987 as“anonviablematerialusedinamedicaldeviceandintendedtointeractwithbiological systems”.Foroverthelast60–70years,thisfieldhasalwaysbeenunderprogressive developmentandexperiencedmanychangestilldate.Thefieldofbiomaterialshas evolvedthroughthreegenerationseachwithclear-cutanddefinitiveobjectivestarting fromthefirst-generationbio-inertmaterialsinthelate1960stothird-generationbiomimeticbiomaterials(Fig.2.1).Thetwomajorproblemsinbiomaterialsarebiocompatibilityandstructuralcompatibility.Biocompatibilitycanbeperceivedas“material’sability
toperformwithanappropriatehostresponseinaparticularapplication.”Itindirectly expressestwoterms,namely,biosafetyandbiostability,wherethematerialdoesnothave toevokelong-termpersistinginfectionwhichmayyielddeathofacellorproducea malfunctioningofthecellortissuematrix.
Bio-inert biomaterials
Material that once placed in the human body has minimum interaction with its surrounding tissue.
Include
Material that upon placement within the human body starts to dissolve (resorbed) and slowly replaced by advancing tissue (sch as bone).
Includes biodegradable glass ceramics,polymers and bioglass.
Includes nano HA, collagen, biological molecules.
195019601970198019902000201020202030
Fig.2.1 Evolutionofbiomaterialsscience.
However,thesectionofimplanttissueinteractionsinbiomedicalsciencecanbebettercomprehendedbysurfaceengineering.Theidealmedicalimplantisonethatowns bothantibacterialfunctionandexcellentcellbiocompatibility.Medicalimplantsonthe basisofapplicationscanbecategorizedintogroupsnamelySensoryandneurological, cardiovascular,Orthopedic,contraception,cosmetic,andotherorgansandsystems. Otherorgansandsystemsincludetreatmentofacidrefluxdisease,respiratoryfailure, sleepapnoea,involuntaryurination,andanalincontinenceanderectiledysfunction.
Titaniumalloysarebroadlyusedinbiomedicalapplicationsmainlyindentaland orthopedicimplants [2].However,atthetissueandimplantinterfaceoftitanium,there istheformationofsurfacebiofilmwhichmakesimplantsurfacesusceptibletoinfection.Hence,thereisarequirementofpotentialmethodsofsurfacemodifications,with thecapabilitytocoatthebiomaterialswithantibacterialsubstanceslikecopper,tin, andzinctofulfillthespecificdemandsofparticularapplications.FormationofbiofilmscanonlybetackledbythedevelopmentofantibacterialcoatingswhichwillpreventinitialadhesionofbacteriatothesurfaceofTi.Forthecoatingsofbiomedical surfacessuchascatheters [3],polymericnanocompositesofsilverareusedsuccessfully.Similarly,peptide-based [4] antimicrobialcoatingswereusefulformedical implants.Inaddition,oil-basedcoatingisanaturalprocesstoprepareantimicrobial essentialoils.Carvacrol [5],thechiefcomponentofthymeoilisintroducedinto waterbornepolyurethanecoatings,preventstheformationofbiofilmbylowering thebacterialattachment.
Surfacecharacteristicsofmedicalimplantsplayakeyroleininitialadherenceand growthofbacteriaontheimplantsurfaceandsubsequentcellactionandresponse. Thesecharacteristicsgenerallyincluderoughness,surfacefreeenergy,surfacepotential,conductivity,wettability,etc. [2].Bacteriaresistantinterfacecanbeobtainedby alteringphysicalandchemicalsurfaceproperties [2] anddevelopmentofantiadhesive polymercoatings.
Scaffolding material that mimics one or multiple characteristics of the natural extracellular matrix
stainless steel,titanium, alumina,partially stabilized zirconia .
2.3Thecoatingtechniques
Thereisawiderangeofsurfacetreatmenttechniquesforthedevelopmentofantimicrobialcoatinglikeultraviolet(UV)radiation,chemicalandplasmagrafting,ion implantation,andplasmaimmersionionimplantationanddeposition.
Asfarasmetalcoatingsareconcerned,roughandporousTicoatingsareprepared throughvacuumplasmaspraying(VPS).Earlier,Yangetal. [6] obtainedTicoatings onTisubstratescontaininganouterlayerfullofmacroporeswhicharebeneficialfor tissueingrowthintothecoating.SuchmacroporeshaveasurfaceroughnessofapproximatelyRa ¼ 100 μm.However,Borsarietal. [7] producedthedenseVPS-Ticoatingswiththepurposetoavoidthedepletioninthedensityofbone,alsoknownas “stressshielding”andthusincreasingtheprosthesislifespan.VPScoatingprovided agoodbiologicalresponseinvitroanditbehavedthesameasthecoatingsusedin orthopedics.
Copperandcopper-basedalloysarewidelyusedascoatingswhicharethermally sprayedonthetopoftheconstructionelementssuchassteelwhichpreservesitsnecessarystrength.Oneoftheadvantagesofthethermallysprayedcoatingsisapossibilitytogeneratecoatingsmadeofmaterialsofdifferentcompositionsincluding compositematerials.Italsofindsitsusageinhospitalequipmentasitisverymuch effectiveinfightingpathogenicmicroorganisms.Michelsetal. [8] showedthatthere isanincreaseinantimicrobialeffectivenesswithincreasingcontentofcopperin alloys. Fig.2.2 showsthatthedecreaseinbacteriacountof Listeriamonocytogenes ismorerapidinthehighercontentofcopperinalloys.Theformationofbiofilmsisnot possiblebecauseofrapidcontactkilling [9] andtheformationofradicalsinCucomplexesmakesthevirusesidleandinactive [10].AlthoughtheinhibitoryeffectofCuon biofilmisnotwellknown,itisbelievedthatthecupricionisresponsiblefortheantimicrobialactionofcopper [8].Theresearchrevealedthattheequipmentwith

Fig.2.2 Theviabilityof L.monocytogenes onthesurfacesofalloysUNSC10200,C22000, C63800,C70600,C75200,andS30400at20°C.