Graphene: preparations, properties, applications, and prospects kazuyuki takai - The latest ebook is

Page 1


Graphene:Preparations,Properties,Applications, andProspectsKazuyukiTakai

https://ebookmass.com/product/graphene-preparationsproperties-applications-and-prospects-kazuyuki-takai/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Comparison of functional properties of edible insects and protein preparations thereof Ewelina Zieli■ska & Monika Kara■ & Barbara Baraniak

https://ebookmass.com/product/comparison-of-functional-properties-ofedible-insects-and-protein-preparations-thereof-ewelina-zielinskamonika-karas-barbara-baraniak/ ebookmass.com

Graphene Quantum Dots: Biomedical and Environmental Sustainability Applications Mohammad Oves

https://ebookmass.com/product/graphene-quantum-dots-biomedical-andenvironmental-sustainability-applications-mohammad-oves/

ebookmass.com

2D Nanomaterials for Energy Applications: Graphene and Beyond Spyridon Zafeiratos (Editor)

https://ebookmass.com/product/2d-nanomaterials-for-energyapplications-graphene-and-beyond-spyridon-zafeiratos-editor/ ebookmass.com

Little Lovely Things Maureen Joyce Connolly

https://ebookmass.com/product/little-lovely-things-maureen-joyceconnolly/

ebookmass.com

C Programming For Dummies 2nd Edition Dan Gookin

https://ebookmass.com/product/c-programming-for-dummies-2nd-editiondan-gookin/

ebookmass.com

The Economics of Optimal Growth Pathways: Evaluating the Health of the Planet’s Natural and Ecological Resources S. Niggol Seo

https://ebookmass.com/product/the-economics-of-optimal-growthpathways-evaluating-the-health-of-the-planets-natural-and-ecologicalresources-s-niggol-seo/

ebookmass.com

Neuroradiology Imaging Case Review Salvatore V Labruzzo

https://ebookmass.com/product/neuroradiology-imaging-case-reviewsalvatore-v-labruzzo/

ebookmass.com

Reluctant Cold Warriors: Economists and National Security

Vladimir Kontorovich

https://ebookmass.com/product/reluctant-cold-warriors-economists-andnational-security-vladimir-kontorovich/

ebookmass.com

Thermofluids:

From

Nature to Engineering Ting

https://ebookmass.com/product/thermofluids-from-nature-to-engineeringting/

ebookmass.com

First Aid for the Basic Sciences. General Principles 3rd Edition Tao Le

https://ebookmass.com/product/first-aid-for-the-basic-sciencesgeneral-principles-3rd-edition-tao-le/

ebookmass.com

Preparations,Properties,Applications andProspects

KazuyukiTakai

SeiyaTsujimura

FeiyuKang

MichioInagaki

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher ’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-819576-5

ForinformationonallElsevierpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: GlynJones

EditorialProjectManager: NaomiRobertson

ProductionProjectManager: SruthiSatheesh

CoverDesigner: MarkRogers

TypesetbyTNQTechnologies

Preface

TheNobelPrizeinPhysicsfor2010wasawardedtoProfs.A.GeimandK.Novoselovof theUniversityofManchesterfortheirgroundbreakingexperimentsongraphene.Theterm “graphene”wasproposedin1986inrelationtotheterminologyusedforgraphite intercalationcompounds.AftertheNobelPrize,scientificandtechnologicalinterestin grapheneincreasedrapidly;asaconsequence,atremendousamountofliteraturedeclaring itsresearchtargettobegraphenehasbeenpublished.Unfortunately,thisrapidgrowthin interesthascausedseriousconfusionregardingthedefinitionandterminologyofgraphene eveninscientificjournals.

Twoofthecurrentauthors,M.InagakiandF.Kang,haveauthoredthreebooksinaseries, entitled MaterialsScienceandEngineeringofCarbon:Fundamentals, AdvancedMaterials ScienceandEngineeringofCarbon,and MaterialsScienceandEngineeringofCarbon: Characterization.Itwasanticipatedthatthesebookswouldprovideacomprehensive understandingofawiderangeofcarbonmaterials(graphite,graphitizedcarbons,carbon blacks,activatedcarbons,pyrolyticcarbons,glass-likecarbons,porouscarbons,carbon fibers,etc.,inadditiontodiamond,fullerenes,carbonnanotubes,andgraphene)throughthe detailedexplanationanddiscussionoftheirstructures,nanotextures,andfundamental properties.However,theoccurrenceofmisperceptionsandtheflood-likeincreasein researchpapersongraphene-related(graphene-like)materialsledthesetwoauthorsto believeitwasnecessarytoeditabookfocusingongraphene-relatedmaterials,inaddition tothethreepreviouslymentionedbooks,althoughgrapheneisamembersofthecarbon family.Therefore,theyinvitedtwoauthors,K.TakaiandS.Tsujimura,whoarespecialists inthephysicalchemistryofgraphene,andelectrochemistryapplicationstobiomedicals, respectively,tocoverthewidelyspreadapplicationsofgrapheneinthisbook.

Inthisbook,theauthorsattemptedtoprovidesummariesandreviewsongrapheneandits relatedmaterialsbydifferentiatingmaterialswithahighperfectionofstructure(graphene) fromthosethatarehighlydefective,evenwithvariousfunctionalgroupsattached(reduced grapheneoxide).Inaddition,itisemphasizedthatthenumberoflayersgovernsthe propertiesoftheflakesofgraphene(thecharacteristicsofgraphene)whicharequite differentfromthoseofgraphite(manylayersstacked)andpossibletobeobtainedonthe flakeofonlyafewhighly-crystallinelayersstacked.

Tounderstandgrapheneanditsrelatedmaterials,awiderangeoffundamentalknowledge onvariouscarbonmaterialsisessential:thatis,knowledgesuchascarbonization, graphitization,intercalation,andsoon,inadditiontobasicknowledgeaboutchemistry, physics,biology,andothers.Forthereaders’convenience,itisrecommendedtoconsultthe threebooksmentionedpreviously,whicharepublishedbyTsinghuaUniversityPressand Elsevier.Thesebookswillsupplyfundamentalknowledgeaboutcarbonmaterialsand provideanunderstandingofabroadrangeoftopicsinthecurrentbook.

Itwillbetrulypleasingtoalloftheauthorsifthecontentofthisbookdeliversuseful informationtothereadersandwillleadreaderstothecorrectunderstandingofgraphene andrelatedmaterials.

Acknowledgments

Theauthorswouldliketoexpresstheirsincerethankstothepeoplewhokindlyprovided thedataandfiguresforthisbook.Thenamesandaffiliationsofthecontributingpersonsare mentionedinthecaptionsoffigures.Theauthorsalsothankallofthepeoplewhotookcare ofthisbookatTsinghuaUniversityPressandalsoatElsevier.

Introduction

ChapterOutline

1.1Whatisgraphene?1

1.2Fundamentalsofmaterialsscienceforcarbonmaterials5

1.2.1Classificationofcarbonmaterials5

1.2.2Structureandnanotextureofcarbonmaterials6

1.2.3Carbonizationandgraphitization8

1.2.4Carbonmaterials12

1.2.4.1Highlyorientedgraphitematerials12

1.2.4.2Syntheticgraphitematerials17

1.2.4.3Fibrouscarbonmaterials20

1.2.4.4Nanoporouscarbons23

1.2.4.5Sphericalcarbonmaterials26

1.2.4.6Glass-likecarbons28

1.3Constructionandpurposesofthecurrentbook29 References31

1.1Whatisgraphene?

Theterm“graphene”wasfirstlyproposedin1986 [1] andthenrecommendedbythe InternationalUnionofPureandAppliedChemistry [2] asthenameforasingletwodimensionallayerofcarbonatomsbondingusingsp2 hybridorbitals,whichoccursin graphiteintercalationcompounds.Thesinglecarbonlayeroccurringintheintercalation compoundswasproposedtobecalled“graphene”whichcomesfromthesuffix“-ene”for polycyclicaromatichydrocarbonssuchasnaphthaleneandanthraceneandtheprefix “graph-”fromgraphite.Intheearliestliterature [1],theauthorsnotedthat“itshouldbe adoptedforgraphiteintercalationcompounds.”Inthefirst-stagestructureofthe compounds,atwo-dimensional(2D)carbonlayerissandwichedbytwointercalatelayers andisolatedfromothercarbonlayers,althoughmorethantwocarbonlayersarestackedin parallelwithregularityincompoundswithhigherthanasecondstage,asschematically illustratedin Fig.1.1.

“Graphene”iscommonlydefinedasanisolatedsinglelayerofcarbonhexagonsconsisting ofsp2 hybridizedC Cbondingwith p-electronclouds.Fromanengineeringpointof view,thinflakesconsistingofafewlayersofcarbonatoms,includingsingle-layer

Graphene. https://doi.org/10.1016/B978-0-12-819576-5.00001-3 Copyright © 2020ElsevierInc.Allrightsreserved. 1

Stagestructureofgraphiteintercalationcompounds.

graphene,couldbeimportantbecauseoftheirinterestingstructural,chemical,andphysical characteristics.Thepromisingpotentialapplicationsofgrapheneanditsrelatedmaterials havebeenpointedoutintechnologicalfields.

Numerousreportshavebeenpublished,particularlyaftertheNobelPrizeinPhysicswas awardedin2010toProfs.A.GeimandK.NovoselovoftheUniversityofManchesterfor theirgroundbreakingexperimentsingraphene [3].Suddenscientificandtechnological interestingrapheneanditsrelatedmaterialshascausedsomeconfusionaboutthe definitionandterminologyofgraphene-relatedmaterials,eveninscientificjournals.A proposalregardingthenomenclaturefortwo-dimensionalcarbonmaterialswasbeen presentedinthejournal Carbon [4].Inmuchoftheliterature,however,theterm “graphene”hasnotbeenusedaccordingtoitsstrictdefinition,i.e.,asinglelayerofcarbon atomsconsistingofsp2 hybridizedbonds.Someauthorsdonotpayenoughattentionto howmanylayersarestackedintheirmaterials,althoughtheyhavecalledthem“graphene” Therefore,here,theterms“single-layergraphene”(ormonolayergraphene),“doublelayeredgraphene”(orbilayeredgraphene),and“multilayeredgraphene”areusedonlyfor productsthathaveconfirmednumbersofstackedlayers.

Numerousreviewshavebeenpublishedfromvariousviewpoints:providinganoverviewof graphenebypointingoutwhatisfascinatingaboutit [5 13],focusingonitsproductionin relationtoitsstructure [14 23],applicationsinelectronics [24 30],energystorage applications [31 48],biologicalapplicationsincludingsensors [49 68],functionalization includingtheformationofcomposites [69 80],mechanicalapplications [81,82],thermal properties [83,84],dopingtoimproveitsproperties [85,86],anditstoxicity [87,88]

Figure1.1

Beforesummarizingresearchongraphene-relatedmaterialsanddiscussingtheresults,it isworthwhiletounderstandtheflakesand/orfilmsthatdeterminehowmanynumbersof layerscanexhibittheuniquefunctionalitiescharacteristicofgraphene,todifferentiateit fromgraphite. Fig.1.2 comparesRamanspectraareforgraphiteandgrapheneflakes withdifferentnumbersofstackedlayers [89].Asshownin Fig.1.2A ,highlyoriented pyrolyticgraphite(HOPG),forexample,showsasharpandstrongG-bandandG0 -band (2Dband).Thelatterispresentedasdecomposingintotwobands,G0 1 andG 0 2,with heightsofroughly¼and½oftheG-band,respectively.Ontheotherhand,single-layer grapheneexhibitsasharpandsingleprofileforbothG-andG0 -bandsandtheG0 -band ismuchstrongerthantheG-bandbyalmostfourtimes.Asshownin Fig.1.2B,the G 0 -bandgraduallyshiftstoahigherposition,changingitsprofiletounsymmetricaland decreasesitsintensityrelativetotheG-bandwithanincreasingnumberofstacked layers.

Amarkedfieldeffectonelectricalconductionisacharacteristicofgraphene.Pioneering workswerereportedonfew-layeredgrapheneflakes [90] Fig.1.3A showsresistivity changewithgatevoltage Vg onfew-layeredgrapheneflakesasafunctionoftemperature, revealingamarkedfieldeffect,apeakofseveralkU withrapiddecaytoabout100 U at high Vg,andastrongdependenceontemperature.Thisfieldeffectisshownbyplotting therelativecarrierconcentration n/n0 (n0 istheconcentrationofcarriersat4K)against temperatureforthreeflakes,few-layeredflakes,few-layeredbutmuchthickerflakes,and multilayeredflakesin Fig.1.3B.Theresultsclearlyrevealthatthefieldeffectdependson thenumberofstackedlayers:thesmallerthenumberoflayers,thestrongerthefield effect.

Figure1.2

Ramanspectrameasuredbyalaserwith514-nmwavelengthforgraphitetosingle-layergraphene [89]:(A)comparisonofgraphiteandsingle-layergraphene,(B)ChangeinG0 -bandwith increasingnumberofstackedlayers. 2D,two-dimensional;a.u.,arbitraryunits.

Fieldeffectforfew-layeredgrapheneflakes [90]

Largest data

Averaged value

Theoretical prediction I

Theoretical prediction II

Figure1.4

Changeinthermalconductivityatroomtemperaturewithnumberoflayersstacked [91]

Extremelyhighthermalconductivity,morethan5000W/m K,isexpectedforsingle-layer graphene [91].Itdependsonthenumberoflayersstackedintheflake.In Fig.1.4,thermal conductivitiesexperimentallydeterminedfromthetemperaturedependenceoftheposition ofthemicro-RamanG-bandtogetherwiththeoreticalpredictionsareplottedagainstthe numberofstackedlayers [91].Amarkeddependenceofroomtemperaturethermal conductivityonthenumberoflayersisclearlyshown.Single-layergraphenehasextremely highconductivity,butthatofaflakecomposedoffourlayersiscomparabletobulkgraphite withhighcrystallinity,suchasHOPG,althoughitishighcomparedwithmetals.

Figure1.3

Thesethreeexperimentalresultssuggestthatweneedaflakeand/orfilmcomposedofless thanfourlayerstoobtaincharacteristicsintrinsictographene.

1.2Fundamentalsofmaterialsscienceforcarbonmaterials

Grapheneisamemberofcarbonmaterials,whichincludegraphite,carbonblacks,carbon nanotubes,carbonfibers,activatedcarbons,porouscarbons,diamond,andfullerenes.To preparegrapheneflakesandfilms,graphitematerialssuchasnaturalgraphite,HOPG,and kishgraphitehavebeenemployedasstartingmaterials.Inadditiontographene,other carbonmaterialssuchasactivatedcarbonsandporouscarbonsincludingcarbonfoamsand carbonnanotubeshavebeencitedinreferencesand/orcompetitivematerials.

Beforediscussinggraphene,thefundamentalsofcarbonmaterialssciencewillbebriefly explained,emphasizinghighlyorientedgraphitematerialsthathavebeenusedasraw materialsofgraphene.Foradetailedexplanationanddiscussionofcarbonmaterials, readersofthisbookaresuggestedtorefertofundamentalbookswrittenbythecurrent authors(M.I.andF.K.) [92,93].

1.2.1Classificationofcarbonmaterials

Manykindsofcarbonmaterialshavebeenmanufactured,synthesized,andwidelyusedin variousindustries.Thesecarbonmaterialsareproposedtobeclassifiedonthebasisof theirchemicalbondsofconstituentcarbonatomsusingsp3,sp2,andsphybridorbitals. Thesp2 hybridbondingofcarbonatomsresultsintwostructures:flatlayerscomposedof six-memberedcarbonrings,whichhadbeenrepresentedbygraphitebutnowinclude graphene;andcurvedlayers,whichintroducefive-memberedcarbonringsintosixmemberedrings,asoccursinfullerenes.Layerscomposedofsp2 orbitals,bothflatand curved,areintrinsicallyanisotropicandhave p-electroncloudsatbothsidesofthelayer, whichcreatesbroaddiversityinthestructureandpropertiesofthematerials.Carbon nanotubescanbeplacedbetweenfullereneandgraphene,becausethetipsofthetube includefive-memberedrings(fullerene-like)anditswalliscomposedofsix-membered ringsalthoughitisrolledup(graphene-like). Fig.1.5 showstheclassificationofcarbon materialsbasedonhybridbonds,togetherwiththediversityofeachmaterial.

Becauseoftheanisotropicnatureandthepresenceof p-electroncloudsinthecarbon materialscomposedmainlyofsp2 hybridorbitals,thenumberoflayersstackedinparallel hasastronginfluenceontheirproperties.Theimportanceofthenumberofstackedlayers hasbeenpointedoutforcarbonnanotubesandfullerenes,andnowforgraphene,as mentionedintheprevioussection.Largenumbersoflayersstackedwithregularityhave beencalledgraphite,andvariousgraphite-relatedmaterialshavebeenproducedin industriesandusedasimportantindustrialmaterials,someofwhicharelistedin Fig.1.5

sp3

Diamond

Crystalline Cubic Hexagonal

Non-crystalline Diamond-like carbon (DLC)

Crystalline Hexagonal Rhombohedral

P1=1.00

d002=0.3354 nm

Oriented

Planar orientation

Highly-oriented graphite

Planar Graphene

Single-layer to Multi-layered

Graphite

Synthetic (artificial) graphite

Intercalation compounds

Pyrolytic carbons

C 2s22p2

sp2 + π

Carbon nanotubes

Single wall

Chirality

Multi-walled

Graphitization degree

Nanotexture

Axial orientationPoint orientation

Carbon fibers C/C Composites

Figure1.5

Carbon blacks

Curved Fullerenes sp+ 2π

Single wall C60, C70, ··· Multi-walled

Carbyne

Chain length, etc.

Non-crystalline Turbostratic

P1=0.00

d002>0.344 nm

Not-oriented

Random orientation

Activated carbons

Glass-like carbons

Classificationsanddiversityofcarbonmaterials.

1.2.2Structureandnanotextureofcarbonmaterials

Mostcarbonmaterialscomposedofflatlayersusingsp2 hybridorbitalsconsistofsmall unitsoflayersstackedinparallel,asshownbythetransmissionelectronmicroscopy (TEM)latticefringeimageandschematicillustrationin Fig.1.6.Theseunitsarecalled basicstructuralunits(BSU)orcrystallites.Inaunit,twokindsoflayerscoexistwith stackingregularity:randomandregularstacking.Theformeriscalledturbostraticstacking andthelatterisgraphiticstacking(usuallywrittenasABstacking).TheseBSUsare stronglyanisotropicinthenatureoftheirbond,withstrongcovalentbondingusingsp2 hybridorbitalalongthelayerandweakvanderWaalsbondingacrossthelayers.

TheaggregationoftheseanisotropicnanosizedBSUsintheparticlesresultsindifferent texturesowingtothedifferentschemaofpreferredorientationsofanisotropicBSUs(i.e., planar,axial,point,andrandomorientations),asillustratedwithsomerepresentative carbonmaterialsin Fig.1.7.TheaggregationofBSUsindifferentschemaiscalled nanotextures.Bytheplanarorientationscheme,filmsandplateletsofhighlyoriented

Figure1.6

Basicstructuralunitofcarbonmaterials:(A)latticefringeimageand(B)schematicillustration ofaunit.

RANDOM NANOTEXTURE

Glass-like carbons

Random orientation

ORIENTED NANOTEXTURE

Planar orientation

Axial orientation

Figure1.7

Highly-oriented graphites

Cokes Carbon nanotubes

Carbon fibers

Point orientation

Fullerenes

Carbon blacks

Nanotexturesincarbonmaterialsonthebasesofpreferredorientationsofbasicstructuralunits.

graphiteareproducedandsomecokeparticlesareprincipallycomposedofplanar orientationofBSUs.Bytheaxialorientationscheme,fibrouscarbonmaterialsare producedfromdifferentprecursorssuchascarbonnanotubesandvapor-growncarbon fiberswithacoaxialmodeoforientationandsomemesophasepitch-basedcarbonfibers witharadialmode.Bythepointorientationscheme,variouscarbonspheresareproduced, aswellasvarioussizedfullereneparticlesanddifferentnanosizedcarbonblackswith concentricmodeandmesophasesphereswitharadialmode.Theparticlescomposedof theseorientednanotexturesarestillanisotropic.Inaddition,randomaggregationofsmall BSUsoccursinso-calledglass-likecarbon(glassycarbon),theparticlesofwhichare isotropicinnature.

1.2.3Carbonizationandgraphitization

Mostcarbonmaterialsusedinindustryareproducedfromorganicprecursorssuchas pitches,biomasses,andorganicpolymersviaheattreatmentathightemperaturesinan inertatmosphereduringcarbonizationandgraphitizationprocesses. Fig.1.8 summarizes changesinchemicalandelectronicbandstructures.

Carbonizationisperformedafterpyrolysisoftheprecursorsfrom800to2000 C,inwhich theBSUsareformedandtheirbasicaggregationscheme(nanotexture)isestablished, accompaniedbytheemissionofforeignatoms,oxygen,hydrogen,andnitrogenasgases andthepolycondensationofsix-memberedcarbonrings.Becausethenanotextureofmost carbonmaterialsisestablished,thisprocessismostimportantintheproductionofvarious carbonandgraphitematerials.Thenanotexturegovernsthedevelopmentofcrystalline structuresincarbonmaterialsduringgraphitization.Duringthisprocess,alargeamountof shrinkageandtherapidemissionofgasspeciesoccurthatareassociatedwithcrackingof carbonparticlesthatoccurinmanycases.Therefore,theprocessofcarbonizationis appliedseparatelyfromthatofgraphitization.

Above2000 C,achangeincrystallinestructure(thedevelopmentofagraphitestructure) mainlyoccurs.Thedevelopmentofagraphitestructuremaybeevaluatedbydifferent techniques,includingx-raydiffraction(XRD),electromagneticpropertymeasurements, Ramanspectroscopy,andhigh-resolutionTEM.InBSUsformedduringcarbonization,

Schematicillustrationofchemical,crystallographic,andelectronicbandstructuresincarbon materialswithaplanarorientationnanotexture. MW,molecularweight.

Figure1.9

Changesinx-raydiffractionparameterswithheattreatmenttemperatures(HTT)forvarious carbonmaterials:(A) d002,(B) Lc measuredfroma 002 diffractionpeak,and(C) La froma 110 peak.

turbostraticstackingwithaninterlayerspacingofabout0.342nmisrandomlychangedto graphiticregularstackingwithaspacingof0.3354nm(thespacinginthegraphitecrystal) withanincreasingheattreatmenttemperature(HTT)ofabove2000 C,whichismeasured asadecreaseintheaveragedinterlayerspacing, d002,byXRD,associatedwiththegrowth ofBSUsizes(crystallitesize)alongthea-andc-axes, La and Lc.Thechangein d002 with HTTdependsonthematerialsaftercarbonization(carbonmaterials). Fig.1.9 showsthe changesintheseparameterswithHTTforvariouscarbonmaterials.Inneedle-likecoke withaplanarorientationscheme, d002 decreasesquickly,approachingthevalueofa graphitecrystal(0.3354nm),and Lc and La growrapidly.Inglass-likecarbonwitha randomorientationscheme,incontrast,thereisalmostnodecreasein d002 andno appreciablegrowthin Lc and La evenafter3000 Ctreatment(i.e.,nodevelopmentofa graphitestructure).Carbonblackswithapointorientationschemehaveintermediate behaviors:thelarge-sizedthermalblackshowsmoreimprovementinstructurethandoes thesmall-sizedfurnaceblack.

DiffractionpeaksofXRDforcarbonmaterialsareclassifiedintothreegroups: 00l, hk0, and hkl,mainlyowingtothestronganisotropyofBSUsandthecoexistenceoftwo interlayerspacings,asshownin Fig.1.6B.Diffractionpeakswithindicesof 00l give averagedinterlayerspacing,whichdecreasesgraduallyfrommorethan0.344nmfor highlydefectivelayersto0.3354nmforgraphiticstackingandabout0.342nmfor turbostraticstackingwithincreasingHTT:inotherwords,withimprovingcrystallinity ofcarbon,asshownin Fig.1.9A.Inturbostraticstackingoflayers,thereisno3D regularityinstacking(i.e.,no l indexisdefined),andsothediffractionpeakswith hk0 indicesforagraphiticstructureareexpressedas hk diffractionpeaksforcarbon materialsmainlyconsistingoftheturbostraticstackingoflayers.Regularandrandom stackings,graphiticandturbostratic,areclearlydemonstratedindiffractionprofilesof

Figure1.10

d002=0.3345 nm Regular stacking (graphite structure)

d002=0.342 nm Random stacking (turbostratic structure)

d002>0.344 nm Minute BSUs

(A)Correspondencebetweenx-raydiffraction(XRD)profileof hk lineand(B)transmission electronmicroscopy(TEM)image. BSU,basicstructuralunits.

hk0 and hk peaks,asshownfor 101 and 10 peaksin Fig.1.10 .Theprofileofthe 10 peakforaturbostraticstructureshowsacharacteristicunsymmetricalprofile,andthat ofa 100 peakforagraphiticstructureissharpandsymmetricalandisassociatedwith a 101 peakowingtotheformationof3Dstackingregularity.WithincreasingHTT,an unsymmetrical 10 peakismodulatedbytheappearanceofa 101 peak,togetherwithits sharpenedandimprovingsymmetry.Peakswithindicesof hkl arecausedbythe graphitestructure,andso 112 peakisoftenselectedastoindicatetheformationofa graphitestructure,becausethe 112 peakdoesnotoverlapwithotherpeaksalthoughthe 101 peakoverlapswiththe 100 peak,ascanbeseenin Fig.1.10.

Becausemostcarbonparticlesaremoreorlessanisotropic,exceptforglass-likecarbon witharandomorientationscheme,theiraggregationintoablockgivestextureonanlarger scale,whichmaybecalledmicrotextureandmacrotexture.Thetechniqueforevaluating thesemicro-andmacrotextureshasnotyetbeenestablished. Figs.1.11and1.12 demonstrateexamplesofthesetextures,whichmustbecontrolledforpractical applications.In Fig.1.11,scanningelectronmicroscopy(SEM)imagesofcross-sections ofcommerciallyavailableisotropichigh-densitygraphiteareshown,demonstrating differentporestructures [94].Imageprocessingofthesemicrographssuggestsarelation betweenporestructureparameters(forexample,theporearea)andthemechanical propertiesofthesegraphiteblocks.Topreparecarbonfiber reinforcedplasticsandcarbon fiber carboncomposites,differentmacrotexturesbasedontheorientationofcarbonfibers areemployedtoobtainhighstrengthandahighmodulusofthecomposites,asshownin Fig.1.12.

TEM (002 lattice fringe image)

Figure1.11

SEMimagesofthecross-sectionsofisotropichigh-densitygraphiteblocks [94].

Chopped fibers

Random

One-directional

Long fibers

Three-dimensional

Two-directional

Three-directional

Figure1.12

Differentschemeforreinforcingcarbonfibersincomposites.

1.2.4.1Highlyorientedgraphitematerials

Theblocksorplatelets,whicharecomposedofbigcarbonlayersstackedinlargeamount withgraphiticregularity,arecalledhighlyorientedgraphite;theextremecaseofthisisa singlecrystalofgraphite.Inpractice,however,itisdifficulttoobtainsinglelargecrystals andalmostimpossibletogetthosethataremorethanafewsquaremillimeters.Thereare onlytwowaystofindsinglecrystalsofgraphite:innaturalgraphiteoresandinso-called kishgraphite.Resourcesofhigh-qualitynaturalgraphitearelimitedonearthandexistin SriLanka,Madagascar,andChina.Evenintheseores,thepossibilityoffindingsingle crystalsofacertainsizeisslim.Kishgraphiteisformedbytheprecipitationof supersaturatedcarbonfrommoltenironandcannotbelargeinsize,butsomehavevery highcrystallinityandcanbecalledsinglecrystals.Alternativestosingle-crystalgraphite areHOPGandgraphitefilmsderivedfromsomeorganicpolymerprecursorssuchas polyimidesviahigh-temperaturetreatment.

Naturalgraphite:Naturalgraphiteisusuallyrecoveredasapowderfromnaturalores throughmillingandpurificationprocesses.Afterthefinalpurificationprocess,thepowder hasusuallyapurityofmorethan99wt%.Someofitconsistsofflakyparticleswitha highlycrystallinestructureandhighlyorientednanotexture(flakygraphite),butsome consistsofaggregatesofsmallcrystals(calledamorphousgraphite) [95].Thesetwokinds ofnaturalgraphitecanbedifferentiatedbyXRD,asshownin Fig.1.13,whichshows

002

003

2θ / degree

Figure1.13

graphite

X-raydiffractionpatternsofflakyandmicrocrystallinenaturalgraphite [95]

flakygraphitewithsharp 100 and 101 peaksbutamicrocrystallinegraphitebroad 101 peak.Someflakygraphitecontainsmetastablerhombohedralmodificationofthegraphite structure,possiblyasaresultofshearstressduringmilling.

Kishgraphite:Apartofcarbonsdissolvedintomoltenironathightemperaturesis incorporatedintothecrystallatticeofirontoformalloys(differentsteels)andanotherpart segregatesasgraphite.Graphiteflakessegregatedfrommoltenironarecalledkish graphite [96 98].Relativelylargeamountsofkishgraphiteflakesareobtainedasabyproductduringsteelproduction;allofthemdonotalwayshavehighcrystallinitybecause itdependsonthesegregationconditions.Whentheyareproducedatthetemperatureat whichironevaporates,kishgraphiteflakeshaveasinglecrystalnature.Asshownin Fig.1.14,flakesarethinwithanirregularshape.Regularstackingoflayersisobservedby SEMandtheirsinglecrystalnatureisconfirmedbyawell-organizedelectronchanneling pattern.Thehighcrystallinityofkishgraphiteflakeswasalsoconfirmedbymeasurements oftheresistivityratio, r300K/r4.2K,maximumtransversemagnetoresistance,(Dr/r0)max, measuredat77K,andShubnikov-de-Haasoscillationinmagnetoresistance.

Graphitesinglecrystalshavebeensynthesizedfrommoltenironbycontrollingthe segregationprocess [99,100] andfromAl4C3 bytransportingdecompositiongases [101,102].

Highlyorientedpyrolyticgraphite:Carbondepositedonasubstrateby chemicalvapor deposition (CVD)ofhydrocarbongasessuchasmethaneandpropaneathightemperatures canhaveawell-orientedtextureandiscalledpyrolyticcarbon.Pyrolyticcarbonshave extensivelybeenstudiedtocontroltheirstructureandtexturebyapplyingdifferent depositionconditions,suchasprecursorhydrocarbon,theconcentrationandflowrate,the temperatureofdeposition,andthegeometryofthefurnace [103].Byhot-pressingathigh temperaturesunderhighpressure,thepreferredorientationofgraphitecrystallitesandtheir crystallinitycanbemarkedlyimproved.Typicalconditionsareshownin Fig.1.15[104].

Figure1.14

Kishgraphite:(A)opticalmicrograph,(B)scanningelectronmicroscopyimageoftheedge surface,and(C)electronchannelingpatternonthebasalplane. CourtesyofProf.Y.Hishiyamaof TokyoCityUniversity.

Hot pressing

2800-3000 °C, 30-50 MPa

Oriented pyrolytic graphite (OPG)

Annealing under pressure

3400-3600 °C, 10 kg/cm2

Pyrolytic carbon (PC) deposited at 2100-2500 °C mosaic spread of 40-50° mosaic spread of less than 0.5 °C density of 2.226 g/cm3 mosaic spread < 0.4°

Highly-oriented pyrolytic graphite (HOPG)

Figure1.15

Procedureoftheproductionofhighlyorientedpyrolyticgraphite.

TheproductsofthisprocessarecalledHOPG.Toachievehighcrystallinityandhigh orientation,thestartingpyrolyticcarbonsneedselected,aswellasthehot-pressing conditions.

Asshownin Fig.1.16A,HOPGhasahighlyorientednanotexturealongitsplate,but electronchannelinganalysissuggeststhatHOPGconsistsofrandomlyorienteda-axesof crystallinedomains,althoughtheirc-axesarealmostperfectlyorientedperpendicularto theplate.Thechannelingpatternonthesurfaceoftheplate(Fig.1.16B)issomewhat distortedcomparedwiththatofkishgraphite(referto Fig.1.14C)andthechanneling contrastshowstherandomorientationofa-axesofthedomains(Fig.1.16C).

Graphitefilmsderivedfromorganicfilms:Highlycrystallizedgraphitefilmswereprepared fromfilmsoflimitednumbersoforganicprecursors,suchaspoly(p-phenylenevinylene) (PPV) [105],poly(p-phenylene-1,3,4-oxadiazole)(POD) [106,107],benzimidazobenzophenanthrolineladderpolymerBBL [107 110],andthecommerciallyavailablearomatic

Figure1.16

Highlyorientedpyrolyticgraphite:(A)scanningelectronmicroscopyimageofthecross-section, (B)electronchannelingpattern,and(C)electronchannelingcontrast. CourtesyofProf.A.Yoshida ofTokyoCityUniversity.

Molecularrepeatingunitsofpolymersgivinggraphitefilms. PPV,poly(p-phenylenevinylene); POD,poly(p-phenylene-1,3,4-oxadiazole); BBL,benzimidazobenzo-phenanthrolineladderpolymer; Kapton; PPT,commerciallyavailablearomaticpolyimidefilms.

polyimidesKaptonandPPT [111 113],therepeatingunitsofwhichareshownin Fig.1.17.HeattreatmentofPPV-derivedcarbonfilmsupto3000 Cgaveagraphitefilm; asshowninitsRamanspectrumin Fig.1.18A,noD-bandwasdetected [105].Thefilmof polyoxadiazoleheat-treatedat2800 Cgavesharpandstrong 00l diffractionprofilesand no hk0 diffractionlinesbyreflectionmodeandwell-resolved hk0 and hkl linesandno 00l linesbytransmissionmode,asshownin Fig.1.18B;thisrevealedtheformationofa highlyoriented,well-crystallizedgraphitefilm [106].

BBLpolymerfilmwascastontoaglasssubstratefromitssolutionof trifluoromethanesulfonicacid(TFMSA)andthenheat-treatedathightemperaturesto 3200 Cbysandwichingitbetweentwoartificialgraphiteplates [110].Theresultant ultrathinfilms,whichwerelessthan100nmthick,showedanelectronchanneling patternsimilartothatofHOPGandanorientationofgraphitebasalplanesparalleltothe filmsurface,asshownin Fig.1.19A .Byusingmethanesulfonicacidassolventforthe BBLpolymer,filmwithanorientationofbasalplanesperpendiculartothefilmsurface wasobtained,asshownin Fig.1.19B[109].

Twofilmsderivedfrompolyimidepolytrimethyleneterephthalate(PTT)andKaptonby heattreatmentat3200 Cunderasimplemechanicalconstraint(sandwichingbetweentwo

Figure1.17

Figure1.18

(A)ChangeinRamanspectrumwithheattreatmenttemperatureforpoly(p-phenylenevinylene) film [105] and(B)x-raydiffractionpatternsofpolyoxadiazolefilmheat-treatedat2800 C [106]. a.u.,arbitraryunits; cps,countspersecond.

Figure1.19

002 latticefringeimagesofthecross-sectionofgraphitefilmspreparedfromabasicstructural unitspolymerusingtrifluoromethanesulfonicacid(A)andmethanesulfonicacid(B)assolvents andheat-treatedat2800 C [109]

graphiteplates)gavehighcrystallinitycomparabletokishgraphiteandHOPG; rRT/r4.2K (oneparameterstoevaluatecrystallinityofgraphite)was4.90and4.79forPTT-and Kapton-derivedfilm,respectively,althoughitwas4.7 5.5forkishgraphiteand HOPG [112].

Exfoliatedgraphiteandflexiblegraphitesheets:Becauselargeflakesofnaturalgraphite arenotcommonlyavailableandnaturalgraphiteflakescannotbeformeddirectlyintoa sheet,atechniqueforpreparinggraphitesheetswithnobindingmaterialswasdeveloped byforminggraphiteoxidesandviatheirthermalexfoliationandreduction,followedby compressionintosheets.Theyarecalledflexiblegraphitesheetsandhavepromotedthe applicationofgraphite [114].Graphitesheetshavecharacteristicadvantagessuchas flexibility,resilience,andtheabilitytobeformedintovariousshapeseasily;inaddition, graphitehasintrinsicpropertiessuchaslubricity,chemicalandthermalstability,andhigh electricalandthermalconductivity.

Naturalgraphiteflakesarechemicallyorelectrochemicallyintercalatedtoformacovalent intercalationcompoundofgraphite,graphiteoxide,throughtheuseofamixtureof concentratedsulfuricandnitricacids.Afterrinsinganddrying,residuecompoundsare obtainedinwhichtheregularstagestructureislostbutsomesulfuricacidderivatives remaininthegraphitegallery.Theseresiduecompoundsarethenrapidlyheatedto 900 1200 C,inwhichintercalatesremaininginthegraphitegalleryaredecomposedinto gaseousproducts,yieldingmarkedexfoliationofthepristinegraphite.Thisexfoliated graphiteconsistsofworm-likeparticles,asshownin Fig.1.20.Theyareformedby preferentialexfoliationperpendiculartotheplanesurfaceofthepristineflakes.Worm-like particlesofexfoliatedgraphiteareeithermoldedorrolledintoasheetwithnoadhesives orbinders.Thesearecalledflexiblegraphitesheetsandarewidelyusedasseals,gaskets, andpackings.

Afterrinsinganddryingofintercalationcompounds,theresiduecompoundsare commerciallyavailableasexpandablegraphiteandareusedasthestartingmaterialfor thinflakesofgrapheneoxideinsomeliterature.

1.2.4.2Syntheticgraphitematerials

So-calledgraphitematerialshavebeenmanufacturedindustriallyintovariouslysized blocks,rods,andplatesfordifferentapplications,suchaslargedegreeelectrodesfor electricarcfurnaces,variousjigsforprocessingmetals,cruciblesandheatingelements togrowsemiconductorcrystals,brushesforelectricmotors,andneutronmoderatorsfor nuclearreactors.Graphitematerialsfortheseapplicationshavemostlybeenproduced usingcokeparticlesasfillerswithpitchesasthebinderthroughcarbonizationand graphitizationtreatmentathightemperatures.Theproductionprocessesaresummarized asablockdiagramin Fig.1.21.Briefly,pulverizedcokeparticlesaremixedand

Figure1.20

(A)Scanningelectronmicroscopyimagesofworm-likeparticlesofexfoliatedgraphite.(B) Appearanceoftheparticles.(C)Cross-sectionofaparticle.(D)Distributionofporeareaon cross-section.

Filler

Petroleum coke Pitch coke

Binder Pitch

Pulverization

Coase grains

Sieving

Fine grains

Re-calcination

Mixing & kneading

Pitch, Resin

Extrusion

Molding

Forming

Isostatic pressing

Impregnation

Halogen gases

Purification

Graphitization

Machining

Calcination (Carbonization)

Figure1.21

Productionprocessofsyntheticgraphitematerials.

kneadedwithbinderpitchatatemperatureslightlyhigherthanthesofteningpointof thepitch,inwhichthenanotexture(eitherneedle-likeormosaic)andparticlesizeof thefillercokeandthemixingratioofthefillertothebinderhavetobecontrolled accordingtotherequirementsoftheapplications.Afterthemixtureisformedby extrusion,molding,orisostaticcompression,itisheat-treatedat1400 1800 C (calcinationorcarbonization),followedbyheattreatmentatahighertemperatureupto 2800 3000 C(graphitization)(see Fig.1.8).Thefinalproductsofthismanufacturing processarecalledsynthetic(artificial)graphitematerials.Allsyntheticgraphitesare polycrystallinesolids;ofthese,BSUs(crystallites)aremuchsmallerthanthoseinthe highlyorientedgraphitesdescribedpreviously.Toproducegraphitematerialsforusein anelectricarcfurnaceasanelectrode,coarse-grainedcokeparticleswithaneedle-like textureareusuallyemployedtoachievehighthermal-shockresistance.Theyareformed byextrusionormolding,andtheslightorie ntationofcokeparticlescannotbeavoided. Toproduceisotropichigh-densitygraphiteblocks,however,fine-grainedcokeparticles havetobeusedtoachieveahighdensity,andisostaticpressingmustbeemployedfor anisotropicnatureinthefinalblock.Microtexturesoftwographitematerials,electrode gradeandisotropicgrade,arecomparedin Fig.1.22.

Mostsyntheticgraphitematerialsconsistoffillercokeandacarbonizedbinder(binder coke).Theformerisabletoattainahigherdegreeofgraphitestructuredevelopment (graphitizationdegree)comparedwiththelatter.Thedegreeofgraphitizationachieved afterfinalgraphitizationdependsonthenanotextureofthestartingcokeparticles,as shownin Fig.1.23A.Needle-likecokehasanextendedflowpatternowingtothepreferred orientationofcrystallites,andsothereisahigherdegreeofgraphitizationafterhightemperaturetreatmentcomparedwithmosaiccoke,whichhasashortrangeoforientation andislessordered(Fig.1.23B).However,thedegreeofgraphitizationreachedbyneedlelikecokeisfarlowerthanthatofhighlyorientedgraphitematerials.

Figure1.22

Polarizedlightmicrographsofcross-sectionsofsyntheticgraphites:(A)electrodegradeand (B)isotropicgrade.

Polarizedlightmicrographsofcross-sectionofparticles:(A)needle-likeand(B)mosaiccoke.

1.2.4.3Fibrouscarbonmaterials

Avarietyoffibrouscarbonmaterialshavebeenpreparedbydifferenttechniques: electricarc-discharge,catalyticCVD,template-assistedCVD,melt-spinning,and electrospinning. Table1.1 classifiesthesefibrouscarbonsaccordingtowhetherthe 002 latticefringesofcarbonlayersareshortorlongandwhethertheirdiametersareonthe micrometerornanometerscale.Carbonlayersconstitutingthewallofcarbonnanotubes (CNTs)arelongandorientedexactlyparalleltothetube’saxis,butlayersofcarbon nanofibersareshortandorientedindifferentmodes,calledtubular,herringbone,and platelettypes,dependingonthemethodsandconditionsofsynthesis.Carbonfiberswith adiameterofabout7 m mareproducedindustriallybymelt-spinningfromdifferent precursors,polyacrylonitrile(PAN),isotropicandanisotropic(mesophase)pitches, cellulose,andphenolasfilamentyarns,clothes,chops,webs,etc.Vapor-growncarbon fibersonthemarketareproducedbycatalyticCVDandhavetubularnanotextures.By applyingelectrospinning,variousorganicpolymerscanbeusedasprecursorstofabricate carbonnanofibers [115].

Table1.1: Classificationoffibrouscarbonmaterials.

DiameteroffiberLongcarbonlayersShortcarbonlayers

NanometersizeCarbon nanotubes Single-walled Double-walled Multiwalled Carbon nanofibers

Tubulartype

Herringbonetype Platelettype

MicrometersizeGraphitewhiskerCarbonfibersPolyacrylonitrile-based Pitch-based,etc.

Vapor-growncarbon fibers

Figure1.23

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.